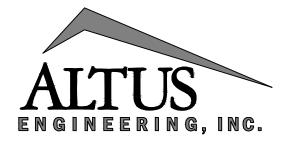
Applicant:

315 BANFIELD ROAD PORTSMOUTH, N.H. 03801 (603) 436-0739

Owner:



HOPE FOR TOMORROW FOUNDATION 1950 LAFAYETTE ROAD, 2nd FLOOR PORTSMOUTH, N.H. 03801 (603) 969-3100

Architect:

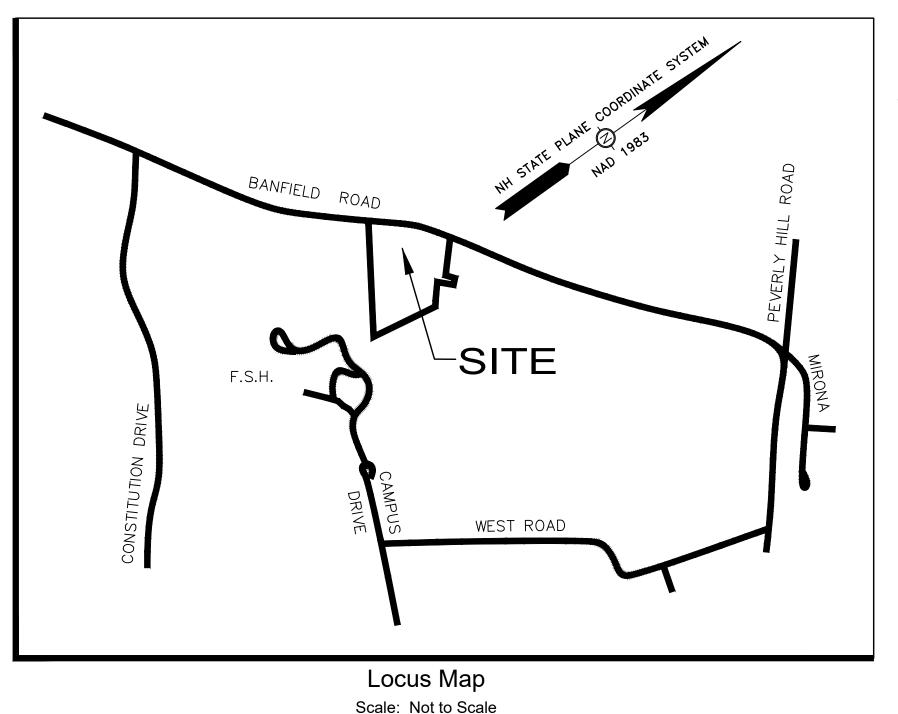
OAK POINT ASSOCIATES 85 MIDDLE STREET PORTSMOUTH, N.H. 03801 603.431.4849

Civil Engineer:

(603) 433-2335

133 COURT STREET PORTSMOUTH, NH 03801 www.ALTUS-ENG.com Surveyor:

James Verra and Associates, Inc. LAND SURVEYORS


101 SHATTUCK WAY - SUITE 8 NEWINGTON, N.H. 03801- 7876 603-436-3557

SAINT PATRICK ACADEMY Site Improvement Plans 315 Banfield Road Portsmouth, New Hampshire Assessor's Parcel 266 - 5

Plan Issued Date:

January 29 , 2020

Planning Board Approval

Sheet Index	Sheet		
Title	No.:	Rev.	Date
As-Built Site Plan AE	8-1 of 3	1	09/06/18
As-Built Site Plan AE	3-2 of 3	1	09/06/18
As-Built Site Plan AE	3-3 of 3	1	09/06/18
General Notes & Legend	GN-1	0	12/23/19
Overall Site Plan	C-1	1	01/29/20
Site Plan	C-2	1	01/29/20
Grading & Drainage Plan	C-3	1	01/29/20
Utilities Plan	C-4	1	01/29/20
Landscape Plan (by Oak Point Associates)	LS101	1	01/31/20
Landscape Details and Plant List (by Oak Point Associates)	L-501	0	12/23/19
Erosion Control Notes & Details	D-1	0	12/23/19
Detail Sheet	D-2	0	12/23/19
Detail Sheet	D-3	0	12/23/19
Detail Sheet	D-4	0	12/23/19
Detail Sheet	D-5	0	12/23/19
Detail Sheet	D-6	0	12/23/19
Detail Sheet	D-7	0	12/23/19
Floor Plan (by Oak Point Associates)	AE101	1	01/31/20
Roof Plan (by Oak Point Associates)	AE120	1	01/31/20
North & East Exterior Elevations (by Oak Point Associates)	AE201	1	01/31/20
South & West Exterior Elevations (by Oak Point Associates)	AE202	1	01/31/20
Electrical Site Plan (by Oak Point Associates)	ES101	0	12/23/19

Permit Summary

NHDES Alteration of Terrain Permit AoT-1252, Approved May 9, 2017 - To be Amended NHDES Discharge Permit D2017-0512, Approved June 6, 2017 - To be Amended EPA SWPPP / NOI To be filed by Contractor a minimum of 14-days prior to Commencing Construction Zoning Relief - Variance Granted on September 27, 2016 - Section 10.440.3.21 to allow a Primary or Secondary School in a district where the use is not permitted. Zoning Relief — Variance Granted on March 21, 2017 — Section 10.1113.20 to allow off-street parking spaces to be located between a principal building and a street. City of Portsmouth Conditional Use Permit – Approved on March 16, 2017 City of Portsmouth Site Plan Review Approval – Approved on March 16, 2017

GENERAL NOTES:

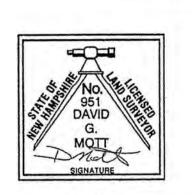
- 1) THIS PLAN AND ALL WORK ASSOCIATED WITH IT WAS PERFORMED BY SGC ENGINEERING, LLC PURSUANT TO A PROFESSIONAL SERVICES CONTRACT BETWEEN NORTH AND SOUTH CONSTRUCTION SERVICES AND SGC ENGINEERING LLC DATED JUNE 28, 2017.
- 2) THE LOCUS PARCEL IS DEPICTED AS LOT 5 ON ASSESSORS MAP 266. CURRENT OWNER: HOPE FOR TOMORROW FOUNDATION, 1 STONERIDGE DR, RYE, NH 03870. REFERENCE DEED: FOUNDATION OF SEACOAST HEALTH TO HOPE FOR TOMORROW FOUNDATION, DATED DECEMBER 16, 2016, RECORDED ROCKINGHAM COUNTY, N.H. REGISTRY OF DEEDS: DEED BOOK 5783, PAGE 602.
- 3) THE BEARINGS SHOWN HEREON ARE REFERENCED TO MAP REFERENCE 1 AND ARE BASED ON N.H. STATE PLANE COORDINATE SYSTEM NAD 1983.
- 4) ABUTTING PROPERTY OWNER INFORMATION REFERENCED HEREON WAS TAKEN FROM THE PORTSMOUTH, N.H. ASSESSOR DATA AS OF THE DATE OF THIS SURVEY.
- 5) THE SOLE PURPOSE OF THIS PLAN IS PREPARATION OF AN AS-BUILT SITE PLAN PER MAP REFERENCE 2, SHEET C-1: SITE NOTE 16. PROPERTY LINES SHOWN HEREON PER LOCUS DEED AND MAP REFERENCE 1, NO BOUNDARY RETRACEMENT SURVEY HAS BEEN PERFORMED BY SGC ENGINEERING, LLC.
- 6) UG ELECTRIC AND GAS SHOWN APPROXIMATE LOCATION PER SKETCH BY CONTRACTOR. NO SUBSURFACE INVESTIGATION HAS BEEN PERFORMED BY SGC ENGINEERING, LLC. DIG-SAFE SHOULD BE CONTACTED PRIOR TO COMMENCING ANY EXCAVATION. (888-344-7233).
- 7) THIS PLAN IS THE RESULT OF A FIELD SURVEY CONDUCTED BY SGC ENGINEERING, LLC BETWEEN JULY 2017 AND SEPTEMBER 04, 2018.
- 8) PER CONTRACT CONDITIONS NO MONUMENTS WERE SET.
- 9) VERTICAL DATUM IS BASED ON MAP REFERENCE 1 AND PROVIDED PROJECT SITE BENCHMARKS.
- 10) EASEMENTS: A 20' WIDE UTILITY EASEMENT TO PSNH AS DETAILED IN RCRD BK-PG: 5884-209. OTHER KNOWN EASEMENTS AS SHOWN ON PLAN. A REASONABLE AND DILIGENT ATTEMPT HAS BEEN MADE TO OBSERVE ANY OTHER APPARENT VISIBLE USES OF THE LAND, HOWEVER THIS DOES NOT WARRANT THAT NO OTHER EASEMENTS EXIST.
- 11) THE LOCUS PARCEL IS LOCATED IN THE INDUSTRIAL ZONE. SETBACKS: FRONT-70'; SIDE-50'; REAR-50'.

MAP REFERENCES:

- 1) A PLAN ENTITLED "LOT LINE REVISION PLAN, CAMPUS DRIVE BANFIELD & PEVERLY HILL ROADS, PORTSMOUTH, NEW HAMPSHIRE. ASSESSOR'S PARCELS 254-8, 266-4, 266-5, 266-6 FOR CITY OF PORTSMOUTH, N.H. & FOUNDATION FOR SEACOAST HEALTH", DATED 10/24/2016, PREPARED BY JAMES VERRA AND ASSOCIATES, INC., RECORDED AT THE ROCKINGHAM COUNTY, N.H. REGISTRY OF DEEDS AS PLAN NUMBER D-39897.
- 2) A PLAN ENTITLED "PROJECT: SAINT PATRICK ACADEMY, 315 BANFIELD ROAD, PORTSMOUTH, NEW HAMPSHIRE, ASSESSOR'S PARCEL 266-5", ISSUE DATE MAY 17, 2017, PREPARED BY ALTUS ENGINEERING, INC., RECORDED AT THE ROCKINGHAM COUNTY, N.H. REGISTRY OF DEEDS AS PLAN NUMBER D-40212

SHEET INDEX:

- 1) AS-BUILT SITE PLAN SHEET NO .: AB-1 OF 3 05-23-2018 DATE:
- 2) AS-BUILT SITE PLAN SHEET NO .: AB-2 OF 3 DATE: 05-23-2018
- 3) AS-BUILT SEWER PLAN SHEET NO .: AB-3 OF 3 05-23-2018 DATE:

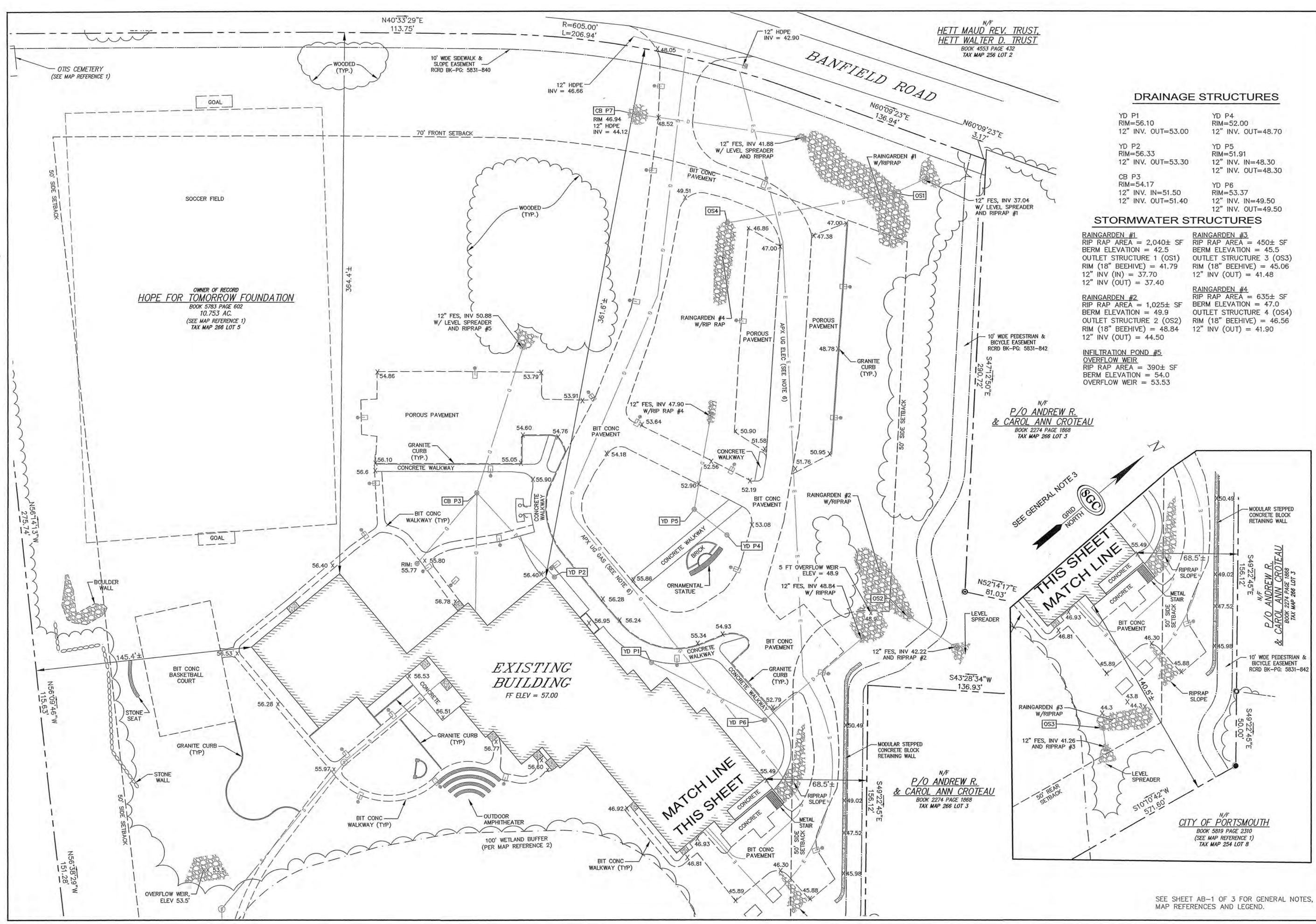

LEGEND:

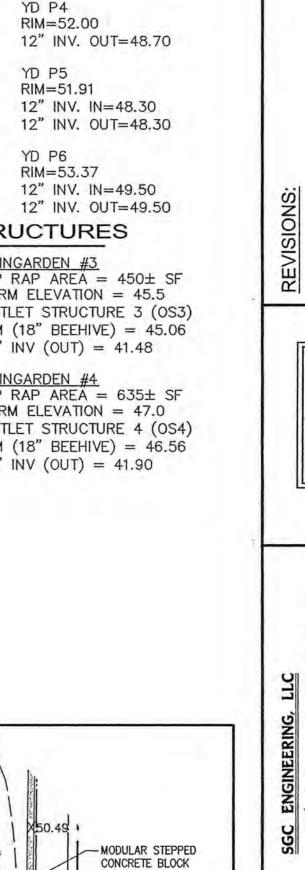
LOCUS BOUNDARY LINE				
ADJACENT LOT LINE				
ADJACENT R.O.W. LINE				
EASEMENT LINE				
SETBACK LINE				
EDGE OF CONCRETE		*********	ARE # 1998年1998年1999年1998年	
CURBING		N. S. Davis		
BUILDING		7777777	11111111111111	
EDGE OF TRAIL				
EDGE OF STONE				
RIP RAP		1 3	1 2 7 1	
SANITARY SEWER LINE			\$	
STORM DRAIN LINE			—— D ———	
WATER LINE			W	
ELECTRIC LINE			E	
PIPE		Ô	SPIKE	0
REBAR		0	WOOD HUB W/TACK	Δ
SQUARE CATCH BASIN		HHH	FLAG POLE	on
ROUND CATCH BASIN		•	LIGHT POST	P
SEWER MANHOLE		5		0
FLARED END SECTION		8		

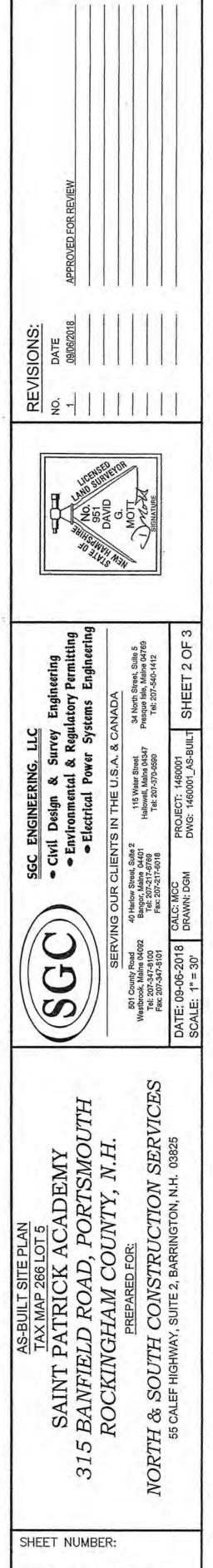
CERTIFICATION:

1 HEREWITH CERTIFY THAT THIS PLAT IS THE RESULT OF AN ACTUAL FIELD SURVEY MADE ON THE GROUND PER THE STANDARDS OF PRACTICE FOR AN AS-BUILT SURVEY: CATEGORY 3, CONDITION 1, PURSUANT TO THE N.H CODE OF ADMINISTRATIVE RULES - BOARD OF LICENSURE FOR LAND SURVEYORS. THE SURVEY HAS A MAXIMUM ERROR OF CLOSURE OF ONE PART IN FIFTEEN THOUSAND (1:15,000).

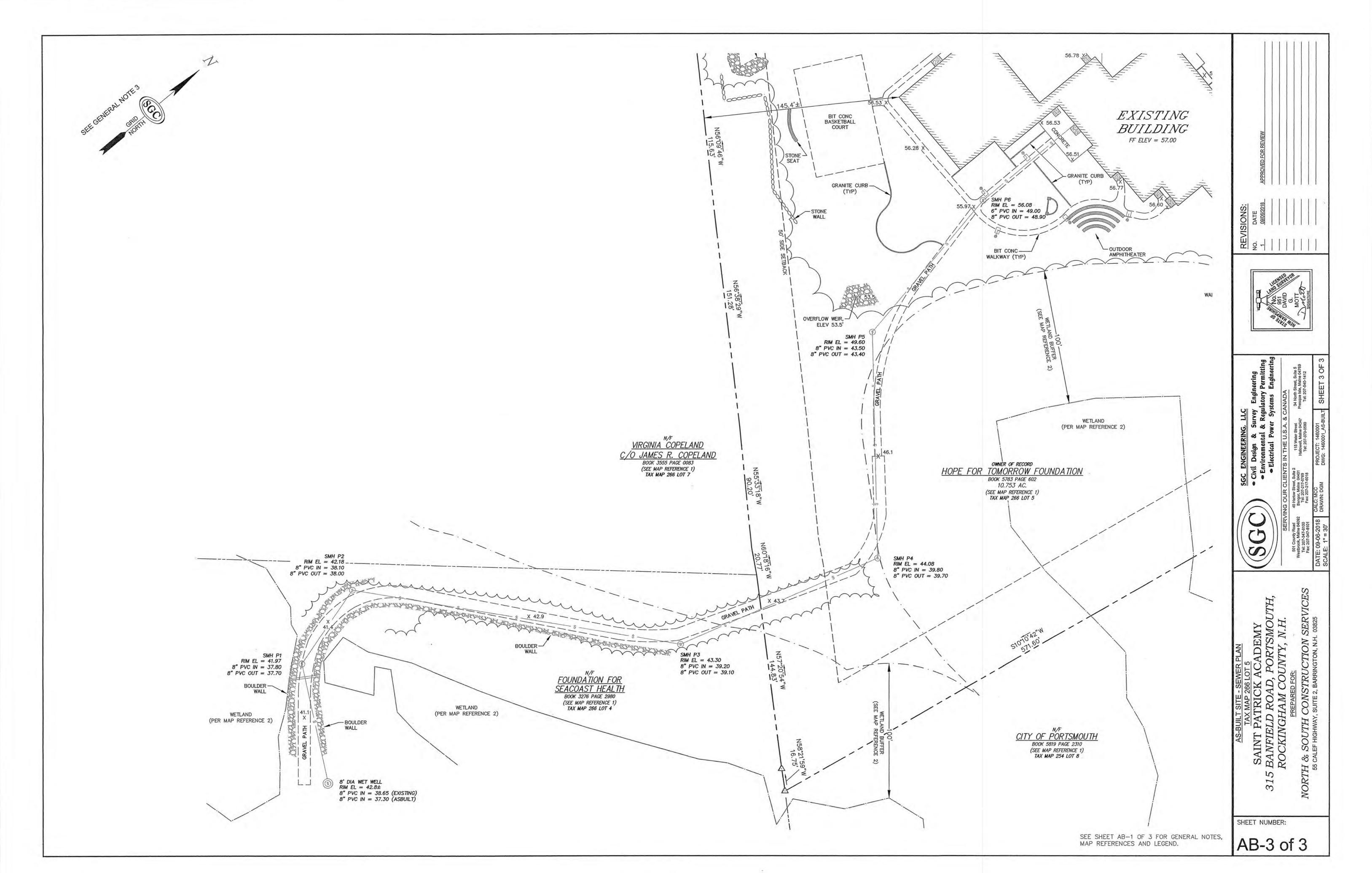
2/6/2018 Drust DAVID G. MOTT, LLS 951 DATE




SEAL


SAINT PATRICK ACADEMY **AS-BUILT SITE PLAN**

315 BANFIELD ROAD, PORTSMOUTH ROCKINGHAM COUNTY, N.H. ASSESSOR'S PARCEL 266-5



AB-2 of 3

GRADING & DRAINAGE NOTES

- 1. UNLESS OTHERWISE AGREED IN WRITING, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ESTABLISHING AND MAINTAINING TEMPORARY BENCHMARKS (TBMS) AND PERFORMING ALL CONSTRUCTION SURVEY LAYOUT.
- 2. THE CONTRACTOR SHALL READ AND FOLLOW ALL RECOMMENDATIONS IN THE PROJECT'S GEOTECHNICAL REPORT.
- 3. DEWATERING ACTIVITIES SHALL BE DONE IN ACCORDANCE WITH EPA AND NHDES REGULATIONS.
- 4. PROTECTION OF SUBGRADE: THE CONTRACTOR SHALL BE REQUIRED TO MAINTAIN STABLE, DEWATERED SUBGRADES FOR FOUNDATIONS. PAVEMENT AREAS. UTILITY TRENCHES, AND OTHER AREAS DURING CONSTRUCTION. SUBGRADE DISTURBANCE MAY BE INFLUENCED BY EXCAVATION METHODS, MOISTURE, PRECIPITATION, GROUNDWATER CONTROL, AND CONSTRUCTION ACTIVITIES. THE CONTRACTOR SHALL TAKE PRECAUTIONS TO PREVENT SUBGRADE DISTURBANCE. SUCH PRECAUTIONS MAY INCLUDE DIVERTING STORMWATER RUNOFF AWAY FROM CONSTRUCTION AREAS, REDUCING TRAFFIC IN SENSITIVE AREAS, AND MAINTAINING AN EFFECTIVE DEWATERING PROGRAM. SOILS EXHIBITING HEAVING OR INSTABILITY SHALL BE OVER EXCAVATED TO MORE COMPETENT BEARING SOIL AND REPLACED WITH FREE DRAINING STRUCTURAL FILL. IF THE EARTHWORK IS PERFORMED DURING FREEZING WEATHER, EXPOSED SUBGRADES ARE SUSCEPTIBLE TO FROST. NO FILL OR UTILITIES SHALL BE PLACED ON FROZEN GROUND. THIS WILL LIKELY REQUIRE REMOVAL OF A FROZEN SOIL CRUST AT THE COMMENCEMENT OF EACH DAY'S OPERATIONS. THE FINAL SUBGRADE ELEVATION WOULD ALSO REQUIRE AN APPROPRIATE DEGREE OF INSULATION AGAINST FREEZING.
- 5. IF SUITABLE, EXCAVATED MATERIALS SHALL BE PLACED AS FILL WITHIN UPLAND AREAS ONLY AND SHALL NOT BE PLACED WITHIN WETLANDS. PLACEMENT OF BORROW MATERIALS SHALL BE PERFORMED IN A MANNER THAT PREVENTS LONG TERM DIFFERENTIAL SETTLEMENT. EXCESSIVELY WET MATERIALS SHALL BE STOCKPILED AND ALLOWED TO DRAIN BEFORE PLACEMENT. FROZEN MATERIAL SHALL NOT BE USED FOR CONSTRUCTION.
- 6. ALL DRAINAGE PIPE SHALL BE ADS N-12 OR EQUAL APPROVED BY THE ENGINEER.
- 7. ALL CATCH BASIN AND MANHOLE RIMS IN PAVED AREAS SHALL BE SET FLUSH WITH OR NO LESS THAN 0.1' BELOW FINISH GRADE. UNLESS OTHERWISE SPECIFIED, ANY RIM ABOVE SURROUNDING FINISH GRADE SHALL NOT BE ACCEPTED.
- 8. ALL CATCH BASINS SHALL BE PRECAST, H-20 LOADING AND BE EQUIPPED WITH 4' (MIN.) SEDIMENTATION SUMPS AND GREASE HOODS (SEE DETAILS).
- 9. ALL SPOT GRADES ARE AT FINISH GRADE AND BOTTOM OF CURB WHERE APPLICABLE.
- 10. UNLESS OTHERWISE SPECIFIED, ALL DISTURBED AREAS NOT TO BE PAVED OR OTHERWISE TREATED SHALL RECEIVE A MINIMUM OF SIX (6") INCHES OF LOAM, LIMESTONE, FERTILIZER, SEED, AND HAY MULCH USING APPROPRIATE SOIL STABILIZATION TECHNIQUES. SEE DETAILS FOR ADDITIONAL INFORMATION.
- 11. IN ORDER TO PROVIDE VISUAL CLARITY ON THE PLANS, DRAINAGE AND OTHER UTILITY STRUCTURES MAY NOT BE DRAWN TO SCALE. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE PROPER SIZING AND LOCATION OF ALL STRUCTURES AND IS DIRECTED TO RESOLVE ANY POTENTIAL DISCREPANCY WITH THE ENGINEER PRIOR TO CONSTRUCTION.
- 12. FOR CLARITY, PROPOSED CONTOURS ARE DRAWN AT 1' INTERVALS.
- 13. UNLESS OTHERWISE SPECIFIED AND IF FEASIBLE. RETAINING WALL AND BUILDING PERIMETER DRAINS SHALL BE DIRECTED TO THE NEAREST DRAINAGE STRUCTURE. IF DEEMED APPROPRIATE, CONTRACTOR SHALL PROVIDE ADDITIONAL UNDERDRAIN AT THE DIRECTION OF THE ENGINEER.

UTILITY NOTES

- ALL ROAD/LANE CLOSURES OR OTHER TRAFFIC INTERRUPTIONS ON CITY ROADS SHALL BE COORDINATED WITH THE PORTSMOUTH POLICE DEPARTMENT & PORTSMOUTH DPW.
- ALL WATER MAIN INSTALLATIONS AND SERVICE CONNECTIONS SHALL CONFORM TO PORTSMOUTH WATER DEPARTMENT STANDARDS. WATER MAIN SHALL BE WRAPPED WITH A WATER TIGHT POLYETHYLENE WRAPPING. ALL JOINTS SHALL HAVE THREE (3) WEDGES PER JOINT.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR POSTING OF ALL BONDS AND 3. PAYMENT OF ALL TAP. TIE-IN AND CONNECTION FFFS.
- FIRE ALARM PANEL SHALL MONITORED THROUGH A THIRD-PARTY SECURITY 4 COMPANY. CONTRACTOR SHALL COORDINATE ALL PANEL LOCATIONS AND INTERCONNECTIONS WITH FIRE DEPARTMENT.
- THE OWNER HAS PROVIDED THE CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS WITH AN EASEMENT TO ALLOW UNLIMITED ACCESS TO THE SITE FOR THE PURPOSE OF MAINTAINING/CONTROLLING DOMESTIC WATER SUPPLY. IN THE EVENT OF NON-PAYMENT. THE CITY OF PORTSMOUTH WILL HAVE THE RIGHT TO SHUT OFF THE DOMESTIC WATER SUPPLY CURB STOP. ADDITIONALLY, THE CITY HAS THE RIGHT TO COME ONTO THE SITE TO DO LEAK TESTING.
- THE APPLICANT SHALL HAVE A SITE SURVEY CONDUCTED BY A RADIO COMMUNICATIONS CARRIER APPROVED BY THE CITY'S COMMUNICATION DIVISION. THE RADIO COMMUNICATIONS CARRIER MUST BE FAMILIAR AND CONVERSANT WITH THE POLICE AND RADIO CONFIGURATION. IF THE SITE SURVEY INDICATES IT IS NECESSARY TO INSTALL A SIGNAL REPEATER EITHER ON OR NEAR THE PROPOSED PROJECT, THOSE COSTS SHALL BE THE RESPONSIBILITY OF THE PROPERTY OWNER. THE APPLICANT SHALL BE REQUIRED TO PAY FOR THE SITE SURVEY WHETHER OR NOT THE SURVEY INDICATES A REPEATER IS NECESSARY. THE OWNER SHALL COORDINATE WITH THE SUPERVISOR OF RADIO COMMUNICATIONS FOR THE CITY. THE SURVEY SHALL BE COMPLETED AND THE REPEATER, IF DETERMINED IT IS REQUIRED, SHALL BE INSTALLED PRIOR TO THE ISSUANCE OF CERTIFICATE OF OCCUPANCY.
- SEWER EASEMENT LANGUAGE TO BE REVIEWED BY THE CITY PRIOR TO RECORDING 7. AT THE REGISTRY OF DEEDS.
- SOLAR PANEL INSTALLATION SHALL COMPLY WITH PROVISIONS IN FPA 1, 2012, 8. SECTION 11.12
- ALL TRENCHING, PIPE LAYING AND BACKFILLING SHALL CONFORM TO FEDERAL OSHA 9. AND CITY REGULATIONS.
- 10. SITEWORK CONTRACTOR SHALL COORDINATE ALL WORK WITH MECHANICAL DRAWINGS.
- 11. SEE ARCHITECTURAL/MECHANICAL DRAWINGS FOR EXACT LOCATIONS & ELEVATIONS OF UTILITY CONNECTIONS AT BUILDINGS. COORDINATE ALL WORK WITHIN FIVE (5) FEET OF BUILDINGS WITH BUILDING CONTRACTOR AND ARCHITECTURAL/MECHANICAL DRAWINGS. ALL CONFLICTS AND DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER IMMEDIATELY AND PRIOR TO COMMENCING RELATED WORK.
- 12. FINAL UTILITY LOCATIONS TO BE COORDINATED BETWEEN THE CONTRACTOR, ALL APPROPRIATE UTILITY COMPANIES AND THE ARCHITECT.
- 13. CONTRACTOR SHALL COORDINATE ALL TELECOMMUNICATIONS INSTALLATIONS WITH FAIRPOINT COMMUNICATIONS. CONTACT: JOE CONSIDINE @ 603-427-5525
- 14. CONTRACTOR SHALL COORDINATE ALL CABLE INSTALLATIONS WITH COMCAST. CONTACT: MIKE COLLINS @ 603-679-5695, EXT. 1037
- 15. CONTRACTOR SHALL COORDINATE ALL NATURAL GAS DISCONNECTIONS/INSTALLATIONS WITH UNITIL CORPORATION. CONTACT: DAVID BEAULIEU @ 603-294-5144
- 16. CONTRACTOR SHALL COORDINATE ALL ELECTRICAL INSTALLATIONS WITH EVERSOURCE. ALL ELECTRIC CONDUIT INSTALLATION SHALL BE INSPECTED BY EVERSOURCE PRIOR TO BACKFILL, 48-HOUR MINIMUM NOTICE REQUIRED. CONTACT: NICK KOSKO @ 603-332-4227 EXT. 5555334
- 17. TRANSFORMER SHALL BE PAD MOUNTED. COORDINATE WITH ARCHITECT & EVERSOURCE.
- 18. DETECTABLE WARNING TAPE SHALL BE PLACED OVER THE ENTIRE LENGTH OF ALL BURIED UTLITIES, COLORS PER THE RESPECTVE UTILITY PROVIDERS.
- 19. SITE WORK CONTRACTOR SHALL BE RESPONSIBLE FOR ALL TRENCHING, BEDDING, BACKFILL & COMPACTION FOR ALL ELECTRIC, TELECOMMUNICATIONS & GAS TRENCHING AS WELL AS COORDINATION W/INSPECTIONS & CONDUIT INSTALLATION.
- 20. WHERE WATER LINES CROSS OR RUN ADJACENT TO OR WITHIN 5' OF STORM DRAIN PIPES OR DRAINAGE STRUCTURES. 2" THICK CLOSED CELL RIGID BOARD INSULATION SHALL BE INSTALLED FOR FROST PROTECTION.

RECORDING OF THIS PLAN SHEET WAS A REQUIREMENT OF THE PORTSMOUTH PLANNING BOARD AS PART OF THEIR APPROVAL.

FOR JAMES VERRA & ASSOCIATES, INC.

DATE

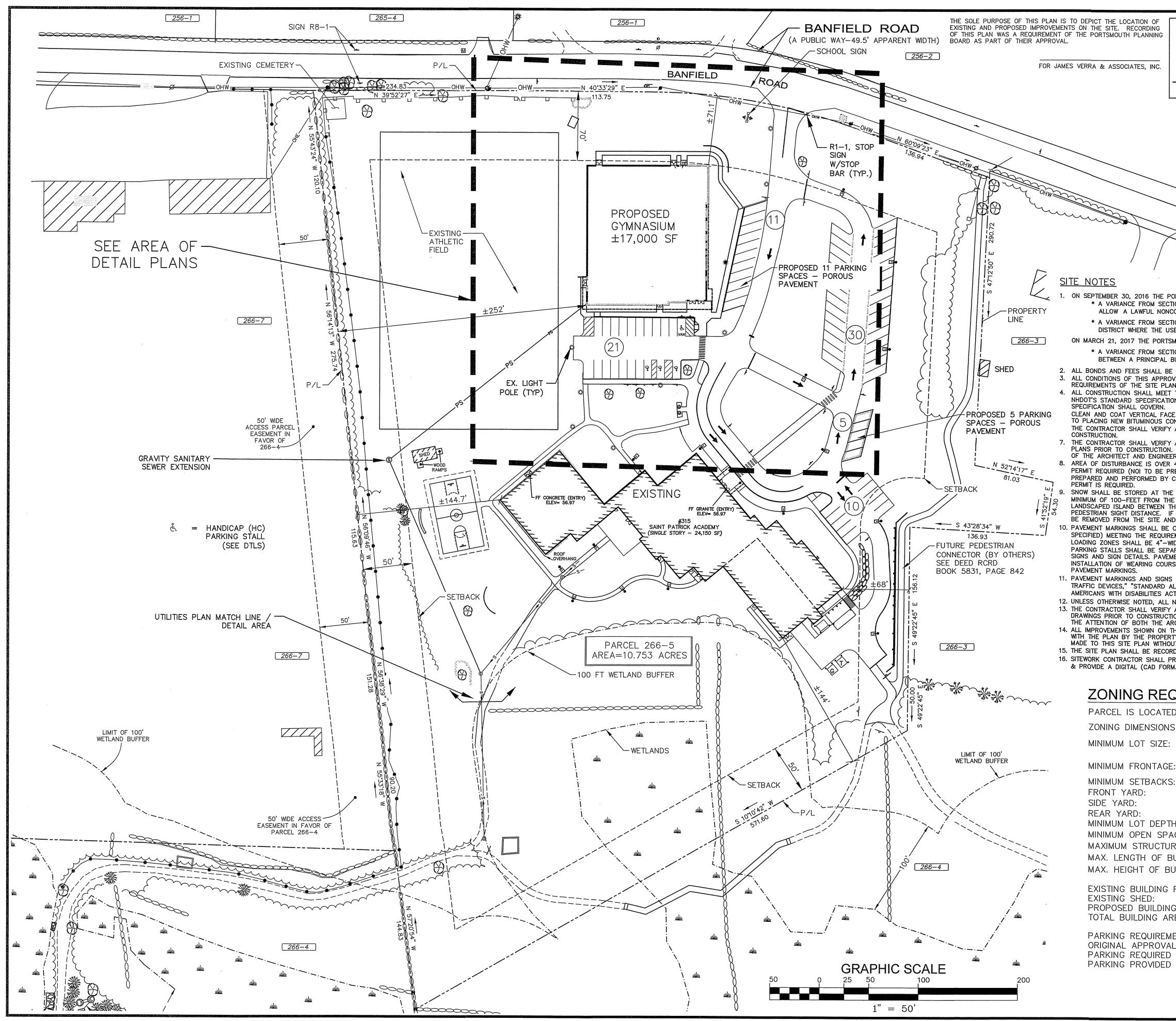
GENERAL NOTES:

- 1. THE INTENT OF THIS PLAN SET IS TO PROVIDE THE NECESSARY INFORMATION FOR THE REVIEW & PERMITTING A NEW PRIVATE GYMNASIUM ON THE EXISTING SCHOOL CAMPUS ON BANFIELD ROAD. THESE PLANS PROVIDE DETAILED INFORMATION FOR THE SITE LAYOUT, GRADING, UTILITIES, STORMWATER MANAGEMENT, AND LANDSCAPE IMPROVEMENTS.
- 2. DO NOT BEGIN CONSTRUCTION UNTIL ALL STATE, LOCAL AND FEDERAL PERMITS HAVE BEEN APPLIED FOR AND RECEIVED. THE LANDOWNER (CITY OF PORTSMOUTH) AND THE CONTRACTOR SHALL BE RESPONSIBLE FOR COMPLYING WITH LOCAL, STATE AND FEDERAL WETLAND PERMITTING REQUIREMENTS INCLUDING PROTECTION OF NATURAL RESOURCES AND THEIR BUFFERS. CONTRACTOR SHALL FAMILIARIZE THEMSELVES WITH ALL THE PERMIT CONDITIONS AND REQUIREMENTS.
- 3. CONTRACTOR SHALL CALL DIG SAFE AT 1 (800) DIG-SAFE AT LEAST SEVENTY-TWO (72) HOURS PRIOR TO COMMENCING CONSTRUCTION.
- 4. CONTRACTOR SHALL NOTIFY CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS PRIOR TO COMMENCING CONSTRUCTION ACTIVITIES.
- 5. CONTRACTOR SHALL INSTALL AND MAINTAIN TEMPORARY SEDIMENT AND EROSION CONTROL ITEMS TO PREVENT SEDIMENT FROM CONSTRUCTION ACTIVITIES FROM LEAVING THE SITE. CONTROLS SHALL BE INSPECTED ON 7. NO BURNING SHALL BE PER A REGULAR BASIS AND AFTER ALL RAIN EVENTS OF 0.25 INCHES OR GREATER. ANY DEFICIENCIES IN THE CONTROLS SHALL BE ADDRESSED IMMEDIATELY AND BROUGHT TO THE ATTENTION OF THE OWNER. ALL STORMS DRAINS WITHIN OR ADJACENT TO THE WORK AREA, WITH THE POTENTIAL TO RECEIVE RUNOFF FROM EXPOSED CONSTRUCTION AREAS, SHALL RECEIVE STORM DRAIN INLET PROTECTION.
- 6. CONTRACTOR SHALL PREVENT TRACKING OF DIRT ONTO ANY PUBLIC OR PRIVATE ROADWAYS. IF TRACKING OF DIRT FROM CONSTRUCTION VEHICLES IS PRESENT ON THE OPEN STREETS, CONTRACTOR WILL BE REQUIRED TO SWEEP THE ROADWAY AT NO ADDITIONAL EXPENSE TO THE OWNER.
- 7. SEE SHEET D-1 FOR EROSION AND SEDIMENT CONTROL NOTES AND DETAILS.

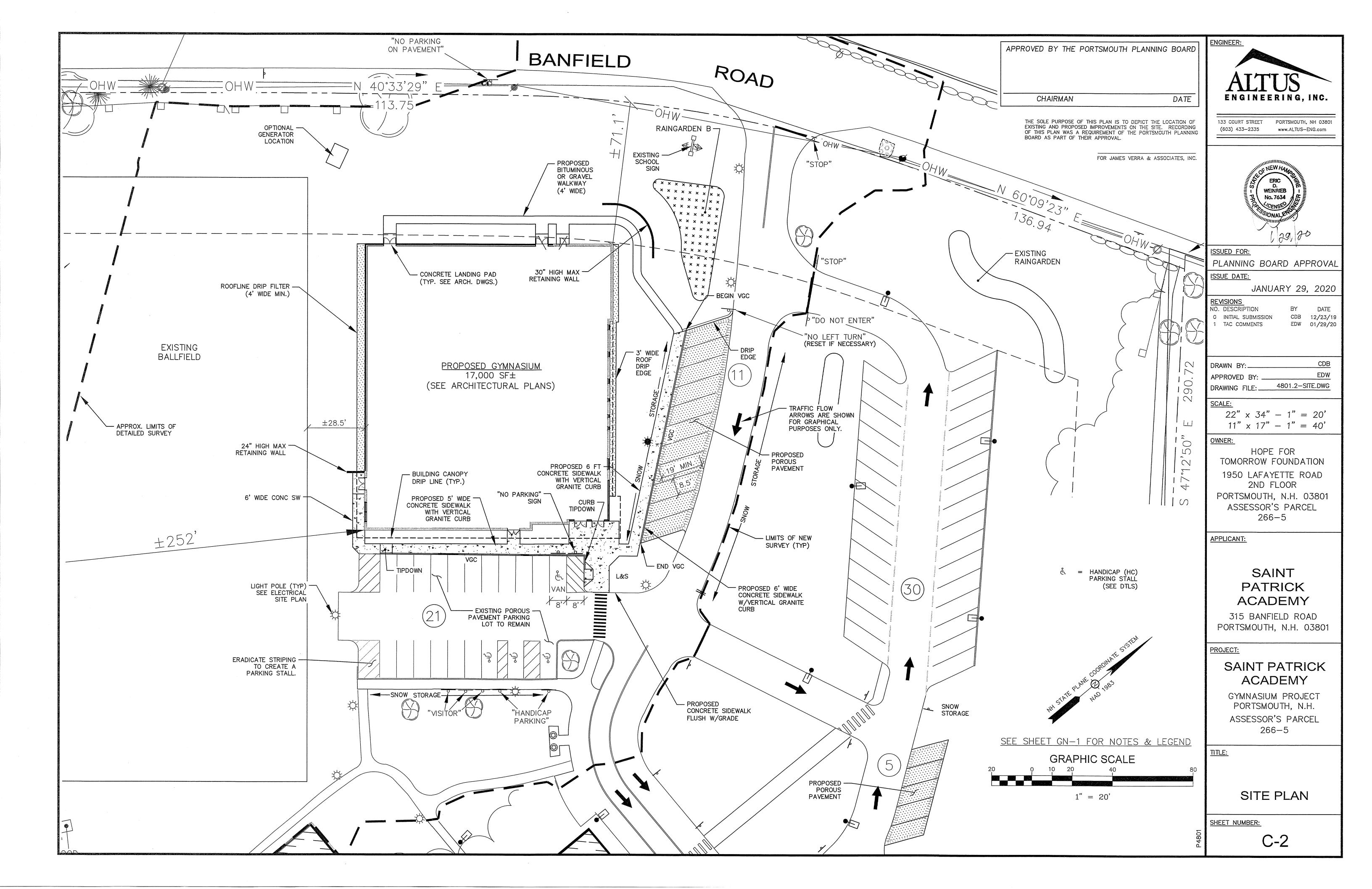
LEGEND

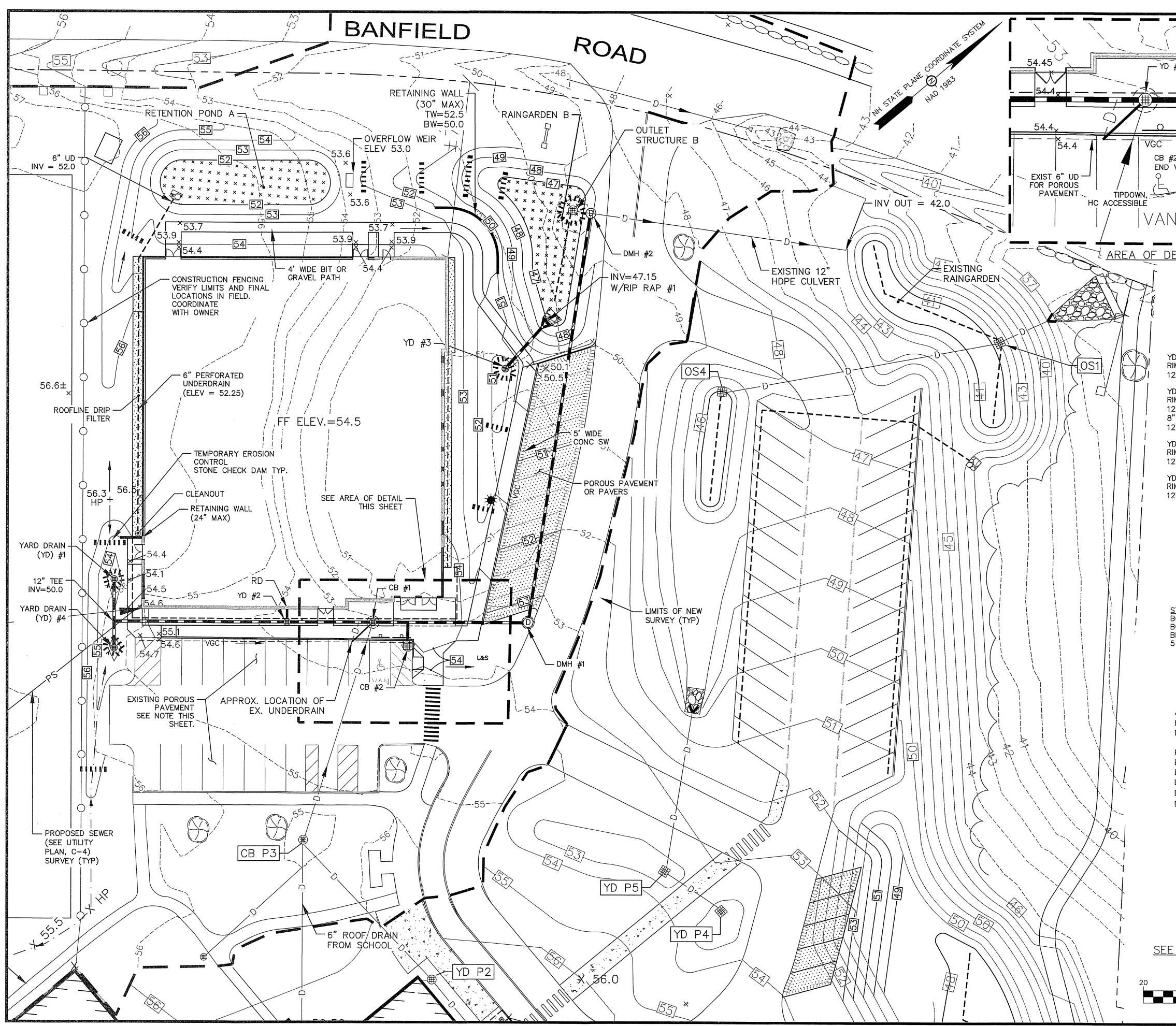
_____ ◎ □ ▦ ------ PE ------VGC/SGC ----- PG -----S ----------- PS -----------o------____ 75.5 X ----- PE -----SGC VGC \bowtie * ------ PW ----------- $\sim\sim\sim\sim\sim\sim$ $\sim \sim \sim \sim$ ____O_____ NIC

DESCRIPTION PROP. BUILDING PROP. DRAIN STRUCTURE PROP. DRAIN LINE PROP. UNDERDRAIN PROP. ELECTRICAL PROP. EDGE OF PAVEMENT/VGC/SGC PROP. FENCE FINISH GRADE PROP. GAS PROP. RET. WALL PROP. SEWER MANHOLE PROP. SETBACK LINE PROP. SEWER LINE PROP. SILT FENCE PROP. SIGN PROP. SPOT GRADE PROP. GRAVEL PATH PROP. CONCRETE PROP. POROUS PAVEMENT PROP. TELECOMMUNICATION PROP. SLOPED GRANITE CURB PROP. VERTICAL GRANITE CURB PROP. WATER STRUCTURE PROP. WATERLINE PROPERTY LINE TREE LINE PROP. TREE LINE WETLANDS/FLAGS TEMPORARY EROSION CONTROL STONE CHECK DAM TEMPORARY EROSION CONTROL SILT FENCE BARRIER NOT IN CONTRACT

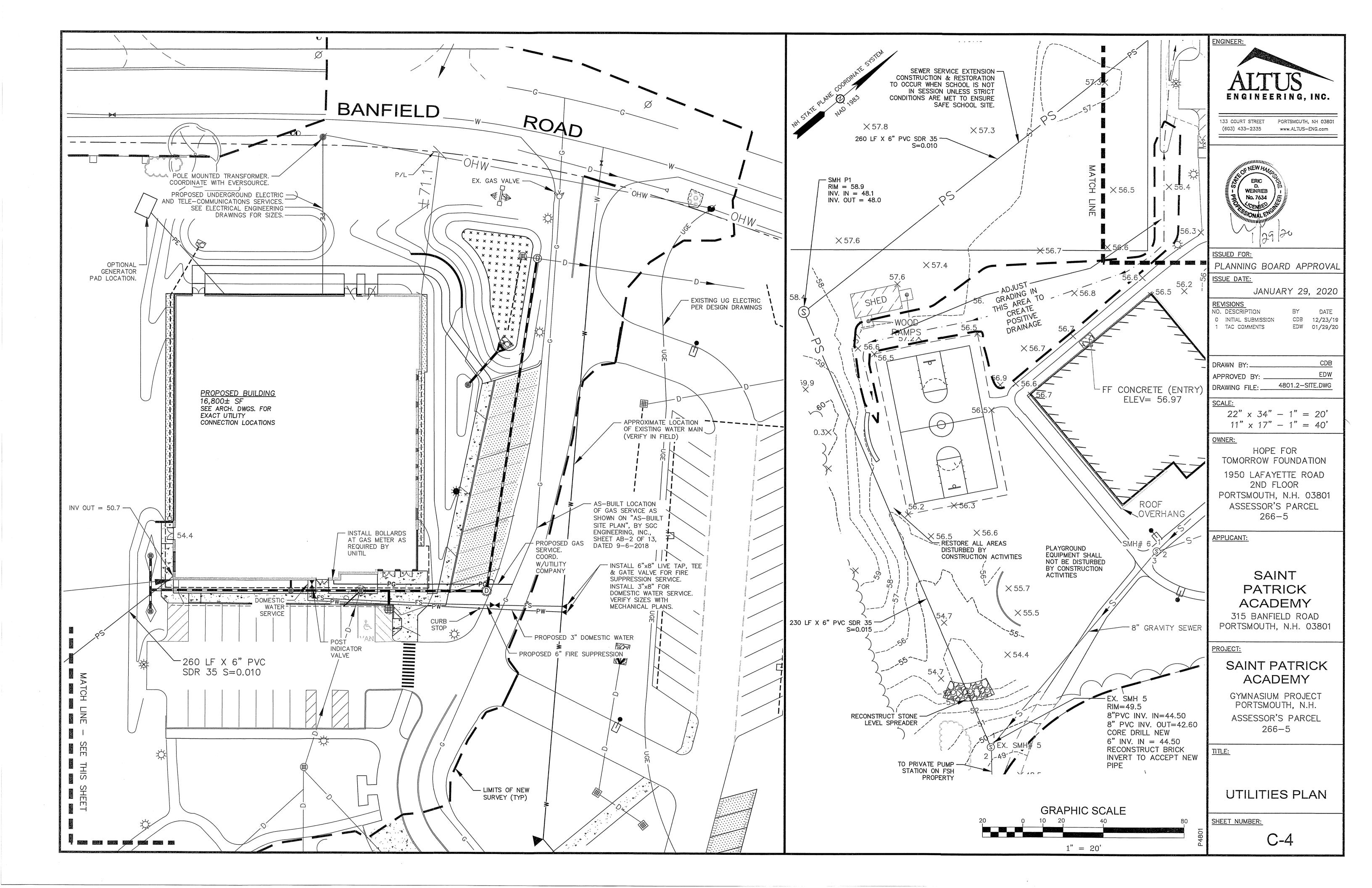

DEMOLITION NOTES

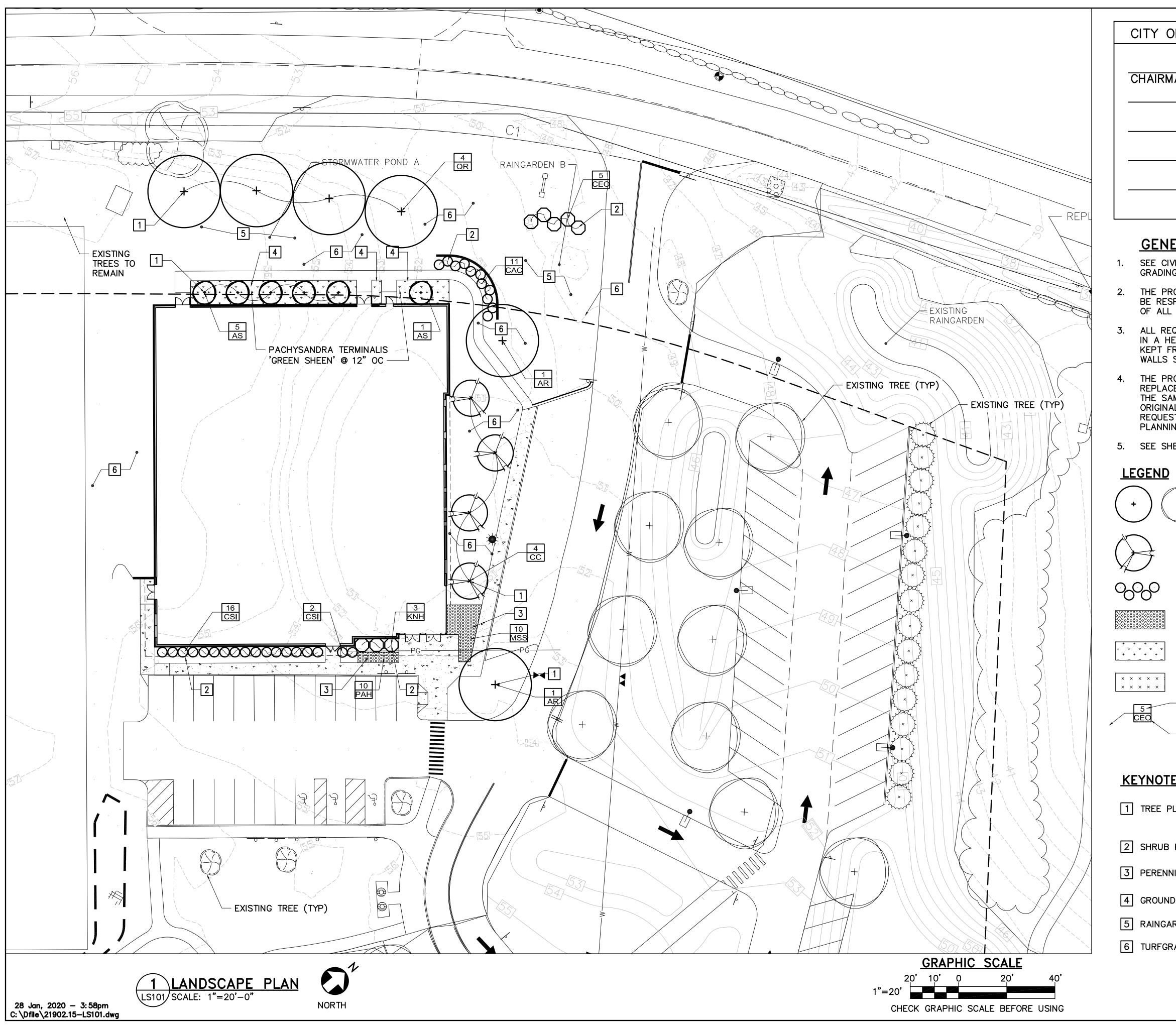
- 1. CONTRACTOR SHALL SAFELY SHALL BE LOCKED DURING NO
- 2.CONTRACTOR SHALL PRESERVE REMAIN.
- 3. THE CONTRACTOR SHALL BE PARTIES, CORPORATIONS, COM OWNING AND/OR HAVING JURI ACROSS AREAS TO BE DISTUR WHETHER OR NOT SAID UTILIT MODIFICATION AND/OR CONST
- 4. ALL UTILITY DISCONNECTIONS THE CONTRACTOR, ALL APPRO DEPARTMENT OF PUBLIC WORK SHALL BE RESPONSIBLE FOR
- 5. ALL STRUCTURES, CURBING, C REMOVED FROM PROPOSED LA SUITABLE FOR LANDSCAPE AN THE PROJECT SPECIFICATIONS.
- 6. WHERE SPECIFIED TO REMAIN HANDHOLES, MONITORING WELL
- 8. HAZARDOUS MATERIALS ENCO ACTIVITIES SHALL BE ABATED AND LOCAL REGULATIONS.
- 9. IN AREAS WHERE CONSTRUCT CONTRACTOR SHALL INSTALL LINE IN ALL AREAS WHERE
- 10. SEE EROSION CONTROL PLAN PRIOR TO START OF DEMOLI FENCING, STABILIZED CONSTR
- 11. ALL DEMOLISHED MATERIALS BECOME THE PROPERTY OF
- 12. ALL MATERIALS SCHEDULED ACCORDANCE WITH ALL LOCA

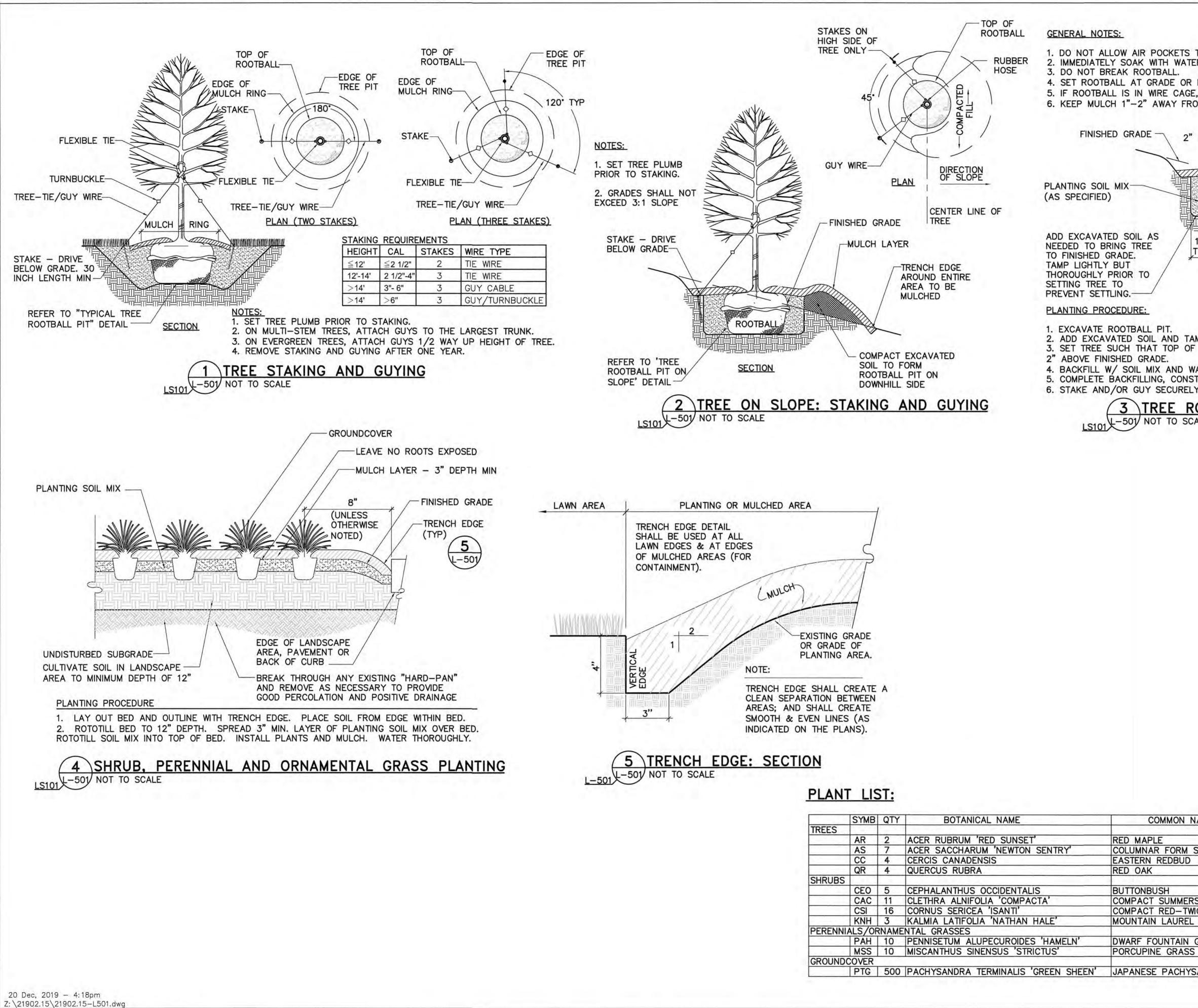

DATUM NOTE


HORIZONTAL DATUM: N PRIMARY BM: CONTROL

	ENGINEER:
CITY OF PORTSMOUTH, PLANNING BOARD	ENGINEER.
CHAIRMAN DATE	
	ALTUS
	ENGINEERING, INC.
	133 COURT STREET PORTSMOUTH, NH 03801
	(603) 433–2335 www.ALTUS–ENG.com
	NEW HAA
SECURE THE SITE WITH SECURITY FENCING. FENCING	ERIC HILL
E AND PROTECT ALL EXISTING UTILITIES SCHEDULED TO	WEINRIEB
RESPONSIBLE FOR THE TIMELY NOTIFICATION OF ALL	HILLING NEW HAMAD
PANIES, INDIVIDUALS AND STATE AND LOCAL AUTHORITIES SDICTION OVER ANY UTILITIES RUNNING TO, THROUGH OR	
BED BY DEMOLITION AND/OR CONSTRUCTION ACTIVITIES	1212101
IES ARE SUBJECT TO DEMOLITION, RELOCATION, RUCTION.	ISSUED FOR:
DEMOLITIONS/RELOCATIONS TO BE COORDINATED BETWEEN	TAC
OPRIATE UTILITY COMPANIES AND THE PORTSMOUTH	ISSUE DATE:
ALL RELATED EXCAVATION, TRENCHING AND BACKFILLING.	DECEMBER 23, 2019
ONCRETE, PAVEMENT AND SUBBASE MATERIALS SHALL BE NDSCAPE AREAS AND REPLACED WITH LOAM MATERIALS	REVISIONS NO. DESCRIPTION BY DATE
D/OR STORMWATER MANAGEMENT PURPOSES AND MEETING	0 INITIAL SUBMISSION EDW 12/23/19
, MANHOLE RIMS, CATCH BASIN GRATES, VALVE COVERS,	
LS, ETC. SHALL BE ADJUSTED TO FINISH GRADE.	
OUNTERED DURING DEMOLITION AND CONSTRUCTION	DRAWN BY: CDB
D IN STRICT ACCORDANCE WITH ALL APPLICABLE STATE	APPROVED BY:
TION IS TO BE ADJACENT TO ABUTTING PROPERTIES, THE ORANGE CONSTRUCTION FENCING ALONG THE PROPERTY	DRAWING FILE: 4801.2 GN.DWG
SILT FENCING IS NOT OTHERWISE REQUIRED.	SCALE:
NS FOR EROSION CONTROL REQUIREMENTS TO BE IN PLACE TION ACTIVITIES, INCLUDING, BUT NOT LIMITED TO; SILT	NOT TO SCALE
RUCTION SITE EXITS, AND STORM DRAIN INLET PROTECTION.	OWNER:
OR MATERIALS SCHEDULED TO BE REMOVED SHALL THE CONTRACTOR UNLESS SPECIFIED.	HOPE FOR
TO BE REMOVED SHALL BE LEGALLY DISPOSED IN	TOMORROW FOUNDATION
AL, STATE, & FEDERAL REGULATIONS AND CODES.	
	PORTSMOUTH, N.H. 03801
	ASSESSOR'S PARCEL
AD 1983 (1986 CONTROL ADJUSTMENT)	
POINT "INDU"	APPLICANT:
	r PAT
	THE PICE
	ADEM4
	125 AUSTIN STREET PORTSMOUTH, N.H. 03801
	PROJECT:
	SAINT PATRICK
	ACADEMY
	GYMNASIUM
	315 BANFIELD ROAD
	PORTSMOUTH, N.H.
	ASSESSOR'S PARCEL 266-5
	<u> 11 TLE:</u>
	GENERAL NOTES
	& LEGEND
	SHEET NUMBER:
P4801	
<u>Ď</u>	GN-1




APPROVED BY	THE PORTSMO	JTH PLANNING BOARD	ENGINEER:
			ALTUS
CHAIRM	IAN	DATE	ENGINEERING, INC.
	NH STATE PLANE QUE	ADINATE SYSTEM	133 COURT STREET (603) 433–2335 PORTSMOUTH, NH 03801 www.ALTUS–ENG.com
CONFORMING USE TO BE TION 10.440.3.21 TO ALL SE IS NOT PERMITTED. SMOUTH BOARD OF ADJU TION 10.1113.20 TO ALLO BUILDING AND A STREET E PAID/POSTED PRIOR TO VAL SHALL REMAIN IN E AN REVIEW REGULATIONS. THE MINIMUM CONSTRU	5 OF THE PORTSMOU CHANGED TO ANOTH LOW A PRIMARY OR S ISTMENT GRANTED TH DW OFF-STREET PARH T. TO INITIATING CONSTRUCT EFFECT IN PERPETUIT	TH ZONING ORDINANCE TO HER NONCONFORMING USE; SECONDARY SCHOOL IN A HE FOLLOWING: KING SPACES TO BE LOCATED UCTION. Y PURSUANT TO THE F THE CITY OF PORTSMOUTH &	ISSUED FOR: PLANNING BOARD APPROVAL ISSUE DATE: JANUARY 29, 2020 REVISIONS NO. DESCRIPTION BY DATE 0 INITIAL SUBMISSION CDB 12/23/19 1 TAC COMMENTS EDW 01/29/20
ONS FOR ROAD & BRIDG		THE MORE STRINGENT WITH RS-1 IMMEDIATELY PRIOR	DRAWN BY:CDB
ONCRETE. ALL BENCHMARKS AND			APPROVED BY:EDW
ALL BUILDING DIMENSIO . ALL DISCREPANCIES S ER FOR RESOLUTION.	ONS WITH THE ARCHIT SHALL BE IMMEDIATEL	ECTURAL AND STRUCTURAL Y BROUGHT TO THE ATTENTION	DRAWING FILE: 4801.2-SITE.DWG
43,560 SF, COVERAGE REPARED AND SUBMITTE	D BY CONTRACTOR,	PHASE II CONSTRUCTION GENERAL SWPPP AND INSPECTIONS TO BE IHDES ALTERATION OF TERRAIN	$\frac{\text{SCALE:}}{22'' \times 34'' - 1'' = 50'}$
E EDGE OF PAVEMENT, I E WETLANDS. NO SNO HE DRIVEWAY ENTRANCE	N UPLAND AREAS SH W STORAGE SHALL B THAT WOULD RESTR	IOWN THEREON, AND IN AREAS A E PROVIDED WITHIN 25' OF THE RICT SITE VEHICULAR AND T AVAILABLE, THE SNOW SHALL	
ID LEGALLY DISPOSED. CONSTRUCTED USING WI EMENTS OF AASHTO M24 IDE DIAGONAL WHITE LIN	HITE, YELLOW, OR BL 48, TYPE F OR EQUA NES 3'—0" O.C. BORD ITE LINES. SEE DETAI	UE TRAFFIC PAINT (WHERE L. PAINTED ISLANDS AND ERED BY 4 [*] -WIDE WHITE LINES. LS FOR HANDICAP SYMBOLS.	HOPE FOR TOMORROW FOUNDATION 1950 LAFAYETTE ROAD
RSE PAVEMENT. CONTR S SHALL CONFORM TO TO ALPHABETS FOR HIGHWA CT (ADA), LATEST EDITIC NEW CURBING SHALL BE ALL BUILDING DIMENSIO	RACTOR SHALL APPLY HE REQUIREMENTS OF Y SIGNS AND PAVEME DNS. E VERTICAL GRANITE INS WITH THE ARCHIT	' TWO (2) COATS OF ALL THE "MANUAL ON UNIFORM ENT MARKINGS" AND THE WITH A MINIMUM RADIUS OF 4'. ECTURAL AND STRUCTURAL	2ND FLOOR PORTSMOUTH, N.H. 03801 ASSESSOR'S PARCEL 266-5
10N. ANY AND ALL DIS RCHITECT AND CIVIL ENG THIS SITE PLAN SHALL E	CREPANCIES SHALL E GINEER FOR RESOLUTI BE CONSTRUCTED ANI	BE IMMEDIATELY BROUGHT TO ON. D MAINTAINED IN ACCORDANCE	APPLICANT:
UT THE EXPRESS APPRO RDED IN THE ROCKINGHA	OVAL OF THE PORTSM		
PREPARE A LICENSED LA MAT) COPY FOR THE CIT	ND SURVEYOR (LLS) TY'S G.I.S. DATA BAS	STAMPED AS-BUILT SITE PLAN E.	SAINT
QUIREMEN			PATRICK ACADEMY
S F	REQUIRED 87,120 SF (2.0 ACRES)	(10.75 ACRES)	315 BANFIELD ROAD PORTSMOUTH, N.H. 03801
5:	200'	695.6'	PROJECT: SAINT PATRICK
	70' 50'	±71' ±68'	ACADEMY
Ή ·	50' 100'	±144' 587'	GYMNASIUM PROJECT
RE COVERAGE:	20% 50%	±77% 8.85%	PORTSMOUTH, N.H. ASSESSOR'S PARCEL
	160' 70'	±281.2' <70'	266-5
FOOTPRINT: G: REA:	±24,150 SF ±290 SF ±17,000 SF ±41,440 SF		<u>TITLE:</u>
IENTS	тт, тт о ог		OVERALL
L 72 SPACES AL – PARKING DEN		SPACES PROVIDED	SITE PLAN
77 SPACES			SHEET NUMBER:
		P4801	 C-1
		ă.	



54,45 #2 54.40 54.3 -12" X 12" TEE	ENGINEER: ALTUS ENGINEERING, INC.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	133 COURT STREET PORTSMOUTH, NH 03801 (603) 433–2335 www.ALTUS–ENG.com
#2 VGC 53.8 53.9 53.8 53.9 53.8	ERIC D. WEINRIEB No. 7634
$\frac{54.1}{ETAIL (SCALE: 1"= 10')}$	P No. 7634
	ISSUED FOR: PLANNING BOARD APPROVAL
DRAINAGE STRUCTURES	ISSUE DATE: JANUARY 29, 2020
$ \begin{array}{c} \hline & \\ \mbox{P} & \\ \mbox{P} & \\ \mbox{RIM} = 53.60 & \\ \mbox{P} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{P} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{C} & \\ \mbox{RIM} = 53.45 & \\ \hline \mbox{RIM} = 53.45 & \\ \hline & \\ \mbox{RIM} = 53.45 & \\ \hline \mbox{RIM} $	REVISIONSNO. DESCRIPTIONBY0INITIAL SUBMISSION1TAC COMMENTSEDW01/29/20
2" INV. IN=49.65 (YD1) 3" INV. IN =46.65 (RD) 2" INV. OUT= 49.55 D #3 CD #3 CM = 50.35 CB #2 RIM=53.70 $CD = 12^{\circ}$ INV. IN =51.2± (P3) (CONFIRM IN FIELD) 12" INV. OUT= 49.30 CB #2 RIM=53.70	DRAWN BY:CDB APPROVED BY:EDW DRAWING FILE:4801.2-SITE.DWG
2" INV. OUT=47.35 12" INV. OUT=49.30 DMH #1 RIM=53.8 2" INV. OUT=50.2 RIM=53.4 12" INV. IN=48.9 (CB1)	$\frac{\text{SCALE:}}{22" \times 34" - 1" = 20'} \\ 11" \times 17" - 1" = 40'$
12" INV. OUT= 48.80 DMH #2 RIM=48.6 12" INV. IN =44.15 (OSB) 12" INV. IN =44.20 (DMH2) 12" INV. OUT=44.10	OWNER: HOPE FOR TOMORROW FOUNDATION 1950 LAFAYETTE ROAD 2ND FLOOR
STORMWATER POND ASTORMWATER POND ABOTTOM AREA = 1160 SFBOTTOM ELEV = 52.0BOTTOM ELEV = 52.0	PORTSMOUTH, N.H. 03801 ASSESSOR'S PARCEL 266–5
BOTTOM ELEV = 52.0 BERM ELEVATION = 53.7 5 FT OVERFLOW WEIR =53.0 OUTLET STRUCTURE B (OS-B) RIM (18" BEEHIVE) = 47.75 6" UD (IN)= 44.25	APPLICANT:
ALL RIP RAP AREAS SHALL	SAINT PATRICK ACADEMY
HAVE 6" MED STONE SIZE & DEPTH OF STONE = 14 INCHES RIP RAP #1 BEG WIDTH = 3 FT	315 BANFIELD ROAD PORTSMOUTH, N.H. 03801
END WDTH = 7 FT LENGTH = 5 FT D50 = 6" DEPTH = 14"	PROJECT: SAINT PATRICK ACADEMY
NOTE CONTRACTOR SHALL PRESERVE & PROTECT ALL EXISTING POROUS PAVEMENT SURFACES DURING CONSTRUCTION. POROUS PAVEMENT SHALL NOT BE USED TO STORE EQUIPMENT, MATERIALS OR CONSTRUCTION RELATED	GYMNASIUM PROJECT PORTSMOUTH, N.H. ASSESSOR'S PARCEL 266-5
VEHICLES. CONTRACTOR SHALL MAKE PROVISIONS TO MINIMIZE THE TRANSPORT OF WIND BLOWN SEDIMENT. THE CONTRACTOR SHALL VACUUM SWEEP ALL PAVED SURFACES AT THE END OF THE SITEWORK ACTIVITIES.	
SHEET GN-1 FOR NOTES & LEGEND	GRADING & DRAINAGE PLAN
GRAPHIC SCALE 0 10 20 40 80 10 10 20 40 10 10 20	SHEET NUMBER:
1" = 20'	C-3

	_
OF PORTSMOUTH PLANNING BOARD	C N K C N K C N N K C N N N C
AN DATE	OAK POINT AssociATES A
ERAL NOTES: VIL SHEETS FOR HARDSCAPE, STORMWATER MANAGEMENT, AND IG.	50% SUBMISSION 01-31-20
ROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS SHALL SPONSIBLE FOR THE MAINTENANCE, REPAIR AND REPLACEMENT REQUIRED SCREENING AND LANDSCAPE MATERIALS. QUIRED PLANT MATERIALS SHALL BE TENDED AND MAINTAINED EALTHY GROWING CONDITION, REPLACED WHEN NECESSARY, AND REE OF REFUSE AND DEBRIS. ALL REQUIRED FENCES AND SHALL BE MAINTAINED IN GOOD REPAIR. ROPERTY OWNER SHALL BE RESPONSIBLE TO REMOVE AND DE DEAD AND DISEASED PLANT MATERIALS IMMEDIATELY WITH AME TYPE, SIZE, AND QUANTITY OF PLANT MATERIALS AS ALLY INSTALLED, UNLESS ALTERNATIVE PLANTINGS ARE	DESIGNED BY: ATD DRAWN BY: ATD CHECKED BY: RSH PROJECT: 21902.15
 STED, JUSTIFIED AND APPROVED BY THE PLANNING BOARD OR NG DIRECTOR. IEET L-501 FOR PLANT LIST AND PLANTING DETAILS. + DECIDUOUS TREE (CANOPY). UNDERSTORY TREE. SHRUBS. PERENNIAL/ORNAMENTAL GRASSES.	HOPE FOR TOMORROW FOUNDATION COVE SPACE 36 MAPLEWOOD AVENUE PORTSMOUTH, N.H. 03801
GROUND COVER. RAINGARDEN SEED MIX. PLANT OR TREE QUANTITY, SEE PLANT LIST ON SHEET L-501 PLANT OR TREE SYMBOL, SEE PLANT LIST ON SHEET L-501 ES (THIS SHEET ONLY) LANTING. $\begin{pmatrix} 1 \\ -501 \end{pmatrix} \begin{pmatrix} 2 \\ -501 \end{pmatrix} \begin{pmatrix} 3 \\ -501 \end{pmatrix}$	SAINT PATRICK ACADEMY GYMNASIUM 315 BANFIELD ROAD PORTSMOUTH, N.H. 03801
PLANTING. $\begin{pmatrix} 4 \\ L-501 \end{pmatrix}$ NIAL/ORNAMENTAL GRASS PLANTING. $\begin{pmatrix} 4 \\ L-501 \end{pmatrix}$ D COVER PLANTING. $\begin{pmatrix} 4 \\ L-501 \end{pmatrix}$	LANDSCAPE PLAN
RDEN SEED MIX.	SCALE: AS NOTED
RASS SEED MIX.	DATE: 01-31-20
	DWG.: LS101
	SHEET: OF

OCKETS TO FORM WHEN TH WATER. BALL. ADE OR MAX. 2" ABOVE RE CAGE, BEND CAGE E WAY FROM TRUNK AT E	E GRADE. BACK FROM TOP BASE OF TREE.	CH LAYER 3" DEPTH MPACT EXCAVATED DIL TO FORM ROOTBALL T ON DOWNHILL SIDE TRENCH EDGE (TYP.)		ASSOCIATES ASSOCIATES ASSOCIATES
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EXCAVATING PIT AND LOOSEN AL (REMOVE AS NE	L "HARDPAN" CESSARY TO	PLA B APF NC	JED FOR ANNING OARD PROVAL OT FOR TRUCITON
	BY LANDSCAPE	NAGE – AS DIRECTED ARCHITECT).	ATA	RSH 21902.15
AND TAMP. TOP OF ROOTBALL IS DE. (AND WATER IN. G, CONSTRUCT TRENCH SECURELY.	EDGE & ADD S	PECIFIED MULCH.	DESIGNED BY:	CHECKED BY: PROJECT:
EE ROOTBALL T TO SCALE	<u>ON SLOP</u>		HOPE FOR TOMORROW FOUNDATION	COVE SPACE 36 MAPLEWOOD AVENUE PORTSMOUTH, N.H. 03801
			SAINT PATRICK ACADEMY GYMNASIUM	315 BANFIELD ROAD PORTSMOUTH, N.H. 03801
DMMON NAME	SIZE	SIZE AT MATURITY	LAN	DSCAPE
E R FORM SUGAR MAPLE REDBUD	2.5"-3" CAL. 2.5"-3" CAL. 10'-12' HT 2.5"-3" CAL.	40' 40' 25' 50'	DE	TAILS AND NT LIST
SH SUMMERSWEET RED-TWIG DOGWOOD	2 GAL. 18"-24" HT	8' 4' 4'		

	the second	
	2.5"-3" CAL.	40'
SUGAR MAPLE	2.5"-3" CAL.	40'
	10'-12' HT	25'
	2.5"-3" CAL.	50'
	2 GAL.	8'
SWEET	18"-24" HT	4'
IG DOGWOOD	2 GAL.	4'
	18"-24" HT	4'
GRASS	1 GAL	24"
	1 GAL.	5'
SANDRA	1 QT.	8"

SCALE: AS NOTED 12-23-19 DATE: DWG.: L-501

OF

SHEET:

SEDIMENT AND EROSION CO	ONTROL NOTES	
PROJECT NAME AND LOCATION		
Owner: HOPE FOR TOMORROW FOUNDATION 1950 LAFAYETTE ROAD, 2ND FLOOR PORTSMOUTH, NEW HAMPSHIRE 03801	LATITUDE: 043 02' 31" N LONGITUDE: 070 47' 15" W	Ē

DESCRIPTION

The project consists of the construction of a gymnasium on the existing school campus with parking areas and access, site grading, storm drainage improvements, underground utilities installation, landscaping and associated site improvements.

DISTURBED AREA

The total area to be disturbed on the parcel and for the building, driveway, parking area, drainage, and utility construction is approximately 55,000 SF± (1.3 acres±). The combined disturbed area exceeds 43,560 SF (1 acre), thus a SWPPP will be required for compliance with the USEPA-NPDES Construction General Permit.

NPDES CONSTRUCTION GENERAL PERMIT

Contractor shall prepare a Stormwater Pollution Prevention Plan (SWPPP) is accordance with federal storm water permit requirements (see "Developing Your Stormwater Pollution Prevention Plan", EPA 833-R-060-4). The SWPPP must be prepared in a format acceptable to the Owner and three (3) copies provided to the Municipality at least fourteen (14) days prior to initiating construction. Contractor is responsible for all cost associated with preparation and implementation of SWPPP including any temporary erosion control measures (whether indicated or not on these drawings) as required for the contractor's sequence of activities.

The Contractor and Owner shall each file a Notice of Intent (NOI) with the U.S.E.P.A. under the NPDES Construction General Permit. (U.S.E.P.A., 1200 Pennsylvania Avenue NW, Washington, DC 20460) All work shall be in accordance with NPDES General Permit: NHG07000, including NOI requirements, effluent limitations, standards and management for construction. The Contractor shall be responsible for obtaining a USEPA Construction Dewatering Permit, if required.

SEQUENCE OF MAJOR ACTIVITIES

Prepare SWPPP and file NPDES Notice of Intent, prior to any construction activities (Required).

- . Hold a pre-construction meeting with City & stake holders.
- 3. Install temporary erosion control measures, including silt fences and stabilized construction exit/entrance. . Protect specified trees (see plans). 5. Clear and Grub vegetated areas per plan; Strip and stockpile loam. Stockpiles shall be temporarily stabilized
- with hay bales, mulch and surrounded by a hay bale or silt fence barrier until material is removed and final grading is complete. Remove debris. 6. Construct swales and utility infrastructure. Rough grade lot to prepare for site development. Stabilize swales
- prior to directing flow to them.
- Loam and seed disturbed areas. Construct building. Construct bituminous concrete pavement & driveway access.
- Construct raingardens & landscaping.
- 10. When all construction activity is complete and site is stabilized, remove all hay bales, storm check dams (if applicable), silt fences and temporary structures and sediment that has been trapped by these devices.
- 11. File a Notice of Termination (N.O.T.) with U.S.E.P.A. (Required)

NAME OF RECEIVING WATER

The majority of the site drainage travels overland to an Unnamed Wetland and eventually to the Sagamore Creek Watershed.

TEMPORARY EROSION & SEDIMENT CONTROL AND STABILIZATION PRACTICES

All work shall be in accordance with state and local permits. Work shall conform to the practices described in the "New Hampshire Stormwater Manual, Volumes 1 - 3", issued December 2008, as amended. As indicated in the sequence of Major Activities, the silt fences shall be installed prior to commencing any clearing or grading of the site. Structural controls shall be installed concurrently with the applicable activity. Once construction activity ceases permanently in an area, silt fences and any earth/dikes will be removed once permanent measures are established.

During construction, runoff will be diverted around the site with stabilized channels where possible. Sheet runoff from the site shall be filtered through hay bale barriers, stone check dams, and silt fences. All storm drain inlets shall be provided with hay bale filters or stone check dams. Stone rip rap shall be provided at the outlets of drain pipes and culverts where shown on the drawings.

Stabilize all ditches, swales, stormwater ponds, level spreaders and their contributing areas prior to directing flow to them.

Temporary and permanent vegetation and mulching is an integral component of the erosion and sedimentation control plan. All areas shall be inspected and maintained until vegetative cover is established. These control measures are essential to erosion prevention and also reduce costly rework of graded and shaped areas.

Temporary vegetation shall be maintained in these areas until permanent seeding is applied. Additionally, erosion and sediment control measures shall be maintained until permanent vegetation is established.

INSTALLATION, MAINTENANCE AND INSPECTION PROCEDURES FOR TEMPORARY EROSION AND SEDIMENT CONTROL MEASURES

A. GENERAL

- These are general inspection and maintenance practices that shall be used to implement the plan:
- 1. The smallest practical portion of the site shall be denuded at one time, but in no case shall it exceed 5 acres at one time.
- 2. All control measures shall be inspected at least once each week and following any storm event of 0.25 inches or areater.
- 3. All measures shall be maintained in good working order; if a repair is necessary, it will be initiated within 24 hours. 4. Built-up sediment shall be removed from silt fence or other barriers when it has reached one-third
- the height of the fence or bale, or when "bulges" occur.
- 5. All diversion dikes shall be inspected and any breaches promptly repaired.
- 6. Temporary seeding and planting shall be inspected for bare spots, washouts, and unhealthy arowth. 7. The owner's authorized engineer shall inspect the site on a periodic basis to review compliance with the Plans.
- 8. All roadways and parking lots shall be stabilized within 72 hours of achieving finished grade. 9. All cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade.
- 10. An area shall be considered stable if one of the following has occurred:
- a. Base coarse gravels have been installed in areas to be paved:
- b. A minimum of 85% vegetated growth as been established; c. A minimum of 3 inches of non-erosive material such as stone of riprap has been installed:
- or -
- d. Erosion control blankets have been properly installed. 11. The length of time of exposure of area disturbed during construction shall not exceed 45 days.
- B. MULCHING

Mulch shall be used on highly erodible soils, on critically eroding areas, on areas where conservation of moisture will facilitate plant establishment, and where shown on the plans.

- 1. Timing In order for mulch to be effective, it must be in place prior to major storm events. There are two (2) types of standards which shall be used to assure this:
 - a. Apply mulch prior to any storm event. This is applicable when working within 100 feet of wetlands. It will be necessary to closely monitor weather predictions, usually by contacting the National Weather Service in Concord, to have adequate warning o significant storms.
 - b. Required Mulching within a specified time period. The time period can range from 21 to 28 days of inactivity on a area, the length of time varying with site conditions. Professional judgment shall be used to evaluate the interaction of site conditions (soi erodibility, season of year, extent of disturbance, proximity to sensitive resources, etc.) and the potential impact of erosion on adjacent areas to choose an appropriate time restriction.

EROSION AND SEDIMENT CONTROL MEASURES (CON'T)

2. G

Application -	
Rate per 1.000 s.f.	Use and Comments
	Must be dry and free m mold. May be used ngs.
460 to 920 lbs.	Used mostly with trees and shrub plantings.
As per manufacturer Specifications	Used in slope areas, water courses and other Control areas.
Spread more than 1/2" thick	Effective in controlling wind and water erosion.
2" thick (min)	 * The organic matter content is between 80 and 100%, dry weight basis. * Particle size by weight is 100% passing a 6"screen and a minimum of 70 %, maximum of 85%, passing a 0.75" screen. * The organic portion needs to be fibrous lelongated.
	* Large portions of silts, clays or fine sands
	70 to 90 lbs. fro with planti 460 to 920 lbs. As per manufacturer Specifications Spread more than 1/2" thick 2" thick (min)

- immediately applied.
- C. TEMPORARY GRASS COVER
- 1. Seedbed Preparation percent calcium plus magnesium oxide) at a rate of three (3) tons per acre.

2. Seeding a. Utilize annual rye grass at a rate of 40 lbs/acre. b. Where the soil has been compacted by construction operations, loosen soil to a depth of two (2) inches before applying fertilizer, lime and seed. c. Apply seed uniformly by hand, cyclone seeder, or hydroseeder (slurry including seed and

fertilizer). Hydroseedings, which include mulch, may be left on soil surface. Seeding rates must be increased 10% when hydroseeding. 3. Maintenance -

Temporary seedings shall be periodically inspected. At a minimum, 95% of the soil surface should be covered by vegetation. If any evidence of erosion or sedimentation is apparent, repairs shall be made and other temporary measures used in the interim (mulch, filter barriers, check dams, etc.).

- D. FILTERS
- 1. Tubular Sediment Barrier
- a. See detail.

2. Silt Fence (if used) a. Synthetic filter fabric shall be a pervious sheet of propylene, nylon, polyester or ethylene yarn and shall be certified by the manufacturer or supplier as conforming to the following requirements:

> Physical Property Filtering Efficiency

Tensile Strength at 20% Maximum Elongation*

Flow Rate

0 degrees F to 120° F.

b. Posts shall be spaced a maximum of ten (10) feet apart at the barrier location or as recommended by the manufacturer and driven securely into the ground (minimum of 16 inches).

c. A trench shall be excavated approximately six (6) inches wide and eight (8) inches deep along the line of posts and upslope from the barrier.

d. When standard strength filter fabric is used, a wire mesh support fence shall be fastened securely to the upslope side of the posts using heavy duty wire staples at least one (1) inch long, tie wires or hog rings. The wire shall extend no more than 36 inches above the original around surfaces.

e. The "standard strength" filter fabric shall be stapled or wired to the fence, and eight (8) inches of the fabric shall be extended into the trench. The fabric shall not extend more than 36 inches above the original ground surface. Filter fabric shall not be stapled to existing trees.

f. When extra strength filter fabric and closer post spacing are used, the wire mesh support fence may be eliminated. In such a case, the filter fabric is stapled or wired directly to the posts with all other provisions of item (g) applying.

g. The trench shall be backfilled and the soil compacted over the filter fabric.

h. Silt fences shall be removed when they have served their useful purpose but not before the upslope areas has been permanently stabilized.

3. Sequence of Installation -Sediment barriers shall be installed prior to any soil disturbance of the contributing upslope

drainage area.

4. Maintenance -

a. Silt fence barriers shall be inspected immediately after each rainfall and at least daily during prolonged rainfall. They shall be repaired if there are any signs of erosion or sedimentation below them. Any required repairs shall be made immediately. If there are signs of undercutting at the center or the edges, or impounding of large volumes of water, the sediment barriers shall be replaced with a temporary stone check dam.

Should the fabric on a silt fence or filter barrier decompose or become ineffective prior to the end of the expected usable life and the barrier still is necessary, the fabric shall be replaced promptly.

c. Sediment deposits must be removed when deposits reach approximately one-third (1/3) the height of the barrier.

d. Any sediment deposits remaining in place after the silt fence or other barrier is no longer required shall be removed. The area shall be prepared and seeded.

e. Additional stone may have to be added to the construction entrance, rock barrier and

NSTALLATION, MAINTENANCE AND INSPECTION PROCEDURES FOR TEMPORARY

are not acceptable in the mix. * Soluble salts content is less than 4.0 mmhos/cm

* The pH should fall between 5.0 and 8.0.

3. Maintenance - All mulches must be inspected periodically, in particular after rainstorms, to check for rill erosion. If less than 90% of the soil surface is covered by mulch, additional mulch shall be

Apply fertilizer at the rate of 600 pounds per acre of 10-10-10. Apply limestone (equivalent to 50

b. Install per manufacturer's requirements.

Test	<u>Requirements</u>
VTM-51	75% minimum
VTM-52	Extra Strength 50 lb/lin in (min) Standard Strength 30 lb/lin in (min)

0.3 gal/sf/min (min) VTM-51

* Requirements reduced by 50 percent after six (6) months of installation.

Synthetic filter fabric shall contain ultraviolet ray inhibitors and stabilizer to provide a minimum of six (6) months of expected usable construction life at a temperature range of riprap lined swales, etc., periodically to maintain proper function of the erosion contro structure.

E. PERMANENT SEEDING -

- 1. Bedding stones larger than $1\frac{1}{2}$, trash, roots, and other debris that will interfere with seeding and future maintenance of the area should be removed. Where feasible, the soil should be tilled to a depth of 5" to prepare a seedbed and mix fertilizer into the soil.
- 2. Fertilizer lime and fertilizer should be applied evenly over the area prior to or at the time of seeding and incorporated into the soil. Kinds and amounts of lime and fertilizer should be based on an evaluation of soil tests. When a soil test is not available, the following minimum amounts should be applied:

Agricultural Limestone @ 100 lbs. per 1,000 s.f. 10-20-20 fertilizer @ 12 lbs. per 1,000 s.f.

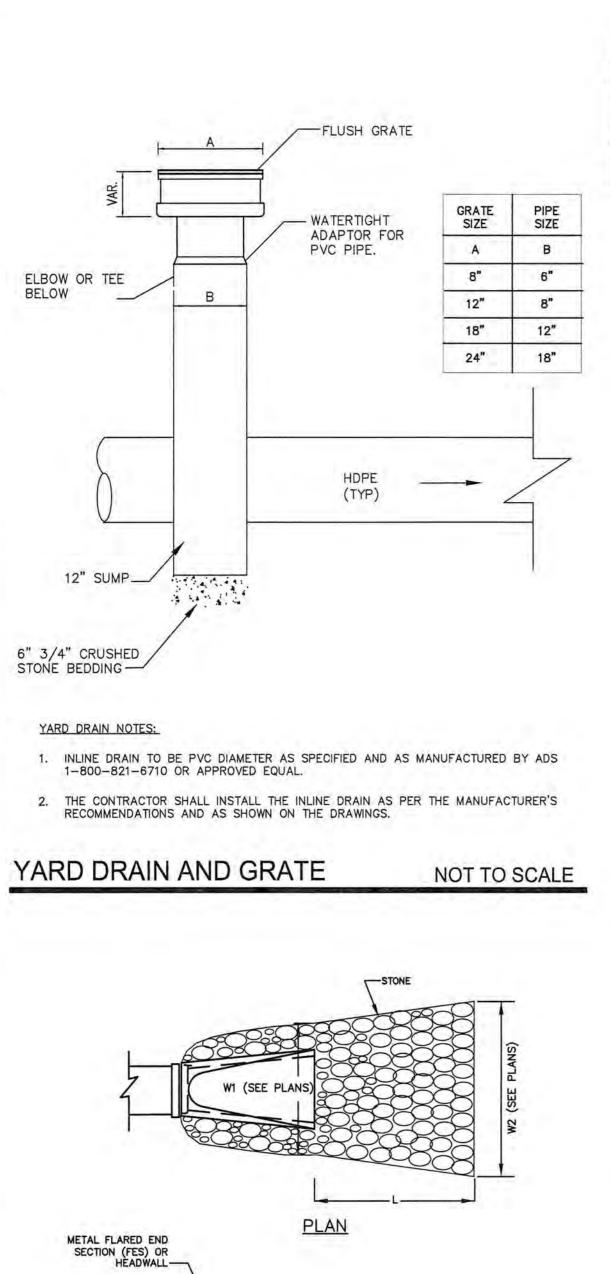
3. Seed Mixture (See Landscape Drawings for additional information):

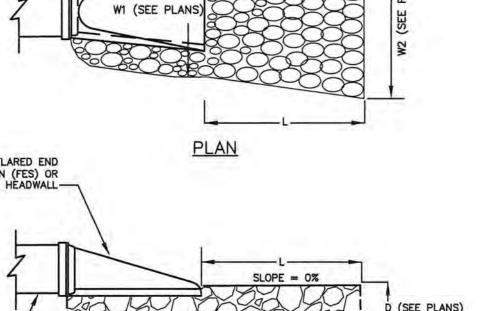
- 3.1. Lawn seed mix shall be a fresh, clean new seed crop. The Contractor shall furnish a dealer's guaranteed statement of the composition of the mixture and the percentage of purity and
- ermination of each variety. 3.2. Seed mixture shall consist of
 - a. 1/3 Kentucky blue,
 - b. 1/3 perennial rye, and
- c. 1/3 fine fescue. 3.1. Turf type tall fescue is unacceptable.
- 4. Sodding sodding is done where it is desirable to rapidly establish cover on a disturbed area. Sodding an area may be substituted for permanent seeding procedures anywhere on site. Bed preparation, fertilizing, and placement of sod shall be performed according to the S.C.S. Handbook. Sodding is recommended for steep sloped areas, areas immediately adjacent to sensitive water courses, easily erodible soils (fine sand/silt), etc.

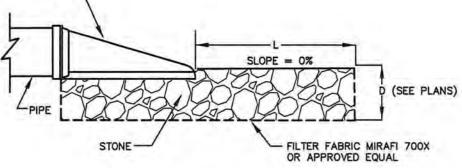
WINTER CONSTRUCTION NOTES

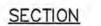
- 1. All proposed vegetated areas which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and elsewhere seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events;
- 2. All ditches or swales which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions; and
- 3. After November 15th, incomplete road or parking surfaces where work has stopped for the winter season shall be protected with a minimum of 3 inches of crushed gravel per NHDOT Item 304.3.


WINTER CONSTRUCTION NOTES


- 1. All proposed vegetated areas which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and elsewhere seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events;
- 2. All ditches or swales which do not exhibit a minimum of 85% vegetative growth by October 15th, or which are disturbed after October 15th, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions; and
- 3. After November 15th, incomplete road or parking surfaces where work has stopped for the winter season shall be protected with a minimum of 3 inches of crushed gravel per NHDOT Item 304.3.


Long Term Inspection & Maintenance Schedule				
	Spring	Fall or Yearly	After Major Storm	Every 2-5 Vears
Vegetated Areas	-	-		
Inspect all slopes and embankments	x	-	x	1
Replant bare areas or areas with sparse growth	x		x	-
Armor areas with rill erosion with an appropriate	x		x	-
lining or divert the erosive flows to on-site areas able to withstand concentrated flows.			12 21	
Stormwater Channels				
Inspect ditches, swales and other open stormwater channels	x	x	x	
Remove any obstructions and accumulated sediments or debris	x	x		
Control vegetated growth and woody vegetation		x		
Repair any erosion of the ditch lining		x		
Mow vegetated ditches	1	x		1
Remove woody vegetation growing through riprap	1111	x		
Repair any slumping side slopes	1	x		
Replace riprap where underlying filter fabric or underdrain gravel is exposed or where stones have been dislodged		x		
Culverts				
Remove accumulated sediments and debris at inlet, outlet and within the conduit	x	x	x	
Repair any erosion damage at the culvert's inlet and outlet	x	x	x	1.
Remove woody vegetation growing through riprap	-	x	1	
Roadways and Parking Surfaces			-	1 - 3
Remove accumulated winter sand along roadways	x			
Sweep pavement to remove sediment	x			
Grade road shoulders and remove excess sand	x			
either manually or by a front-end loader				
Grade gravel roads and gravel shoulders and paths	X			-
Clean out sediment contained in water bars or open-top culverts	x		-	
Ensure that stormwater is not impeded by accumulations of material or false ditches in the roadway shoulder	x			
Runoff Infiltration Facilities				
Remove dead vegetation and any accumulated sediment (normally at the entrance to the garden)	x			1.5
to allow for new growth Weed; add additional hardwood mulch to suppress	x	x		
weeds				-
Mow turf three (3) times a growing season Aerate area with deep tines, if water ponds on the				-
surface for more than 24 hours during the first year or for a length of 72 hours		x		
Vegetative Swale	-		1	1
Mow grass swales monthly	1			
Inspect swale following significant rainfall event	x	x	x	-
Control vegetated growth and woody vegetation	x	x	4	
Repair any erosion of the ditch	x	x	1	
Remove debris and liter as necessary	-14	~	-	


CONSTRUCTION SPECIFICATIONS


- MAY BE SUBSTITUTED FOR THE PIPE.
- THE ENGINEER.

THE OUTLET PROTECTION SHOULD BE CHECKED AT LEAST ANNUALLY AND AFTER EVERY MAJOR STORM. IF THE RIPRAP

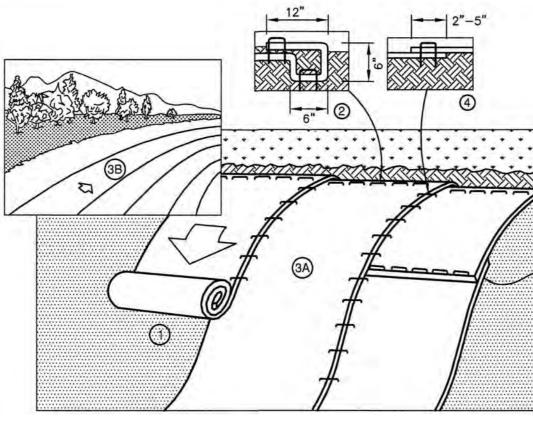
HAS BEEN DISPLACED, UNDERMINED OR DAMAGED, IT SHOULD BE REPAIRED IMMEDIATELY. THE CHANNEL IMMEDIATELY

BELOW THE OUTLET SHOULD BE CHECKED TO SEE THAT EROSION IS NOT OCCURRING. THE DOWNSTREAM CHANNEL

SHOULD BE KEPT CLEAR OF OBSTRUCTIONS SUCH AS FALLEN TREES, DEBRIS, AND SEDIMENT THAT COULD CHANGE FLOW PATTERNS AND/OR TAILWATER DEPTHS ON THE PIPES. REPAIRS MUST BE CARRIED OUT IMMEDIATELY TO AVOID

1. THE SUBGRADE FOR THE FILTER MATERIAL, GEOTEXTILE FABRIC, AND RIPRAP SHALL BE PREPARED TO THE LINES

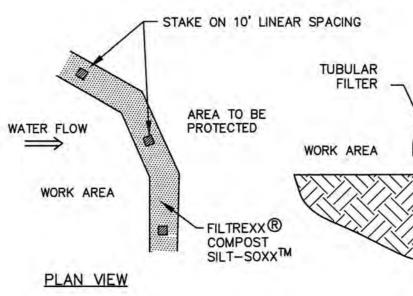
3. GEOTEXTILE FABRICS SHALL BE PROTECTED FROM PUNCTURE OR TEARING DURING THE PLACEMENT OF THE ROCK


RIPRAP. DAMAGED AREAS IN THE FABRIC SHALL BE REPAIRED BY PLACING A PIECE OF FABRIC OVER THE

STONE FOR THE RIP RAP MAY BE PLACED BY EQUIPMENT AND SHALL BE CONSTRUCTED TO THE FULL LAYER

THICKNESS IN ONE OPERATION AND IN SUCH A MANNER AS TO PREVENT SEGREGATION OF THE STONE SIZES.

DAMAGED AREA OR BY COMPLETE REPLACEMENT OF THE FABRIC. ALL OVERLAPS REQUIRED FOR JOINING TWO


THE ROCK OR GRAVEL USED FOR FILTER OR RIPRAP SHALL CONFORM TO THE SPECIFIED GRADATION

NOTES

- 1. PREPARE SOIL BEFORE INSTALLING BLANKETS, INCLUDING ANY NECESSARY APPLICATION OF LIME, FERTILIZER, AND SEED.
- 2. BEGIN AT THE TOP OF THE SLOPE BY ANCHORING THE BLANKET IN A 6" DEEP BY 6" WIDE TRENCH WITH APPROXIMATELY 12" OF BLANKET EXTENDED BEYOND THE UP-SLOPE PORTION OF THE TRENCH. ANCHOR THE BLANKET WITH A ROW OF STAPLES/STAKES APPROXIMATELY 12" APART IN THE BOTTOM OF THE TRENCH, BACKFILL AND COMPACT THE TRENCH AFTER STAPLING. APPLY SEED TO COMPACTED SOIL AND FOLD REMAINING 12" PORTION OF BLANKET BACK OVER SEED AND COMPACTED SOIL. SECURE BLANKET OVER COMPACTED SOIL WITH A ROW OF STAPLES/STAKES SPACED APPROXIMATELY 12" APART ACROSS THE WIDTH OF THE BLANKET.
- 3. ROLL THE BLANKETS (A) DOWN OR (B) HORIZONTALLY ACROSS THE SLOPE. BLANKETS WILL UNROLL WITH APPROPRIATE SIDE AGAINST THE SOIL SURFACE. ALL BLANKETS MUST BE SECURELY FASTENED TO SOIL SURFACE BY PLACING STAPLES/STAKES IN APPROPRIATE LOCATIONS AS SHOWN IN THE STAPLE PATTERN GUIDE.
- 4. THE EDGES OF PARALLEL BLANKETS MUST BE STAPLED WITH APPROXIMATELY 2"-5" OVERLAP DEPENDING ON BLANKET TYPE. TO ENSURE PROPER SEAM ALIGNMENT, PLACE THE EDGE OF THE OVERLAPPING BLANKET (BLANKET BEING INSTALLED ON TOP) EVEN WITH THE COLORED SEAM STITCH ON THE PREVIOUSLY INSTALLED BLANKET.
- 5. CONSECUTIVE BLANKETS SPLICED DOWN THE SLOPE MUST BE PLACED END OVER END (SHINGLE STYLE) WITH AN APPROXIMATE 3" OVERLAP. STAPLE THROUGH OVERLAPPED AREA, APPROXIMATELY 12" APART ACROSS ENTIRE BLANKET WIDTH. NOTE: IN LOOSE SOIL CONDITIONS, THE USE OF STAPLE OR STAKE LENGTHS GREATER THAN 6" MAY BE NECESSARY TO PROPERLY SECURE THE BLANKETS.

EROSION CONTROL BLANKET - SLOPE NOT TO SCALE

- NOTES: 1. SILTSOXX OR APPROVED EQUAL SHALL BE USED FOR TUBULAR SEDIMENT BARRIERS. 2. ALL MATERIAL TO MEET MANUFACTURER'S SPECIFICATIONS.
- 3. COMPOST/SOIL/ROCK/SEED FILL MATERIAL SHALL BE ADJUSTED AS NECESSARY TO MEET THE

REQUIREMENTS OF THE SPECIFIC APPLICATION. 4. ALL SEDIMENT TRAPPED BY BARRIER SHALL BE DISPOSED OF PROPERLY. TUBULAR SEDIMENT BARRIER DETAIL NOT TO SCALE

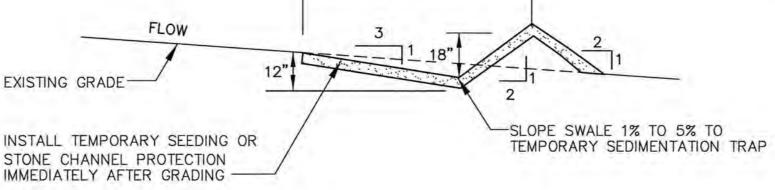
SWALE SHALL BE FREE OF IRREGULARITIES WHICH MAY CAUSE PONDING. COMPACT FILLS AS NECESSARY TO STABILIZE MATERIAL

EXISTING GRADE

RIPRAP OUTLET PROTECTION

PIECES OF FABRIC SHALL BE A MINIMUM OF 12 INCHES.

ADDITIONAL DAMAGE TO THE OUTLET PROTECTION APRON.


CONSTRUCTION SPECIFICATIONS

AND GRADES SHOWN ON THE PLANS.

MAINTENANCE

NOT TO SCALE

TEMPORARY DIVERSION SWALE

6' MIN.

SECTION

- 2" x 2" WOODEN

REBAR W/ORANGE SAFETY

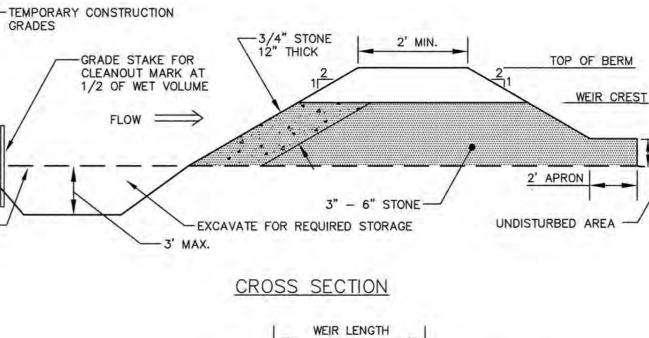
AREA TO BE

PROTECTED

CAP MAY BE USED IN PAVED SURFACE ONLY

STAKE (TYP.);

3" - 6" STONE--EXCAVATE FOR REQUIRED STORAGE EXISTING GRADE 3' MAX CROSS SECTION WEIR LENGTH L=6' x Drainage MIN Area (Acres)


' MA

1.5" TO 2" STONE

FILLED CENTER -

COMPACTED

EARTH FILL

MINIMUM

VARIABLE

PROFILE

INSTALLATION: REMOVE THE GRATE FROM CATCH BASIN. IF USING OPTIONAL OIL ABSORBENTS; PLACE ABSORBENT PILLOW IN UNIT. STAND GRATE ON END. MOVE THE TOP LIFTING STRAPS OUT OF THE WAY AND PLACE THE GRATE INTO CATCH BASIN INSERT SO THE GRATE IS BELOW THE TOP STRAPS AND ABOVE THE LOWER STRAPS. HOLDING THE LIFTING DEVICES, INSERT THE

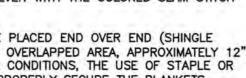
MAINTENANCE: REMOVE ALL ACCUMULATED SEDIMENT AND DEBRIS FROM VICINITY OF THE UNIT AFTER EACH STORM EVENT.

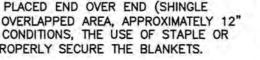
AFTER EACH STORM EVENT AND AT REGULAR INTERVALS, LOOK INTO THE CATCH BASIN INSERT. IF THE CONTAINMENT AREA IS

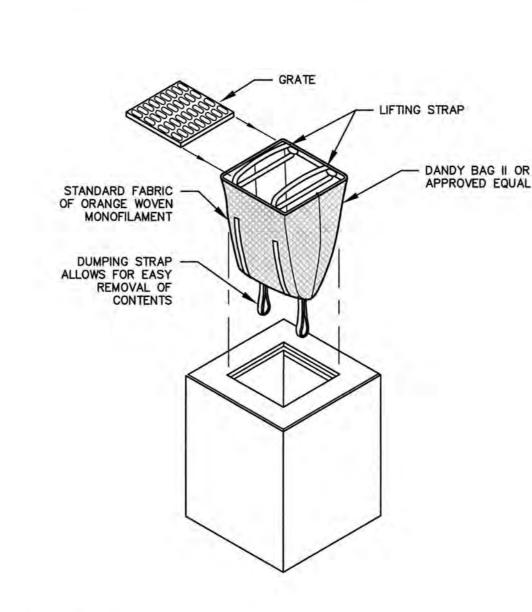
MORE THAN 1/3 FULL OF SEDIMENT, THE UNIT MUST BE EMPTIED. TO EMPTY THE UNIT, LIFT THE UNIT OUT OF THE INLET USING

THE LIFTING STRAPS AND REMOVE THE GRATE. IF USING OPTIONAL ABSORBENTS; REPLACE ABSORBENT WHEN NEAR SATURATION.

INSTALLATION AND MAINTENANCE:

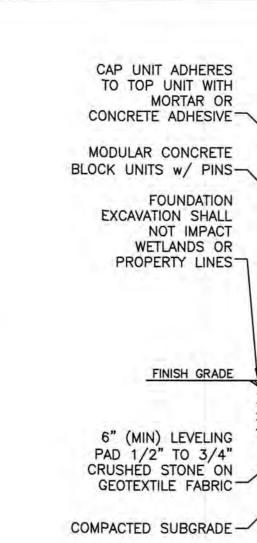

GRADES


GRATE INTO THE INLET


UNACCEPTABLE INLET PROTECTION METHOD: A SIMPLE SHEET OF GEOTEXTILE UNDER THE GRATE IS NOT ACCEPTABLE STORM DRAIN INLET PROTECTION NOT TO SCALE

--

(5)


WEIR CREST

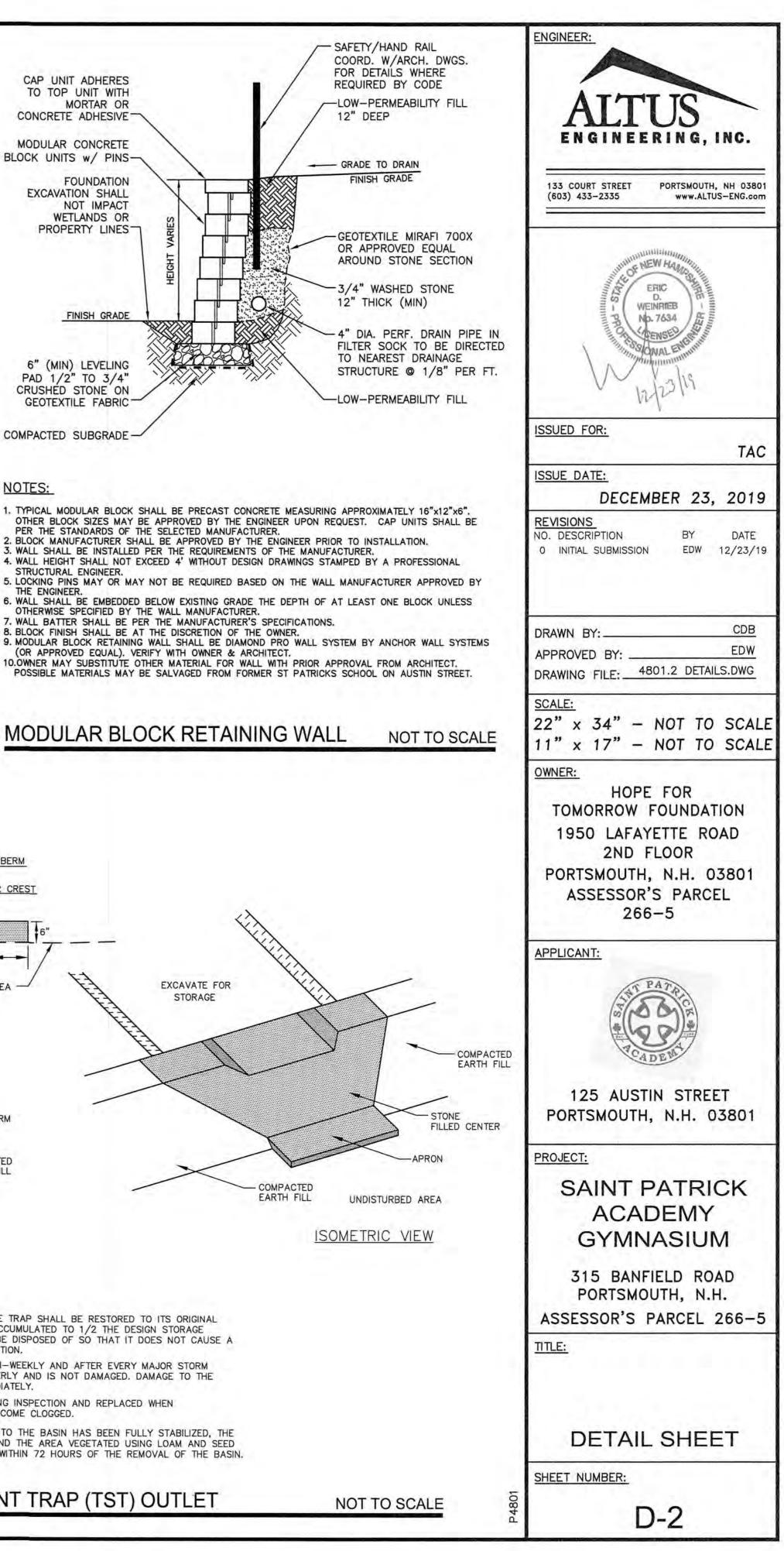
-EXISTING GRADE

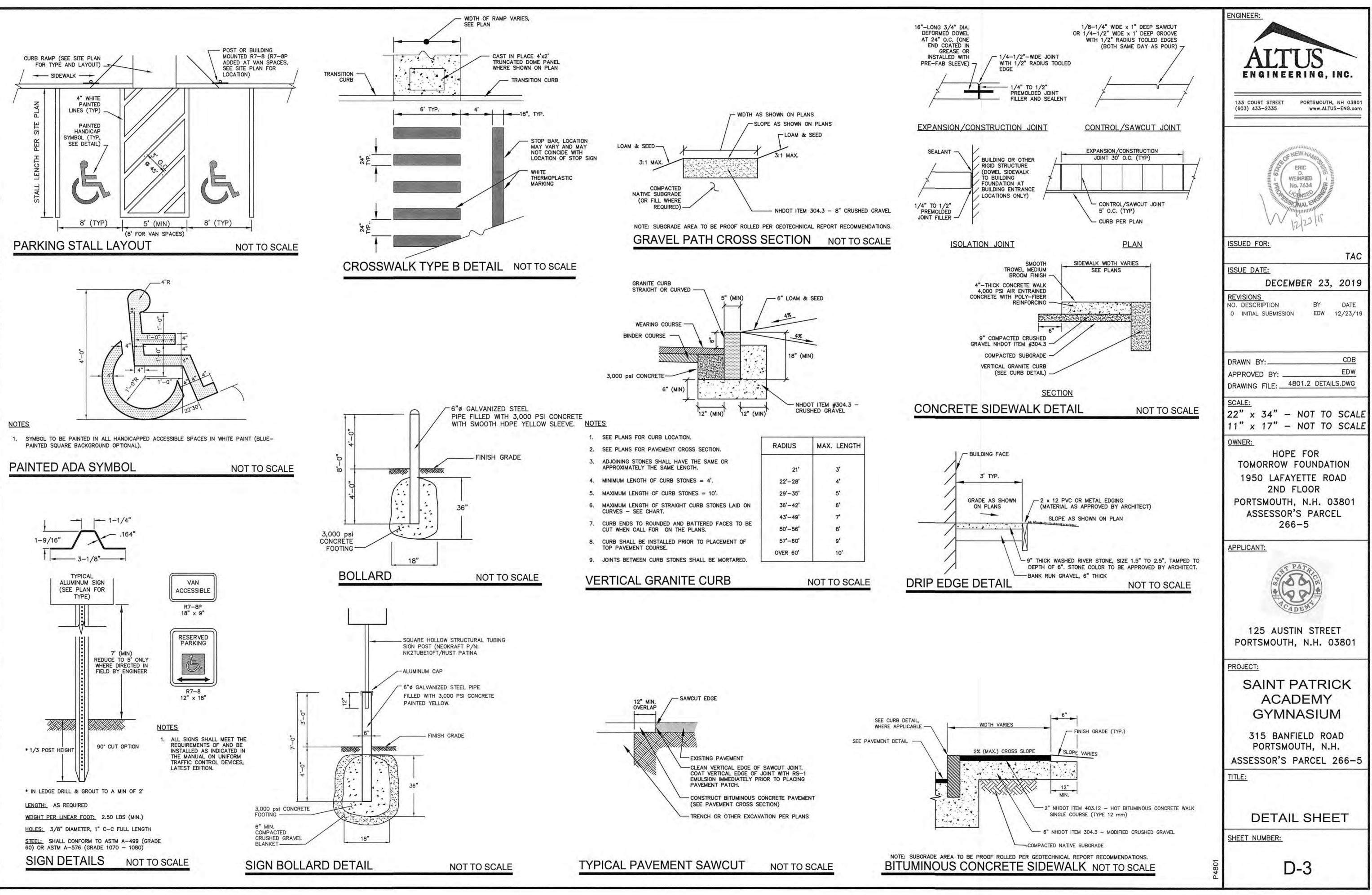
TOP OF BERM

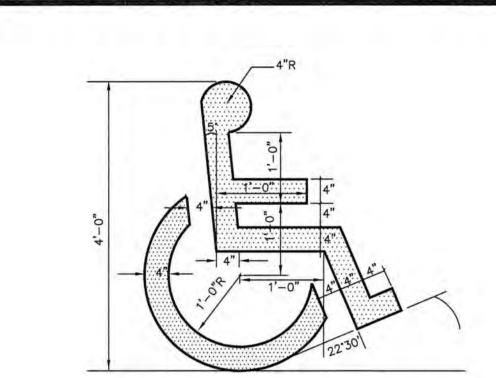
COMPACTED

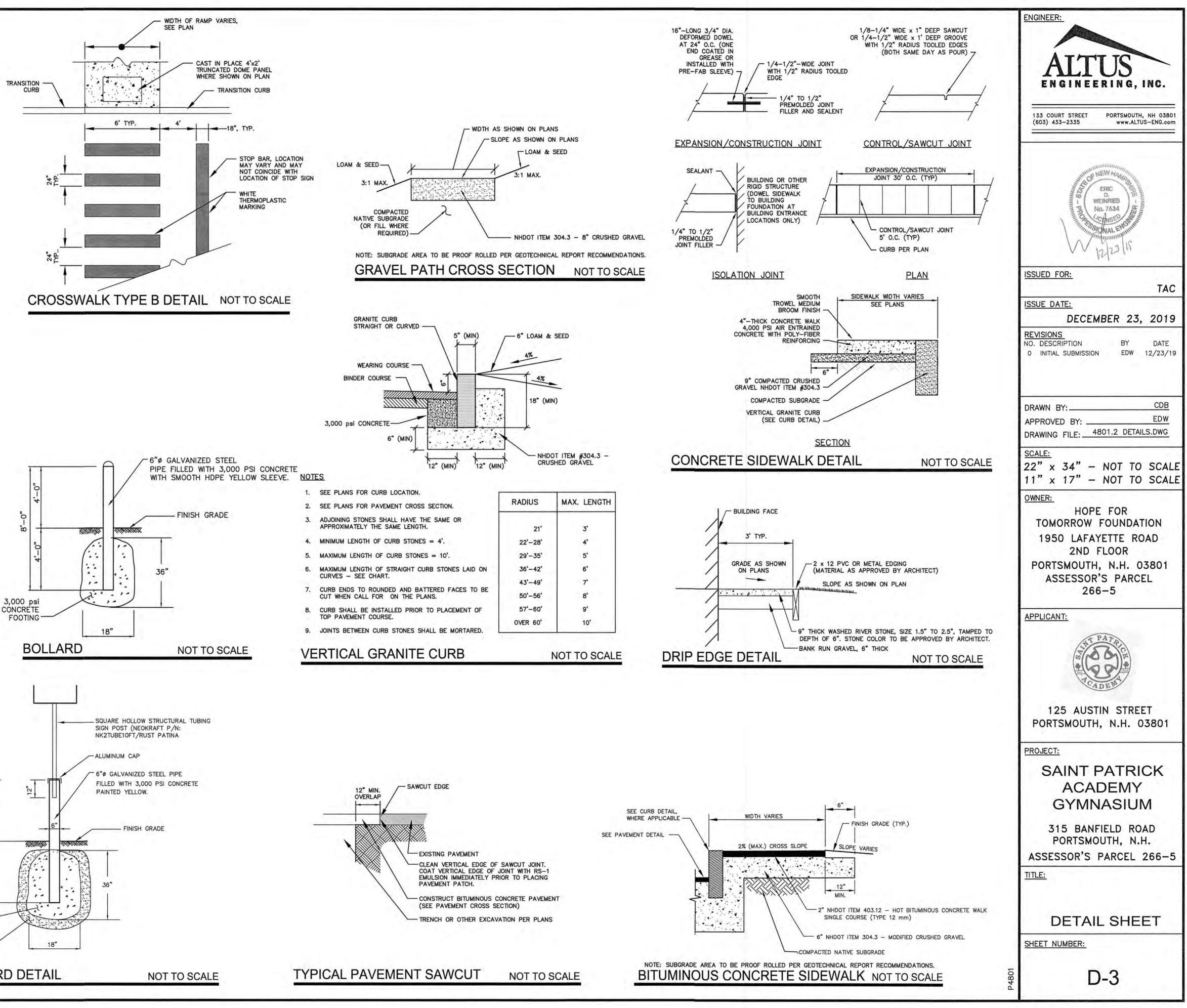
EARTH FILL

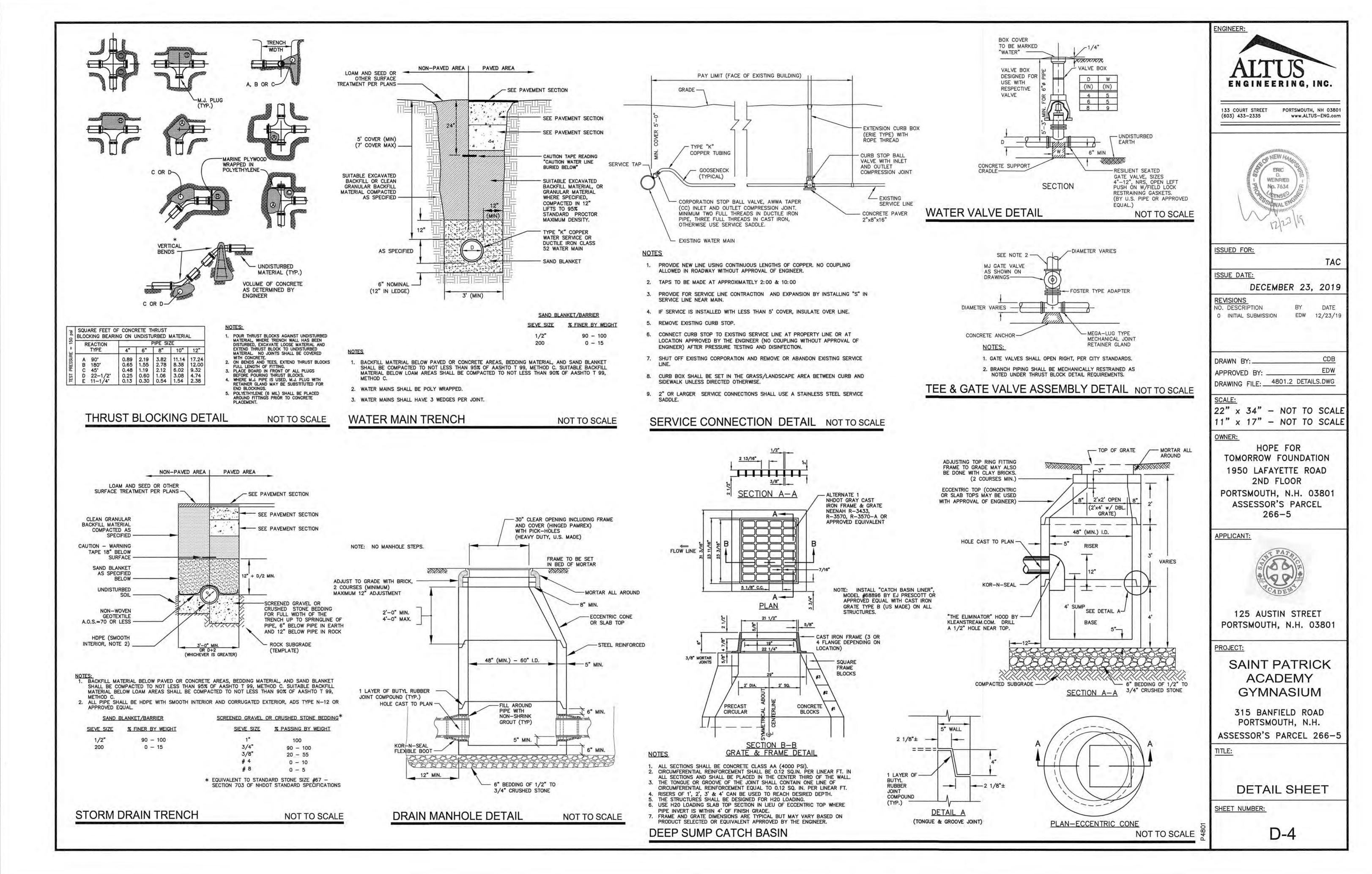
NOTES:

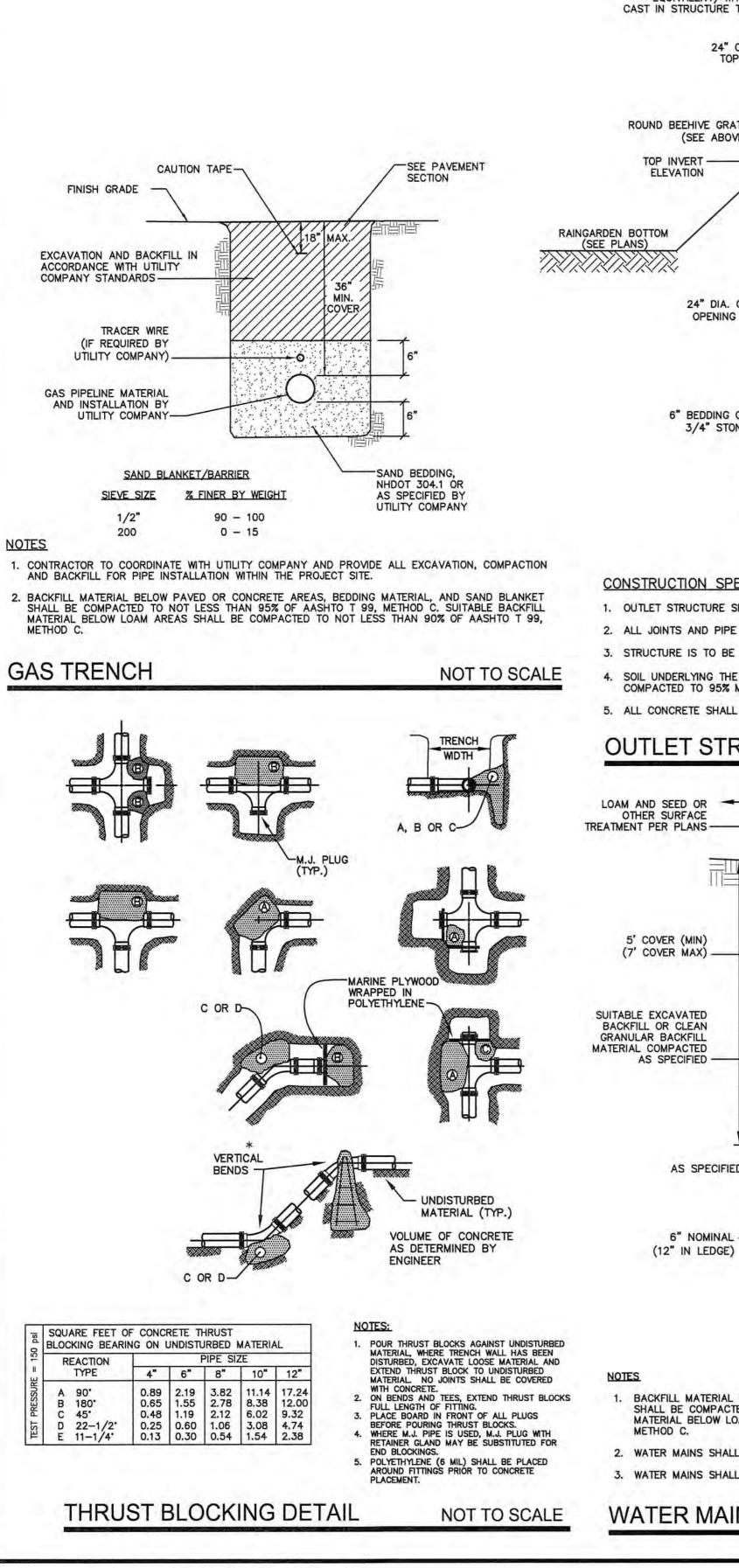

STRUCTURAL ENGINEER.

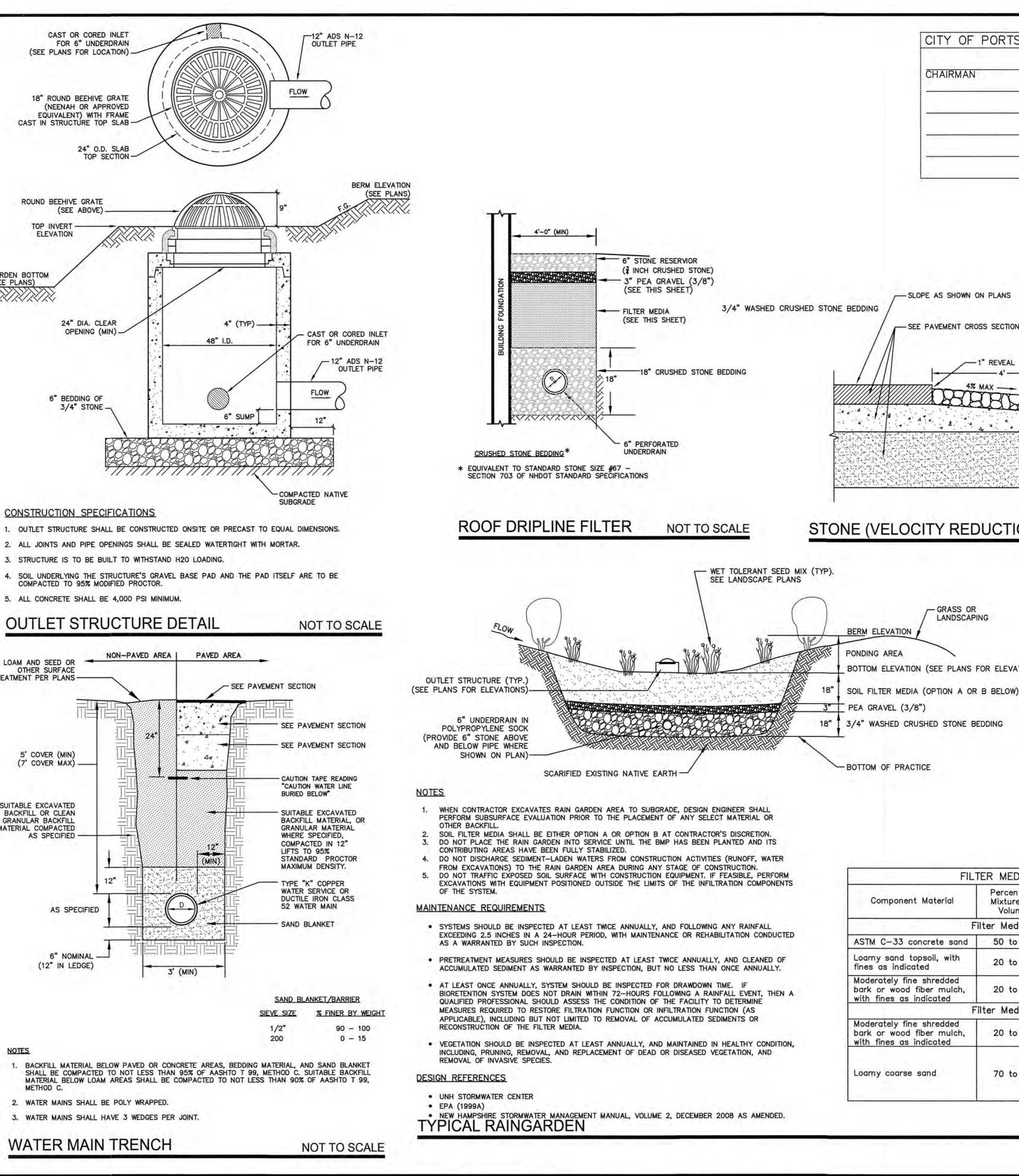

THE ENGINEER.

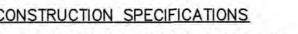

- MAINTENANCE 1. SEDIMENT SHALL BE REMOVED AND THE TRAP SHALL BE RESTORED TO ITS ORIGINAL CAPACITY WHEN THE SEDIMENT HAS ACCUMULATED TO 1/2 THE DESIGN STORAGE VOLUME. SEDIMENT REMOVED SHALL BE DISPOSED OF SO THAT IT DOES NOT CAUSE A SEDIMENT PROBLEM AT ANOTHER LOCATION.
- 2. THE STRUCTURE SHALL BE CHECKED BI-WEEKLY AND AFTER EVERY MAJOR STORM TO INSURE THAT IT IS WORKING PROPERLY AND IS NOT DAMAGED. DAMAGE TO THE STRUCTURE SHALL BE REPAIRED IMMEDIATELY.
- 3. 3/4" STONE SHALL BE CHECKED DURING INSPECTION AND REPLACED WHEN THE OPENINGS IN THE STONE HAVE BECOME CLOGGED.
- WHEN THE DRAINAGE AREA FLOWING INTO THE BASIN HAS BEEN FULLY STABILIZED. THE
- SEDIMENT TRAP SHALL BE REMOVED AND THE AREA VEGETATED USING LOAM AND SEED WITH MULCH (OR SOD IF NECESSARY) WITHIN 72 HOURS OF THE REMOVAL OF THE BASIN.

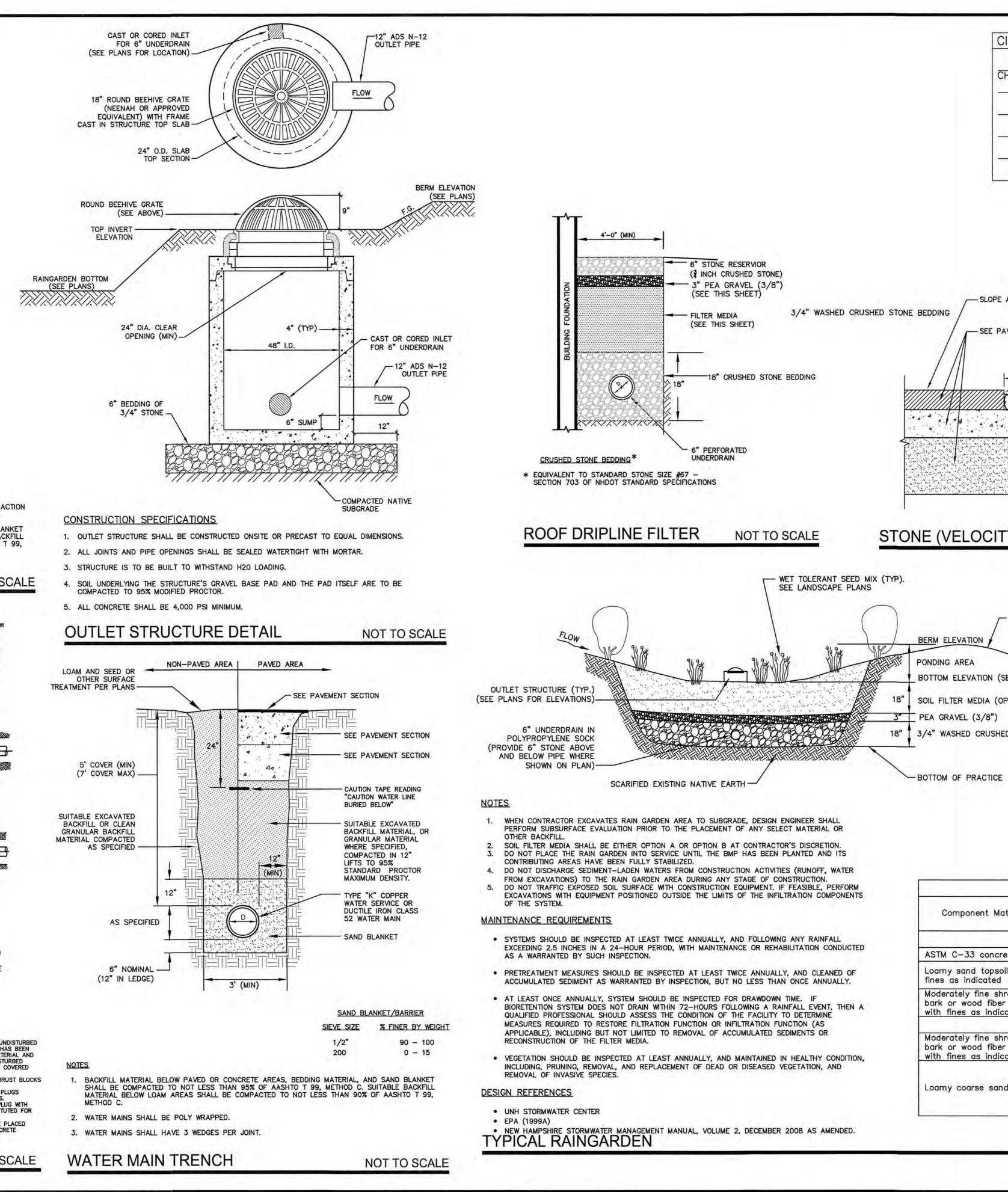

TEMPORARY SEDIMENT TRAP (TST) OUTLET


NOT TO SCALE







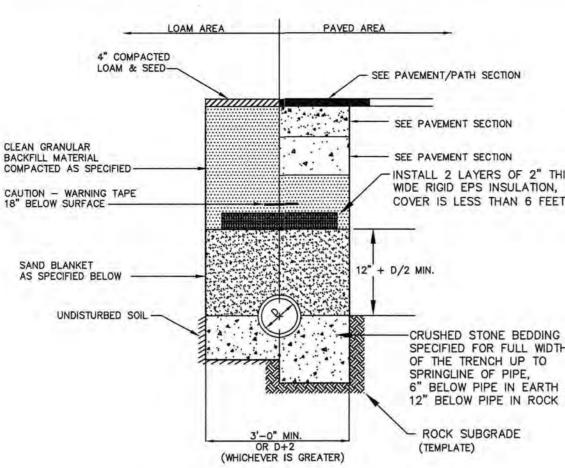


ENGINEER: CITY OF PORTSMOUTH, PLANNING BOARD CHAIRMAN DATE ENGINEERING, INC. 133 COURT STREET PORTSMOUTH, NH 03801 (603) 433-2335 www.ALTUS-ENG.com NWER ERIC WEINRIEB No. 7634 - SLOPE AS SHOWN ON PLANS -SEE PLANS FOR DIMENSIONS 3"-THICK COARSE CRUSHED STONE APRON, NHDOT ITEM 304.5 - SEE PAVEMENT CROSS SECTION -LOAM AND SEED AS SSUED FOR: SPECIFIED, GRADE PER PLANS TAC REVEAL ISSUE DATE: 4% MAX ----DECEMBER 23, 2019 RHHHH REVISIONS NO. DESCRIPTION BY DATE . . 0 INITIAL SUBMISSION EDW 12/23/19 CDB DRAWN BY: EDW APPROVED BY: DRAWING FILE: 4801.2 DETAILS.DWG STONE (VELOCITY REDUCTION) APRON NOT TO SCALE SCALE: 22" x 34" - NOT TO SCAL ' x 17" – NOT TO SCALI OWNER: - GRASS OR HOPE FOR LANDSCAPING TOMORROW FOUNDATION 1950 LAFAYETTE ROAD 2ND FLOOR BOTTOM ELEVATION (SEE PLANS FOR ELEVATIONS) PORTSMOUTH, N.H. 03801 ASSESSOR'S PARCEL 266-5 APPLICANT: CRUSHED STONE BEDDING % PASSING BY WEIGHT SIEVE SIZE 100 3/4" 90 - 100 3/8" 20 - 55 0 -10 # 4 #8 0 - 5 EQUIVALENT TO STANDARD STONE SIZE #67 - SECTION 703 OF NHDOT NHDOT STANDARD SPECIFICATIONS 125 AUSTIN STREET PORTSMOUTH, N.H. 03801 FILTER MEDIA MIXTURES Gradation of material PROJECT: Percent of Mixture by Percent by Weight Sieve Volume No. Passing Standard Sieve SAINT PATRICK Filter Media Option A ACADEMY 50 to 55 **GYMNASIUM** 200 20 to 30 15 to 25 315 BANFIELD ROAD 20 to 30 200 < 5 PORTSMOUTH, N.H. Filter Media Option B ASSESSOR'S PARCEL 266-5 20 to 30 200 < 5 TITLE: 10 85 to 100 20 70 to 100 70 to 80 60 15 to 40 DETAIL SHEET 200 8 to 15 SHEET NUMBER: NOT TO SCALE D-5

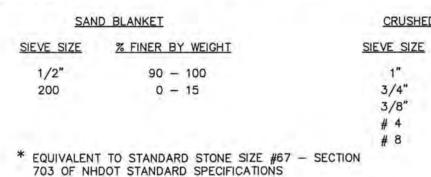
- IT IS THE INTENTION OF THE NHDES THAT THE MANHOLE, INCLUDING ALL COMPONENT PARTS, HAVE ADEQUATE SPACE, STRENGTH AND LEAKPROOF QUALITIES CONSIDERED NECESSARY BY THE COMMISSION FOR THE INTENDED SERVICE. SPACE REQUIREMENTS AND CONFIGURATIONS, SHALL BE AS SHOWN ON THE DRAWING. MANHOLES MAY BE AN ASSEMBLY OF PRECAST SECTIONS, WITH OR WITHOUT STEEL REINFORCEMENT, WITH ADEQUATE JOINTING, OR CONCRETE CAST MONOLITHICALLY IN PLACE WITH OR WITHOUT REINFORCEMENT IN ANY APPROVED MANHOLE. THE COMPLETE STRUCTURE SHALL BE OF SUCH MATERIAL AND QUALITY AS TO WITHSTAND LOADS OF 8 TONS (H-20 LOADING) WITHOUT FAILURE AND PREVENT LEAKAGE IN EXCESS OF ONE GALLON PER DAY PER VERTICAL FOOT OF MAN-HOLE CONTINUOUSLY FOR THE LIFE OF THE STRUCTURE, A PERIOD GENERALLY IN EXCESS OF 25 YEARS IS TO BE UNDERSTOOD IN BOTH CASES.
- BARRELS AND CONE SECTIONS SHALL BE PRECAST REINFORCED. 2. PRECAST CONCRETE BARREL SECTIONS, CONES AND BASES SHALL
- CONFORM TO ASTM C478. LEAKAGE TEST SHALL BE PERFORMED IN ACCORDANCE WITH THE

TOWN'S STANDARD SPECIFICATIONS.

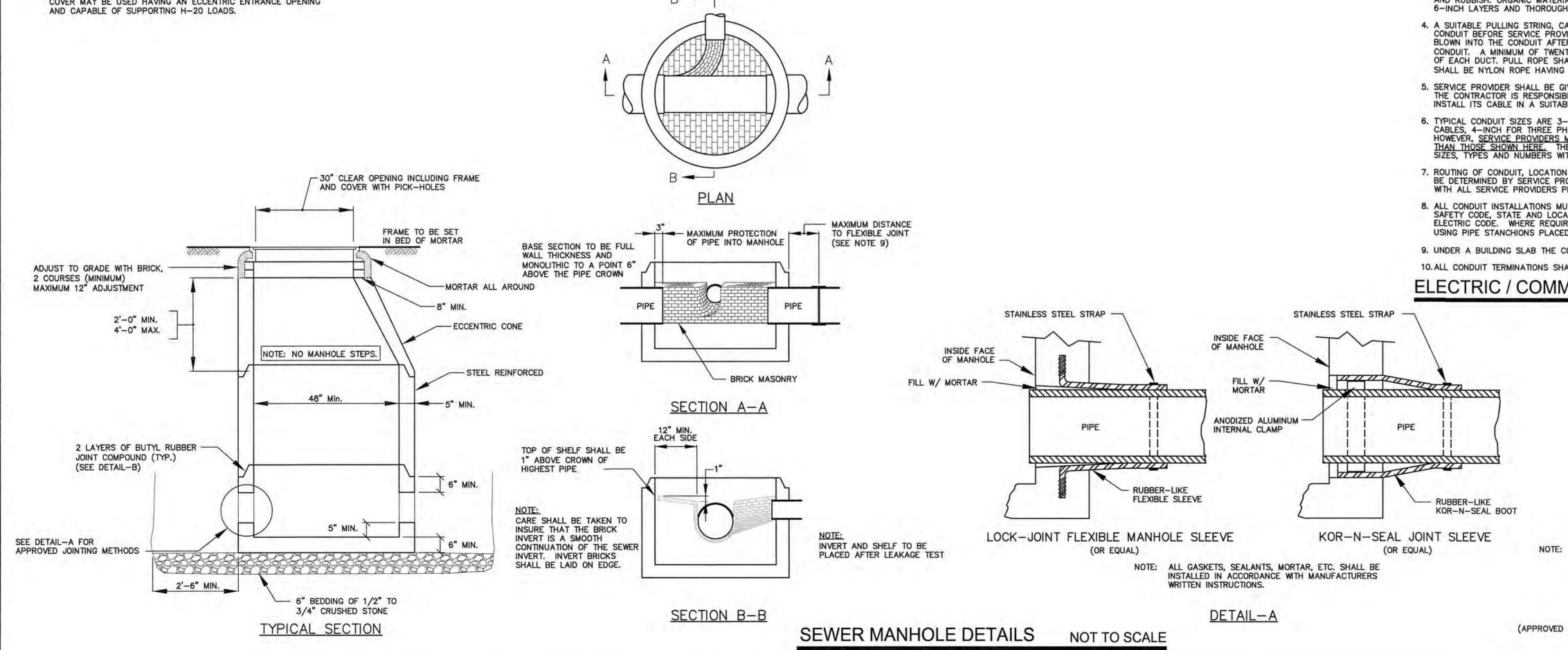
20-55% PASSING 3/8 INCH SCREEN


- INVERTS AND SHELVES MANHOLES SHALL HAVE A BRICK PAVED 5. SHELF AND INVERT CONSTRUCTED TO CONFORM TO THE SIZE OF PIPE AND FLOW AT CHANGES IN DIRECTION. THE INVERTS SHALL BE LAID OUT IN CURVES, OF THE LONGEST RADIUS POSSIBLE TANGENT TO THE CENTER LINE OF THE SEWER PIPES. SHELVES SHALL BE CONSTRUCTED TO THE ELEVATION OF THE HIGHEST PIPE CROWN AND SLOPE TO DRAIN TOWARD THE FLOWING THROUGH CHANNEL. UNDERLAYMENT OF INVERT AND SHELF SHALL CONSIST OF BRICK MASONRY.
- FRAMES AND COVERS MANHOLE FRAMES AND COVERS SHALL BE 6. OF HEAVY DUTY DESIGN AND PROVIDE A 30-INCH CLEAR OPENING. A 3-INCH (MINIMUM HEIGHT) LETTER "S" FOR SEWERS OR "D" FOR DRAINS SHALL BE PLAINLY CAST INTO THE CENTER OF EACH COVER.
- BEDDING SCREENED GRAVEL AND/OR CRUSHED STONE FREE FROM CLAY, LOAM, ORGANIC MATTER AND MEETING ASTM C33. 100% PASSING 1 INCH SCREEN 0-10% PASSING #4 SIEVE 90-100% PASSING 3/4 INCH SCREEN 0-5% PASSING #8 SIEVE

WHERE ORDERED BY THE ENGINEER TO STABILIZE THE BASE, SCREENED GRAVEL OR CRUSHED STONE 1-1/2" TO 1/2" SHALL BE USED.


- CONCRETE FOR DROP SUPPORT SHALL CONFORM TO THE 8. REQUIREMENT FOR CLASS A (3000 LBS.) CONCRETE OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS AS FOLLOWS: CEMENT 6.0 BAGS PER CUBIC YARD 5.75 GALLONS PER BAG CEMENT WATER MAXIMUM SIZE OF AGGREGATE 1 INCH
- FLEXIBLE JOINT A FLEXIBLE JOINT SHALL BE PROVIDED 9. WITHIN THE FOLLOWING DISTANCES: PVC PIPE - 60"

RCP & CI PIPE - ALL SIZES - 48" AC & VC PIPE - UP THROUGH 12" DIAMETER - 18" AC & VC PIPE - LARGER THAN 12" DIAMETER - 36"


SHALLOW MANHOLE IN LIEU OF A CONE SECTION, WHEN MANHOLE 10. DEPTH IS LESS THAN 6 FEET. A REINFORCED CONCRETE SLAB COVER MAY BE USED HAVING AN ECCENTRIC ENTRANCE OPENING AND CAPABLE OF SUPPORTING H-20 LOADS.

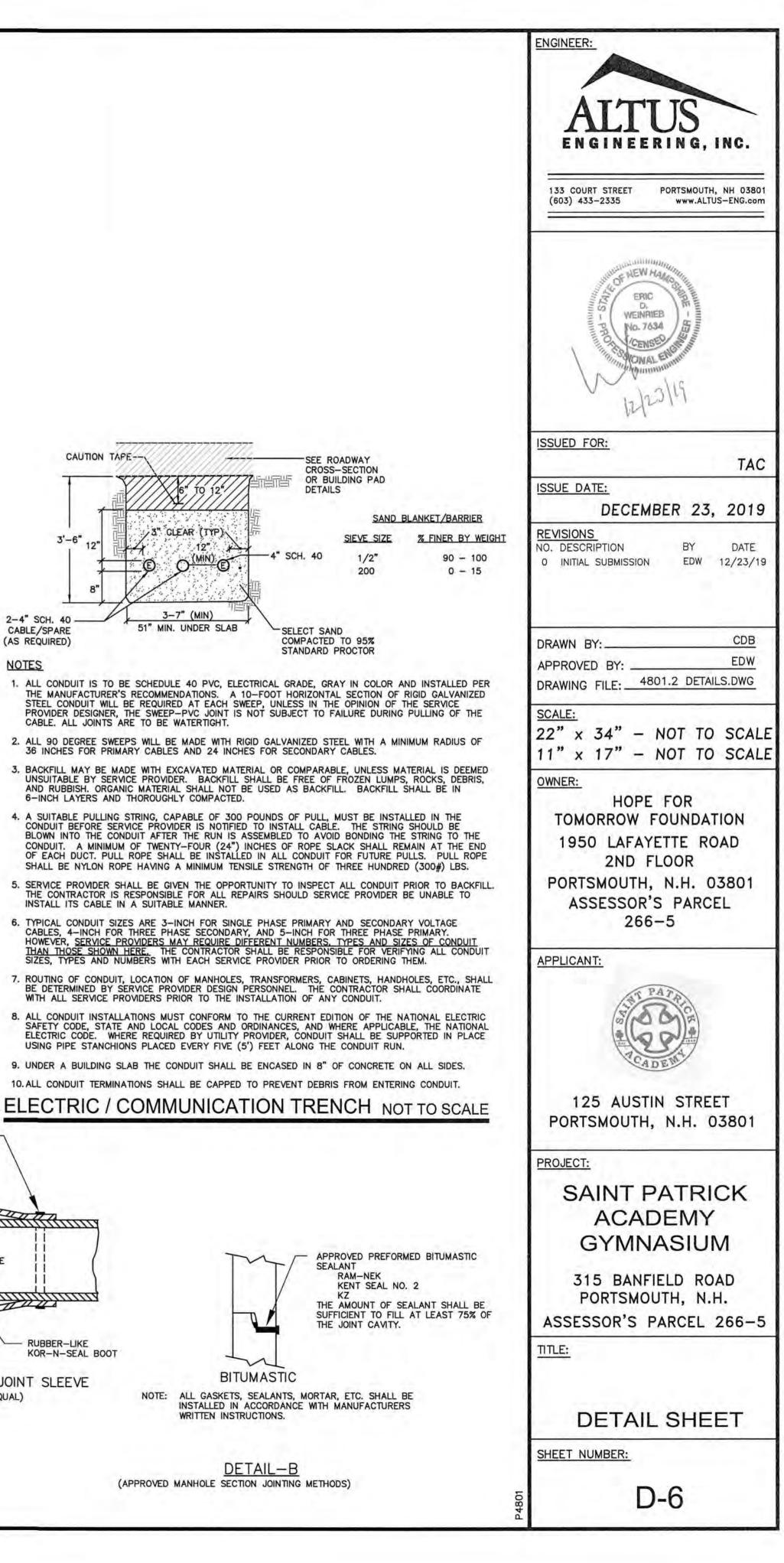
BACKFILL MATERIAL BELOW PAVED OR CONCRETE AREAS, BEDDING MATERIAL, AND SAND BLANKET SHALL BE COMPACTED TO NOT LESS THAN 95% OF AASHTO T99, METHOD C. SUITABLE BACKFILL MATERIAL BELOW LOAM AREAS SHALL BE COMPACTED TO NOT LESS THAN 90% OF AASHTO T 99, METHOD C

SEWER TRENCH SECTION

STANDARD TRENCH NOTES:

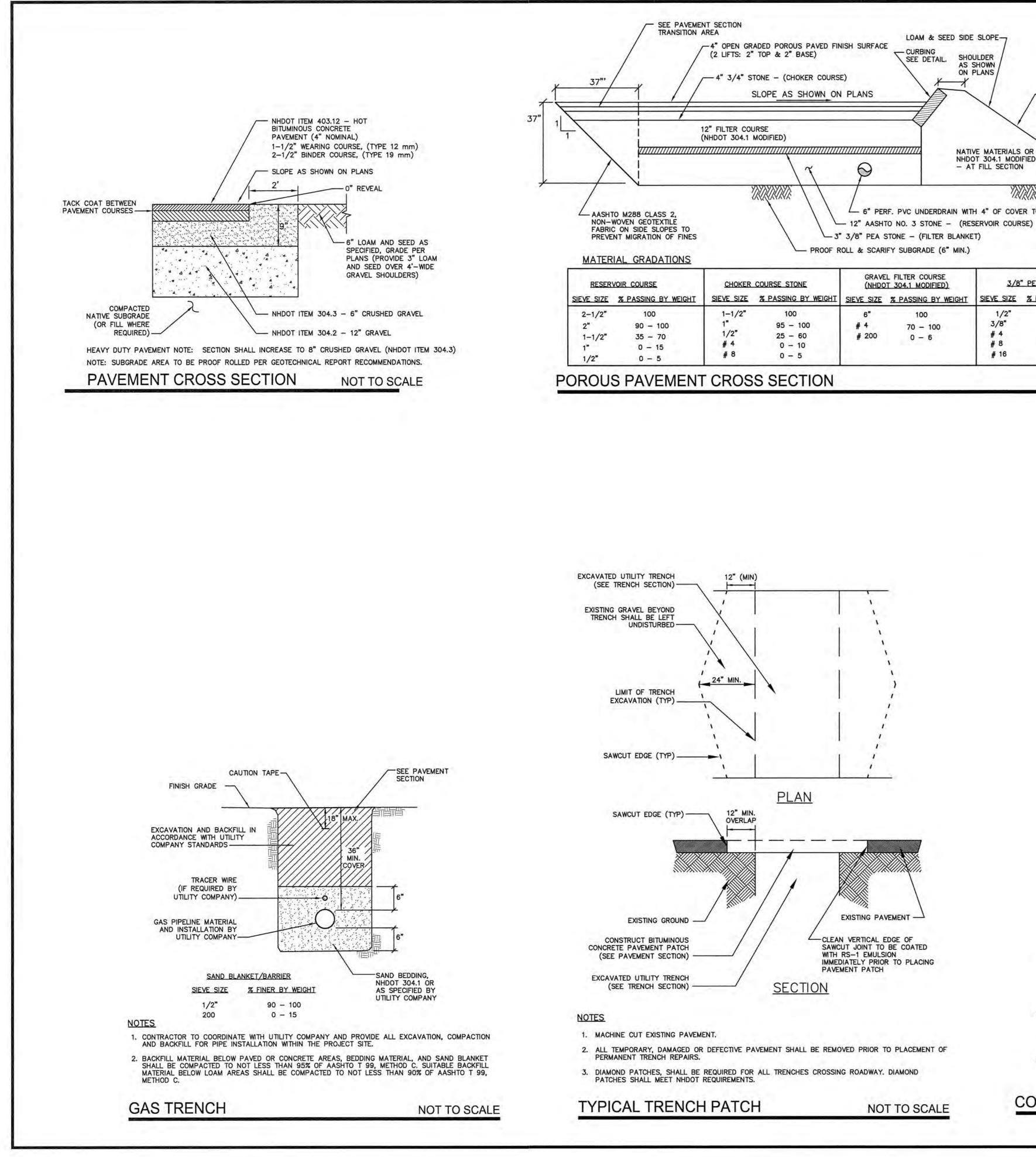
- -INSTALL 2 LAYERS OF 2" THICK BY 2' WIDE RIGID EPS INSULATION, WHERE COVER IS LESS THAN 6 FEET (TYP.)
- CRUSHED STONE BEDDING AS SPECIFIED FOR FULL WIDTH OF THE TRENCH UP TO 6" BELOW PIPE IN EARTH AND
- CRUSHED STONE BEDDING *
 - % PASSING BY WEIGHT
 - 100 90 - 100 20 - 55 0 - 10

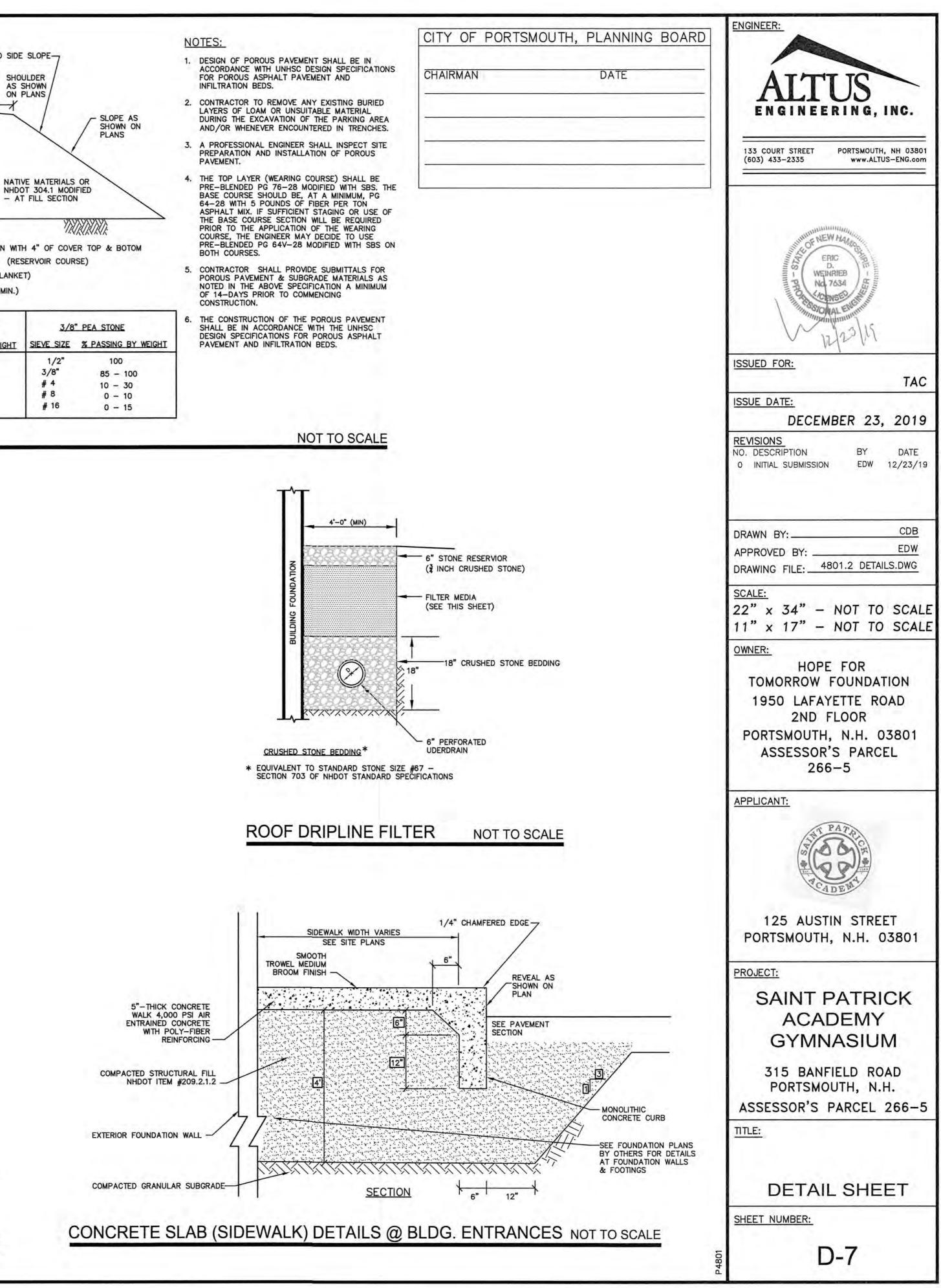
0 - 5

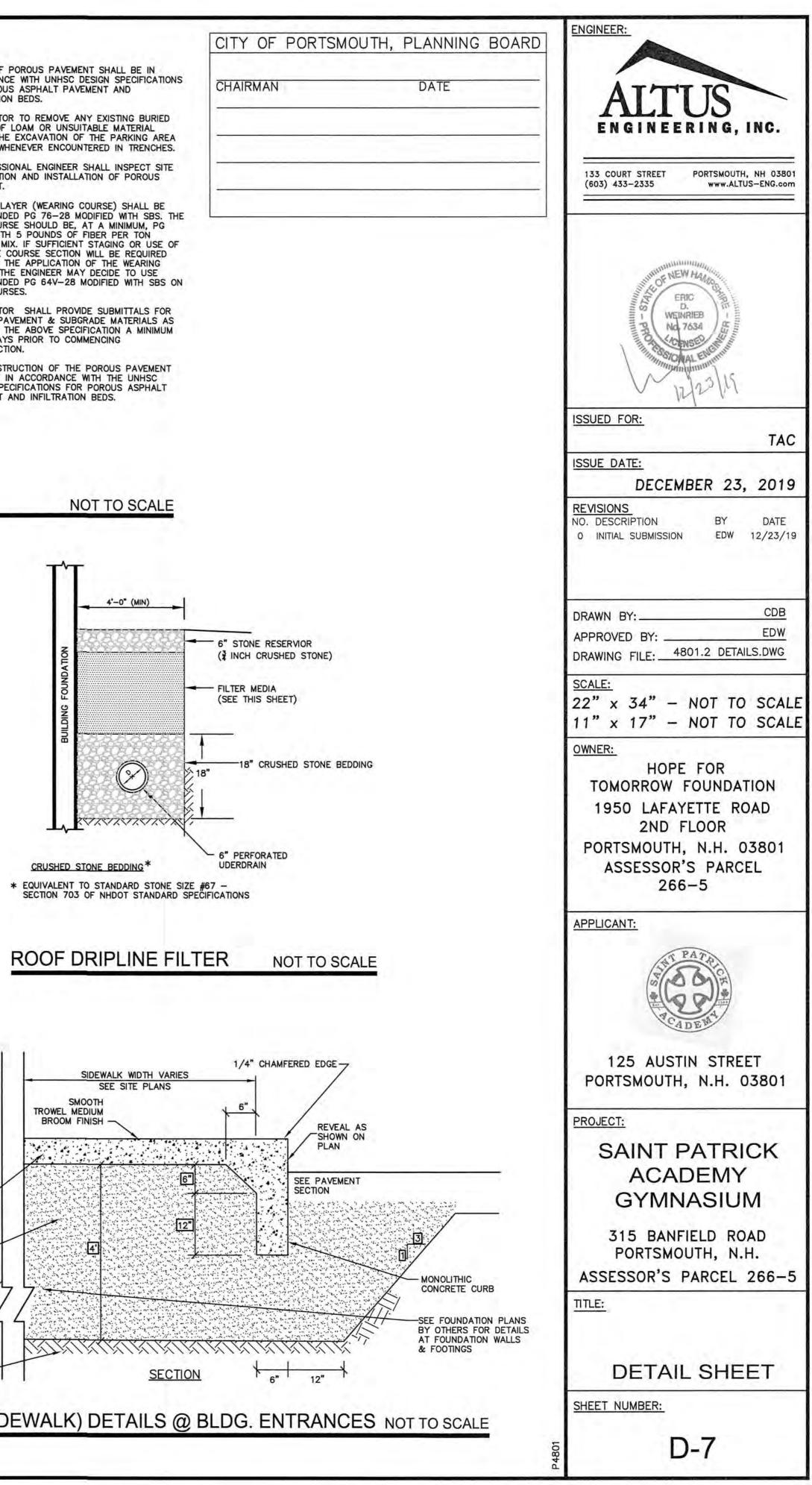

NOT TO SCALE

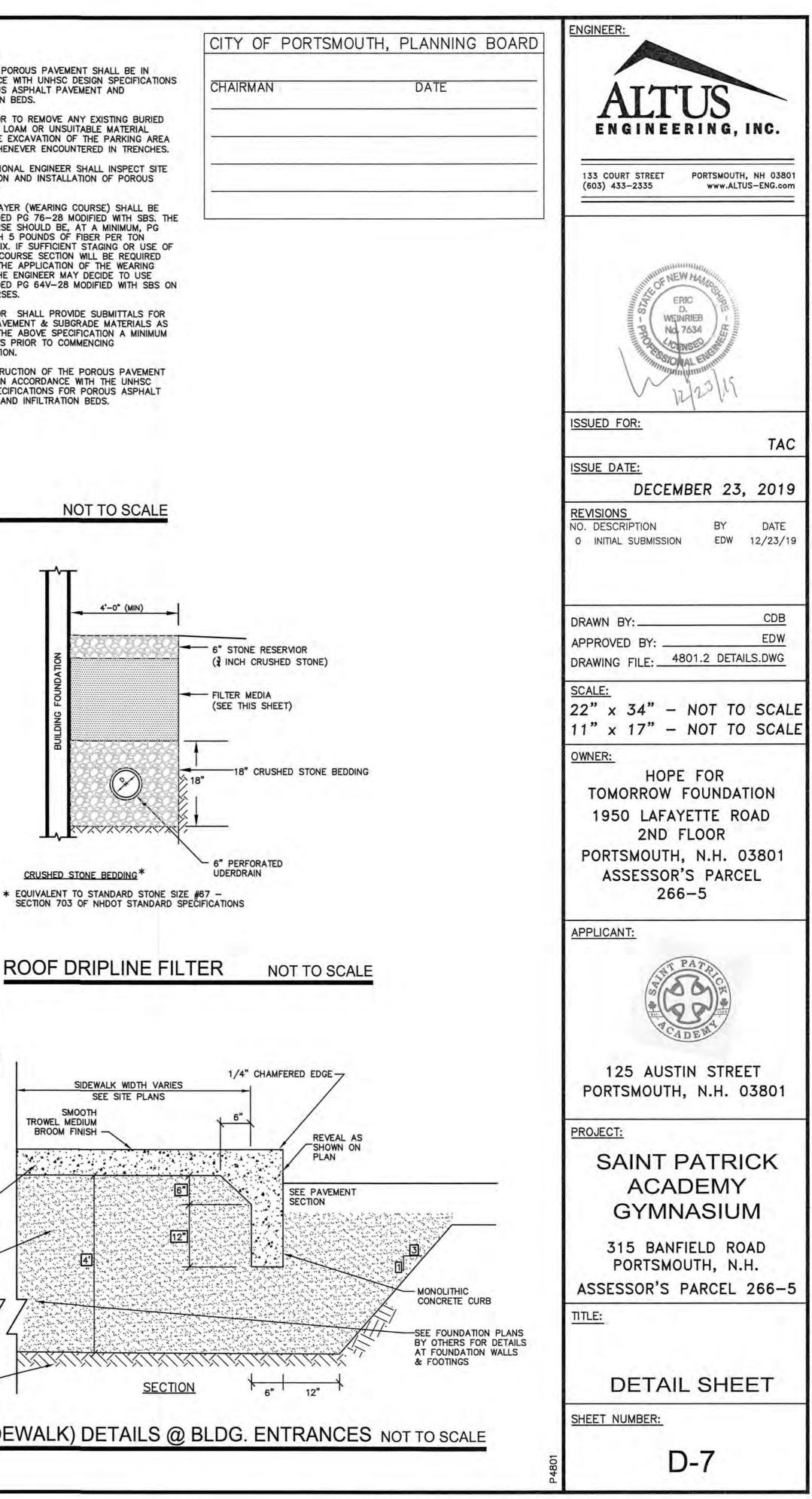
- 2. BEDDING: SCREENED GRAVEL AND/OR CRUSHED STONE FREE FROM CLAY, LOAM, ORGANIC MATTER AND MEETING ASTM C33, STONE SIZE NO. 67. 100% PASSING 1 INCH SCREEN 90 - 100%PASSING 3/4 INCH SCREEN PASSING 3/8 INCH SCREEN 20 - 55% PASSING #4 SIEVE 0 - 10%
 - PASSING #8 SIEVE 0-5% WHERE ORDERED BY THE ENGINEER TO STABILIZE THE BASE, SCREENED GRAVEL OR CRUSHED STONE 1-1/2 INCH TO 1/2 INCH SHALL BE USED.

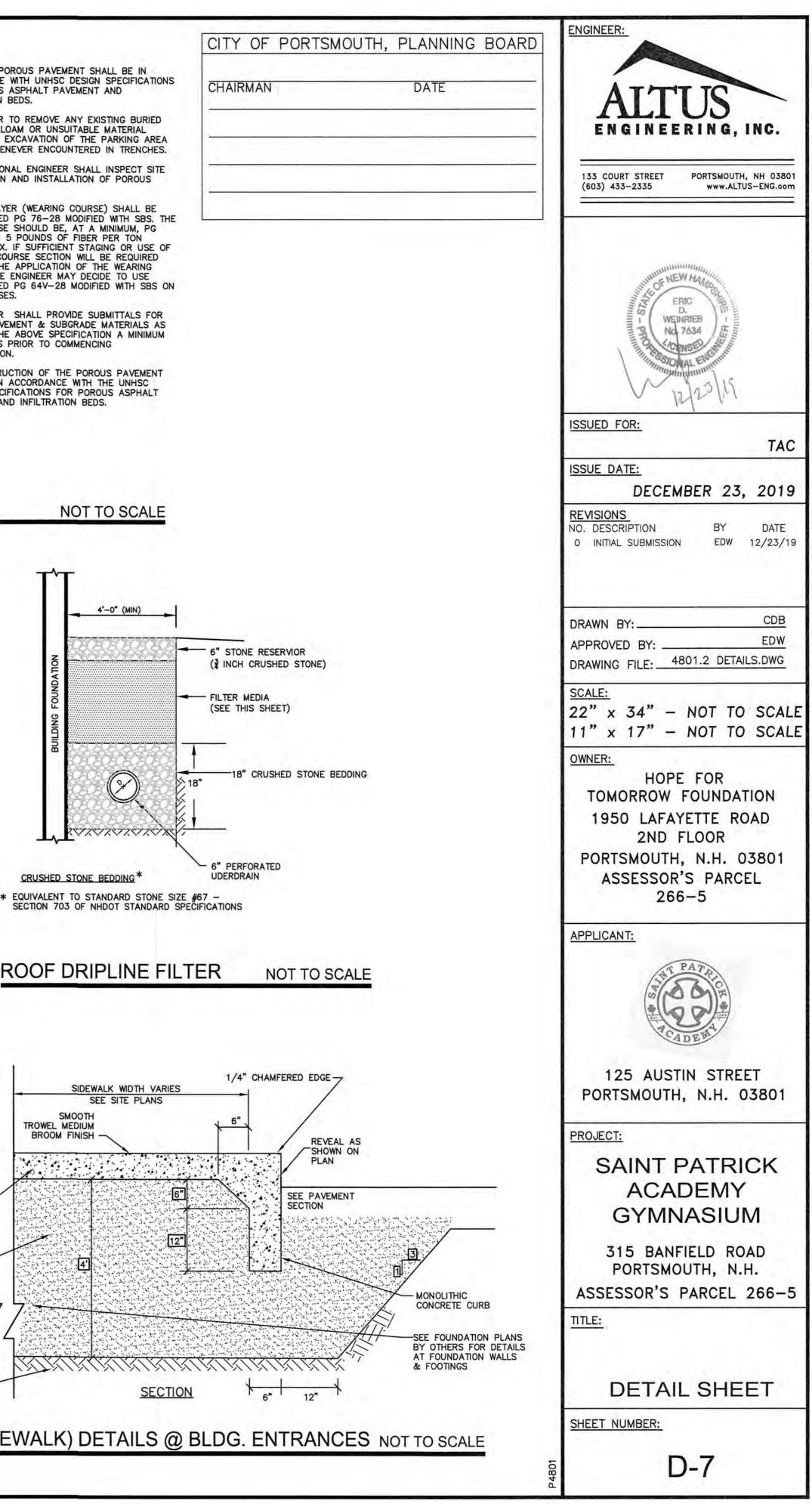
1. ORDERED EXCAVATION OF UNSUITABLE MATERIAL BELOW GRADE: BACKFILL AS

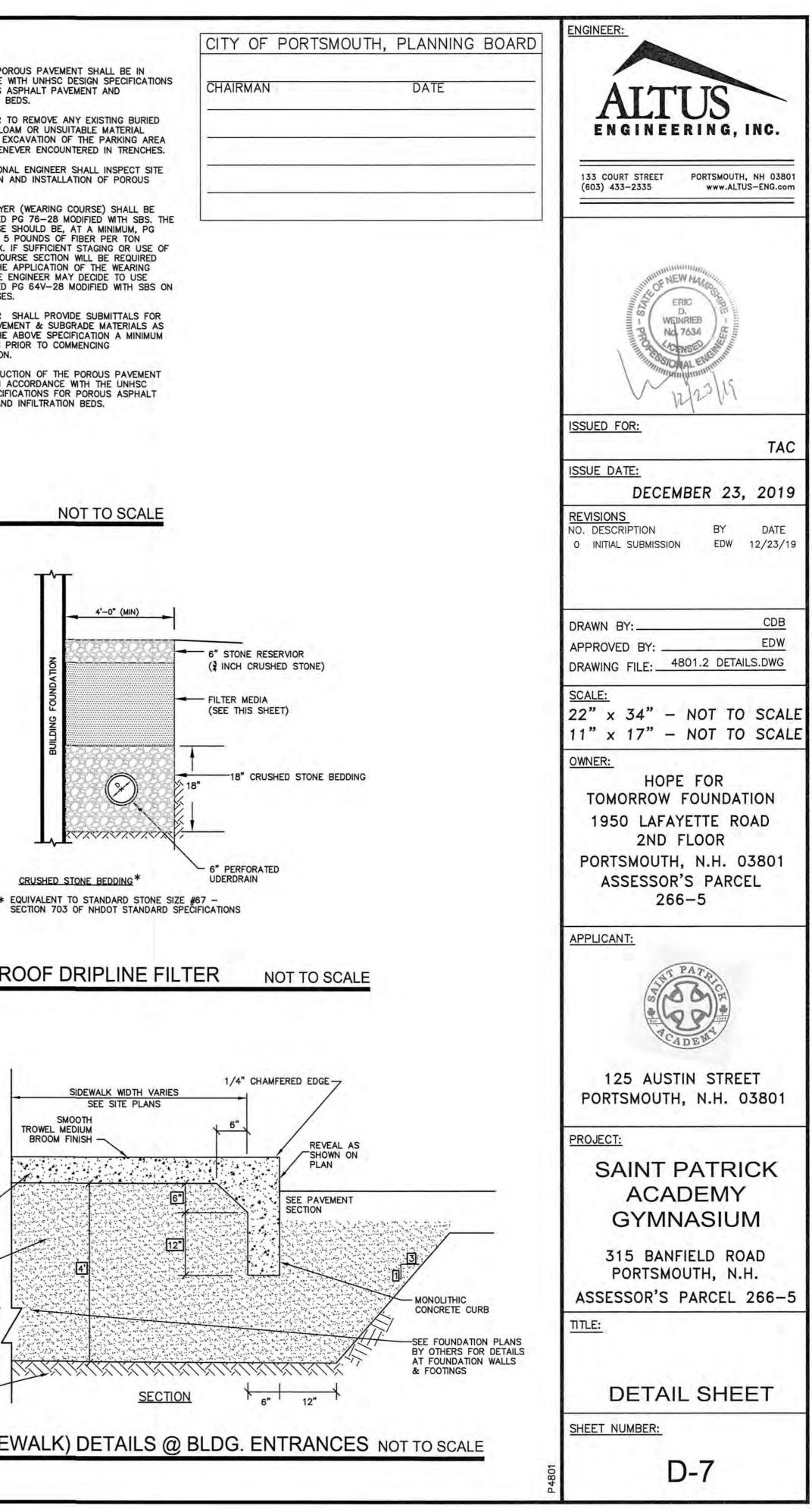

STATED IN THE TECHNICAL SPECIFICATIONS OR AS SHOWN OF THE DRAWING.

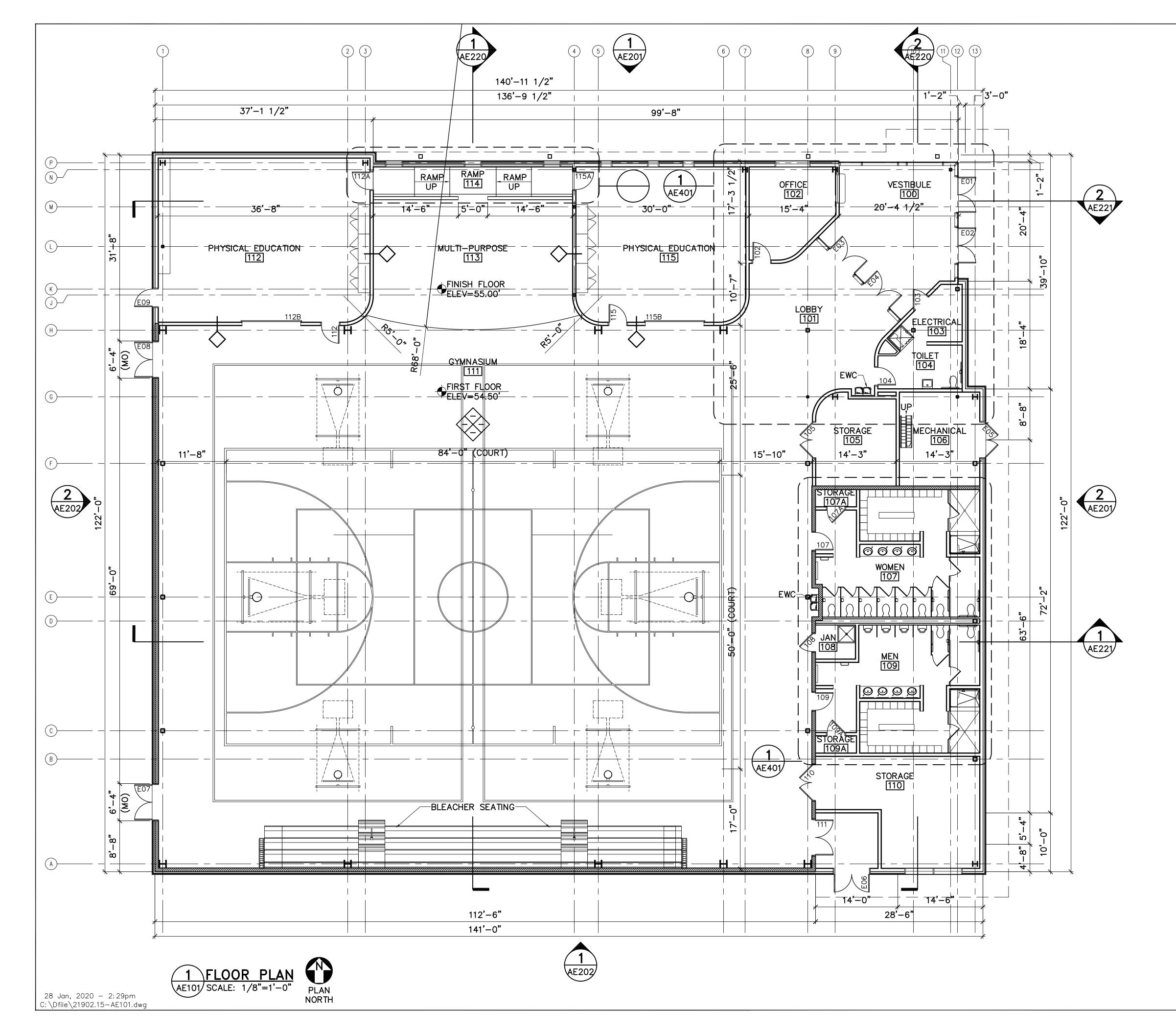

- 3. SAND BLANKET: CLEAN SAND FREE FROM ORGANIC MATTER, SO GRADED THAT 90 100% PASSES 1/2 INCH SIEVE AND NOT MORE THAN 15% WILL PASS A #200 SIEVE. BLANKET MAY BE OMITTED FOR CAST-IRON, DUCTILE IRON, AND REINFORCED CONCRETE PIPE PROVIDED HOWEVER, THAT NO STONE LARGER THAN 2" IS IN CONTACT WITH THE PIPE.
- 4. SUITABLE MATERIAL: IN ROADS, ROAD SHOULDERS, WALKWAYS AND TRAVELED WAYS, SUITABLE MATERIAL FOR TRENCH BACKFILL SHALL BE THE NATURAL MATERIAL EXCAVATED DURING THE COURSE OF CONSTRUCTION, BUT SHALL EXCLUDE DEBRIS; PIECES OF PAVEMENT; ORGANIC MATTER; TOP SOIL; ALL WET OR SOFT MUCK, PEAT, OR CLAY; ALL EXCAVATED LEDGE MATERIAL; ALL ROCKS OVER 6 INCHES IN LARGEST DIMENSION; AND ANY MATERIAL WHICH, AS DETERMINED BY THE ENGINEER, WILL NOT PROVIDE SUFFICIENT SUPPORT OR MAINTAIN THE COMPLETED CONSTRUCTION IN A STABLE CONDITION.
- 5. BASE COURSE AND PAVEMENT SHALL MEET THE REQUIREMENTS OF THE NEW HAMPSHIRE DEPARTMENT OF TRANSPORTATION'S LATEST EDITION OF THE STANDARD SPECIFICATIONS FOR HIGHWAYS AND BRIDGES - DIVISIONS 300 AND 400 RESPECTIVELY.
- 6. SHEETING, IF REQUIRED: WHERE SHEETING IS PLACED ALONGSIDE THE PIPE AND EXTENDS BELOW MID-DIAMETER, IT SHALL BE CUT OFF AND LEFT IN PLACE TO AN ELEVATION 1 FOOT ABOVE THE TOP OF PIPE. WHERE SHEETING IS ORDERED BY THE ENGINEER TO BE LEFT IN PLACE, IT SHALL BE CUT OFF AT LEAST 3 FEET BELOW FINISHED GRADE, BUT NOT LESS THAT 1 FOOT ABOVE THE TOP OF THE PIPE.
- 7. W = MAXIMUM ALLOWABLE TRENCH WIDTH TO A PLANE 12 INCHES ABOVE THE PIPE. FOR PIPES 15 INCHES NOMINAL DIAMETER OR LESS, W SHALL BE NO MORE THAN 36 INCHES. FOR PIPES GREATER THAN 15 INCHES IN NOMINAL DIAMETER, W SHALL BE 24 INCHES PLUS PIPE OUTSIDE DIAMETER (O.D.) ALSO, W SHALL BE THE PAYMENT WIDTH FOR LEDGE EXCAVATION AND FOR ORDERED EXCAVATION BELOW GRADE.
- 8. FOR CROSS COUNTRY CONSTRUCTION, BACKFILL OR FILL SHALL BE MOUNDED TO A HEIGHT OF 6 INCHES ABOVE THE ORIGINAL GROUND SURFACE.
- 9. CONCRETE FOR ENCASEMENT SHALL CONFORM TO THE NEW HAMPSHIRE DEPARTMENT OF PUBLIC WORKS AND HIGHWAYS STANDARD SPECIFICATION REQUIREMENTS FOR CLASS A (3000#) CONCRETE AS FOLLOWS: CEMENT: 6.0 BAGS PER CUBIC YARD WATER: 5.75 GALLONS PER BAG CEMENT MAXIMUM SIZE OF AGGREGATE: 1 INCH
- CONCRETE ENCASEMENT IS NOT ALLOWED FOR PVC PIPE.
- 10. CONCRETE FULL ENCASEMENT: IF FULL ENCASEMENT IS UTILIZED, DEPTH OF CONCRETE BELOW PIPE SHALL BE 1/4 I.D. (4" MINIMUM). BLOCK SUPPORT SHALL BE SOLID CONCRETE BLOCKS.
- 11. NEW HAMPSHIRE DEPARTMENT OF ENVIRONMENTAL SERVICES DESIGN STANDARDS REQUIRE TEN FEET (10') SEPARATION BETWEEN WATER AND SEWER. REFER TO CITY'S STANDARD SPECIFICATION'S FOR METHODS OF PROTECTION IN AREAS THAT CANNOT MEET THESE REQUIREMENTS




2-4" SCH. 40 CABLE/SPARE (AS REQUIRED)


- NOTES

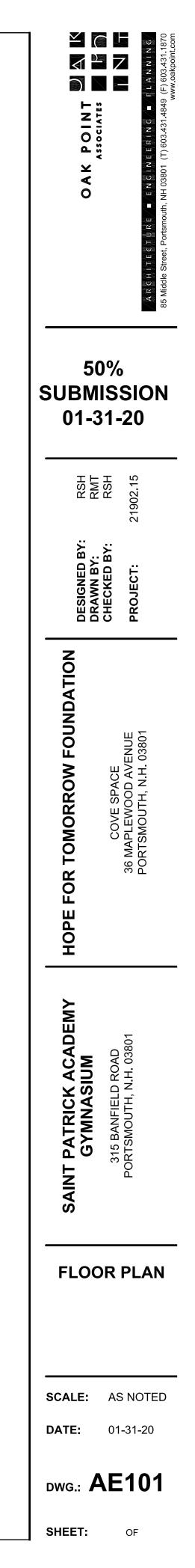


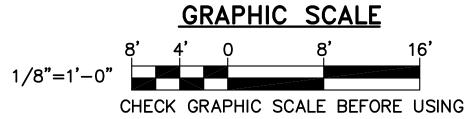


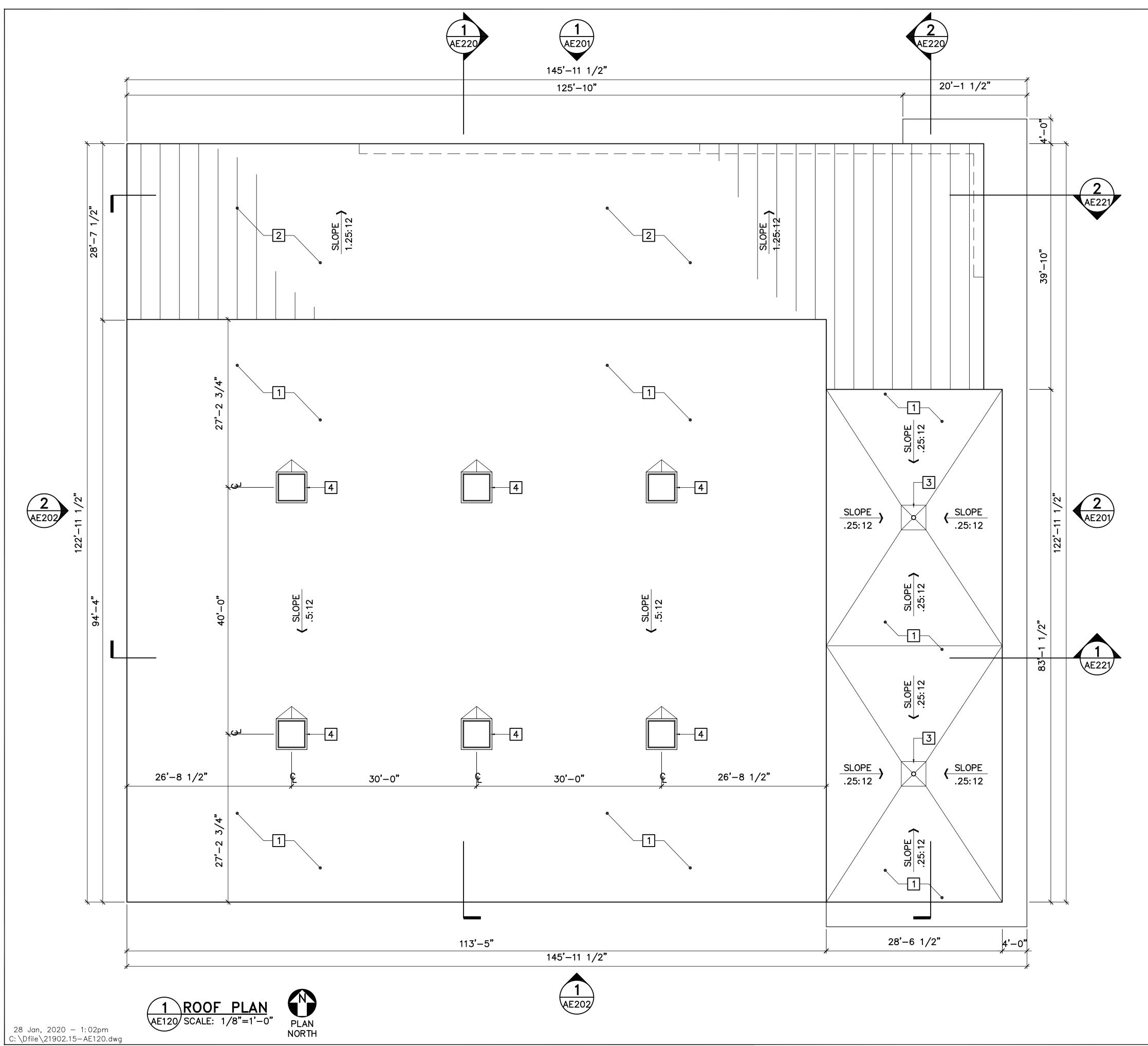
IR COURSE	CHOKER	COURSE STONE		L FILTER COURSE	3/8	PEA STONE
7 PASSING BY WEIGHT	SIEVE SIZE	% PASSING BY WEIGHT	SIEVE SIZE	% PASSING BY WEIGHT	SIEVE SIZE	% PASSING BY WEIGHT
100 90 - 100 35 - 70 0 - 15 0 - 5	1-1/2" 1" 1/2" # 4 # 8	100 95 - 100 25 - 60 0 - 10 0 - 5	6" # 4 # 200	100 70 - 100 0 - 6	1/2" 3/8" # 4 # 8 # 16	$100 \\ 85 - 100 \\ 10 - 30 \\ 0 - 10 \\ 0 - 15$

ADATIONS							
DURSE SSING BY WEIGHT	CHOKER	COURSE STONE	(NHDO	L FILTER COURSE T 304.1 MODIFIED) % PASSING BY WEIGHT	<u>3/8" PEA_STONE</u> SIEVE SIZE % PASSING BY WEIGHT		
SSING DT WEIGHT		A LAGOING DI HEIGHT	SILVE SIZE	A PASSING DI WEIGHT	SILTE SILE	A LYCONG DI HEIOIT	4
100	1-1/2"	100	6"	100	1/2"	100	N
90 - 100	1"	95 - 100	# 4	70 - 100	3/8"	85 - 100	
35 - 70	1/2"	25 - 60	# 200	0 - 6	# 4	10 - 30	
0 - 15	# 4	0 - 10			# 8	0 - 10	

- 6" PERF. PVC UNDERDRAIN WITH 4" OF COVER TOP & BOTOM

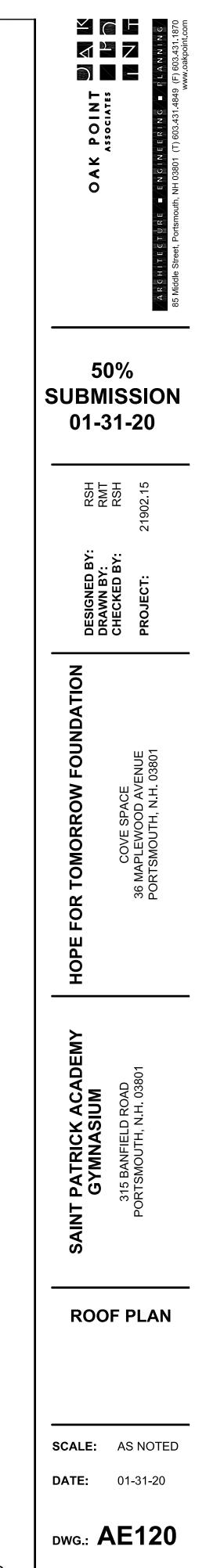



GENERAL NOTES:


1.	SEE	SHEET	AE001	FOR	WALL	TYPES
2.	SEE	SHEET	AE601	FOR	DOOR	SCHEDULE.

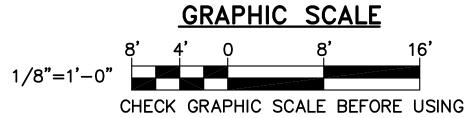
KEYNOTES:

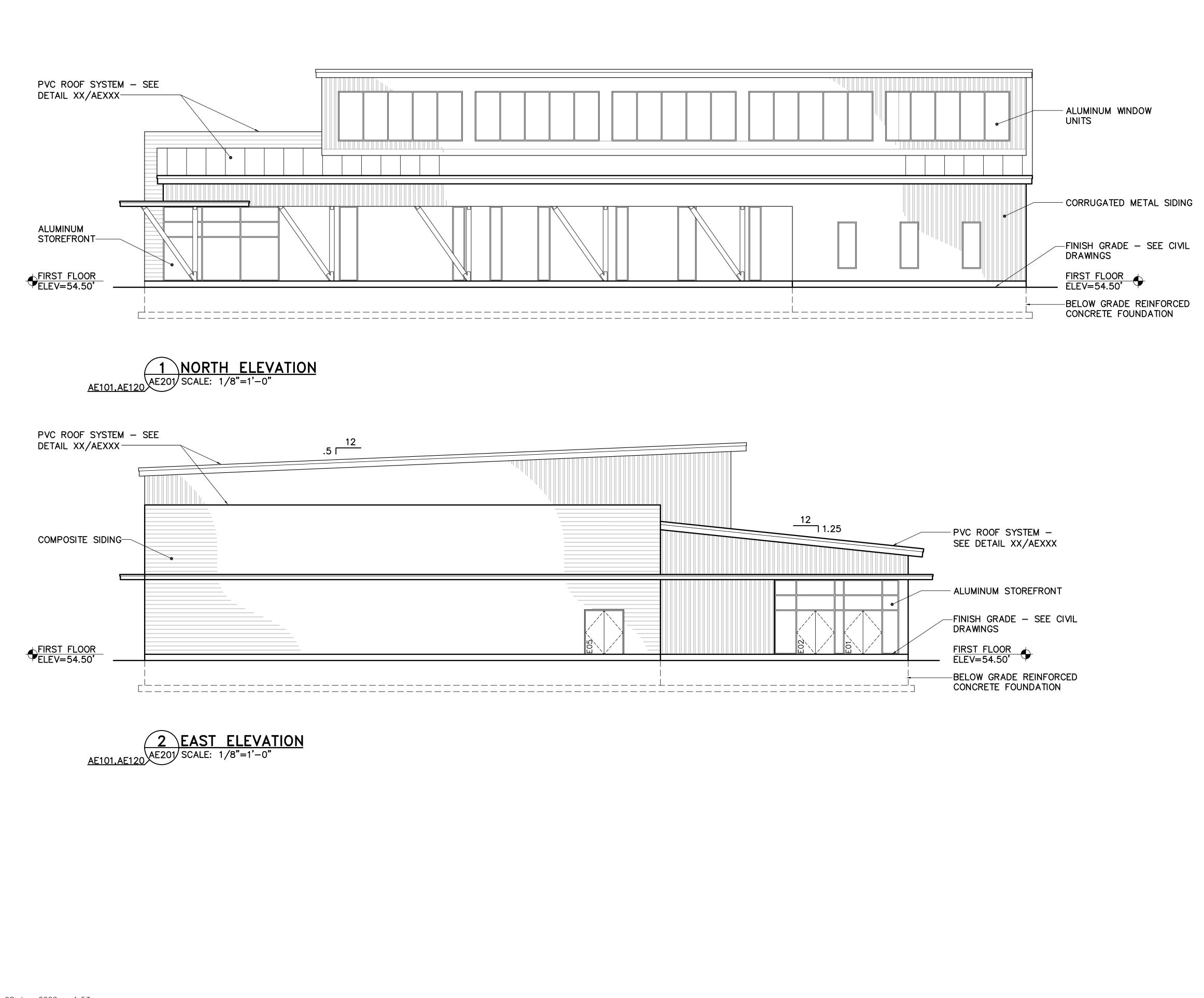
1 KEYNOTE 1...

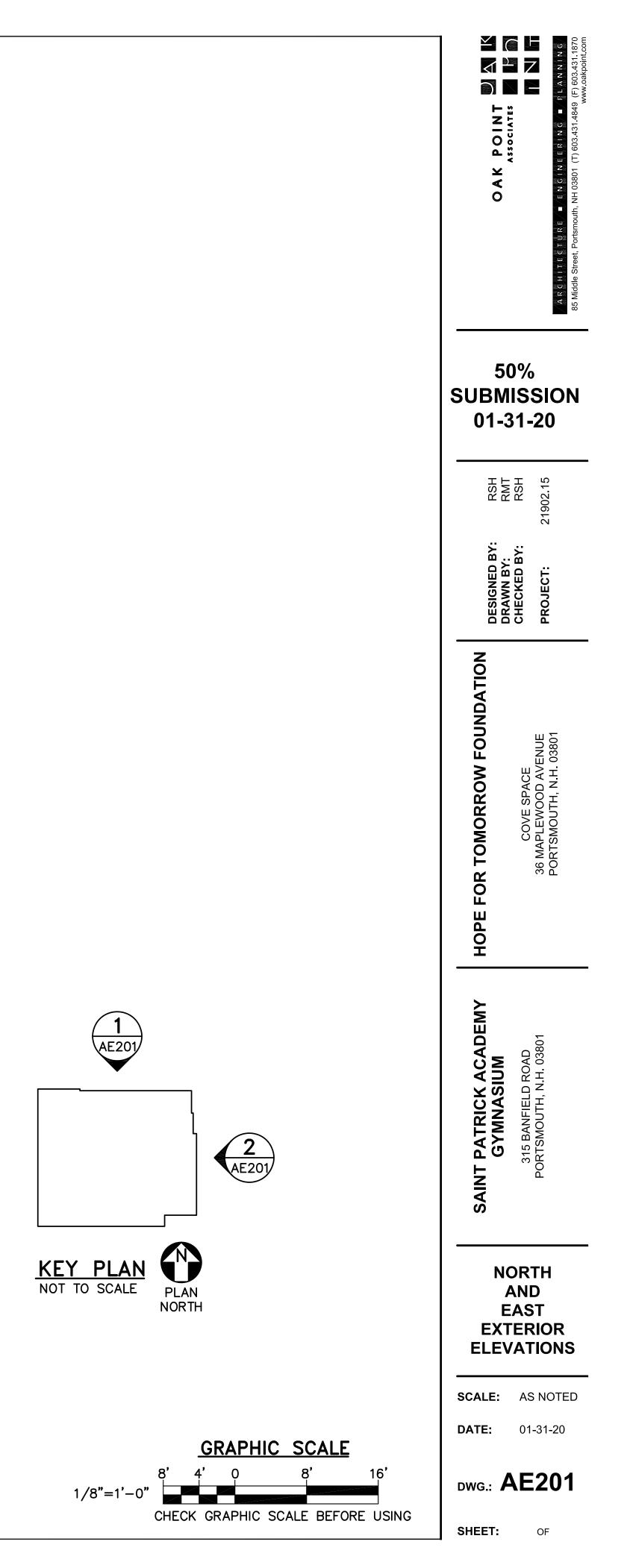


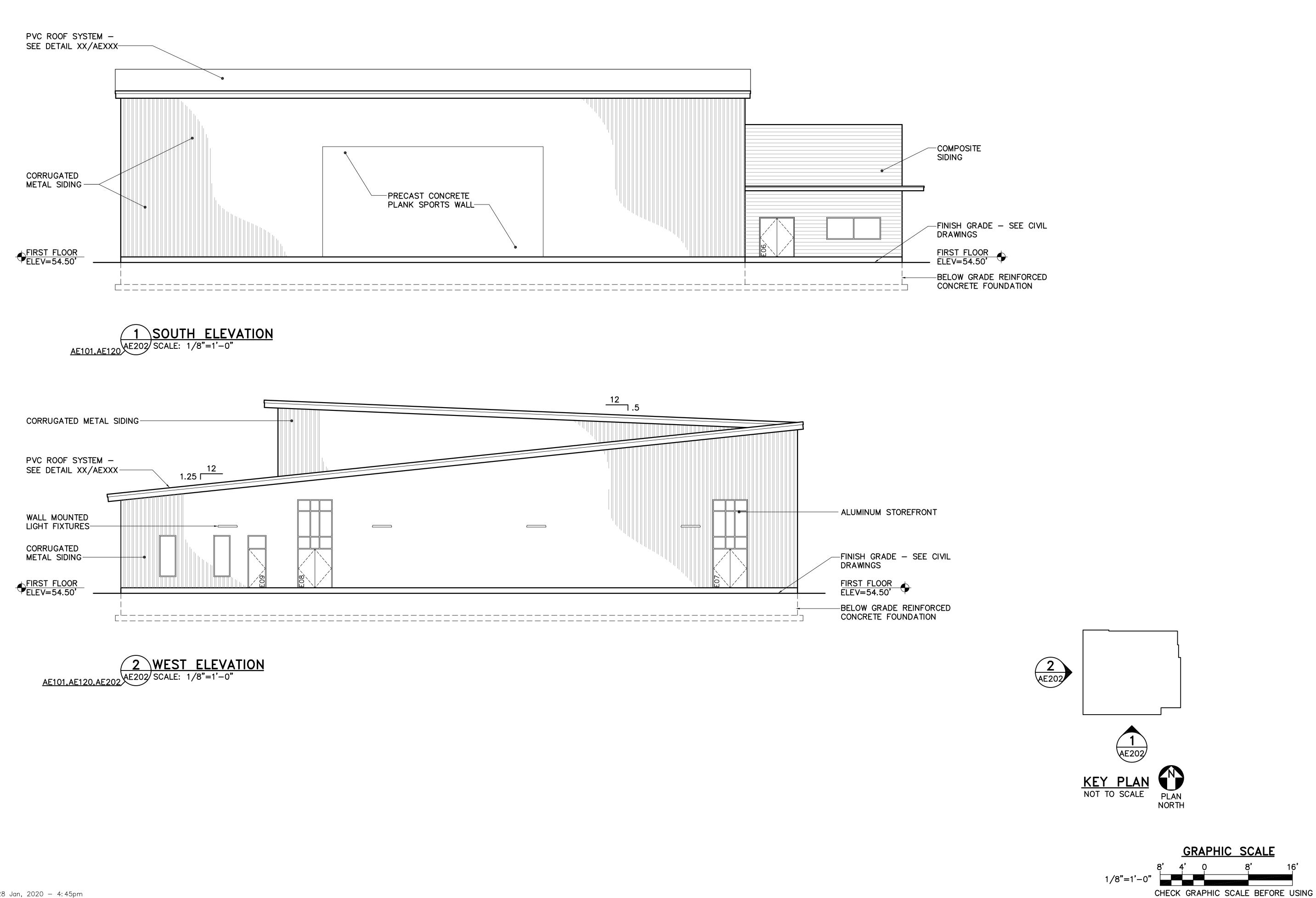
GENERAL NOTES:

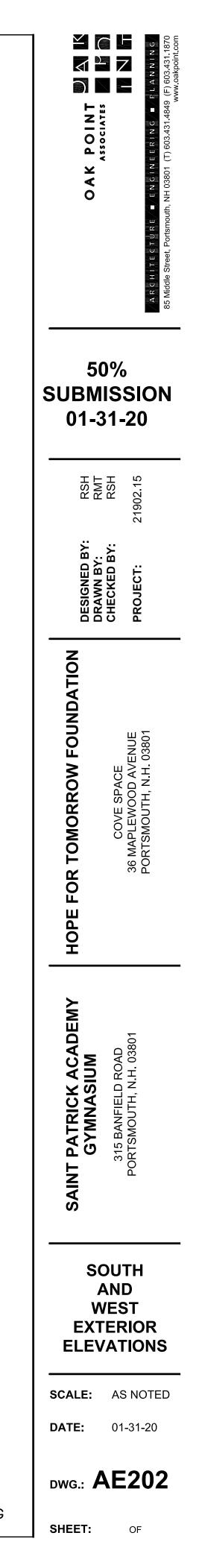
1. UNVENTED, ABOVE DECK INSULATED MEMBRANE ROOF SYSTEM (TYPICAL).

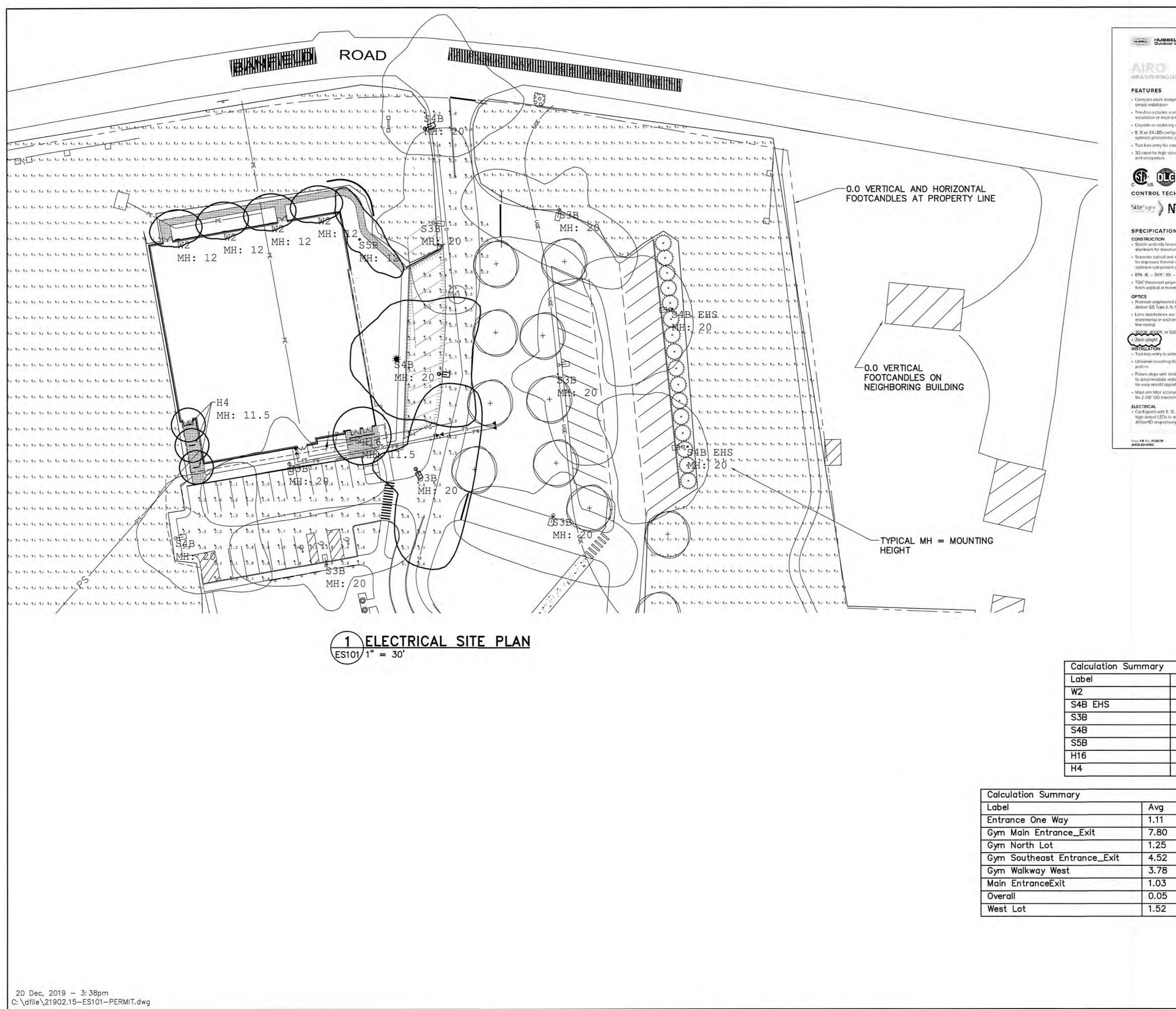

KEYNOTES:


- 1 PVC ROOF SYSTEM, SEE DETAIL XX/AEXXX.
- 2 PVC ROOF SYSTEM WITH EXTRUDED PVC RIBS, SEE DETAIL XX/AEXXX.
- 3 ROOF DRAIN, SEE DETAIL XX/AE5XX.
- 4 5'-0" SQUARE SKYLIGHT, SEE DETAIL XX/AE5XX.
- 5 VENT THRU ROOF, SEE DETAIL XX/AEXXX AND COORDINATE WITH PLUMBING DRAWINGS.




SHEET:


OF



Label	Qty	Description	Lum. Lumens
W2	10	AEL36-30W 4000K	2911
S4B EHS	2	ASL-8L-3K-210-4-EHS	4049
S3B	11	ASL-8L-3K-210-3	5752
S4B	4	ASL-8L-3K-210-4	5888
S5B	11	ASL-8L-3K-210-2	5906
H16	1	HP-4-WL-D-16ft-S-835	1517
H4	3	HP-4-WL-D-4ft-S-835	1517

Label	Avg	Max	Min	Avg/Min	Max/Min
Entrance One Way	1.11	3.4	0.4	2.78	8.50
Gym Main Entrance_Exit	7.80	13.7	2.4	3.25	5.71
Gym North Lot	1.25	3.4	0.5	2.50	6.80
Gym Southeast Entrance_Exit	4.52	6.0	1.6	2.83	3.75
Gym Walkway West	3.78	14.9	1.0	3.78	14.90
Main EntranceExit	1.03	3.2	0.2	5.15	16.00
Overall	0.05	4.6	0.0	N.A.	N.A.
West Lot	1.52	3.9	0.5	3.04	7.80

ELGHTER sign with multiple LED configura in universal mounting block for e arm option for 2-3/8 ft OD road ing up to 400w HID luminaties ingunations with high performance re portormance easy installation and maintenan- tibration applications including b	TYPE: PR CATALOG #: tions and nsy pole way brackets e lenses co	DCATION ROJECT	OAK POINT OAK POINT AssociATES AssociATES AssociATES AssociATES AssociATES AssociATES ASSOCIAT
CHNOLOGY DISTRIBUTED DISTRIBUTED ONS mod de-cast and extructed mum heat dissipation nd electrical compartment rai management and ent operation L = 62ft ² 24L = .74h ² Hyester powder paint munal 2.5 mil thickness	 ELECTRICAL CONTINUED Universal 120-277 VAC or 347-480 VAC input voltage, 50/60 Hz Ambient operating temperature -40°C to 40°C Drivers have greater than 90% power factor and less than 20% THD. LED drivers have output power over-voltage, over-current protection and short circuit protection with auto recovery 	consult DLC website for more details' http://www.designlights.org/OPL • Listed to ULI598 and CSA C22.2#250.0-24 for wet locations and 40°C ambient temperatures • 3G rated for ANSI C136.31 high vibration applications • IP65 optical assembly	ISSUED FOR PLANNING BOARD APPROVAL NOT FOR CONSTRUCITON
ed individual acrylic lenses III, IV and V distributions are field rotatable (in 90' hangeable for job site 5000K (70 CRI) CCT viring/driver compartment g block works with #2 drill slotled mounting block vide range of drill patierns portunities essory or option available kets	 Field replaceable surge protection device provides Y0KA and Y0KV protection meeting ANSV/EEE C62.41.2 Category C High and Surge Location Category C3. Automatically takes lixture off-line for protection when device is consumed CONTROLS Photo control, occupancy sensor and wireloss available for complete on/off and dimming control receptacle option available for twist lock photocontrols or wireless control modules (control accessories sold separately) O-40V dimming leads available for use with control devices (provided by others, must specify lead length) In addition, AIRO can be specified with SiteSync" wireless control system for 	DA approved WARRANTY 5 Year warranty See HD Structure Warranty for additional information KEY DATA Lumen Range 5,752-21,331 Wattage Range 56–225	DESIGNED BY: DRAWN BY: CHECKED BY: RSW KAO PROJECT: 21902.15
	 For more information, see ordering information or visit www.bubbellighting.com/sitesync For more information, see ordering information or visit www.bubbellighting.com/sitesync Electrony a Observe Histophile is Seening on a subscription intervention, Sc. 29607 / Tel Bist 6 78/0007 / Webser www.hubbettophile intervention, Sc. 29607 / Tel Bist 6 78/0007 / Webser www.hubbettophile 	Weight Ibs. (kg) 15-25 (6.8-10.8)	HOPE FOR TOMORROW FOUNDATION COVE SPACE 36 MAPLEWOOD AVENUE PORTSMOUTH, N.H. 03801
			ΥM

DWG.: ES101

SHEET: - OF

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

December 23, 2019

Juliet T. H. Walker, AICP, Planning Director City of Portsmouth Municipal Complex Planning Department 1 Junkins Avenue Portsmouth, New Hampshire 03801

Re: Application for Site Plan Amendment St Patrick Academy Assessor's Map 266, Lot 5 315 Banfield Road Altus Project #P4801

Dear Juliet:

On behalf of the Hope for Tomorrow Foundation (HFT) and the St Patrick Academy, Altus Engineering, Inc. (Altus) is thrilled to submit an application for an Amended Site Plan Review for the construction of a new gymnasium at their facility on Banfield Road. In March 2017, the HFT obtained site approvals for the construction of the school. It was occupied in April 2018 slightly over a year later.

The Academy entered into an agreement with the Foundation for Seacoast Health (FSH) to use their gym for classes and athletic events. The school is thriving in its new location and now wishes to construct a standalone gymnasium building on their property for physical education classes and their athletic events.

We are not proposing to expand the population beyond the 200 maximum students allowed under the previous approval. The gym is an additional amenity to the existing school and not an expansion of use.

In 2017 when the school was approved, the parking ordinance required 0.3 spaces per student and allowed for an additional 20 percent for a maximum of 72 spaces. The facility was constructed with only 60-spaces. We are proposing to expand the parking to slightly above the maximum under the previous ordinance. Enclosed with this submission is a parking demand analysis to support the request. Juliet T. H. Walker, AICP, Planning Director December 23, 2019 Page 2

Attached are ten copies of the following plans and documents for the Technical Advisory Committee's consideration:

- Site Plans (4 full sized, 6 reduced);
- Opinion of Sitework cost;
- Site Plan Review Checklist;
- Application fee worksheet;
- Green Statement;
- Letter of Authorization;
- Drainage Computations
- Basis of Sewer Design; (4 full copies, 6, executive summaries);
- Water meter readings;
- Traffic Study (4 full copies, 6, executive summaries);
- Parking Demand Analysis.

Also enclosed the application fee check in the sum of \$1,850.

Altus looks forward to presenting this project at the January 7, 20120 TAC meeting. Please call or email me should you have any questions or need any additional information.

Sincerely,

ALTUS ENGINEERING, INC.

Fri President

wde/4801 TAC cvr ltr 12-23-19 submission

Enclosure

Ecopy: Jim Broom, HFT James Melone, St Patrick's Academy Scott Hughes, Oak Point Associates

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

ST PATRICK ACADEMY **K THROUGH 8 SCHOOL GYMNASIUM PROJECT**

315 BANFIELD ROAD Portsmouth, NH **Bond Estimate - Site Work**

DATE: 20-Dec-19 PROJECT: 4801				
ITEM			UNIT	TOTAL
DESCRIPTION	QUANTITY	UNIT	PRICE	COST
SITEWORK DEMOLITION				
SITE FEATURES	5 1	LS	\$1,000.00	\$1,000.00
CLEARING AND GRUBBING				
TREE AND VEGETATION REMOVAL	. 1	AC	\$3,000.00	\$3,000.00
WATER SUPPLY				
2.5" DOMESTIC WATER SERVICE	135	LF	\$45.00	\$6,075
6" DI CL 52 WATER PIPE	135	LF	\$46.00	\$6,210
6" GATE VALVE		EA	\$800.00	\$800
6 X 8 LIVE TAP		EA	\$3,000.00	\$3,000
TESTING AND CHLORINATION		LA	\$1,500.00	\$3,000
		20	φ1,000.00	φ1,500
SEWER SERVICE CROSS COUNTRY 6 AND 8" PVC SDR 35 (INCLUDING RESTORATION	100			
DRILL NEW INVERT AND REBRICK STRUCTURE		LF	\$50.00	\$24,300
SEWER MANHOLES		EA	\$1,500.00	\$1,500
SEWER MANHOLES		EA	\$2,800.00	\$2,800
GAS SERVICE				
TRENCHING AND BACKFIL	90	LF	\$18.00	\$1,620
ELECTRIC/PHONE/CABLE SERVICES				
SCH 40 CONDUIT (x4 PER TRENCH) 380	LF	\$20.00	\$7,600
CURBING				
VERTICAL GRANITE CURBING	G 375	LF	\$28.00	\$10,500
STORM DRAINAGE SYSTEM				
CATCH BASINS, OUTLET STRUCTURES, DRAIN MANHOLES	5 5	EA	\$1,800.00	\$9.000
YARD DRAIN		EA	\$1,500.00	\$4,500
6" UNDERDRAI		LF	\$15.00	\$2,250
ROOF GUTTER COLLECTION DRAIN PIP		LS	\$250.00	\$250
12" DRAIN PIP		LF	\$28.00	\$9,520
RAIN GARDE		SY	\$28.00	\$5,320
RIP RAP/STONE DRIP EDG		LS	\$1,500.00	\$1,500
FLARED END SECTION		EA	\$300.00	\$300
SEDIMENT AND EROSION CONTROL				
TEMPORARY EROSION CONTROL/SWPP	P 1	LS	\$5,000.00	\$5,000
CONCRETE FLATWORK CONCRETE SIDEWALKS AND PAD	S 230	SY	\$28.00	\$6,440
	2 200	01	φ20.00	φ0,44t
SIDEWALKS	0 05	0.4		
2" BITUMINOUS SIDEWALKS INCLUDING SUBGRADE MATERIAL	S 95	SY	\$22.50	\$2,138
RETAINING WALLS				
MODULAR BLOCK RETAINING WAL	L 100	SF	\$16.00	\$1,600

HOT BITUMINOUS PAVEMENT

4"' PATCH - BUDGET	50	TON	\$72.00	\$3,600
HOT BITUMINOUS PAVEMENT - POROUS				
4" POROUS PAVEMENT - PATCH - REPAIR BUDGET	15	TON	\$140.00	\$2,100
4" POROUS PAVEMENT	90	TON	\$110.00	\$9,900
6" 3/4 INCH STONE	65	CY	\$30.00	\$1,950
12" NHDOT 304.1 GRAVEL	130	CY	\$24.00	\$3,120
8" #3 STONE	90	CY	\$30.00	\$2,700
3" PEA STONE	33	CY	\$30.00	\$990
STRIPING AND SIGNAGE				
STRIPING & SIGNAGE	1	LS	\$1,000.00	\$1,000
LANDSCAPING				
LANDSCAPING INCLUDING RAIN GARDEN PLANTINGS (ALLOWANCE)	1	LS	\$5,000.00	\$5,000
LOAM AND SEED - TURF ESTABLISHMENT	0.5	AC	\$8,000.00	\$4,000
LIGHTING				
RESET EXISTING POLES, POLE BASES AND FIXTURES INCLUDING CONDUIT	2	EA	\$2,000.00	\$4,000
AS BUILT PLANS	1	LS	\$3,000.00	\$3,000
SUBTOTAL				\$159,083
			and the second second second	

TOTAL:

\$159,083

EXCLUSIONS:

ITEMS EXCLUDED FROM THIS ESTIMATE INCLUDE, BUT ARE NOT LIMITED TO, THOSE ITEMS SPECIFIED ABOVE AS BEING NOT INCLUDED IN THIS ESTIMATE AND THE FOLLOWING:

INSPECTION FEES, MONUMENTATION, HVAC PADS, TEMPORARY FENCING AND BARRICADES, TRAFFIC CONTROL, MATERIALS AND COMPACTION TESTING, BUILDING FOUNDATION, BUILDING FOUNDATION EXCAVATION, BUILDING MOUNTED EXTERIOR LIGHTING, BUILDINGS, LEDGE REMOVAL

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

"Green" Statement" Assessor's Map 266 Lot 05 St Patricks Academy Gymnasium 315 Banfield Road Altus Project P4801

Pursuant to Section 2.4.3.1(a) of the Site Plan Review Regulations, Altus Engineering, Inc. (Altus) respectfully submits the following list of the project's "green" components for the redevelopment of the property located at 315 Banfield Road:

- The existing school development site area will be expanded with the construction of a ±17,000 SF building. The building coverage will remain at less than 9% where up to 50 percent is allowed in the zoning district and lot coverage is allowed to be up to 80 percent. The lot coverage after the development will be approximately 23 percent of the site. This will reserve generous open space for the site and preserving the natural environment.
- Shade trees were planted around the perimeter of the parking lot to reduce the heat island effect in the initial phase. Additional shade trees are proposed.
- The proposed development has bicycle racks.
- The stormwater management system is designed to meet the NHDES Alteration of Terrain Program's design standards and uses elements of low impact design (LID) to treat and detain stormwater. The drainage system is designed to mimic the predevelopment runoff conditions at the wetlands and property lines. The expansion will also meet the AOT design criteria. The computations include the 15% increase in the rainfall events which is a new requirement subsequent to the original approval.
- The development was designed to have pedestrian links to the Foundation for Seacoast Health Community Campus facility as well as the future City of Portsmouth Recreation area.
- The building code compliant building with components that will meet or exceed all applicable energy codes.
- Building components shall maximize recycled content and be locally sourced if possible. Although not LEED compliant, the intent of the proposed building will be to utilize this guideline to implement sustainable strategies.
- Efforts have been made to preserve as much of the existing mature vegetation as possible along the frontage, the southern boundary and along the eastern boundary where the land abuts a large wetland system.
- The proposed site lighting will have LED fixtures. They will be mounted at a maximum height of 16-feet. The lights will be dark sky friendly and will meet or exceed the minimum City requirements.

Green Statement St Patricks Academy December 23, 2019 Page 2

- Runoff from the paved surfaces currently discharges directly into the wetland system. The surface runoff from the paved surfaces will no longer discharge directly into the wetland. The runoff will be treated in a series of rain gardens. Thus, the stormwater runoff quality will be significantly enhanced.
- No wetland or wetland buffers will be impacted by the project development.
- New paved surfaces will be constructed from pervious materials to promote infiltration and recharge groundwater.

Wde/4801-App-City-Site-GreenStatment - gym

Letter of Authorization

I, James Patrick Broom of the Hope for Tomorrow Foundation, hereby authorize Altus Engineering, Inc. of Portsmouth, New Hampshire and Oak Point Associates, Inc. of Portsmouth, NH to represent you in all matters concerning engineering, architecture and related permitting for the development of a gymnasium at 315 Banfield Road in Portsmouth, NH. The property is identified on the Assessor's Maps as Tax Map 266, Lot 5. This authorization shall include any signatures required for Federal, State and Municipal permit applications.

Sighature

itness

coul Print Name

Date

RICHARD HACKEMAN Print Name

State of New Hampshire Department of Environmental Services 29 Hazen Drive, P.O. Box 95, Concord, NH 03302-0095 (603) 271-3503 FAX (603) 271-4128

SEWER CONNECTION PERMIT

Project Name Location : Engineer :	355 Banfi	: Academy ield Road ;ineering - Eric W	einrieb, PE			
Municipality Official Sigr Date of Requ	nature : Ter	tsmouth ry Desmarais, PE 6/2017				
PERMIT/RE	QUEST NUM	BER	D2017-0512			
FLOW :	1,628	gallons/day		APPR	OVAL DATE	6/6/2017
CONDITIO	the request a Approval of information	as follows: The connection to	ent of Environmental the municipality's was subject to the conditio	astewater facilities	is based on a revi	
	Approval app	lies only to the se	werage plans and sev	ver connection app	lication received b	by NHDES.
			d if the sewerage cons the approval date.	struction or discha	rge has	
	All sewerage the Standards	construction must of Design and Co	comply with the request	uirements of Chap age and Wastewate	ter Env-Wq 700, er Treatment Facil	ities.
			l specifications for se			
				Issu	ued by : Le	MWPArleye Dennis Greene, PE

WATER DIVISION - WASTEWATER ENGINEERING BUREAU - DESIGN REVIEW SECTION

cc: Altus Engineering - Eric Weinrieb, PE

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

315 BANFIELD ROAD

ST PATRICKS ACADEMY GYMANSIUM PROJECT APPLICATION FEE SPREADSHEET December 23, 2019

P4801

All developments		\$500
plus \$5.00 per \$1,000 of site work cost	\$160,000	\$800
plus \$10.00 per 1,000 SF of development area	55,000 SF	\$550

TOTAL APPLICATION FEE

\$1,850

12/20/19

Oak Point Associates 85 Middle Street Portsmouth, NH 03801

RE: Natural gas service to 315 Banfield Road, Portsmouth, NH Saint Patrick's Academy proposed gymnasium

Unitil's natural gas division has reviewed the requested site for natural gas service.

Unitil hereby confirms natural gas is available from Banfield Road to supply the proposed facility.

Please contact me with any questions at 603-294-5144.

Sincerely,

David Beaulieu Business Development Executive Unitil 325 West Road Portsmouth, NH 03801

CUSTOMER ENERGY SOLUTIONS 325 West Road Portsmouth, NH 03801

T 888.486.4845 www.unitil.com

St. Patrick's School Water Usage Analysis

Cui	rent	Previ	ious												
Date	Reading	Date	Reading	Units of Usage	Gallons of Usage	Days of Usage	Average Gallons Per Day		Weekdays of Usage	Average Gallons Per Weekday		School Days of Usage	Average Gallons Per School Day	Average Gallons Per School Day per Occupant *	Estimated GPD for 200 Students + 40 Faculty/Staff
04/30/18	4	04/17/18	0	4	2,992	13	230.15		10	299.20		5	598.40	3.23	776.30
05/31/18	111	04/30/18	4	107	80,036	31	2,581.81	Contraction of	23			22	3,638.00	19.66	4,719.57
06/30/18	150	05/31/18	111	39	29,172	30	972.40	ALC: NOT THE	21			8	3,646.50	19.71	4,730.59
07/31/18	251	06/30/18	150	101	75,548	31	2,437.03		22			N/A	0,010.00	10.71	4,750.55
08/31/18	1 1	07/31/18	251	2	1,496	31	48.26		23	65.04		N/A			
09/30/18		08/31/18	253	17	12,716	30	423.87		20	635.80		19	669.26	3.62	868.23
10/31/18	1	09/30/18	270	18		31	434.32		23			22	612.00	3.31	793.95
11/30/18	1 1	10/31/18	288	14	10,472	30	349.07	ACCORD (CAR)	22			19	551.16	2.98	715.02
12/31/18		11/30/18	302	11	8,228	31		Receiptor -	21			15	548.53	2.97	711.61
01/31/19		12/31/18	313	15	11,220	31		ALC: NOT STREET, ST	23			21	534.29	2.89	693.13
02/28/19	1 1	01/31/19	328	11	8,228	28		ACCORDANCE.	20			15	548.53	2.97	711.61
03/31/19		02/28/19	339	15	11,220	31		State State of the	22			21	534.29	2.89	693.13
04/30/19		03/31/19	354	12	8,976	30		and the second second	22			17	528.00	2.85	684.97
05/31/19	1 1	04/30/19	366	19	14,212	31	458.45		23			22	646.00	3.49	838.05
06/30/19		05/31/19	385	14	10,472	30	349.07	10- 10- 10- 10- 10- 10- 10- 10- 10- 10-	20			16	654.50	3.54	849.08
07/31/19		06/30/19	399	2	1,496	31	48.26	and a set of a	23			N/A			
08/31/19	1	07/31/19	401	16	11,968 **	31	386.06	10000000	22			N/A			
09/30/19		08/31/19	417		32,164 **	30	1,072.13	Statistics of the	21		111111	19	1,692.84	8.06 **	1,934.68
10/31/19	490	09/30/19	460	30	22,440 **	31	723.87		23	975.65		22	1,020.00	4.86 **	1,165.71
									AVERAGE	629.58		AVERAGE	711.62	AVERAGE	888.26

2018 - 2019 School Year Average =

Note: Figures above the red line are from prior to installation of irrigation meter on 7/11/18 Averages include only usage after installation of the irrigation meter.

* For school year 2018 to 2019 - 165 students / 20 staff
 For school year 2019 to 2020 - 190 students / 20 faculty

** 2019 - 2020 school flows are outliers. Further data is requireed to determine if flow increase based on actual use, leaking fixtures or inaccurate meter.

582.66

Civil Site Planning Environmental Engineering 133 Court Street Portsmouth, NH 03801-4413

PARKING DEMAND ANALYSIS Assessor's Map 266 Lot 05 St. Patricks Academy Gymnasium Banfield Road Altus Project P4801

St. Patricks Academy is proposing to expand the existing K through 8 with the construction of a freestanding gymnasium building. The gym will allow the school to host practices and athletic events for the students. The gym is not intended to host non-school related events.

In April 2017, the Portsmouth Planning Board approved the initial phase of the project as a 200-student school without an on-site gymnasium. At that time, the City parking requirements were 0.3 parking spaces for every student and allowed for an additional 20-percent. 60-stalls were required with an allowance up to 72. Due to cost factors, the school elected to construct the minimum.

The gymnasium is proposed to allow students interior recreation space for gym class as well as to practice and play competitive sports between other local schools. As a K through 8 school, they frequently host back to back athletic events like soccer and basketball. Soccer and basketball games can generate up 25 to 30 spectator vehicles per game plus referees and coaches. A typical game night could create a demand for 70-vehicles leaving only a few for faculty and staff that may remain on-site after school.

With the construction of the gymnasium, additional parking will be needed to mitigate the cross over parking demand in between events.

Additionally, throughout the schoolyear there are occasional full student body and family events occur on the grounds. These events include Christmas program, meet and greet at the beginning of the school year, Halloween Parade, and a few others. These events have parking demand for nearly 140-families. The school has partnered with the Girl Scout camp, which is typically vacant during the schoolyear, across the street and the FSH to handle the large peak events. The school also hires an officer for traffic control to ensure safe conditions.

The school is proposing to provide 77 parking spaces for the 200-student population, which approximately satisfies half the parking demand during major events.

At a ratio of 0.4 parking spaces per student, which is slightly above the maximum parking spaces allowed at the time of the 2017 approval, it is Altus' opinion as professional engineers that providing 77 parking stalls for a 200-student private K through 8 elementary school is reasonable and justified.

Wde/4801-parking demand analysis 12-2019

City of Portsmouth, New Hampshire

Site Plan Application Checklist

This site plan application checklist is a tool designed to assist the applicant in the planning process and for preparing the application for Planning Board review. A pre-application conference with a member of the planning department is strongly encouraged as additional project information may be required depending on the size and scope. The applicant is cautioned that this checklist is only a guide and is not intended to be a complete list of all site plan review requirements. Please refer to the Site Plan review regulations for full details.

Applicant Responsibilities (Section 2.5.2): Applicable fees are due upon application submittal along with required attachments. The application shall be complete as submitted and provide adequate information for evaluation of the proposed site development. Waiver requests must be submitted in writing with appropriate justification.

Name of Owner/Applicant: Hope for Tomorrow Foundation	on	_ Date Submit	ted: <u>12/23/19</u>	
Phone Number:603-969-3100	E-mail:	jpatrickbroor	n@gmail.com	
Site Address: 315 Banfield Road			Map: <u>266</u>	Lot: _5
Zoning District: Industrial	Lot area:	468,400	sq. ft.	

Zoning District: Industrial

Application Requirements					
Ŋ	Required Items for Submittal	Item Location (e.g. Page or Plan Sheet/Note #)	Waiver Requested		
X	Fully executed and signed Application form. (2.5.2.3)	Application package	N/A		
X	All application documents, plans, supporting documentation and other materials provided in digital Portable Document Format (PDF). (2.5.2.8)	Application package	N/A		

Site Plan Review Application Required Information				
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
X	Statement that lists and describes "green" building components and systems. (2.5.3.1A)	Application package		
\mathbf{X}	Gross floor area and dimensions of all buildings and statement of uses and floor area for each floor. (2.5.3.1B)	Architectural floor plans	N/A	
X	Tax map and lot number, and current zoning of all parcels under Site Plan Review. (2.5.3.1C)	Cover sheet and plan title block	N/A	
	Owner's name, address, telephone number, and signature. Name, address, and telephone number of applicant if different from owner. (2.5.3.1D)	Application and cover sheet	N/A	

	Site Plan Review Application Required Information									
Q	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested							
	Names and addresses (including Tax Map and Lot number and zoning districts) of all direct abutting property owners (including properties located across abutting streets) and holders of existing conservation, preservation or agricultural preservation restrictions affecting the subject property. (2.5.3.1E)	As built survey plans	N/A							
X	Names, addresses and telephone numbers of all professionals involved in the site plan design. (2.5.3.1F)	Cover sheet	N/A							
X	List of reference plans. (2.5.3.1G)	As built survey plans	N/A							
X	List of names and contact information of all public or private utilities servicing the site. (2.5.3.1H)	General notes sheet	N/A							

	Site Plan Specifications						
$\mathbf{\Sigma}$	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested				
×	Full size plans shall not be larger than 22 inches by 34 inches with match lines as required, unless approved by the Planning Director. Submittals shall be a minimum of 11 inches by 17 inches as specified by Planning Dept. staff. (2.5.4.1A)	Required on all plan sheets	N/A				
ß	Scale: Not less than 1 inch = 60 feet and a graphic bar scale shall be included on all plans. Required on all plan (2.5.4.1B) architectural's and detail sheets - exemption						
X	GIS data should be referenced to the coordinate system New Hampshire State Plane, NAD83 (1996), with units in feet. (2.5.4.1C)	General notes sheet note	N/A				
X	Plans shall be drawn to scale. (2.5.4.1D)	Required on all plan sheets	N/A				
X	Plans shall be prepared and stamped by a NH licensed civil engineer. (2.5.4.1D)	Only plans prepared by Altus	N/A				
K	Wetlands shall be delineated by a NH certified wetlands scientist and so stamped. (2.5.4.1E)	Wetlands delineation per original survey Joe Noel, 9/2016	N/A				
\mathbf{X}	Title (name of development project), north point, scale, legend. (2.5.4.2A)	All site plans	N/A				
X	Date plans first submitted, date and explanation of revisions. (2.5.4.2B)	Cover sheet, title block all sheets	N/A				
X	Individual plan sheet title that clearly describes the information thatRequired on all planis displayed.sheets(2.5.4.2C)						
X	Source and date of data displayed on the plan. (2.5.4.2D)	As built plans, General notes sheet	N/A				

	Site Plan Specifications						
V							
	A note shall be provided on the Site Plan stating: "All conditions on this Plan shall remain in effect in perpetuity pursuant to the requirements of the Site Plan Review Regulations." (2.5.4.2E)	Note 3 Overall site plan	N/A				
	 Plan sheets submitted for recording shall include the following notes: a. "This Site Plan shall be recorded in the Rockingham County Registry of Deeds." b. "All improvements shown on this Site Plan shall be constructed and maintained in accordance with the Plan by the property owner and all future property owners. No changes shall be made to this Site Plan without the express approval of the Portsmouth Planning Director." (2.13.3) 	Note 15 Overall site plan Note 14 Overall site plan	N/A				
	 Plan sheets showing landscaping and screening shall also include the following additional notes: a. "The property owner and all future property owners shall be responsible for the maintenance, repair and replacement of all required screening and landscape materials." b. "All required plant materials shall be tended and maintained in a healthy growing condition, replaced when necessary, and kept free of refuse and debris. All required fences and walls shall be maintained in good repair." c. "The property owner shall be responsible to remove and replace dead or diseased plant materials immediately with the same type, size and quantity of plant materials as originally installed, unless alternative plantings are requested, justified and approved by the Planning Board or Planning Director." 	Landscape Plan LS101	N/A				

		Site Plan Specifications – Required Exhibit	s and Data	
Ŋ		Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	1.	Existing Conditions: (2.5.4.3A)		
Х	a.	Surveyed plan of site showing existing natural and built features;	Previous submission	
Х	b.	Zoning boundaries;	package supplemented with as-built	
X	С.	Dimensional Regulations;	plan	
Х	d.	Wetland delineation, wetland function and value assessment;		
Χ	e.	SFHA, 100-year flood elevation line and BFE data.	NOT RESUBMITTED	
	2.	Buildings and Structures: (2.5.4.3B)		
Χ	a.	Plan view: Use, size, dimensions, footings, overhangs, 1st fl. elevation;	AE101	
Х	b.	Elevations: Height, massing, placement, materials, lighting, façade treatments;	AE201 and 202	
Х	С.	Total Floor Area;	AE101	
Х	d.	Number of Usable Floors;	AE101	
Х	e.	Gross floor area by floor and use.	AE101	
	3.	Access and Circulation: (2.5.4.3C)		
Х	a.	Location/width of access ways within site;	Overall site plan and site plan	
Χ	b.	Location of curbing, right of ways, edge of pavement and sidewalks;	Overall site plan and site plan	
Χ	C.	Location, type, size and design of traffic signing (pavement markings);	Overall site plan and site plan	
Х	d.	Names/layout of existing abutting streets;	Overall site plan and site plan	
Х	e.	Driveway curb cuts for abutting prop. and public roads;	Overall site plan and site plan	
Χ	f.	If subdivision; Names of all roads, right of way lines and easements noted;	NA	
Χ	g.	AASHTO truck turning templates, description of minimum vehicle allowed being a WB-50 (unless otherwise approved by TAC).	NA - turning movements per original site plan submission	
	4.	Parking and Loading: (2.5.4.3D)		
Х	a.	Location of off street parking/loading areas, landscaped areas/buffers;	Overall site plan, site plan and LS101	
Х	b.	Parking Calculations (# required and the # provided).	Overall site plan	
	5.	Water Infrastructure: (2.5.4.3E)		
Χ	a.	Size, type and location of water mains, shut-offs, hydrants & Engineering data;	Utilities plan, C-4	
Х	b.	Location of wells and monitoring wells (include protective radii).	NA	
	6.	Sewer Infrastructure: (2.5.4.3F)		
Х	a.	Size, type and location of sanitary sewage facilities & Engineering data.	Utility Plan, C-4, application package for design flow criteria	
	7.	Utilities: (2.5.4.3G)		
X	a.	The size, type and location of all above & below ground utilities;	Utilities plan, C-4	
Х	b.	Size type and location of generator pads, transformers and other fixtures.	Utilities plan, C-4	

		Site Plan Specifications – Required Exhibit	s and Data	
Ŋ		Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
Х	8. 5	olid Waste Facilities: (2.5.4.3H)		
х	а	. The size, type and location of solid waste facilities.	Overall site plan - existing no expansion proposed	
	9. 5	Storm water Management: (2.5.4.3I)		
Χ	а	. The location, elevation and layout of all storm-water drainage.	Grading and drainage plan, C-3	
	10. 0	Dutdoor Lighting: (2.5.4.3J)		
Χ		 Type and placement of all lighting (exterior of building, parking lot and any other areas of the site) and; photometric plan. 	Electrical Site Plan, ES101	
x	11.	ndicate where dark sky friendly lighting measures have been implemented. (10.1)	Electrical Site Plan, ES101	
	12. L	andscaping: (2.5.4.3K)		
x	а	 Identify all undisturbed area, existing vegetation and that which is to be retained; 	Grading plan, C-4, Overall site plan	
Х	b	 Location of any irrigation system and water source. 	None proposed - existing playfield is irrigated	
	13. 0	Contours and Elevation: (2.5.4.3L)		
x	а	 Existing/Proposed contours (2 foot minimum) and finished grade elevations. 	Grading plan, C-4	
	14. C	Dpen Space: (2.5.4.3M)		
х	a	a. Type, extent and location of all existing/proposed open space.	Overall site plan	
Χ		All easements, deed restrictions and non-public rights of vays. (2.5.4.3N)	Overall site plan, As-built plans	
X	16. L	ocation of snow storage areas and/or off-site snow emoval. (2.5.4.30)	Site plan, note 9 overall site plan	
Χ		Character/Civic District (All following information shall be ncluded): (2.5.4.3Q)	NOT APPLICABLE	
	а	Applicable Building Height (10.5A21.20 & 10.5A43.30);		
	b	 Applicable Special Requirements (10.5A21.30); 		
	C	. Proposed building form/type (10.5A43);		
	C	I. Proposed community space (10.5A46).		

	Other Required Information									
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested							
X	Traffic Impact Study or Trip Generation Report, as required. (Four (4) hardcopies of the full study/report and Six (6) summaries to be submitted with the Site Plan Application) (3.2.1-2)	Application package								
X	Indicate where Low Impact Development Design practices have been incorporated. (7.1)	Green statement application package								
X	Indicate whether the proposed development is located in a wellhead protection or aquifer protection area. Such determination shall be approved by the Director of the Dept. of Public Works. (7.3.1)	Not applicable								
X	Indicate where measures to minimize impervious surfaces have been implemented. (7.4.3)	Project infill, green statement permeable materials used where possible								
X	Calculation of the maximum effective impervious surface as a percentage of the site. (7.4.3.2)	Drainage compuations								
X	Stormwater Management and Erosion Control Plan. (Four (4) hardcopies of the full plan/report and Six (6) summaries to be submitted with the Site Plan Application) (7.4.4.1)	Application package								

Ŋ	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
	All local approvals, permits, easements and licenses required, including but not limited to: a. Waivers; b. Driveway permits; c. Special exceptions; d. Variances granted; e. Easements; f. Licenses. (2.5.3.2A)	 a. none requested b. existing, none requested c. none requested d. 2016 and 2017, listed on cover sheet e. As-built plans f. none requested 		
X	 Exhibits, data, reports or studies that may have been required as part of the approval process, including but not limited to: a. Calculations relating to stormwater runoff; b. Information on composition and quantity of water demand and wastewater generated; c. Information on air, water or land pollutants to be discharged, including standards, quantity, treatment and/or controls; d. Estimates of traffic generation and counts pre- and post-construction; e. Estimates of noise generation; f. A Stormwater Management and Erosion Control Plan; g. Endangered species and archaeological / historical studies; h. Wetland and water body (coastal and inland) delineations; i. Environmental impact studies. 	 a. application package - drainage study b. application package - water demand analysis c. non-industrial uses d. see traffic study e. not applicable f. see drainage computations g. not applicable h. on survey plans - no wetland or wet buffers will be impacted i. not applicable 	land	

Civil Site Planning Environmental Engineering 133 Court Street Portsmouth, NH 03801-4413

January 29, 2020

Juliet T. H. Walker, AICP, Planning Director City of Portsmouth Municipal Complex Planning Department 1 Junkins Avenue Portsmouth, New Hampshire 03801

Re: Application for Site Plan Planning Board Submission St Patrick Academy Assessor's Map 266, Lot 5 315 (355) Banfield Road Altus Project #P4801

Dear Juliet:

On January 7, 2020, the Portsmouth Technical Advisory Committee voted to recommend approval for gymnasium expansion at St Patricks Academy on Banfield Road. The application package was revised to address the comments and concerns of the Committee.

The revisions include:

- A "no parking" sign has been added at the aisle for the handicap accessible parking stall to ensure that the area is not used for parking.
- The width of the sidewalk adjacent to the proposed angled parking stalls has been increased to 6-feet.
- The landscaped islands have been removed in front of the gymnasium entrance to improve pedestrian flow.
- A copy of the original recoding overall site plan is included as a reference plan for the Board to better understand the parking changes.
- The sewer service for the new building has been reduced to 6-inches as suggested by DPW.
- The proposed domestic water service has been revised from 2 ¹/₂" inch diameter to a 3-inch diameter external. Once inside the building, the service will be reduced in size.
- The architect has confirmed that the maximum occupant load is 853 people.

In March 2017, the Hope for Tomorrow Foundation (HFT), which operates the school secured site approvals for the construction of the school. It was occupied in April 2018 slightly over a year later.

At that time, the Academy entered into an agreement with the Foundation for Seacoast Health (FSH) to use their gym for classes and athletic events. The school is thriving in its new location and now wishes to

Juliet T. H. Walker, AICP, Planning Director January 29, 2020 Page 2

construct a standalone gymnasium building on their property for physical education classes and their athletic events.

We are not proposing to expand the population beyond the 200 maximum students allowed under the previous approval. The gym is an additional amenity to the existing school and not an expansion of use.

In 2017 when the school was approved, the parking ordinance required 0.3 spaces per student and allowed for an additional 20 percent for a maximum of 72 spaces. The facility was constructed with only 60-spaces. We are proposing to expand the parking to slightly above the maximum under the previous ordinance. Enclosed with this submission is a parking demand analysis to support the request.

Attached please find the following for consideration at the February 20th Planning Board meeting:

- Site Plans (1 full sized, 1 reduced to 11 x 17);
- Site Plan Review Checklist;
- Letter of Authorization;
- Opinion of Sitework cost;
- Application fee worksheet;
- Green Statement;
- Basis of Sewer Design;
- Parking Demand Analysis;
- Recording Site Plan from 2017 Site Plan Approval (22"x 34" and 11"x 17")
- Drainage Study:
- Stormwater Inspection and Maintenance Manual;
- Traffic Study.

Please call or email me should you have any questions or need any additional information.

Sincerely,

ALTUS ENGINEERING, INC.

Eric D. Weinrieb, President

wde/4801 TAC cvr ltr 12-23-19 submission

Enclosure

Ecopy: Jim Broom, HFT James Melone, St Patrick's Academy Scott Hughes, Oak Point Associates

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

ST PATRICK ACADEMY **K THROUGH 8 SCHOOL GYMNASIUM PROJECT**

315 BANFIELD ROAD Portsmouth, NH **Bond Estimate - Site Work**

DATE: 20-Dec-19 PROJECT: 4801				
ITEM			UNIT	TOTAL
DESCRIPTION	QUANTITY	UNIT	PRICE	COST
SITEWORK DEMOLITION				
SITE FEATURES	5 1	LS	\$1,000.00	\$1,000.00
CLEARING AND GRUBBING				
TREE AND VEGETATION REMOVAL	. 1	AC	\$3,000.00	\$3,000.00
WATER SUPPLY				
2.5" DOMESTIC WATER SERVICE	135	LF	\$45.00	\$6,075
6" DI CL 52 WATER PIPE	135	LF	\$46.00	\$6,210
6" GATE VALVE		EA	\$800.00	\$800
6 X 8 LIVE TAP		EA	\$3,000.00	\$3,000
TESTING AND CHLORINATION		LA	\$1,500.00	\$3,000
		20	φ1,000.00	φ1,500
SEWER SERVICE CROSS COUNTRY 6 AND 8" PVC SDR 35 (INCLUDING RESTORATION	100			
DRILL NEW INVERT AND REBRICK STRUCTURE		LF	\$50.00	\$24,300
SEWER MANHOLES		EA	\$1,500.00	\$1,500
SEWER MANHOLES		EA	\$2,800.00	\$2,800
GAS SERVICE				
TRENCHING AND BACKFIL	90	LF	\$18.00	\$1,620
ELECTRIC/PHONE/CABLE SERVICES				
SCH 40 CONDUIT (x4 PER TRENCH) 380	LF	\$20.00	\$7,600
CURBING				
VERTICAL GRANITE CURBING	G 375	LF	\$28.00	\$10,500
STORM DRAINAGE SYSTEM				
CATCH BASINS, OUTLET STRUCTURES, DRAIN MANHOLES	5 5	EA	\$1,800.00	\$9.000
YARD DRAIN		EA	\$1,500.00	\$4,500
6" UNDERDRAI		LF	\$15.00	\$2,250
ROOF GUTTER COLLECTION DRAIN PIP		LS	\$250.00	\$250
12" DRAIN PIP		LF	\$28.00	\$9,520
RAIN GARDE		SY	\$28.00	\$5,320
RIP RAP/STONE DRIP EDG		LS	\$1,500.00	\$1,500
FLARED END SECTION		EA	\$300.00	\$300
SEDIMENT AND EROSION CONTROL				
TEMPORARY EROSION CONTROL/SWPP	P 1	LS	\$5,000.00	\$5,000
CONCRETE FLATWORK CONCRETE SIDEWALKS AND PAD	S 230	SY	\$28.00	\$6,440
	2 200	01	φ20.00	φ0,44t
SIDEWALKS	0 05	0.4		
2" BITUMINOUS SIDEWALKS INCLUDING SUBGRADE MATERIAL	S 95	SY	\$22.50	\$2,138
RETAINING WALLS				
MODULAR BLOCK RETAINING WAL	L 100	SF	\$16.00	\$1,600

HOT BITUMINOUS PAVEMENT

4"' PATCH - BUDGET	50	TON	\$72.00	\$3,600
HOT BITUMINOUS PAVEMENT - POROUS				
4" POROUS PAVEMENT - PATCH - REPAIR BUDGET	15	TON	\$140.00	\$2,100
4" POROUS PAVEMENT	90	TON	\$110.00	\$9,900
6" 3/4 INCH STONE	65	CY	\$30.00	\$1,950
12" NHDOT 304.1 GRAVEL	130	CY	\$24.00	\$3,120
8" #3 STONE	90	CY	\$30.00	\$2,700
3" PEA STONE	33	CY	\$30.00	\$990
STRIPING AND SIGNAGE				
STRIPING & SIGNAGE	1	LS	\$1,000.00	\$1,000
LANDSCAPING				
LANDSCAPING INCLUDING RAIN GARDEN PLANTINGS (ALLOWANCE)	1	LS	\$5,000.00	\$5,000
LOAM AND SEED - TURF ESTABLISHMENT	0.5	AC	\$8,000.00	\$4,000
LIGHTING				
RESET EXISTING POLES, POLE BASES AND FIXTURES INCLUDING CONDUIT	2	EA	\$2,000.00	\$4,000
AS BUILT PLANS	1	LS	\$3,000.00	\$3,000
SUBTOTAL				\$159,083
			and the second second second	

TOTAL:

\$159,083

EXCLUSIONS:

ITEMS EXCLUDED FROM THIS ESTIMATE INCLUDE, BUT ARE NOT LIMITED TO, THOSE ITEMS SPECIFIED ABOVE AS BEING NOT INCLUDED IN THIS ESTIMATE AND THE FOLLOWING:

INSPECTION FEES, MONUMENTATION, HVAC PADS, TEMPORARY FENCING AND BARRICADES, TRAFFIC CONTROL, MATERIALS AND COMPACTION TESTING, BUILDING FOUNDATION, BUILDING FOUNDATION EXCAVATION, BUILDING MOUNTED EXTERIOR LIGHTING, BUILDINGS, LEDGE REMOVAL

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

"Green" Statement" Assessor's Map 266 Lot 05 St Patricks Academy Gymnasium 315 Banfield Road Altus Project P4801

Pursuant to Section 2.4.3.1(a) of the Site Plan Review Regulations, Altus Engineering, Inc. (Altus) respectfully submits the following list of the project's "green" components for the redevelopment of the property located at 315 Banfield Road:

- The existing school development site area will be expanded with the construction of a ±17,000 SF building. The building coverage will remain at less than 9% where up to 50 percent is allowed in the zoning district and lot coverage is allowed to be up to 80 percent. The lot coverage after the development will be approximately 23 percent of the site. This will reserve generous open space for the site and preserving the natural environment.
- Shade trees were planted around the perimeter of the parking lot to reduce the heat island effect in the initial phase. Additional shade trees are proposed.
- The proposed development has bicycle racks.
- The stormwater management system is designed to meet the NHDES Alteration of Terrain Program's design standards and uses elements of low impact design (LID) to treat and detain stormwater. The drainage system is designed to mimic the predevelopment runoff conditions at the wetlands and property lines. The expansion will also meet the AOT design criteria. The computations include the 15% increase in the rainfall events which is a new requirement subsequent to the original approval.
- The development was designed to have pedestrian links to the Foundation for Seacoast Health Community Campus facility as well as the future City of Portsmouth Recreation area.
- The building code compliant building with components that will meet or exceed all applicable energy codes.
- Building components shall maximize recycled content and be locally sourced if possible. Although not LEED compliant, the intent of the proposed building will be to utilize this guideline to implement sustainable strategies.
- Efforts have been made to preserve as much of the existing mature vegetation as possible along the frontage, the southern boundary and along the eastern boundary where the land abuts a large wetland system.
- The proposed site lighting will have LED fixtures. They will be mounted at a maximum height of 16-feet. The lights will be dark sky friendly and will meet or exceed the minimum City requirements.

Green Statement St Patricks Academy December 23, 2019 Page 2

- Runoff from the paved surfaces currently discharges directly into the wetland system. The surface runoff from the paved surfaces will no longer discharge directly into the wetland. The runoff will be treated in a series of rain gardens. Thus, the stormwater runoff quality will be significantly enhanced.
- No wetland or wetland buffers will be impacted by the project development.
- New paved surfaces will be constructed from pervious materials to promote infiltration and recharge groundwater.

Wde/4801-App-City-Site-GreenStatment - gym

Letter of Authorization

I, James Patrick Broom of the Hope for Tomorrow Foundation, hereby authorize Altus Engineering, Inc. of Portsmouth, New Hampshire and Oak Point Associates, Inc. of Portsmouth, NH to represent you in all matters concerning engineering, architecture and related permitting for the development of a gymnasium at 315 Banfield Road in Portsmouth, NH. The property is identified on the Assessor's Maps as Tax Map 266, Lot 5. This authorization shall include any signatures required for Federal, State and Municipal permit applications.

Sighature

itness

coul Print Name

Date

RICHARD HACKEMAN Print Name

State of New Hampshire Department of Environmental Services 29 Hazen Drive, P.O. Box 95, Concord, NH 03302-0095 (603) 271-3503 FAX (603) 271-4128

SEWER CONNECTION PERMIT

Project Name Location : Engineer :	355 Banf	c Academy ield Road gineering - Eric W	einrieb, PE						
Municipality Official Sign Date of Requ	nature : Ter	rtsmouth rry Desmarais, PE 6/2017							
PERMIT/RE	QUEST NUM	BER	D2017-0512						
FLOW :	1,628	gallons/day		APP	ROVAL DATE	6/6/2017			
CONDITIO	the request a Approval of information	as follows: The connection to	ent of Environmenta the municipality's was subject to the condition	astewater facilitie	s is based on a revi				
	Approval app	olies only to the se	werage plans and sev	ver connection ap	plication received t	by NHDES.			
	This approva not begun wit	l will become void thin three years of	l if the sewerage cons the approval date.	struction or disch	arge has				
	All sewerage construction must comply with the requirements of Chapter Env-Wq 700, the Standards of Design and Construction for Sewerage and Wastewater Treatment Facilities.								
			specifications for se						
				Is	sued by : J	MWPArleye Dennis Greene, PE			

WATER DIVISION - WASTEWATER ENGINEERING BUREAU - DESIGN REVIEW SECTION

cc: Altus Engineering - Eric Weinrieb, PE

Civil Site Planning Environmental Engineering

133 Court Street Portsmouth, NH 03801-4413

315 BANFIELD ROAD

ST PATRICKS ACADEMY GYMANSIUM PROJECT APPLICATION FEE SPREADSHEET December 23, 2019

P4801

All developments		\$500
plus \$5.00 per \$1,000 of site work cost	\$160,000	\$800
plus \$10.00 per 1,000 SF of development area	55,000 SF	\$550

TOTAL APPLICATION FEE

\$1,850

12/20/19

Oak Point Associates 85 Middle Street Portsmouth, NH 03801

RE: Natural gas service to 315 Banfield Road, Portsmouth, NH Saint Patrick's Academy proposed gymnasium

Unitil's natural gas division has reviewed the requested site for natural gas service.

Unitil hereby confirms natural gas is available from Banfield Road to supply the proposed facility.

Please contact me with any questions at 603-294-5144.

Sincerely,

David Beaulieu Business Development Executive Unitil 325 West Road Portsmouth, NH 03801

CUSTOMER ENERGY SOLUTIONS 325 West Road Portsmouth, NH 03801

T 888.486.4845 www.unitil.com

St. Patrick's School Water Usage Analysis

Cui	rent	Previ	ious												
Date	Reading	Date	Reading	Units of Usage	Gallons of Usage	Days of Usage	Average Gallons Per Day		Weekdays of Usage	Average Gallons Per Weekday		School Days of Usage	Average Gallons Per School Day	Average Gallons Per School Day per Occupant *	Estimated GPD for 200 Students + 40 Faculty/Staff
04/30/18	4	04/17/18	0	4	2,992	13	230.15		10	299.20		5	598.40	3.23	776.30
05/31/18	111	04/30/18	4	107	80,036	31	2,581.81	Contraction of	23			22	3,638.00	19.66	4,719.57
06/30/18	150	05/31/18	111	39	29,172	30	972.40	ALC: NOT THE	21			8	3,646.50	19.71	4,730.59
07/31/18	251	06/30/18	150	101	75,548	31	2,437.03		22			N/A	0,010.00	10.71	4,750.55
08/31/18	1 1	07/31/18	251	2	1,496	31	48.26		23	65.04		N/A			
09/30/18		08/31/18	253	17	12,716	30	423.87		20	635.80		19	669.26	3.62	868.23
10/31/18	1	09/30/18	270	18		31	434.32		23			22	612.00	3.31	793.95
11/30/18	1 1	10/31/18	288	14	10,472	30	349.07	ACCORD (CAR)	22			19	551.16	2.98	715.02
12/31/18		11/30/18	302	11	8,228	31		Receiptor -	21			15	548.53	2.97	711.61
01/31/19		12/31/18	313	15	11,220	31		ALC: NOT STREET, ST	23			21	534.29	2.89	693.13
02/28/19	1 1	01/31/19	328	11	8,228	28		ACCORDANCE.	20			15	548.53	2.97	711.61
03/31/19		02/28/19	339	15	11,220	31		State State of the	22			21	534.29	2.89	693.13
04/30/19		03/31/19	354	12	8,976	30		and the second second	22			17	528.00	2.85	684.97
05/31/19	1 1	04/30/19	366	19	14,212	31	458.45		23			22	646.00	3.49	838.05
06/30/19		05/31/19	385	14	10,472	30	349.07	10- 10- 10- 10- 10- 10- 10- 10- 10- 10-	20			16	654.50	3.54	849.08
07/31/19		06/30/19	399	2	1,496	31	48.26	and a set of a	23			N/A			
08/31/19	1	07/31/19	401	16	11,968 **	31	386.06	10000000	22			N/A			
09/30/19		08/31/19	417		32,164 **	30	1,072.13	Statistics of the	21		111111	19	1,692.84	8.06 **	1,934.68
10/31/19	490	09/30/19	460	30	22,440 **	31	723.87		23	975.65		22	1,020.00	4.86 **	1,165.71
									AVERAGE	629.58		AVERAGE	711.62	AVERAGE	888.26

2018 - 2019 School Year Average =

Note: Figures above the red line are from prior to installation of irrigation meter on 7/11/18 Averages include only usage after installation of the irrigation meter.

* For school year 2018 to 2019 - 165 students / 20 staff
 For school year 2019 to 2020 - 190 students / 20 faculty

** 2019 - 2020 school flows are outliers. Further data is requireed to determine if flow increase based on actual use, leaking fixtures or inaccurate meter.

582.66

Civil Site Planning Environmental Engineering 133 Court Street Portsmouth, NH 03801-4413

PARKING DEMAND ANALYSIS Assessor's Map 266 Lot 05 St. Patricks Academy Gymnasium Banfield Road Altus Project P4801

St. Patricks Academy is proposing to expand the existing K through 8 with the construction of a freestanding gymnasium building. The gym will allow the school to host practices and athletic events for the students. The gym is not intended to host non-school related events.

In April 2017, the Portsmouth Planning Board approved the initial phase of the project as a 200-student school without an on-site gymnasium. At that time, the City parking requirements were 0.3 parking spaces for every student and allowed for an additional 20-percent. 60-stalls were required with an allowance up to 72. Due to cost factors, the school elected to construct the minimum.

The gymnasium is proposed to allow students interior recreation space for gym class as well as to practice and play competitive sports between other local schools. As a K through 8 school, they frequently host back to back athletic events like soccer and basketball. Soccer and basketball games can generate up 25 to 30 spectator vehicles per game plus referees and coaches. A typical game night could create a demand for 70-vehicles leaving only a few for faculty and staff that may remain on-site after school.

With the construction of the gymnasium, additional parking will be needed to mitigate the cross over parking demand in between events.

Additionally, throughout the schoolyear there are occasional full student body and family events occur on the grounds. These events include Christmas program, meet and greet at the beginning of the school year, Halloween Parade, and a few others. These events have parking demand for nearly 140-families. The school has partnered with the Girl Scout camp, which is typically vacant during the schoolyear, across the street and the FSH to handle the large peak events. The school also hires an officer for traffic control to ensure safe conditions.

The school is proposing to provide 77 parking spaces for the 200-student population, which approximately satisfies half the parking demand during major events.

At a ratio of 0.4 parking spaces per student, which is slightly above the maximum parking spaces allowed at the time of the 2017 approval, it is Altus' opinion as professional engineers that providing 77 parking stalls for a 200-student private K through 8 elementary school is reasonable and justified.

Wde/4801-parking demand analysis 12-2019

City of Portsmouth, New Hampshire

Site Plan Application Checklist

This site plan application checklist is a tool designed to assist the applicant in the planning process and for preparing the application for Planning Board review. A pre-application conference with a member of the planning department is strongly encouraged as additional project information may be required depending on the size and scope. The applicant is cautioned that this checklist is only a guide and is not intended to be a complete list of all site plan review requirements. Please refer to the Site Plan review regulations for full details.

Applicant Responsibilities (Section 2.5.2): Applicable fees are due upon application submittal along with required attachments. The application shall be complete as submitted and provide adequate information for evaluation of the proposed site development. Waiver requests must be submitted in writing with appropriate justification.

Name of Owner/Applicant: Hope for Tomorrow Foundation	on	_ Date Submit	ted: <u>12/23/19</u>	
Phone Number:603-969-3100	E-mail:	jpatrickbroor	n@gmail.com	
Site Address: 315 Banfield Road			Map: <u>266</u>	Lot: _5
Zoning District: Industrial	Lot area:	468,400	sq. ft.	

Zoning District: Industrial

	Application Requirements				
Ŋ	Required Items for Submittal	Item Location (e.g. Page or Plan Sheet/Note #)	Waiver Requested		
X	Fully executed and signed Application form. (2.5.2.3)	Application package	N/A		
X	All application documents, plans, supporting documentation and other materials provided in digital Portable Document Format (PDF). (2.5.2.8)	Application package	N/A		

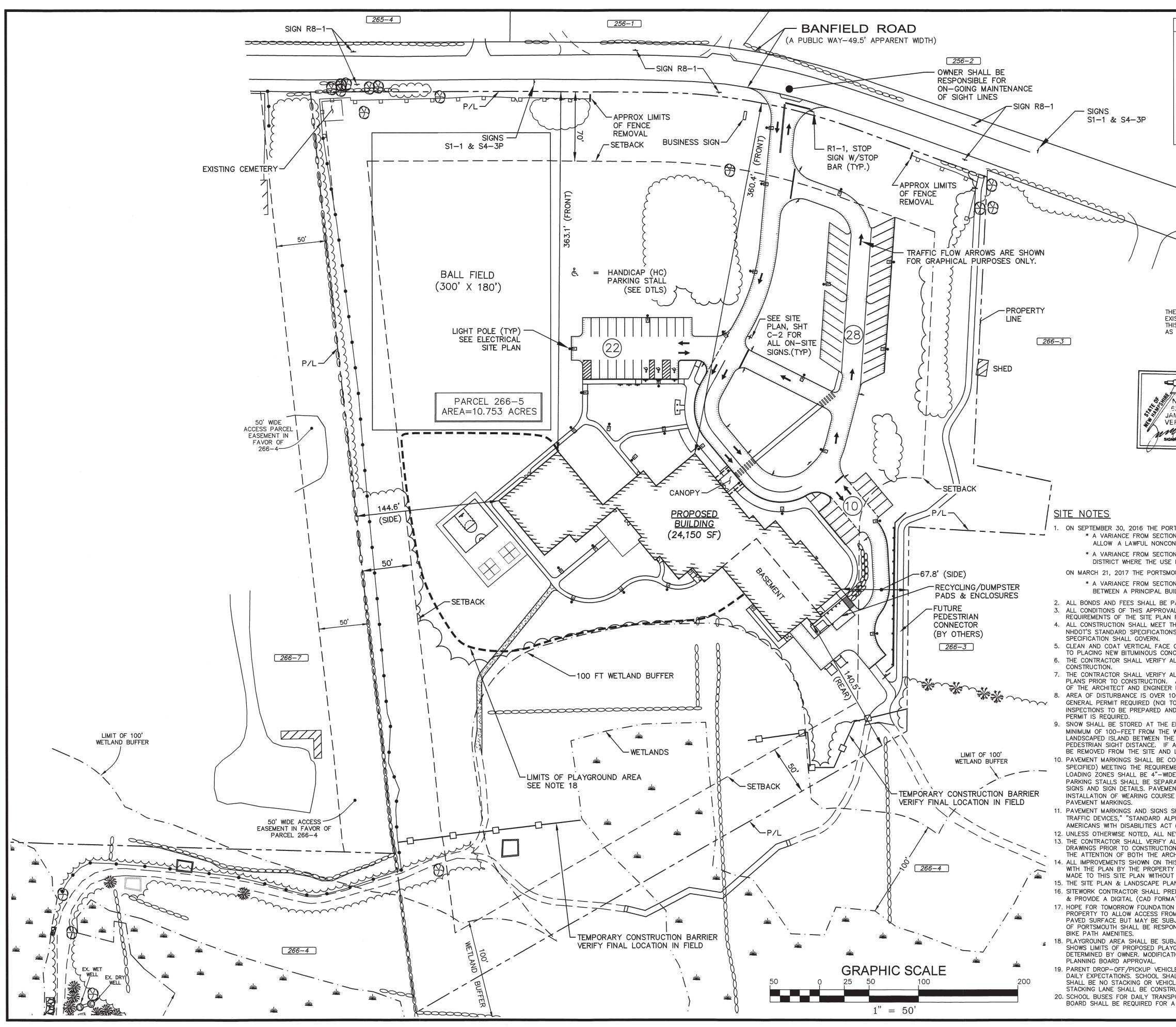
	Site Plan Review Application Required Information				
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested		
X	Statement that lists and describes "green" building components and systems. (2.5.3.1A)	Application package			
\square	Gross floor area and dimensions of all buildings and statement of uses and floor area for each floor. (2.5.3.1B)	Architectural floor plans	N/A		
X	Tax map and lot number, and current zoning of all parcels under Site Plan Review. (2.5.3.1C)	Cover sheet and plan title block	N/A		
\square	Owner's name, address, telephone number, and signature. Name, address, and telephone number of applicant if different from owner. (2.5.3.1D)	Application and cover sheet	N/A		

	Site Plan Review Application Required Information				
Q	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested		
	Names and addresses (including Tax Map and Lot number and zoning districts) of all direct abutting property owners (including properties located across abutting streets) and holders of existing conservation, preservation or agricultural preservation restrictions affecting the subject property. (2.5.3.1E)	As built survey plans	N/A		
X	Names, addresses and telephone numbers of all professionals involved in the site plan design. (2.5.3.1F)	Cover sheet	N/A		
X	List of reference plans. (2.5.3.1G)	As built survey plans	N/A		
X	List of names and contact information of all public or private utilities servicing the site. (2.5.3.1H)	General notes sheet	N/A		

	Site Plan Specifications				
$\mathbf{\Sigma}$	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested		
×	Full size plans shall not be larger than 22 inches by 34 inches with match lines as required, unless approved by the Planning Director. Submittals shall be a minimum of 11 inches by 17 inches as specified by Planning Dept. staff. (2.5.4.1A)	Required on all plan sheets	N/A		
ß	Scale: Not less than 1 inch = 60 feet and a graphic bar scale shall be included on all plans. (2.5.4.1B)	Required on all plan sheets architectural's and detail sheets - exemp	N/A		
X	GIS data should be referenced to the coordinate system New Hampshire State Plane, NAD83 (1996), with units in feet. (2.5.4.1C)	General notes sheet note	N/A		
X	Plans shall be drawn to scale. (2.5.4.1D)	Required on all plan sheets	N/A		
X	Plans shall be prepared and stamped by a NH licensed civil engineer. (2.5.4.1D)	Only plans prepared by Altus	N/A		
K	Wetlands shall be delineated by a NH certified wetlands scientist and so stamped. (2.5.4.1E)	Wetlands delineation per original survey Joe Noel, 9/2016	N/A		
\mathbf{X}	Title (name of development project), north point, scale, legend. (2.5.4.2A)	All site plans	N/A		
X	Date plans first submitted, date and explanation of revisions. (2.5.4.2B)	Cover sheet, title block all sheets	N/A		
X	Individual plan sheet title that clearly describes the information that is displayed. (2.5.4.2C)	Required on all plan sheets	N/A		
X	Source and date of data displayed on the plan. (2.5.4.2D)	As built plans, General notes sheet	N/A		

	Site Plan Specifications		
V	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	A note shall be provided on the Site Plan stating: "All conditions on this Plan shall remain in effect in perpetuity pursuant to the requirements of the Site Plan Review Regulations." (2.5.4.2E)	Note 3 Overall site plan	N/A
	 Plan sheets submitted for recording shall include the following notes: a. "This Site Plan shall be recorded in the Rockingham County Registry of Deeds." b. "All improvements shown on this Site Plan shall be constructed and maintained in accordance with the Plan by the property owner and all future property owners. No changes shall be made to this Site Plan without the express approval of the Portsmouth Planning Director." (2.13.3) 	Note 15 Overall site plan Note 14 Overall site plan	N/A
	 Plan sheets showing landscaping and screening shall also include the following additional notes: a. "The property owner and all future property owners shall be responsible for the maintenance, repair and replacement of all required screening and landscape materials." b. "All required plant materials shall be tended and maintained in a healthy growing condition, replaced when necessary, and kept free of refuse and debris. All required fences and walls shall be maintained in good repair." c. "The property owner shall be responsible to remove and replace dead or diseased plant materials immediately with the same type, size and quantity of plant materials as originally installed, unless alternative plantings are requested, justified and approved by the Planning Board or Planning Director." 	Landscape Plan LS101	N/A

		Site Plan Specifications – Required Exhibit	s and Data	
Ŋ		Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	1.	Existing Conditions: (2.5.4.3A)		
Х	a.	Surveyed plan of site showing existing natural and built features;	Previous submission	
Х	b.	Zoning boundaries;	package supplemented with as-built	
X	С.	Dimensional Regulations;	plan	
Х	d.	Wetland delineation, wetland function and value assessment;		
Χ	e.	SFHA, 100-year flood elevation line and BFE data.	NOT RESUBMITTED	
	2.	Buildings and Structures: (2.5.4.3B)		
Χ	a.	Plan view: Use, size, dimensions, footings, overhangs, 1st fl. elevation;	AE101	
Х	b.	Elevations: Height, massing, placement, materials, lighting, façade treatments;	AE201 and 202	
Х	С.	Total Floor Area;	AE101	
Х	d.	Number of Usable Floors;	AE101	
Х	e.	Gross floor area by floor and use.	AE101	
	3.	Access and Circulation: (2.5.4.3C)		
Х	a.	Location/width of access ways within site;	Overall site plan and site plan	
Χ	b.	Location of curbing, right of ways, edge of pavement and sidewalks;	Overall site plan and site plan	
Χ	C.	Location, type, size and design of traffic signing (pavement markings);	Overall site plan and site plan	
Х	d.	Names/layout of existing abutting streets;	Overall site plan and site plan	
Х	e.	Driveway curb cuts for abutting prop. and public roads;	Overall site plan and site plan	
Χ	f.	If subdivision; Names of all roads, right of way lines and easements noted;	NA	
Χ	g.	AASHTO truck turning templates, description of minimum vehicle allowed being a WB-50 (unless otherwise approved by TAC).	NA - turning movements per original site plan submission	
	4.	Parking and Loading: (2.5.4.3D)		
Х	a.	Location of off street parking/loading areas, landscaped areas/buffers;	Overall site plan, site plan and LS101	
Х	b.	Parking Calculations (# required and the # provided).	Overall site plan	
	5.	Water Infrastructure: (2.5.4.3E)		
Χ	a.	Size, type and location of water mains, shut-offs, hydrants & Engineering data;	Utilities plan, C-4	
Х	b.	Location of wells and monitoring wells (include protective radii).	NA	
	6.	Sewer Infrastructure: (2.5.4.3F)		
Х	a.	Size, type and location of sanitary sewage facilities & Engineering data.	Utility Plan, C-4, application package for design flow criteria	
	7.	Utilities: (2.5.4.3G)		
X	a.	The size, type and location of all above & below ground utilities;	Utilities plan, C-4	
Х	b.	Size type and location of generator pads, transformers and other fixtures.	Utilities plan, C-4	


		Site Plan Specifications – Required Exhibit	s and Data	
Ŋ		Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
Х	8. 5	olid Waste Facilities: (2.5.4.3H)		
х	а	. The size, type and location of solid waste facilities.	Overall site plan - existing no expansion proposed	
	9. 5	Storm water Management: (2.5.4.3I)		
Χ	а	. The location, elevation and layout of all storm-water drainage.	Grading and drainage plan, C-3	
	10. 0	Dutdoor Lighting: (2.5.4.3J)		
Χ		 Type and placement of all lighting (exterior of building, parking lot and any other areas of the site) and; photometric plan. 	Electrical Site Plan, ES101	
x	11.	ndicate where dark sky friendly lighting measures have been implemented. (10.1)	Electrical Site Plan, ES101	
	12. L	andscaping: (2.5.4.3K)		
x	а	 Identify all undisturbed area, existing vegetation and that which is to be retained; 	Grading plan, C-4, Overall site plan	
Х	b	 Location of any irrigation system and water source. 	None proposed - existing playfield is irrigated	
	13. 0	Contours and Elevation: (2.5.4.3L)		
x	а	 Existing/Proposed contours (2 foot minimum) and finished grade elevations. 	Grading plan, C-4	
	14. C	Dpen Space: (2.5.4.3M)		
х	a	a. Type, extent and location of all existing/proposed open space.	Overall site plan	
Χ		All easements, deed restrictions and non-public rights of vays. (2.5.4.3N)	Overall site plan, As-built plans	
X	16. L	ocation of snow storage areas and/or off-site snow emoval. (2.5.4.30)	Site plan, note 9 overall site plan	
Χ		Character/Civic District (All following information shall be ncluded): (2.5.4.3Q)	NOT APPLICABLE	
	а	Applicable Building Height (10.5A21.20 & 10.5A43.30);		
	b	 Applicable Special Requirements (10.5A21.30); 		
	C	. Proposed building form/type (10.5A43);		
	C	I. Proposed community space (10.5A46).		

	Other Required Information					
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested			
X	Traffic Impact Study or Trip Generation Report, as required. (Four (4) hardcopies of the full study/report and Six (6) summaries to be submitted with the Site Plan Application) (3.2.1-2)	Application package				
X	Indicate where Low Impact Development Design practices have been incorporated. (7.1)	Green statement application package				
X	Indicate whether the proposed development is located in a wellhead protection or aquifer protection area. Such determination shall be approved by the Director of the Dept. of Public Works. (7.3.1)	Not applicable				
X	Indicate where measures to minimize impervious surfaces have been implemented. (7.4.3)	Project infill, green statement permeable materials used where possible				
X	Calculation of the maximum effective impervious surface as a percentage of the site. (7.4.3.2)	Drainage compuations				
X	Stormwater Management and Erosion Control Plan. (Four (4) hardcopies of the full plan/report and Six (6) summaries to be submitted with the Site Plan Application) (7.4.4.1)	Application package				

Ŋ	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	All local approvals, permits, easements and licenses required, including but not limited to: a. Waivers; b. Driveway permits; c. Special exceptions; d. Variances granted; e. Easements; f. Licenses. (2.5.3.2A)	 a. none requested b. existing, none requested c. none requested d. 2016 and 2017, listed on cover sheet e. As-built plans f. none requested 	
X	 Exhibits, data, reports or studies that may have been required as part of the approval process, including but not limited to: a. Calculations relating to stormwater runoff; b. Information on composition and quantity of water demand and wastewater generated; c. Information on air, water or land pollutants to be discharged, including standards, quantity, treatment and/or controls; d. Estimates of traffic generation and counts pre- and post-construction; e. Estimates of noise generation; f. A Stormwater Management and Erosion Control Plan; g. Endangered species and archaeological / historical studies; h. Wetland and water body (coastal and inland) delineations; i. Environmental impact studies. 	 a. application package - drainage study b. application package - water demand analysis c. non-industrial uses d. see traffic study e. not applicable f. see drainage computations g. not applicable h. on survey plans - no wetland or wet buffers will be impacted i. not applicable 	land

	Final Site Plan Approval Required Information					
Ŋ	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested			
X	A document from each of the required private utility service providers indicating approval of the proposed site plan and indicating an ability to provide all required private utilities to the site. (2.5.3.2D)	in application package				
X	A list of any required state and federal permit applications required for the project and the status of same. (2.5.3.2E)	Cover sheet				

Applicant's Signature: ______ Date: ______ Date: ______

CITY OF PORTSMOUTH, PLANNING BOARD	ENGINEER:
CHAIRMAN DATE	λτη
	ENGINE
	133 COURT STREET
	(603) 433–2335
	1. PBOLINE
SYSTEM	Total and the second seco
OWATE	20- 66
IE COORT	
× 15 PLAN 0 1983	
NH STATE PLANE COORDINATE STSTEM	
	ISSUED FOR:
	ŀ
THE SOLE PURPOSE OF THIS PLAN IS TO DEPICT THE LOCATION OF EXISTING AND PROPOSED IMPROVEMENTS ON THE SITE. RECORDING OF	ISSUE DATE:
THIS PLAN WAS A REQUIREMENT OF THE PORTSMOUTH PLANNING BOARD AS PART OF THEIR APPROVAL.	REVISIONS
FOR JAMES VERRA & ASSOCIATES, INC.	REVISIONS NO. DESCRIPTION
6-9-2017	0 INITIAL SUBMISS 1 PER TAC WS C
DATE	2 PER TAC COMM 3 PB COMMENTS 4 COND OF APPR
NO. SE CALLER CONTRACTOR OF CO	
VERRA	DRAWN BY: APPROVED BY:
SIGNATURE	DRAWING FILE: _
	SCALE:
	22" x 34
	11" x 17
	<u>owner:</u> HC
PORTSMOUTH BOARD OF ADJUSTMENT GRANTED THE FOLLOWING: CTIONS 10.440 and 10.335 OF THE PORTSMOUTH ZONING ORDINANCE TO CONFORMING USE TO BE CHANGED TO ANOTHER NONCONFORMING USE;	TOMORRO
CTION 10.440.3.21 TO ALLOW A PRIMARY OR SECONDARY SCHOOL IN A JSE IS NOT PERMITTED.	COV 36 MAPLE
SMOUTH BOARD OF ADJUSTMENT GRANTED THE FOLLOWING:	PORTSMOU
CTION 10.1113.20 TO ALLOW OFF-STREET PARKING SPACES TO BE LOCATED BUILDING AND A STREET.	ASSESS
BE PAID/POSTED PRIOR TO INITIATING CONSTRUCTION. OVAL SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE AN REVIEW REGULATIONS.	2
T THE MINIMUM CONSTRUCTION STANDARDS OF THE CITY OF PORTSMOUTH & TONS FOR ROAD & BRIDGE, LATEST EDITION. THE MORE STRINGENT	APPLICANT:
CE OF EXISTING PAVEMENT AT SAWCUT LINE WITH RS-1 IMMEDIATELY PRIOR	
Y ALL BENCHMARKS AND TOPOGRAPHY IN THE FIELD PRIOR TO	S
Y ALL BUILDING DIMENSIONS WITH THE ARCHITECTURAL AND STRUCTURAL N. ALL DISCREPANCIES SHALL BE IMMEDIATELY BROUGHT TO THE ATTENTION EER FOR RESOLUTION.	PA
R 100,000 SF, COVERAGE UNDER EPA NPDES PHASE II CONSTRUCTION DI TO BE PREPARED AND SUBMITTED BY CONTRACTOR, SWPPP AND AND PERFORMED BY CONTRACTOR). NHDES ALTERATION OF TERRAIN	SC
HE EDGE OF PAVEMENT, IN UPLAND AREAS SHOWN THEREON, AND IN AREAS A	125 AU
HE WETLANDS. NO SNOW STORAGE SHALL BE PROVIDED WITHIN 25' OF THE THE DRIVEWAY ENTRANCE THAT WOULD RESTRICT SITE VEHICULAR AND IF ADEQUATE_ON-SITE SNOW STORAGE IS NOT AVAILABLE, THE SNOW SHALL	PORTSMOU
ND LEGALLY DISPOSED. E CONSTRUCTED USING WHITE, YELLOW, OR BLUE TRAFFIC PAINT (WHERE REMENTS OF AASHTO M248, TYPE F OR EQUAL. PAINTED ISLANDS AND	PROJECT:
MDE DIAGONAL WHITE LINES 3'-0" O.C. BORDERED BY 4"-WIDE WHITE LINES. PARATED BY 4"-WIDE WHITE LINES. SEE DETAILS FOR HANDICAP SYMBOLS,	SAINT
EMENT MARKINGS SHALL BE INSTALLED AT LEAST 14-DAYS AFTER JRSE PAVEMENT. CONTRACTOR SHALL APPLY TWO (2) COATS OF ALL	AC
IS SHALL CONFORM TO THE REQUIREMENTS OF THE "MANUAL ON UNIFORM ALPHABETS FOR HIGHWAY SIGNS AND PAVEMENT MARKINGS" AND THE	315 BA
ACT (ADA), LATEST EDITIONS. L NEW CURBING SHALL BE VERTICAL GRANITE WITH A MINIMUM RADIUS OF 4'. Y ALL BUILDING DIMENSIONS WITH THE ARCHITECTURAL AND STRUCTURAL	PORTS
CTION. ANY AND ALL DISCREPANCIES SHALL BE IMMEDIATELY BROUGHT TO ARCHITECT AND CIVIL ENGINEER FOR RESOLUTION.	ASSESS
THIS SITE PLAN SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE TRTY OWNER AND ALL FUTURE PROPERTY OWNERS. NO CHANGES SHALL BE OUT THE EXPRESS APPROVAL OF THE PORTSMOUTH PLANNING DIRECTOR.	
PLAN SHALL BE RECORDED IN THE ROCKINGHAM COUNTY REGISTRY OF DEEDS. PREPARE A LICENSED LAND SURVEYOR (LLS) STAMPED AS-BUILT SITE PLAN	<u>TITLE:</u>
RMAT) COPY FOR THE CITY'S G.I.S. DATA BASE. TION SHALL PROVIDE A PEDESTRIAN / BICYCLE EASEMENT ACROSS THE FROM TAX MAP 266, LOT 4 TO BANFIELD ROAD. EASEMENT SHALL FOLLOW	
SUBJECT TO BE RELOCATED WITH CONCURRENCE FROM BOTH PARTIES. CITY SPONSIBLE FOR CONSTRUCTION & MAINTENANCE OF ALL WAY FINDING SIGNS &	OV
SUBJECT TO FLEXIBLE PLANNING & BUILT IMPROVEMENTS. AREA DEPICTED LAYGROUND. FINAL LOCATIONS OF EQUIPMENT, HARDSCAPE & PATHS TO BE	SIT
ICATIONS TO PLAYGROUND INSIDE DEPICTED AREA SHALL BE EXEMPT FROM	
SHALL ENSURE THAT BYPASS LANES ARE USABLE AT ALL TIMES. THERE THICLE PARKING ON BANFIELD ROAD. SHOULD THERE BE TRAFFIC ISSUES A	SHEET NUMBER:
ISTRUCTED.	
Ц	

AITUS
ENGINEERING, INC.
133 COURT STREET PORTSMOUTH, NH 03801 (603) 433–2335 www.ALTUS–ENG.com
MINIMUL MEMORY
ERIC D. WEINRIEB
NO. 7034
~ P13/14
ISSUED FOR: PLANNING BOARD
ISSUE DATE:
MAY 31, 2017 REVISIONS
NO. DESCRIPTIONBYDATE0INITIAL SUBMISSIONCDB02/13/17
1PER TAC WS COMMENTS CDB02/23/172PER TAC COMMENTSEDW03/07/173PB COMMENTSEDW05/01/17
4 COND OF APPROVAL EDW 05/31/17
DRAWN BY: CDB APPROVED BY: EDW
DRAWING FILE: 4801-SITE.DWG
$\frac{\text{SCALE:}}{22^{"} \times 34^{"} - 1^{"} = 50^{'}}$
$11" \times 17" - 1" = 100'$
OWNER: HOPE FOR
TOMORROW FOUNDATION
COVE SPACE 36 MAPLEWOOD AVENUE
PORTSMOUTH, N.H. 03801 ASSESSOR'S PARCEL
266-5
APPLICANT:
PATRICK SCHOOL
125 AUSTIN STREET
PORTSMOUTH, N.H. 03801
PROJECT:
ACADEMY 315 BANFIELD ROAD
PORTSMOUTH, N.H.
ASSESSOR'S PARCEL 266-5
<u>TITLE:</u>
OVERALL

SITE PLAN

C-1

TRAFFIC IMPACT ASSESSMENT UPDATE

ST. PATRICK ACADEMY – PROPOSED GYMNASIUM

Portsmouth, New Hampshire

December 2019

Prepared for

Hope for Tomorrow Foundation

Transportation: Engineering • Planning • Design

TRAFFIC IMPACT ASSESSMENT UPDATE ST. PATRICK ACADEMY PROPOSED GYMNASIUM PORTSMOUTH, NEW HAMPSHIRE December 19, 2019

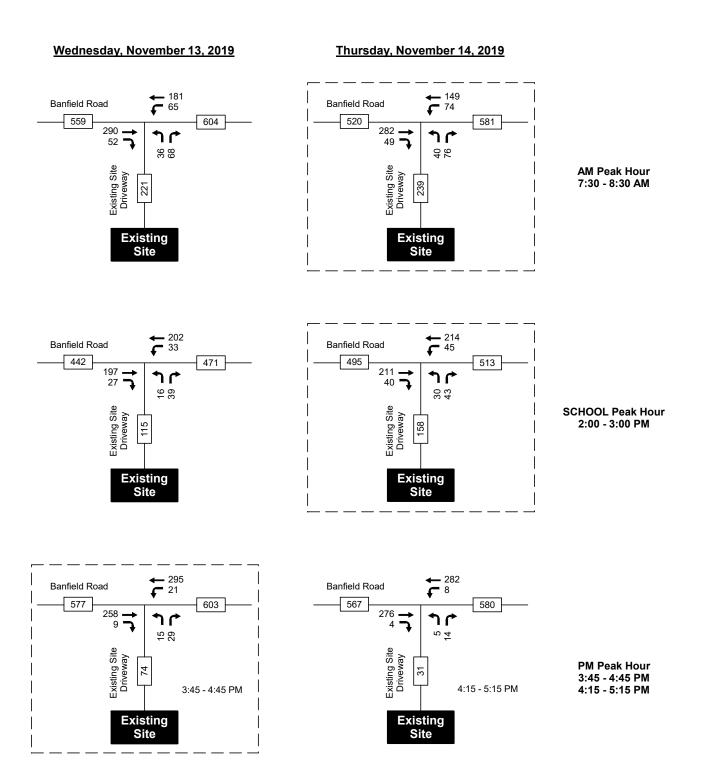
BACKGROUND

On January 31, 2017 this office published the report entitled "*Traffic Impact Assessment -Proposed St. Patrick Academy*" on behalf of the Hope for Tomorrow Foundation. Now that the Academy is in full operation, the Foundation desires to construct a standalone gymnasium building on their property for physical education classes and athletic events. The purpose of this update is to quantify the current trip generating characteristics of the existing school, the anticipated changes in traffic demand due to the proposed gymnasium, and to evaluate the Banfield Road / Existing Site Driveway intersection in terms of traffic operations, capacity, and safety.

CURRENT PROPOSAL

The current development proposal calls for the construction of a 17,000 square-foot gymnasium building on the south side of the subject site. This building will be used primarily for after-school practices (typically from 3-6 PM) and athletic events (typically from 6-8 PM). The building will also be used for occasional concerts, science fairs, dances, and pep rallies.

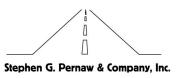
On typical "practice" days, fewer parents will retrieve their children during the normal pick-up time (2-3 PM) since practices generally end at 6 PM, well after the peak traffic hour of the adjacent street system. It is reasonable to expect that parent arrivals will occur between 3-6 PM, as some will arrive early to watch the practice.


On typical "event" days traffic will be affected in several different ways: 1) traveling visitors and referees will arrive before 6 PM and depart after 8 PM, 2) Academy staff will remain on site and depart after 8 PM rather than during the late afternoon, and 3) parents will arrive later in the day in either one or two vehicles to watch the event and then depart after 8 PM.

Additional on-site parking is proposed adjacent to the new gymnasium building. Vehicular access to the gymnasium site will be provided via the existing two-way driveway that currently intersects the south side of Banfield Road. Attachment 1 shows the location of the proposed building with respect to the site and the adjacent street system.

EXISTING TRAFFIC VOLUMES

To quantify the traffic demand and the travel patterns at the Banfield Road / Existing Site Driveway intersection, Pernaw & Company, Inc. conducted turning movement and vehicle classification counts at the intersection on two typical weekdays: Wednesday, November 13, 2019 and Thursday, November 14, 2019. These counts were conducted from 7:00 to 9:00 AM and from 2:00 to 6:00 PM, similar to the original traffic study. Figure 1 summarizes this data for the three analysis periods: the weekday AM Street Peak Hour, the School Peak Hour, and the PM Street Peak Hour.



2019 Existing Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

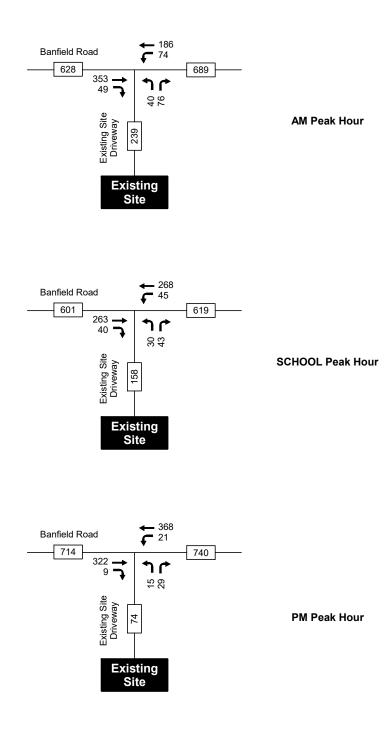
1978A

Several facts and conclusions are evident from this data:

- The Thursday traffic volumes were generally higher than the Wednesday volumes, except for the weekday PM peak hour period. Data from the higher of the two count days were selected for traffic projection and analysis purposes.
- The two-way traffic volume on Banfield Road (east of the subject site) totaled 581 (AM), 513 (School), and 603 (PM) vehicles during the three peak hour periods. The predominant travel direction was eastbound during the AM peak hour; the directional flows were relatively balanced during the school and PM peak hour periods.
- On the higher count days the existing school generated 239 (AM), 158 (School) and 74 (PM) vehicle-trips during the three peak hour periods. The majority of school traffic (56-68%) traveled to/from points east on Banfield Road, depending upon the specific hour.
- During the School peak hour period from 2:00 to 3:00 PM the traffic volumes on Banfield Road are typically lower than during the typical AM and PM commuter peak hour periods.

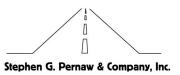
The detail sheets summarizing the raw turning movement count data are found on Attachments 2-11.

CRASH HISTORY


According to the Portsmouth Police Department there have been no reported crashes at the Banfield Road/Existing Site Driveway intersection since the Academy began operations (see, Attachment 12). The closest crashes on Banfield Road occurred at #470 (approximately 1,400 feet west of the Academy site) and #225 (approximately 1,325 feet east of the Academy site).

NO-BUILD TRAFFIC PROJECTIONS

The No-Build traffic volumes for the 2030 horizon year are summarized schematically on Figure 2. These projections are based on the November 2019 traffic volumes, a one-percent annual background traffic growth rate (compounded annually) to account for normal growth in through traffic in the area, and a peak-month seasonal adjustment factor of 1.12 (see Attachment 13).



1978A

2030 No-Build Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

SITE GENERATED TRAFFIC

To estimate the quantity of vehicle-trips that will be produced by the proposed gymnasium, Pernaw & Company, Inc. typically utilizes the trip generation rates published by the Institute of Transportation Engineers (ITE)¹. Unfortunately, there is no applicable ITE land use category. Consequently, the trip estimates contained herein are based upon the manual derivation that reflects the unique circumstances that will occur on a typical "practice" day and "event" day.

Table 1 summarizes the results of this analysis and it shows that on "practice" days there will be a <u>decrease</u> in site traffic during the weekday School peak hour, and a slight <u>increase</u> during the PM peak hour period. On "event" days there will be <u>decreases</u> during both peak hour periods, as most traffic will be exiting from the site after 8 PM, when the traffic volumes on Banfield Road are well below peak levels.

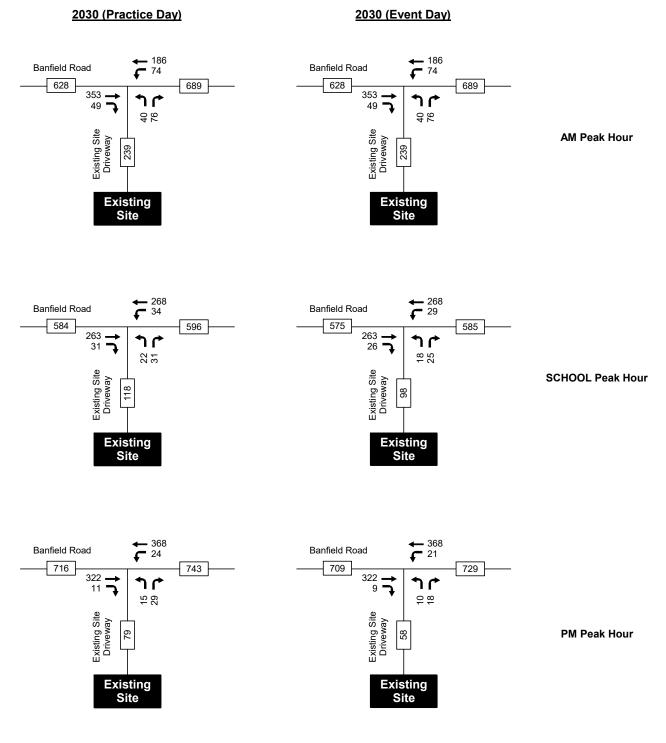
The proposed gymnasium will not alter the traffic flow during the AM Street Peak Hour period.

The additional traffic associated with the gymnasium is expected to mirror the traffic patterns observed at the existing intersection. Attachment 14 shows the distribution of site traffic at this intersection on a typical practice day and event day. The derivation of the trip generation estimates is found on Attachment 15.

BUILD TRAFFIC PROJECTIONS

The Build traffic volumes for the horizon year 2030 are summarized schematically on Figure 3. These projections are based on the No-Build projections, the trip generation estimates contained in Table 1, and the expectation that the additional trips will mirror the travel patterns observed at the existing intersection.

 ¹ Institute of Transportation Engineers, *Trip Generation*, ninth edition (Washington, D.C., 2012).
 1978A 5


Table 1	Table 1 Trip Generation Summary Proposed Gymnasium at St. Patrick Academy								
			Proposed Gymnasium		Post-Development Volumes				
		Existing School ¹	Typical Practice Day ²	Typical Event Day ³	Typical Practice Day	Typical Event Day			
Weekday AM Street	t Peak Hour (7:30 - 8:30 AM)								
	Entering	123 veh	0 veh	0 veh	123 veh	123 veh			
	Exiting	<u>116 veh</u>	<u>0 veh</u>	<u>0 veh</u>	<u>116</u> veh	<u>116 veh</u>			
	Total	239 trips	0 trips	0 trips	239 trips	239 trips			
Weekday School Pe	eak Hour (2:00 - 3:00 PM)								
	Entering	85 veh	-20 veh	-30 veh	65 veh	55 veh			
	Exiting	<u>73 veh</u>	<u>-20 veh</u>	<u>-30 veh</u>	<u>53</u> veh	<u>43 veh</u>			
	Total	158 trips	-40 trips	-60 trips	118 trips	98 trips			
Weekday PM Street	t Peak Hour (4:00 - 5:00 PM +/-)								
	Entering	30 veh	5 veh	0 veh	35 veh	30 veh			
	Exiting	<u>44 veh</u>	<u>0 veh</u>	<u>-16 veh</u>	<u>44</u> veh	<u>28 veh</u>			
	Total	74 trips	5 trips	-16 trips	79 trips	58 trips			
Weekday Total									
	Entering	NA	NA	NA	NA	NA			
	Exiting	NA	NA	NA	NA	NA			
	Total	NA	NA	NA	NA	NA			

Trip Generation Summary

¹ Driveway counts conducted on 11/13/19 and 11/14/19. ² Typical practices run from 3-6 PM. Approximately 20 fewer parents take students at normal time (2-3 PM), and arrive between 3-6 PM to watch and take their children home after 6 PM. ³ Typical events run from 6-8 PM. Approximately 24 staff remain on-site and depart after 8 PM, approximately 30 fewer parents take students at normal time (2-3 PM) and arrive in 1 or 2 vehicles before/after 6 PM to watch and retrieve, approximately 40 travelling visitors & referees arrive before 6 PM and depart after 8 PM.

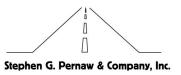

1978A

Figure 3

2030 Build Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

TRAFFIC OPERATIONS AND SAFETY

INTERSECTION CAPACITY – UNSIGNALIZED INTERSECTIONS

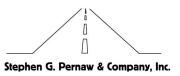
The long-range traffic projections were utilized to assess traffic operations at the existing site driveway intersection on Banfield Road. This intersection was analyzed according to the methodologies of the *Highway Capacity Manual*² as replicated by the latest edition of the *Synchro Traffic Signal Timing Software (Version 9)*, which also performs unsignalized intersection capacity analyses.

Capacity and Level of Service (LOS) calculations pertaining to unsignalized intersections address the quality of service for those vehicles turning into and out of intersecting side streets. The availability of adequate gaps in the traffic stream on the major street actually controls the potential capacity for vehicle movements to and from the minor approach. Levels of Service are simply letter grades (A-F), which categorize the vehicle delays associated with specific turning maneuvers. Table 2 describes the criteria used in this analysis. Calculations pertaining to these analyses are included as Attachments 16-27.

Table 2	Level-of-Service Criteria for Unsignalized Intersections							
Level of Service	Control Delay (seconds/vehicle)							
А	<u><</u> 10.0							
В	> 10.0 and <u><</u> 15.0							
С	> 15.0 and <u><</u> 25.0							
D	> 25.0 and <u><</u> 35.0							
E	> 35.0 and <u><</u> 50.0							
F	> 50.0							

Source: Transportation Research Board, Highway Capacity Manual 2010.

The results of the analysis for the **Banfield Road/Existing Site Driveway** intersection are summarized in Table 3 and confirm that vehicle departures from the Existing Site Driveway will continue to operate <u>below</u> capacity through 2030 with the proposed gymnasium in use on typical "practice" and "event" days. By 2030 long delays (LOS F) should be expected during the morning peak hour period as much of the school traffic is concentrated during the peak 15-minute interval prior to the start of the school day. Favorably, the proposed gymnasium does not affect the driveway volumes during the morning peak hour period.


The analysis also confirms that shorter delays will be encountered during the school peak hour and evening peak hour periods in 2030. The westbound left-turn arrival movement from Banfield Road on to the site driveway will operate at LOS A and with minimal delay during all hours of the day through 2030, with the school gymnasium in full operation.

² Transportation Research Board, *Highway Capacity Manual* (Washington, D.C., 2010).

Table 3	STOP-Controlled Intersection Capacity Analysis Banfield Road / Existing Site Driveway												
		Weekday AM Peak Hour			School Peak Hour			Weekday PM Peak Hour					
		Delay ¹	V/C ²	LOS ³	Queue ⁴	Delay ¹	V/C ²	LOS ³	Queue ⁴	Delay ¹	V/C ²	LOS ³	Queue ⁴
Typical Practice Day													
Existing Site Driveway -	L & R-Turn Departures												
	2030 No-Build	54.2	0.86	F	8	15.9	0.36	С	2	13.9	0.15	В	1
	2030 Build	54.2	0.86	F	8	14.1	0.26	В	1	14.0	0.15	В	1
Banfield Road - WB Lef	ft Turns												
	2030 No-Build	9.2	0.11	А	<1	8.1	0.04	А	<1	8.2	0.02	А	<1
	2030 Build	9.2	0.11	А	<1	8.1	0.03	А	<1	8.2	0.02	А	<1
Typical Event Day													
Existing Site Driveway -	L & R-Turn Departures												
	2030 No-Build	54.2	0.86	F	8	15.9	0.36	С	2	13.9	0.15	В	1
	2030 Build	54.2	0.86	F	8	13.4	0.20	В	1	13.5	0.10	В	<1
Banfield Road - WB Lef	ft Turns												
	2030 No-Build	9.2	0.11	А	<1	8.1	0.04	А	<1	8.2	0.02	А	<1
	2030 Build	9.2	0.11	А	<1	8.0	0.03	А	<1	8.2	0.02	А	<1

¹ HCM Control Delay (seconds per vehicle), ² HCM Volume to Capacity Ratio, ³ HCM Level of Service, ⁴ HCM 95th Percentile Queue (vehicles)

AUXILIARY TURN LANE WARRANTS ANALYSIS

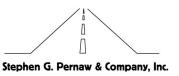
Left-Turn Treatment - The type of treatment needed to accommodate left-turning vehicles from any street or highway to an intersecting side street (or driveway) can range from no treatment, where turning volumes are low; to the provision of a bypass lane for through traffic to travel around left-turning vehicles; to the addition of a formal center turn lane used exclusively by leftturning vehicles for deceleration and storage while waiting to complete their maneuvers.

Analysis of the 2030 Build traffic volumes at the Banfield Road/Existing Site Driveway intersection using NCHRP 457 guidelines confirmed that left-turn treatment is <u>not</u> warranted on Banfield Road for westbound vehicles entering the site driveway. This means that the existing westbound travel lane on Banfield Road will continue to function adequately as a shared left-through lane. Table 4 summarizes the findings of this analysis (see Attachments 28-33).

Table 4 Left-Turn Lane Warrants Analysis Banfield Road / Existing Site Driveway									
	2030 AM Build Volumes	2030 School Build Volumes	2030 PM Build Volumes						
Typical Practice Day									
Peak Hour Inputs									
Left-Turn Volume (WB)	74	34	24						
Advancing Volume (WB)	260	302	392						
Opposing Volume (EB)	402	294	333						
Percent Lefts	28.5%	11.3%	6.1%						
Speed (mph)	30	30	30						
Limiting Advancing Volume (veh/h)	273	437	553						
Conclusion									
Left-Turn Treatment Warranted	NO	NO	NO						
Typical Event Day									
Peak Hour Inputs									
Left-Turn Volume (WB)	74	29	21						
Advancing Volume (WB)	260	297	389						
Opposing Volume (EB)	402	289	331						
Percent Lefts	28.5% 9.8%		5.4%						
Speed (mph)	30	30	30						
Limiting Advancing Volume (veh/h)	273	468	588						
Conclusion									
Left-Turn Treatment Warranted	NO	NO	NO						

Right-Turn Treatment - The type of treatment needed to accommodate right-turning vehicles from any street or highway to any intersecting side street (or driveway) can range from a radius only, where turning volumes are low; to the provision of a short 10:1 right-turn taper; to the addition of an exclusive right-turn lane, where turning volumes and through traffic volumes are significant.

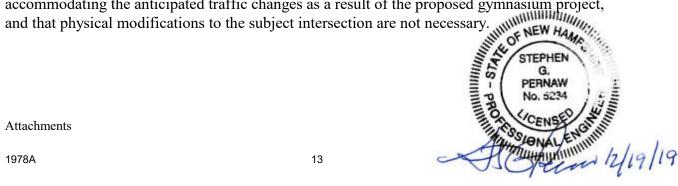
Analysis of the 2030 Build traffic volumes at the Banfield Road/Existing Site Driveway intersection using NCHRP 457 guidelines confirmed that right-turn treatment is <u>not</u> warranted on Banfield Road for eastbound vehicles entering the existing site driveway. This means that the existing eastbound travel lane on Banfield Road will continue to function adequately as a shared through-right lane. The results of these analyses are summarized on Table 5 (see Attachments 34-39).


Table 5		ane Warrants An / Existing Site D	-
	2030 AM Build Volumes	2030 School Build Volumes	2030 PM Build Volumes
Typical Practice Day			
Peak Hour Inputs			
Right-Turn Volume (EB)	49	31	11
Total Approach Volume (EB)	402	294	333
Speed (mph)	30	30	30
Limiting Right-Turn Volume (veh/h)	>1000	>1000	>1000
Conclusion			
Add Right-Turn Bay	NO	NO	NO
Typical Event Day			
Peak Hour Inputs			
Right-Turn Volume (EB)	49	26	9
Total Approach Volume (EB)	402	289	331
Speed (mph)	30	30	30
Limiting Right-Turn Volume (veh/h)	>1000	>1000	>1000
Conclusion			
Add Right-Turn Bay	NO	NO	NO

Minor-Road Approach Treatment – The type of treatment needed to accommodate exiting vehicles from the minor-road approach at a stop-controlled intersection can range from a single lane (shared left-right lane) in low-volume conditions, to two exit lanes (exclusive left-turn lane and exclusive right-turn lane) where turning volumes and through traffic volumes are significant, to multiple exit lanes in extreme cases.

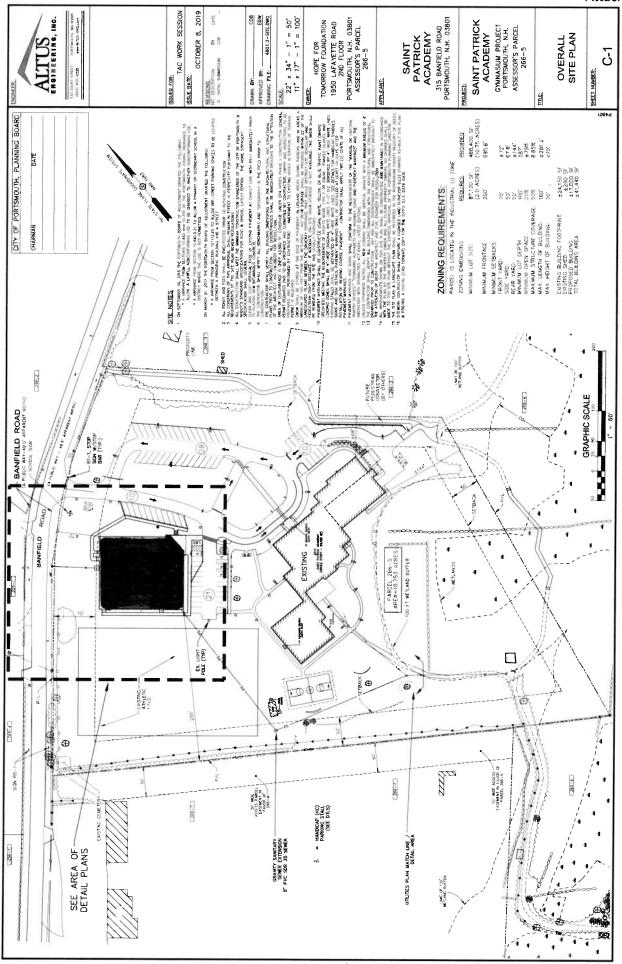
Analysis of the 2030 Build traffic volumes using NCHRP 457 guidelines confirmed that a shared left-right lane on the existing site driveway approach to Banfield Road is sufficient for the anticipated traffic volumes. The results of these analyses are summarized on Table 6 (see Attachments 40-45).

Table 6		Approach Geon / Existing Site D	
	2030 AM Build Volumes	2030 School Build Volumes	2030 PM Build Volumes
Typical Practice Day			
Peak Hour Inputs			
Major-Road Volume (EB-WB)	662	596	725
% Right-Turns on Minor (NB)	66	59	66
Minor-Road Approach Volume	116	53	44
Limiting Minor-Road Volume (veh/h)	344	346	324
Conclusion			
Consider TWO Approach Lanes	NO	NO	NO
Typical Event Day			
Peak Hour Inputs			
Major-Road Volume (EB-WB)	662	586	720
% Right-Turns on Minor (NB)	66	58	64
Minor-Road Approach Volume	116	43	28
Limiting Minor-Road Volume (veh/h)	344	349	320
Conclusion			
Consider TWO Approach Lane:	NO	NO	NO

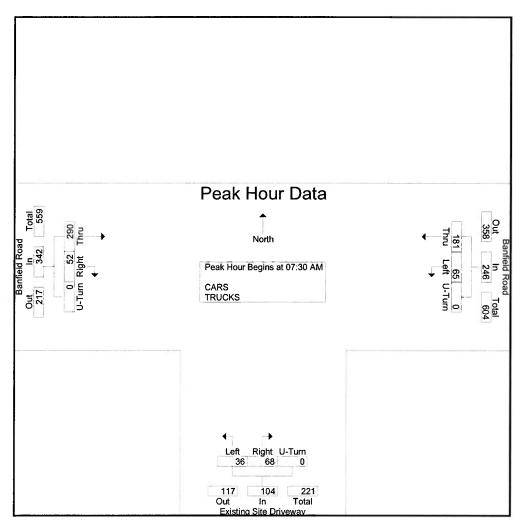


STUDY UPDATE FINDINGS AND RECOMMENDATIONS

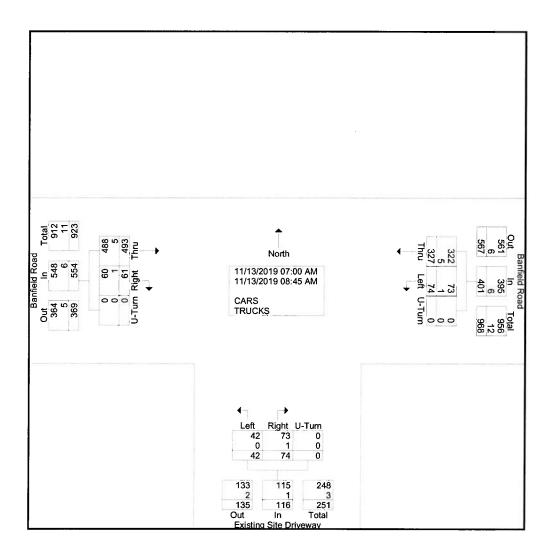
Based on the existing conditions data collected at the Banfield Road/Existing Site Driveway, the anticipated traffic increases from the proposed gymnasium, and the analysis of the 2030 horizon year traffic volumes, Pernaw & Company, Inc. concludes that:


- 1. During the morning peak hour, traffic levels were highest from 7:30 to 9:30 AM on both count days. The higher driveway volume occurred on Thursday, November 14, 2019 when a total of 239 vehicles was observed arriving/departing from the site driveway. The majority of school vehicles traveled to/from points east on Banfield Road.
- 2. During the school peak hour (2:00 to 3:00 PM), the higher driveway volume occurred on Thursday, November 14, 2019 when a total of 158 vehicles was observed arriving/departing from the site driveway. Similarly, the majority of school vehicles traveled to/from points east on Banfield Road.
- 3. During the evening peak hour, traffic levels were highest from 3:45 to 4:45 PM on Wednesday, November 13, 2019 when a total of 74 vehicles was observed arriving/departing from the site driveway. Again, the majority of school vehicles traveled to/from points east on Banfield Road.
- 4. The trip generation analysis indicates that on "practice" days the proposed gymnasium will result in traffic decreases during the weekday School peak hour, and a slight increase during the PM peak hour period. This is primarily due to fewer student "pick-ups" immediately after school; with more site departures occurring after 6:00 PM when practices have ended. On "event" days there will be decreases during both the school and evening peak hour periods, as most traffic will be arriving prior to 6:00 PM and departing after 8:00 PM, when most events typically end.
- 5. The intersection capacity and Level of Service analyses indicate that all applicable traffic movements will operate below capacity through 2030 on both practice days and event days. Long delays will continue to be encountered during the morning peak hour as most traffic is concentrated during the 15-minute interval prior to the start of the school day. Favorably, the proposed gymnasium will not alter the traffic demand during the AM peak hour period.
- 6. The 2030 horizon year auxiliary turn lane warrants analyses confirmed that this intersection will continue to operate safely and efficiently with one shared generalpurpose travel lane on each approach to this intersection.

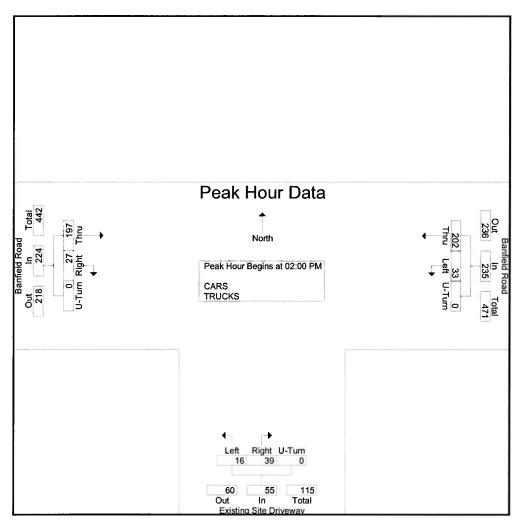
To conclude, the recent traffic counts, future projections and technical analyses contained herein demonstrate that the Banfield Road/Existing Site Driveway intersection is capable of accommodating the anticipated traffic changes as a result of the proposed gymnasium project,


ATTACHMENTS

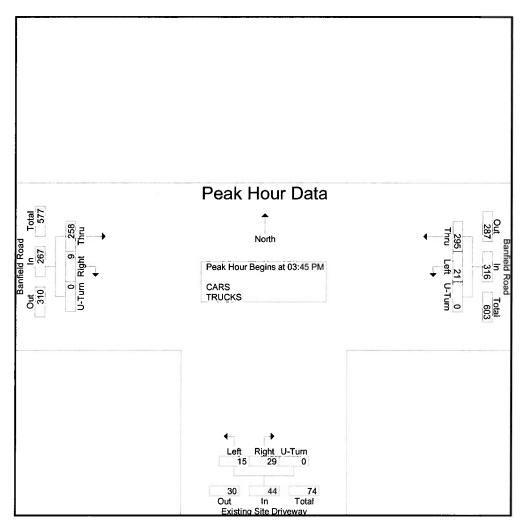
Attachment 1


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		Ē	Ŷ	ite Drivev South	vay			eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis F	rom 07:00	AM to (08:45 AM	- Peak 1 of 1	-			• • • •					
Peak Hour for Entire	Intersectio	on Begins	s at 07:30	AM .									
07:30 AM	38	15	0	53	6	2	0	8	7	64	0	71	132
07:45 AM	50	37	0	87	38	24	0	62	38	90	0	128	277
08:00 AM	44	11	0	55	22	8	0	30	5	80	0	85	170
08:15 AM	49	2	0	51	2	2	0	4	2	56	0	58	113
Total Volume	181	65	0	246	68	36	0	104	52	290	0	342	692
% App. Total	73.6	26.4	0		65.4	34.6	0		15.2	84.8	0		
PHF	.905	.439	.000	.707	.447	.375	.000	.419	.342	.806	.000	.668	.625


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

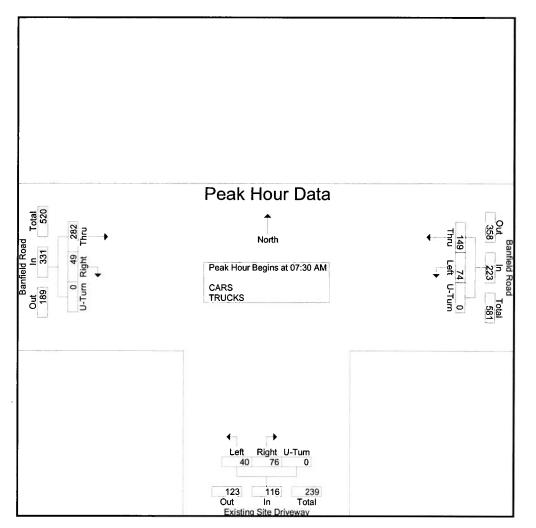
					Groups Pri	nted- CA	RS - TRU	JCKS					
			eld Road n East				ite Drivew South				eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
07:00 AM	21	5	0	26	1	1	0	2	3	28	0	31	59
07:15 AM	38	3	0	41	3	2	0	5	4	53	0	57	103
07:30 AM	38	15	0	53	6	2	0	8	7	64	0	71	132
07:45 AM	50	37	0	87	38	24	0	62	38	90	0	128	277
Total	147	60	0	207	48	29	0	77	52	235	0	287	571
08:00 AM	44	11	0	55	22	8	0	30	5	80	0	85	170
08:15 AM	49	2	0	51	2	2	0	4	2	56	0	58	113
08:30 AM	49	0	0	49	2	1	0	3	0	50	0	50	102
08:45 AM	38	1	0	39	0	2	0	2	2	72	0	74	115
Total	180	14	0	194	26	13	0	39	9	258	0	267	500
Grand Total	327	74	0	401	74	42	0	116	61	493	0	554	1071
Apprch %	81.5	18.5	0		63.8	36.2	0		11	89	0		
Total %	30.5	6.9	0	37.4	6.9	3.9	0	10.8	5.7	46	0	51.7	
CARS	322	73	0	395	73	42	0	115	60	488	0	548	1058
% CARS	98.5	98.6	0	98.5	98.6	100	0	99.1	98.4	99	0	98.9	98.8
TRUCKS	5	1	0	6	1	Ö	0	1	1	5	0	6	13
% TRUCKS	1.5	1.4	0	1.5	1.4	0	0	0.9	1.6	1	0	1.1	1.2


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E	•	ite Drivev South	/ay			eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis I	From 02:00	PM to (2:45 PM	- Peak 1 of 1				•••					
Peak Hour for Entire	Intersectio	on Begins	at 02:00	PM									
02:00 PM	56	1	0	57	1	0	0	1	0	45	0	45	103
02:15 PM	45	4	0	49	0	0	0	0	3	59	0	62	111
02:30 PM	54	15	0	69	16	8	0	24	13	50	0	63	156
02:45 PM	47	13	0	60	22	8	0	30	11	43	0	54	144
Total Volume	202	33	0	235	39	16	0	55	27	197	0	224	514
% App. Total	86	14	0		70.9	29.1	0		12.1	87.9	0		
PHF	.902	.550	.000	.851	.443	.500	.000	.458	.519	.835	.000	.889	.824

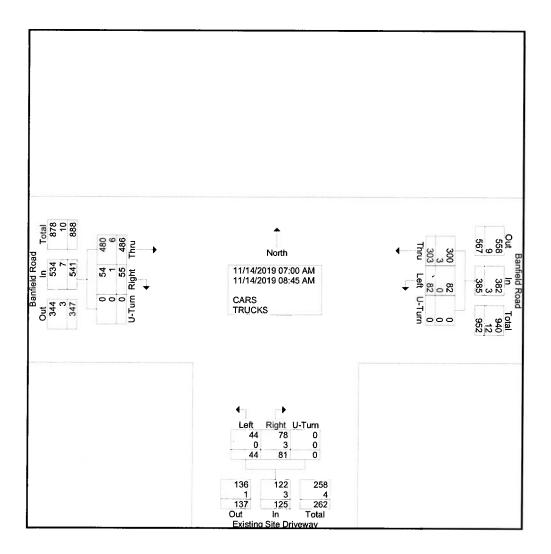
Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E		ite Drivev South	vay			eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis I	From 03:00	PM to C	5:45 PM	- Peak 1 of 1					-				
Peak Hour for Entire	Intersectio	on Begins	at 03:45	PM									
03:45 PM	71	11	0	82	7	3	0	10	6	54	0	60	152
04:00 PM	81	7	0	88	15	3	0	18	2	57	0	59	165
04:15 PM	75	1	0	76	6	6	0	12	0	63	0	63	151
04:30 PM	68	2	0	70	1	3	0	4	1	84	0	85	159
Total Volume	295	21	0	316	29	15	0	44	9	258	0	267	627
% App. Total	93.4	6.6	0		65.9	34.1	0		3.4	96.6	0		
PHF	.910	.477	.000	.898	.483	.625	.000	.611	.375	.768	.000	.785	.950

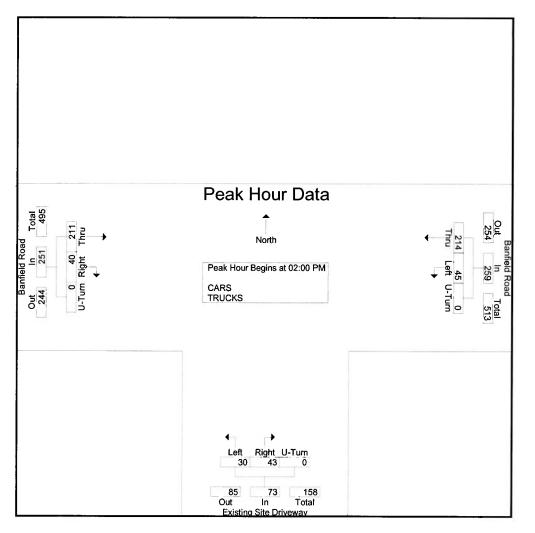


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

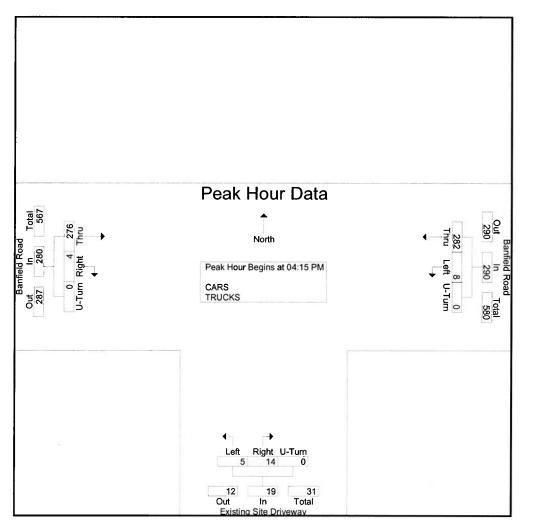
	6a.				Groups Pri	nted- CA	RS - TRU	JCKS					
		Fror	eld Road n East				ite Drivew South				eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
03:00 PM	54	5	0	59	9	3	0	12	0	45	0	45	116
03:15 PM	67	3	0	70	1	2	0	3	2	68	0	70	143
03:30 PM	88	4	0	92	5	0	0	5	0	56	0	56	153
03:45 PM	71	11	0	82	7	3	0	10	6	54	0	60	152
Total	280	23	0	303	22	8	0	30	8	223	0	231	564
04:00 PM	81	7	0	88	15	3	0	18	2	57	0	59	165
04:15 PM	75	1	0	76	6	6	0	12	0	63	0	63	151
04:30 PM	68	2	0	70	1	3	0	4	1	84	0	85	159
04:45 PM	73	0	0	73	4	1	0	5	1	59	0	60	138
Total	297	10	0	307	26	13	0	39	4	263	0	267	613
05:00 PM	81	2	0	83	1	2	0	3	0	81	0	81	167
05:15 PM	93	0	0	93	2	3	0	5	2	60	0	62	160
05:30 PM	62	0	0	62	1	0	0	1	1	47	0	48	111
05:45 PM	47	0	0	47	2	1	0	3	1	62	0	63	113
Total	283	2	0	285	6	6	0	12	4	250	0	254	551
Grand Total	860	35	0	895	54	27	0	81	16	736	0	752	1728
Apprch %	96.1	3.9	0		66.7	33.3	0		2.1	97.9	0		
Total %	49.8	2	0	51.8	3.1	1.6	0	4.7	0.9	42.6	0	43.5	
CARS	846	35	0	881	54	27	0	81	15	731	0	746	1708
% CARS	98.4	100	0	98.4	100	100	0	100	93.8	99.3	0	99.2	98.8
TRUCKS	14	0	0	14	0	0	0	0	1	5	0	6	20
% TRUCKS	1.6	0	0	1.6	0	0	0	0	6.2	0.7	0	0.8	1.2


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E	•	ite Drivev South	vay			eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis I	From 07:00	O AM to (08:45 AM	- Peak 1 of 1									
Peak Hour for Entire	Intersectio	on Begins	s at 07:30	AM									
07:30 AM	34	13	0	47	4	6	0	10	11	56	0	67	124
07:45 AM	32	45	0	77	53	22	0	75	29	103	0	132	284
08:00 AM	40	14	0	54	18	9	0	27	7	68	0	75	156
08:15 AM	43	2	0	45	1	3	0	4	2	55	0	57	106
Total Volume	149	74	0	223	76	40	0	116	49	282	0	331	670
% App. Total	66.8	33.2	0		65.5	34.5	0		14.8	85.2	0		
PHF	.866	.411	.000	.724	.358	.455	.000	.387	.422	.684	.000	.627	.590


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

								Groups Pri					
		ld Road West			ıy	te Drivew South				ld Road n East	From		
Int. Tota	App. Total	U-Turn	Thru	Right	App. Total	U-Turn	Left	Right	App. Total	U-Turn	Left	Thru	Start Time
57	27	0	25	2	1	0	1	0	29	0	2	27	07:00 AM
98	59	0	56	3	2	0	1	1	37	0	4	33	07:15 AM
124	67	0	56	11	10	0	6	4	47	0	13	34	07:30 AM
284	132	Ō	103	29	75	0	22	53	77	0	45	32	07:45 AM
563	285	0	240	45	88	0	30	58	190	Ó	64	126	Total
156	75	0	68	7	27	0	9	18	54	0	14	40	08:00 AM
106	57	0	55	2	4	0	3	1	45	0	2	43	08:15 AM
117	66	0	65	1	2	0	1	1	49	0	1	48	08:30 AM
109	58	0	58	0	4	0	1	3	47	0	1	46	08:45 AM
488	256	0	246	10	37	0	14	23	195	0	18	177	Total
1051	541	0	486	55	125	0	44	81	385	0	82	303	Grand Total
		0	89.8	10.2		0	35.2	64.8		0	21.3	78.7	Apprch %
	51.5	0	46.2	5.2	11.9	0	4.2	7.7	36.6	0	7.8	28.8	Total %
1038	534	0	480	54	122	0	44	78	382	0	82	300	CARS
98.8	98.7	0	98.8	98.2	97.6	0	100	96.3	99.2	0	100	99	% CARS
13	7	0	6	1	3	0	0	3	3	0	0	3	TRUCKS
1.2	1.3	0	1.2	1.8	2.4	0	0	3.7	0.8	0	0	1	% TRUCKS


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E	•	ite Drivev n South	/ay			eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis	From 02:00	OPM to (02:45 PM	- Peak 1 of 1	-				_				
Peak Hour for Entire	Intersectio	on Begin	s at 02:00	PM									
02:00 PM	50	1	0	51	1	0	0	1	0	57	0	57	109
02:15 PM	65	9	0	74	2	0	0	2	3	50	0	53	129
02:30 PM	51	16	0	67	15	8	0	23	10	58	0	68	158
02:45 PM	48	19	0	67	25	22	0	47	27	46	0	73	187
Total Volume	214	45	0	259	43	30	0	73	40	211	0	251	583
% App. Total	82.6	17.4	0		58.9	41.1	0		15.9	84.1	0		
PHF	.823	.592	.000	.875	.430	.341	.000	.388	.370	.909	.000	.860	.779

Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E		ite Drivev n South	vay			eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis F	From 03:00) PM to (05:45 PM	- Peak 1 of 1									
Peak Hour for Entire	Intersectio	n Begins	s at 04:15	PM									
04:15 PM	72	2	0	74	7	2	0	9	2	61	0	63	146
04:30 PM	66	4	0	70	5	1	0	6	1	70	0	71	147
04:45 PM	67	2	0	69	2	0	0	2	0	68	0	68	139
05:00 PM	77	0	0	77	0	2	0	2	1	77	0	78	157
Total Volume	282	8	0	290	14	5	0	19	4	276	0	280	589
% App. Total	97.2	2.8	0		73.7	26.3	0		1.4	98.6	0		
PHF	.916	.500	.000	.942	.500	.625	.000	.528	.500	.896	.000	.897	.938

Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

					Groups Pri	inted- CA	RS - TRI	JCKS					
		From	eld Road n East				ite Drivew South	-			ld Road		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
03:00 PM	67	4	0	71	10	4	0	14	0	54	1	55	140
03:15 PM	74	1	0	75	1	0	0	1	0	67	0	67	143
03:30 PM	98	2	0	100	8	2	0	10	1	54	0	55	165
03:45 PM	68	1	0	69	5	1	0	6	1	56	0	57	132
Total	307	8	0	315	24	7	0	31	2	231	1	234	580
04:00 PM	71	5	0	76	3	4	0	7	2	58	0	60	143
04:15 PM	72	2	0	74	7	2	0	9	2	61	0	63	146
04:30 PM	66	4	0	70	5	1	0	6	1	70	0	71	147
04:45 PM	67	2	0	69	2	0	0	2	0	68	0	68	139
Total	276	13	0	289	17	7	0	24	5	257	0	262	575
05:00 PM	77	0	0	77	0	2	0	2	1	77	0	78	157
05:15 PM	67	3	0	70	4	3	0	7	0	63	0	63	140
05:30 PM	56	0	0	56	0	0	0	0	0	55	0	55	111
05:45 PM	41	0	0	41	0	0	0	0	0	54	0	54	95
Total	241	3	0	244	4	5	0	9	1	249	0	250	503
Grand Total	824	24	0	848	45	19	0	64	8	737	1	746	1658
Apprch %	97.2	2.8	0		70.3	29.7	0		1.1	98.8	0.1		
Total %	49.7	1.4	0	51.1	2.7	1.1	0	3.9	0.5	44.5	0.1	45	
CARS	809	24	0	833	45	19	0	64	8	730	1	739	1636
% CARS	98.2	100	0	98.2	100	100	0	100	100	99.1	100	99.1	98.7
TRUCKS	15	0	0	15	0	0	0	0	0	7	0	7	22
% TRUCKS	1.8	0	0	1.8	0	0	0	0	0	0.9	0	0.9	1.3

Stephen G. Pernaw

From:	eric weinrieb <eric@altusengineering2.onmicrosoft.com></eric@altusengineering2.onmicrosoft.com>
Sent:	Wednesday, December 4, 2019 8:41 AM
То:	sgp@pernaw.com
Subject:	FW: St Patricks Academy crash data

Eric

Altus Engineering, Inc. 133 Court Street Portsmouth, NH 03801

From: Nicole Pappaioanou <<u>NPappaioanou@cityofportsmouth.com</u>> Sent: Thursday, November 14, 2019 1:58 PM To: eric weinrieb <<u>eric@altusengineering2.onmicrosoft.com</u>> Subject: RE: St Patricks Academy crash data

I ran a query for accidents on Banfield Rd from 4/1/2018 to today. I have no idea where 300 feet from the St Pat's driveway is on the road so I guessed. I had 2 accidents. One was located at 225 Banfield and the other was located at 470 Banfield.

Nicole Pappaioanou Portsmouth Police Department Office Manager Records Unit Phone (603)610-7446 Fax (603)610-7670

From: eric weinrieb [mailto:eric@altusengineering2.onmicrosoft.com] Sent: Wednesday, November 13, 2019 4:21 PM To: Nicole Pappaioanou <<u>NPappaioanou@cityofportsmouth.com</u>> Cc: James Broom <<u>ipatrickbroom@gmail.com</u>> Subject: St Patricks Academy crash data

Nichole,

Thank you for taking the time to talk to me earlier today.

As suggested attached is a request on letterhead asking for crash data for the Banfield Road area near the new St Patricks Academy.

Thank you for your time.

Stephen G. Pernaw & Company, Inc.

		Adjustn	nent to
<u>Month</u>	ADT	Average	Peak
Jan	11,282	1.13	1.24
Feb	11,848	1.08	1.18
Mar	11,828	1.08	1.18
Apr	12,491	1.02	1.12
Мау	13,587	0.94	1.03
Jun	13,911	0.92	1.00
Jul	13,765	0.93	1.01
Aug	13,945	0.92	1.00
Sep	13,168	0.97	1.06
Oct	13,367	0.96	1.04
Nov	12,215	1.05	1.14
Dec	11,963	1.07	1.17

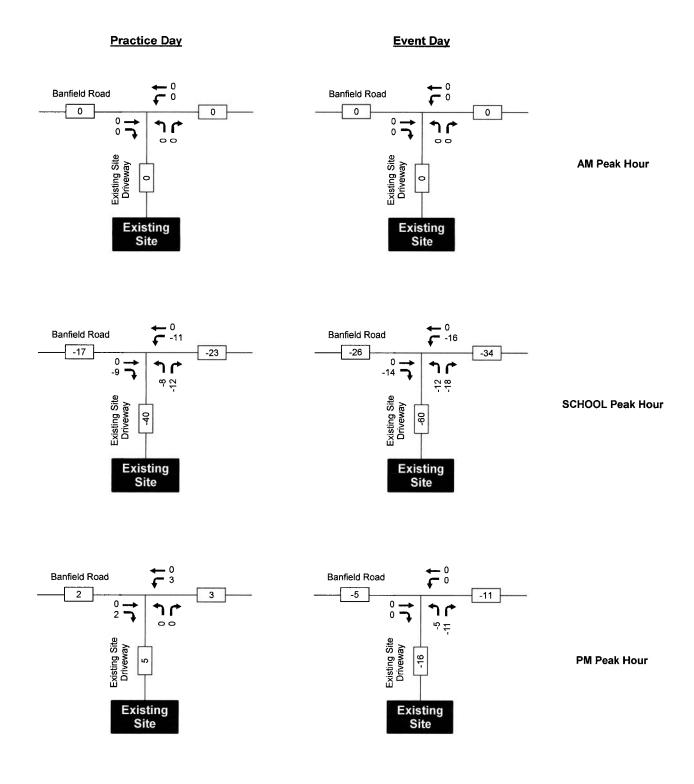
Year 2018 Monthly Data - Urban

Year 2017 Monthly Data - Urban

		Adjust	ment to
<u>Month</u>	ADT	Average	Peak
Jan	12254	1.21	1.33
Feb	13494	1.10	1.21
Mar	14335	1.03	1.14
Apr	15004	0.99	1.09
Мау	15547	0.95	1.05
Jun	16310	0.91	1.00
Jul	15523	0.95	1.05
Aug	15974	0.93	1.02
Sep	15546	0.95	1.05
Oct	15104	0.98	1.08
Nov	14544	1.02	1.12
Dec	14151	1.05	1.15

Year 2016 Monthly Data - Urban

		Adjustr	nent to
<u>Month</u>	ADT	Average	Peak
Jan	13573	1.16	1.25
Feb	14038	1.12	1.21
Mar	15731	1.00	1.08
Apr	16139	0.97	1.05
Мау	15705	1.00	1.08
Jun	16766	0.94	1.01
Jul	15752	1.00	1.08
Aug	16529	0.95	1.03
Sep	17007	0.92	1.00
Oct	16598	0.94	1.02
Nov	15649	1.00	1.09
Dec	14638	1.07	1.16


Average Peak-Month Factor 1.12

Å

NORTH

Attachment

Site Generated Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

Stephen G. Pernaw & Company, Inc.

Δ

	Parent P	ick-Ups ¹	Visitors	/Refs ²	Sta	ff ³	т	OTAL TRIF	vs
	Enter	Exit	Enter	Exit	Enter	Exit	Enter	Exit	Total
Typical Event Days						··			
2-3 PM	-30	-30					-30	-30	-60
3-4 PM						-8	0	-8	-8
4-5 PM						-16	0	-16	-16
5-6 PM	40		40				80	0	80
6-7 PM	5						5	0	5
7-8 PM							0	0	0
8-9 PM		45		40		24	0	109	109
Total:	15	15	40	40		0	55	55	110
Typical Practice Day	ys								
2-3 PM	-20	-20					-20	-20	-40
3-4 PM	5						5	0	5
4-5 PM	5						5	0	5
5-6 PM	5						5	0	5
6-7 PM	5	20					5	20	25
7-8 PM							0	0	0
8-9 PM							0	0	0
Total:	0	0	0	0	0	0	0	0	0

Trip Generation Derivation - Proposed Gymnasium

¹ Event Days: Approximately 30 fewer parents take students at normal time (2-3 PM) and arrive in 1 or 2 vehicles before/after 6 PM to watch and retrieve.

Practice Days: Approximately 20 fewer parents take student at normal time (2-3 PM) and arrive between 3-6 PM to watch and retreive.

² Event Days: Approximately 40 travelling visitors & referees arrive before 6 PM and depart after 8 PM.

* Event Days: Approximatley 24 staff from St. Patrick remain on-site and depart after 8 PM.

Intersection	1987 CA	A PARA	237			0.225-37
Int Delay, s/veh	13.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			र्भ	Y	
Traffic Vol, veh/h	353	/ 49.	/ 74	/186		/ 76/
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None		None
Storage Length	-	-	_	-	0	-
Veh in Median Storage	,# 0		-	0	0	-
Grade, %	0	-	- Call	0	0	_
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mvmt Flow	560	78	103	258	103	195
WWITEFIOW	000	10	103	200	105	195
Major/Minor N	Major1	N	Aajor2	N	Ainor1	
Conflicting Flow All	0	0	638	0	1063	599
Stage 1	9.22	1	-	-	599	-
Stage 2	_	_	_	-	464	_
Critical Hdwy		-	4.1	-	6.4	6.21
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2		13000			5.4	
Follow-up Hdwy	-	-	2.2	-	3.5	
Pot Cap-1 Maneuver		1.5.2542.5	956	ALC: NO.	249	503
Stage 1	_	-	300	_	553	505
	102.9590					
Stage 2		1	-		637	51 4 - - 1
Platoon blocked, %	•	-		-		-
Mov Cap-1 Maneuver	5	-	956		218	503
Mov Cap-2 Maneuver	-	-	-	-	218	-
Stage 1	-	-	-	-	553	1000-00
Stage 2	-	-	-	-	557	-
Approach	EB		WB	ALC: NO	NB	1500
HCM Control Delay, s	0	13153	2.6	-	54.2	1.5 7 10.
HCM LOS		10000	2.0		F	
					302253	
	100-5195					
Minor Lane/Major Mvm	t M	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	a de no
HCM Lane V/C Ratio		0.857	-	-	0.108	-
HCM Control Delay (s)		54.2	-	-	9.2	0
HCM Lane LOS		F	-	-	А	А
HCM 95th %tile Q(veh)		7.9	-	-	0.4	-
ioni oour muio a(ven)		1.0		10 STR 500 ST	U.T	

Intersection

Intersection	N. S. W.	S. S. Walt	-2. 45	11/22	24.4.21	Start Start
Int Delay, s/veh	13.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			र्स	Y	
Traffic Vol, veh/h	353	/ 49	/ 74	/186.		76
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	_	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mymt Flow	560	78	103	258	103	195
	000	10	105	200	105	190
Major/Minor N	/lajor1	Stand	Major2	3. States	Minor1	S. Strand
Conflicting Flow All	0	0	638	0	1063	599
Stage 1	-	-	-	-	599	-
Stage 2	-	-	-	-	464	-
Critical Hdwy	-	-	4.1	-	6.4	6.21
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	- 1
Follow-up Hdwy	-	-	2.2	-	3.5	3.309
Pot Cap-1 Maneuver	-	1221	956	- 11	249	503
Stage 1	-	-	-	-	553	-
Stage 2	-	100		12/22 -	637	
Platoon blocked, %	-	_		_	007	
Mov Cap-1 Maneuver			956	10000	218	503
	-	•		1. S. S.		
Mov Cap-2 Maneuver	-	-	-	-	218	-
Stage 1	-	580 B .	-	1.11.17	553	-
Stage 2	-	-	-	-	557	-
Approach	EB		WB	5.22	NB	
HCM Control Delay, s	0	2323022	2.6	001575	54.2	1.1.1.1.1.1.
HCM LOS					F	
					SPANDS	
	-	101 4			14151	14/57
Minor Lane/Major Mvmt	a share	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	State 1
HCM Lane V/C Ratio		0.857	-	-	0.108	-
HCM Control Delay (s)		54.2	-	- 10	9.2	0
HCM Lane LOS		F	-	-	А	А
HCM 95th %tile Q(veh)		7.9	-	-	0.4	25 A

Intersection	all constants	C. Marile		The same	and the second	a to a to a
Int Delay, s/veh	3.8	and shall	2.550 m	710.30	C. C. Control	THE YOR .
-		-	10.001	10/00 00		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4		1	र्भ	۲	
Traffic Vol, veh/h	263	/ 40		268		
Future Vol, veh/h	263	40	45	268	30	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None		None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	47	51	305	77	110
Majan/Minas	Interio	THE THE P	1-1-0	100000	1	C. E. S. Verra
	1ajor1		Major2		Minor1	
Conflicting Flow All	0	0	353	0	737	330
Stage 1	-	-		-	330	-
Stage 2	-	-	-	-	407	-
Critical Hdwy	-	-	4.12	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	100-	4	-	5.4	- 1°
Follow-up Hdwy	-	-	2.218	-	3.5	3.3
Pot Cap-1 Maneuver	-		1206		389	716
Stage 1	-	-		-	733	- 10
Stage 2	1997			_	676	5726.9
Platoon blocked, %	-			-	0/0	
Mov Cap-1 Maneuver		Superior.	1206		200	716
	-	1.50		-	369	
Mov Cap-2 Maneuver	-	-	-	-	369	-
Stage 1	23 5	-	1	-	733	-
Stage 2	-	-	-	-	642	-
Approach	EB	and the	WB	08 007	NB	1. 1. 2. 18
HCM Control Delay, s	0	12,10,55	12	122210	15.9	1757 IV
HCM LOS	V		1.2		10.0 C	
					U	
	6924	State -				04192.6
Minor Lane/Major Mvmt	1.00	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	a sale	516	-		1206	-
HCM Lane V/C Ratio		0.363	_		0.042	-
HCM Control Delay (s)		15.9			8.1	0
HCM Lane LOS		С	-	-	A	A
HCM 95th %tile Q(veh)		1.6	-	-	0.1	
			and the second second			

Intersection	2. Are	23.8	1.01	S. S. R.	112	15216
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	LUIN	WDL	÷,	Y	TADIX
Traffic Vol, veh/h	263	/ 31.	1 31	/268,		31_
Future Vol, veh/h	263	31	34	268	22	31
and the second sec	203	0	0	200	0	0
Conflicting Peds, #/hr		Free		Free		
Sign Control RT Channelized	Free -	None	Free		Stop	Stop None
	5		-		-	
Storage Length	щ о -	-	beach Lives	-	0	-
Veh in Median Storage,		- 10	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	36	39	305	56	79
Major/Minor M	lajor1	-54.0	Major2	12863	Minor1	Sector Sector
Conflicting Flow All	0	0	342	0	707	324
		U			324	
Stage 1	-	-	-			-
Stage 2	-	-	-	-	383	-
Critical Hdwy	-	-	4.12	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	•
Follow-up Hdwy	-	-	2.218	-	3.5	3.3
Pot Cap-1 Maneuver	-		1217	-	405	722
Stage 1	-	-	-	-	738	-
Stage 2	-	-	-	-	694	100-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1217	-	389	722
Mov Cap-2 Maneuver	-	-	_	-	389	-
Stage 1	-				738	
Stage 2		13 6 5 2	NORS TO S	CARE (0)	667	_
olaye 2	0,000,0	-	1224	L.H. M. O	007	-
						1000000
Approach	EB	Ser Stra	WB		NB	10 min Par
HCM Control Delay, s	0		0.9		14.1	
HCM LOS					В	
Minor Lane/Major Mvmt	1000	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		533			1217	-
HCM Lane V/C Ratio		0.255	-		0.032	_
		14.1	erson v	-	8.1	0
HCM Control Delay (s)			1000	10000		
HCM Lane LOS		B	-	-	A	Α
HCM 95th %tile Q(veh)		1	1000	-	0.1	-

Intersection	1	99921	10.10	199	The states	12-213
Int Delay, s/veh	1.3					
		EDD	MDI	WDT	MIDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1+	10	101	4	¥ 15	/ 00
Traffic Vol, veh/h	322	9.	Constant and the second		15.	
Future Vol, veh/h	322	9	21	368	15	29
Conflicting Peds, #/hr	0	0	0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mvmt Flow	408	11	23	409	25	48
Major/Minor Ma	nior1	11110	Anior?	1.000	Minor1	
	ajor1		Major2			44.4
Conflicting Flow All	0	0	419	0	869	414
Stage 1	1	-	10. CA	-	414	213 - 8
Stage 2	-	-	-	-	455	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-		5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1151	-	325	643
Stage 1	-	-	-	-	671	-
Stage 2	-	-		-	643	-
Platoon blocked, %	_	-		-		and the second second
Mov Cap-1 Maneuver	-	102.0	1151	-	317	643
Mov Cap-2 Maneuver	_		1101	-	317	040
			19.244		671	1 : <u>.</u>
Stage 1	-			-		
Stage 2	-	-			626	-
Approach	EB		WB	- S. C. S.	NB	an series
HCM Control Delay, s	0		0.4		13.9	-
HCM LOS					В	
					(2) (2) (2)	
	12.1111111	10.000.000				
Minor Lane/Major Mvmt	and the second	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		476	-	-	1151	-
HCM Lane V/C Ratio		0.152	-	-	0.02	-
HCM Control Delay (s)		13.9	-		8.2	0
HCM Lane LOS		В	-	-	А	А
HCM 95th %tile Q(veh)	1	0.5	-	Sil-	0.1	
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Intersection	ALC: T		N. S. S.			14 197
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LUIN	TIDE	म	Y	NDIN
Traffic Vol, veh/h	322	/11.	/ 24	368		29
Future Vol, veh/h	322	11	24	368	15	29
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0		-	0	0	1000
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mymt Flow	408	14	27	409	25	48
WWIITTIOW	400	17	L 1	100	20	40
	Najor1		Major2		Minor1	
Conflicting Flow All	0	0	422	0	878	415
Stage 1	-	-	-	1	415	-
Stage 2	-	-	-	-	463	-
Critical Hdwy	-	-	4.1	-	6,4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	- 15	- 19	1148	-	321	642
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	638	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1148	-	311	642
Mov Cap-2 Maneuver	-	-	-	-	311	-
Stage 1		200			671	1999-19
Stage 2	-	-	-	-	619	_
Olugo 2					010	
		and the second second	10.17			
Approach	EB	Sec.	WB	THE PARTY	NB	S. NOIL
HCM Control Delay, s	0		0.5		14	
HCM LOS					В	
Minor Lane/Major Mvm		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	S. S. P.P.	471	_	1	1148	-
HCM Lane V/C Ratio		0.153	-		0.023	-
HCM Control Delay (s)		14	100		8.2	0
HCM Lane LOS		В	-	-	A	A
HCM 95th %tile Q(veh)		0.5			0.1	~
now sour whe d(ven)		0.0			0.1	

Intersection		12 23 11	(Land	Streel P		15.46.75
Int Delay, s/veh	13.2			And and a second		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	101 101	LUIN	TIDE	4	NDL	NUN
Traffic Vol, veh/h	353	49	74	186.		76
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	+5	0	0	40	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	Fiee		Stop -	14.1
Storage Length		None -		NONG	0	None -
Veh in Median Storage,	# 0			0	0	2)
		-				
Grade, %	0	<u>-</u>	- 70	0	0	-
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mvmt Flow	560	78	103	258	103	195
Major/Minor N	lajor1	A	/lajor2		Minor1	A STATISTICS
Conflicting Flow All	0	0	638	0	1063	599
Stage 1	-	-	- 000	v	599	-
Stage 2	-			all a second	464	- -
Critical Hdwy		1000	4.1	CUT YORK	6.4	6.21
		1000			0.4 5.4	
Critical Hdwy Stg 1			-	-		-
Critical Hdwy Stg 2	-	1. 2.	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	
Pot Cap-1 Maneuver	-	-	956	-	249	503
Stage 1	-	-	-	-	553	-
Stage 2		-		-	637	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	956	-	218	503
Mov Cap-2 Maneuver	-	-	-	-	218	-
Stage 1	-	-	-	-	553	-
Stage 2	-	-	-	-	557	-
					5 62.51	
Approach	ED	STR. COLUMN		CETECKEEN	ND	
Approach	EB	No. Star	WB	STO-MARK	NB	String State
HCM Control Delay, s	0		2.6		54.2	
HCM LOS					F	
Minor Lane/Major Mvmt	N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	-
HCM Lane V/C Ratio		0.857	-		0.108	-
HCM Control Delay (s)		54.2	-	-	9.2	0
HCM Lane LOS		F	-	-	A	A
HCM 95th %tile Q(veh)		7.9			0.4	-
i ola obili valle alvell)	A STATE	1.5	116-	149.00	0.4	

· · · · · · · · · · · · · · · · · · ·						
Intersection	1000	The T	SPEN I	STATE!	S. Aller	14.2
Int Delay, s/veh	13.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDIN	VVDL	f)	Y	NDIX
Traffic Vol, veh/h	353	49.	/7/	186		76
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	49	0	0	40	10
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		Stop -	None
	-		-			NONE
Storage Length	# 0	-	Constanting to	-	0	
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mvmt Flow	560	78	103	258	103	195
Major/Minor M	ajor1	10.5	Major2	19-21-2-1	Minor1	ALL DAY
Conflicting Flow All	0	0	638	0	1063	599
Stage 1		Ū.	-	Ū.	599	-
Stage 2					464	_
	-	-		-		
Critical Hdwy	175	10.14	4.1	-	6.4	6.21
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-		-	5.4	-
Follow-up Hdwy	-	-	2.2	-		3.309
Pot Cap-1 Maneuver	-	-	956	-	249	503
Stage 1	-	-	-	-	553	-
Stage 2	-	-	-	-	637	-
Platoon blocked, %	-	-		_		
Mov Cap-1 Maneuver	_	-	956	1999	218	503
Mov Cap-2 Maneuver	-	-	-	_	218	-
Stage 1		1000		-	553	_
		-			557	
Stage 2	-		-	-	557	-
Approach	EB	Ser P	WB	STAR	NB	No.
HCM Control Delay, s	0	23.02	2.6		54.2	6.32
HCM LOS					F	
					REAL	
			COT		14/51	MOT
Minor Lane/Major Mvmt	1921	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	-
HCM Lane V/C Ratio		0.857	-	-	0.108	-
HCM Control Delay (s)		54.2	-	-	9.2	0
HCM Lane LOS		F	-	-	А	А
HCM 95th %tile Q(veh)		7.9	-	25/2-1	0.4	100.0
HCM 95th %tile Q(veh)		7.9		112-	0.4	

Intersection		1000	1998	1. 12		22.50
Int Delay, s/veh	3.8			AL PRIME	and the first	
-	~	-	14 IDI	14/07	MIDI	NAM
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,	1.	1.	र्भ	Y	1
Traffic Vol, veh/h	263					
Future Vol, veh/h	263	40	45	268	30	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	503	None
Storage Length	-	-	-	-	0	1.
Veh in Median Storage,	# 0	-	-	0	0	3.31-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	47	51	305	77	110
100-38 LC 100221-280-178						
Major/Minor	Iniand	and a second	Maina	C. Bright	dianal	
	lajor1		Major2		Minor1	000
Conflicting Flow All	0	0	353	0	737	330
Stage 1	-	-	-		330	-
Stage 2	-	-	-	-	407	-
Critical Hdwy	-	-	4.12	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	- 17	5.4	-
Follow-up Hdwy	-	-	2.218	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1206	-	389	716
Stage 1	-	-	-	-	733	-
Stage 2		-	-		676	198-9
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1206	1	369	716
Mov Cap-2 Maneuver	-	_	-	-	369	-
Stage 1		100 - C	9/35/92		733	100
Stage 2	-	-		active (a)	642	_
Oldyc 2	1325	1.000	1.2.4.1	-	042	000350
A		Ancestown	1	Children and		
Approach	EB	State Sh	WB	12/2	NB	552382
HCM Control Delay, s	0		1.2		15.9	
HCM LOS					С	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		516	-		1206	-
HCM Lane V/C Ratio		0.363	_		0.042	-
HCM Control Delay (s)		15.9	-	-	8.1	0
HCM Lane LOS		10.0 C	-	-	A	A
HCM 95th %tile Q(veh)		1.6		and the second se	0.1	A -
now sour wile Q(ven)		1.0	-	1994 A.T.A	0.1	24 (1990) - 64

			1012			
Intersection	No.		Carlos .	NUDE		
Int Delay, s/veh	2.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	LDIK	TIDL	स स	Y	NDI
Traffic Vol, veh/h	263	/ 26.	29	268	/18	/ 25
Future Vol, veh/h	263	26	29	268	18	25
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	
Storage Length	_	-	-	-	0	-
Veh in Median Storage, #		3122	1000	0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	30	33	305	46	64
WWITH FIOW	300	30	55	305	40	04
Major/Minor Ma	ajor1		Major2		Minor1	The state
Conflicting Flow All	0	0	336	0	692	321
Stage 1	-	10-1-1	-	1	321	-
Stage 2	-	-	-	-	371	-
Critical Hdwy	-	-	4.12	-	6.4	6.2
Critical Hdwy Stg 1	_	-	-	-	5.4	-
Critical Hdwy Stg 2	1	83.2		-	5.4	1. St. 1
Follow-up Hdwy	_	-	2.218	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1223	1. V. P. P.	413	724
Stage 1	-	-		_	740	-
Stage 2	-	12. 22. 19		1.1.4.5.2	702	1915-20
Platoon blocked, %	-		117.1	-	102	
-			1223		400	724
Mov Cap-1 Maneuver		-	1223	1.451	400	
Mov Cap-2 Maneuver	-	-	-	-	400	-
Stage 1	100	1.1.1.1	-	•	740	•
Stage 2	-	-	-	-	680	-
Approach	EB		WB	6266	NB	S. S. S. S.
HCM Control Delay, s	0	2.215	0.8		13.4	12.19
HCM LOS					В	
Constraint a state of the state						
NE			COT		14/51	MOT
Minor Lane/Major Mvmt	Concest.	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		541			1223	-
HCM Lane V/C Ratio		0.204	-	-	0.027	-
HCM Control Delay (s)		13.4	-	-	8	0
HCM Lane LOS		В	-	-	A	A
HCM 95th %tile Q(veh)		0.8	12.1	-	0.1	111

Intersection	1801-	19 15-16	a Carlo	15 33	13550	120202
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		TIDE	4	Y	THUIL
Traffic Vol, veh/h	322	9.	/21.	368		29
Future Vol, veh/h	322	9	21	368	15	29
Conflicting Peds, #/hr	0	0	0	0	0	29
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		Stop -	-
Storage Length	-	None	-	None	0	None -
		-				
Veh in Median Storage,			()	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mvmt Flow	408	11	23	409	25	48
Major/Minor M	lajor1	10000	Major2	1	Minor1	With the second
Conflicting Flow All	0	0	419	0	869	414
Stage 1	-	-	419	U	414	414
Stage 2	-	-	-	-	455	-
Critical Hdwy		42013	4.1	2. S	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver			1151	-	325	643
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	643	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1151	-	317	643
Mov Cap-2 Maneuver	-	-	-	_	317	-
Stage 1	_	101-1	1992 B	_	671	_
Stage 2	-		-	-	626	-
Oldyo Z					020	
Approach	EB	and the second	WB		NB	S. al
HCM Control Delay, s	0		0.4		13.9	
HCM LOS					В	
Minor Lane/Major Mvmt	100 P. T.	NBLn1	EBT	EBR	WBL	WBT
			ALC: NO DESCRIPTION			A CONTRACTOR
Capacity (veh/h)		476	-		1151	-
HCM Lane V/C Ratio		0.152	-	-	0.02	-
HCM Control Delay (s)		13.9		-24 C	8.2	0
HCM Lane LOS		В	-	-	Α	А
HCM 95th %tile Q(veh)		0.5			0.1	-

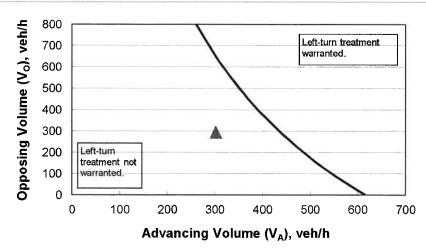
Intersection	Series a	2626	1	1200		S. S. S.
Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,		/	÷	Y	
Traffic Vol, veh/h	322			/368	/ 10	18
Future Vol, veh/h	322	9	21	368	10	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		- 1	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mvmt Flow	408	11	23	409	16	30
Major/Minor N	Aajor1	14- 22	Major2	S. C. L	Minor1	S San
Conflicting Flow All	0	0	419	0	869	414
Stage 1	-	-	-	-	414	-
Stage 2	-	-	-	-	455	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	5-1-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1151	-	325	643
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	643	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver		-	1151	-	317	643
Mov Cap-2 Maneuver	-	-	-	-	317	-
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	626	-
Approach	EB	1.1.520	WB	1.18 m	NB	100
HCM Control Delay, s	0		0.4		13.5	2
HCM LOS					B	
					1237	
Minor Lane/Major Mumt		NBLn1	EBT	EBR	WBL	WBT
Minor Lane/Major Mvmt	the labour	470	EDI		1151	No. 2 Character
Capacity (veh/h) HCM Lane V/C Ratio		470 0.098			0.02	-
HCM Control Delay (s)		13.5	-	-	8.2	0
HCM Lane LOS		13.5 B	-		0.2 A	A
HCM 95th %tile Q(veh)		0.3		-	0.1	A -
		0.3	•	-	0.1	

2-lane roadway (English)

INPUT

Value	1								
30	1 5	800	[<u> </u>					
^h percentile speed, mph: 30 rcent of left-turns in advancing volume (V _A), %: 28%							1		
Advancing volume (V _A), veh/h: 260							warran	ted.	
402	<u>></u> ິ	000			8				And the Andrew State
		500					50.050		
OUTPUT						·····			
Value	। হ	300							
273	-								
turn bay:	<u>,</u>	200			``	\			
	1 ğ	100	warranted.						
	ਕ	0	L		-				
	Ŭ	•	0 100	200	300	400	500	600	700
				Advand	ing Vol	ume (V₄), veh/h		
	30 28% 260 402 Value 273	30 28% 260 402 Value 273	30 800 28% 700 260 600 402 500 400 500 273 300 273 200 100 0	30 800 28% 700 260 600 402 500 402 500 400 500 273 200 100 0 0 100	30 800 28% 700 260 600 402 500 400 500 273 200 Left-turn treatment not warranted. 0 100 0 100	30 800 28% 700 260 600 402 500 400 500 273 200 Left-turn treatment not warranted. 0 0 100 200 100 0 100	30 28% 28% 700 260 600 402 500 400 500 400 500 273 200 Left-turm treatment not warranted. 0 100 200 0 100 200	30 800 28% 700 260 600 402 500 402 500 Value 300 273 200 Left-turn treatment not warranted. 0 0 100 200 0 100 200	30 800 28% 700 260 600 402 500 400 500 273 300 273 100 Urrn bay: 100 0 0

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9


2-lane roadway (English)

INPUT

Variable	Value	
85 th percentile speed, mph:	30	्म ⁸⁰⁰
Percent of left-turns in advancing volume (V _A), %:	11%	2 700
Advancing volume (V _A), veh/h:	302	600
Opposing volume (V ₀), veh/h:	294	> 600

OUTPUT

Variable	Value
Limiting advancing volume (V _A), veh/h:	437
Guidance for determining the need for a major-road	left-turn bay:
Left-turn treatment NOT warrant	ted.

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

INPUT

Variable	Value	1								
5 th percentile speed, mph:	30	1 5	800				<u> </u>			
Percent of left-turns in advancing volume (V _A), %:	6%	veh/h	700				1		n treatment	
Advancing volume (V _A), veh/h:	392		600					warrant	ed.	
Dpposing volume (V _o), veh/h:	333	So),	600							
		me (500							
DUTPUT	3	400					~			
Variable	Value] \$	300							
imiting advancing volume (V _A), veh/h:	553				1					
Buidance for determining the need for a major-road left-tu	ırn bay:	<u>1</u>	200	Left-turn treatment not						
Left-turn treatment NOT warranted.		1 ä	100	warranted.					s alars aller a	
		Opposing	0]		1	1		
		-	•	0 100	200	300	400	500	600	700
	Advancing Volume (V _A), veh/h									

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

INPUT

Value									
30	۲ ۲	800							
28%	let e	700							
260		600		_ \			warran	ted.	
402	້				2				
		500							
	Lin	400			\mathbf{A}				
Value	। ৃ	300							
273	-			1					
rn bay:	1. iš	200)				
	l ä	100	warranted.	· · · · · · · · · · · · · · · · · · ·					
	<u> </u>	0	L	1	1		1	ſ	
	Ŭ	Ű.	0 100	200	300	400	500	600	700
				Advanc	ina Vol	ume (V.)). veh/h		
	30 28% 260 402 Value 273	30 28% 260 402 Value 273	30 400 28% 700 260 600 402 500 wino 500 400 300 273 200 in bay: 100 0 0	30 28% 260 700 402 500 402 500 Value 300 273 200 In bay: 100 0 100	30 800 28% 700 260 600 402 500 400 500 273 200 100 0 0 100 0 100	30 28% 260 700 402 500 402 500 Value 300 273 200 100 0 0 100 0 100 0 100	30 28% 28% 700 260 600 402 500 400 500 273 200 100 100 0 100 200 300 0 100	30 800 28% 700 260 600 402 500 402 500 Value 300 273 200 In bay: 100 0 100 0 100 0 100 0 300 400 300 0 100 0 300 400 500	30 30 28% 700 260 600 402 500 400 500 400 300 273 200 In bay: 100 0 0

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

INPUT

Left-turn treatment NOT warranted.) öddo	100 0	warranted.					/	
Guidance for determining the need for a major-road left	-turn bay:	osing	200	treatment not						
Limiting advancing volume (V _A), veh/h:	468			Left-turn						
Variable	Value	इ	300			-	``			
OUTPUT		<u> </u>	400				\sim			
Opposing volume (V_{\odot}), veh/h:	289	<u>ہ</u> ا	500							
Advancing volume (V _A), veh/h:	297	6	600							
Percent of left-turns in advancing volume (V _A), %:	10%	vel	700					Left-tur warrant	n treatment	
85 th percentile speed, mph:	30	veh/h	800		· · · · · · · · · · · · · · · · · · ·					
Variable	Value									

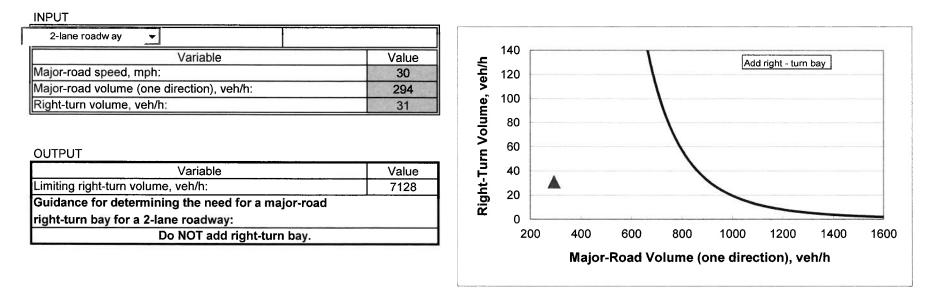
Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

INPUT

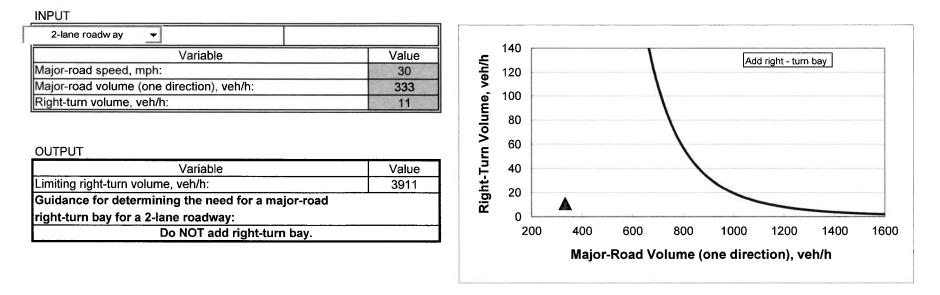
					F	Advanc	ing Vol	ume (V _A). veh/h		
		Ū	-	0 1	00	200	300	400	500	600	700
Left-turn treatment NOT warranted.		oddo	100 0	warrante	d.						
Guidance for determining the need for a major-road left	-turn bay:	sing	200	Left-turn treatmen							
Limiting advancing volume (V _A), veh/h:	588	5									
Variable	Value	। इ	300								
OUTPUT		<u>m</u>	400							<u> </u>	
	331		500						\mathbf{i}		
Opposing volume (V_0) , veh/h:		(°)	600	-							
Advancing volume (V_A), veh/h:	389	>	700						warran		
Percent of left-turns in advancing volume (V _A), %:	5%	eh/h	700						l eft-tu	n treatment	
85 th percentile speed, mph:	30	् ह	800								
Variable	Value										

CALIBRATION CONSTANTS


Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

INPUT 2-lane roadw ay Ŧ 140 Variable Value Right-Turn Volume, veh/h Add right - turn bay Major-road speed, mph: 30 120 Major-road volume (one direction), veh/h: 402 100 Right-turn volume, veh/h: 49 80 60 OUTPUT 40 Variable Value Limiting right-turn volume, veh/h: 1578 20 Guidance for determining the need for a major-road right-turn bay for a 2-lane roadway: 0 200 400 600 800 1000 1200 1400 Do NOT add right-turn bay. 1600 Major-Road Volume (one direction), veh/h

Attachment 34



Attachment 35

1

Attachment 36

2-lane roadw ay										
Variable	Value		140		1		Ad	d right - turn	bay	
Major-road speed, mph:	30	veh/h	120				[Au	a fight - tan	Day	
Major-road volume (one direction), veh/h:	402									
Right-turn volume, veh/h:	49	l e	100			1				
		Volume,	80			1				
OUTPUT		Ē	60							
Variable	Value	1 ^u	40	-						
Limiting right-turn volume, veh/h:	1578	t t								
Guidance for determining the need for a major-road		Right-T	20					-		
right-turn bay for a 2-lane roadway:			0 🖵							
Do NOT add right-turn bay.			200	400	600	800	1000	1200	1400	1600

Attachment 37

INPUT

Variable	Value		140			1					
Major-road speed, mph:	30	eh/h	100			1		Ad	d right - turn	bay	
			120								
Major-road volume (one direction), veh/h:	289	Ő	100								
Right-turn volume, veh/h:	26	nme					1				
		olu	80				1				
		Š	60								
OUTPUT		E	00								
Variable	Value	1 P	40								
Limiting right-turn volume, veh/h:	7742	L.									
Guidance for determining the need for a major-road		Right-	20	_					-		
right-turn bay for a 2-lane roadway:		<u>r</u>	0		the second se						
Do NOT add right-turn bay.			20	00	400	600	800	1000	1200	1400	1600
								one direc			

INPUT

here			140							
Variable	Value	ع ا					Ad	d right - turn	bay	
Major-road speed, mph:	30	eh/h	120				<u></u>	- ignit ien		
Major-road volume (one direction), veh/h:	331	>	400		0	۱				
Right-turn volume, veh/h:	9	ue,	100			1				
		j mno	80			1				
OUTPUT		nr Ke	60			\setminus				
Variable	Value		40							
Limiting right-turn volume, veh/h:	4026	L L	00							
Guidance for determining the need for a major-road		Right-	20				~	_		
right-turn bay for a 2-lane roadway:			0 🖵							
Do NOT add right-turn bay.			200	400	600	800	1000	1200	1400	1600
				Maior	-Road V	olume (one direc	tion) ve	h/h	

4.0

6.5

INPUT					
Variable		Value			
Major-road volume (total of both directions), ve	eh/h:	662	ź	500	
Percentage of right-turns on minor road, %:		66%	io i		Consider two approach lanes
Minor-road volume (one direction), veh/h:		116	irection)	400	
OUTPUT			ie (one di /h	300	
Variable		Value	Volume veh/h		
Limiting minor-road volume (one direction), ve	h/h:	344	0	200	
Guidance for determining minor-road appr	oach geometry:				
ONE approach lar	ne is o.k.		Road	100	
			Minor-F		One approach lane is o.k.
			Min	0	
				2	00 400 600 800 1000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS					Major-Road Volume (total of both directions), veh/h
Minor Road	Critical gap, s:	Follow-up gap, s:	L		
Right-turn capacity, veh/h:	6.2	3.3			

Left-turn and through capacity, veh/h: * according to Table 17 - 5 of the HCM

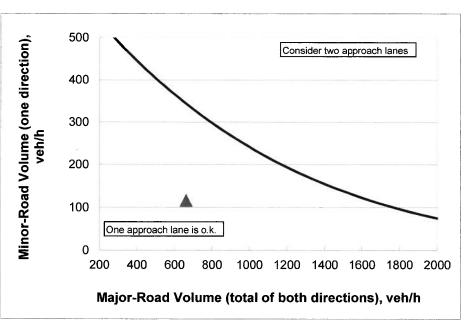
6.5

INPUT				
Variable		Value		
Major-road volume (total of both directions),	veh/h:	596	i i i	500
Percentage of right-turns on minor road, %:		59%	ction),	Consider two approach lanes
Minor-road volume (one direction), veh/h:		53	rect	400
OUTPUT			le (one di /h	300
Variable		Value	olume veh/h	
Limiting minor-road volume (one direction), v		346	lo 1	200
Guidance for determining minor-road app	roach geometry:		ad V	
ONE approach l	ane is o.k.		Roa	100
			1 2	One approach ne is o.k.
			Mino	
			Σ	0 200 400 600 800 1000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS				Major-Road Volume (total of both directions), veh/h
Minor Road	Critical gap, s:	Follow-up gap, s:	L	
Right-turn capacity, veh/h:	6.2	3.3		

4.0

Left-turn and through capacity, veh/h: * according to Table 17 - 5 of the HCM INPUT

Figure 2 - 4. Guideline for determining minor-road approach geometry at two-way stop-controlled intersections.


Variable	Value	1	
Major-road volume (total of both directions), veh/h:	725	1 ÷	500
Percentage of right-turns on minor road, %:	66%	ction),	Consider two approach lanes
Minor-road volume (one direction), veh/h:	44	ect	400
		he dir	+00
		(or	300
OUTPUT		lume veh/h	
Variable	Value	veh/h	
Limiting minor-road volume (one direction), veh/h:	324	৾৾৾৾৾	200
Guidance for determining minor-road approach geometry:		5	
ONE approach lane is o.k.		Soa 1	100
			One approach lane ino.k.
		Mino	
		Σ	0 200 400 600 800 1000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS		_	Major-Road Volume (total of both directions), veh/h

Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

Variable	Value
Major-road volume (total of both directions), veh/h:	662
Percentage of right-turns on minor road, %:	66%
Minor-road volume (one direction), veh/h:	116

ОИТРИТ	
Variable	Value
Limiting minor-road volume (one direction), veh/h:	344
Guidance for determining minor-road approach geomet	ry:
ONE approach lane is o.k.	

CALIBRATION CONSTANTS		
Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

INPUT				
Variable	Value]		
Major-road volume (total of both directions), veh/h:	586	É	500	[]
Percentage of right-turns on minor road, %:	58%	ion)		Consider two approach lanes
Minor-road volume (one direction), veh/h:	43	lect	400	
OUTPUT		e (one di Ih	300	
Variable	Value	olume veh/h		
Limiting minor-road volume (one direction), veh/h:	349	5	200	
Guidance for determining minor-road approach geometry	:			
ONE approach lane is o.k.		ga I	100	
		Minor-F	One approach ane is o.k. 0 200 400 600 800 100	00 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS			Major-Road Volume (tota	al of both directions), veh/h

Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

INPUT Variable	Value	1		
Major-road volume (total of both directions), veh/h:	720	-	500	
Percentage of right-turns on minor road, %:	64%	ction)		Consider two approach lanes
Minor-road volume (one direction), veh/h:	28	ect	400	
OUTPUT		e (one di /h	300	
Variable	Value	lume veh/h		
Limiting minor-road volume (one direction), veh/h:	320	5	200	
Guidance for determining minor-road approach geometry:	-			
ONE approach lane is o.k.		koa 🛛	100	
		Minor-F	One approach lane is o.k.	000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS	Follow-up cap s:	1	Major-Road Volume (to	tal of both directions), veh/h

Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

DRAINAGE STUDY

FOR

New Gymnasium Project At Saint Patrick Academy

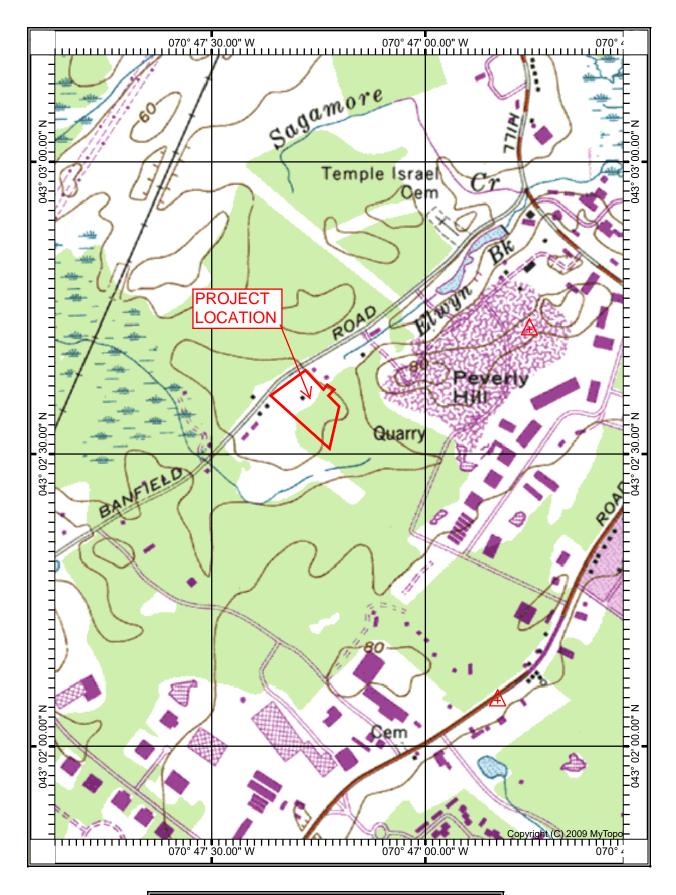
315 Banfield Road Portsmouth, NH Assessor's Parcel 266-5

January 2020

Owner: **Hope for Tomorrow Foundation** 1950 Lafayette Road, 2nd Floor Portsmouth, NH 03801

> Applicant: Saint Patrick Academy 315 Banfield Road Portsmouth, NH 03801

Prepared By: Altus Engineering, Inc. 133 Court Street Portsmouth, NH 03801 Phone: (603) 433-2335



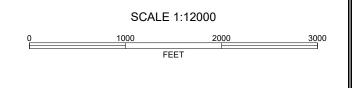

New Gymnasium Project at Saint Patrick Academy

TABLE OF CONTENTS

- 1) USGS Site Location Map
- 2) Project Narrative
- 3) FEMA Map
- 4) Aerial Photograph
- 5) BMP Worksheets
- 6) Drainage Analysis
 - Extreme Precipitation Tables
 - Pre-Development Modeling Results
 - Post Development Calculations
- 7) Soil Surveys
- 8) Stormwater Inspection and Maintenance Manual (Separate Attachment)

Appendix:Plans: Site Specific Soils Plan (11" x 17")
Pre-Development Watershed Plan (11" x 17")
Post-Development Watershed Plan (11" x 17")
Project Plans (22" x 34") (project plans under separate attachment)

PROJECT DESCRIPTION

Site Overview

The Hope for Tomorrow Foundation (HFTF) and Saint Patrick Academy (Academy) constructed a new 200 student school on the 10.7 acre site located at 315 Banfield Road in 2017. In March 2017, the HFTF obtained site approvals for the construction of the school and it was occupied in April 2018 slightly over a year later. The Academy is now thriving in its new location and wishes to construct a stand-alone gymnasium building on the property for physical education classes and their athletic events. Currently the Academy has entered into an agreement with the Foundation for Seacoast Health (FSH) to use their gym for classes and athletic events, but the goal is the keep the students on campus and offer the physical education and athletic events on site. The proposed gymnasium will not expand the school population beyond the 200 maximum students allowed under the previous approval. The gym is an additional amenity to the existing school and not an expansion of use.

In 2017 when the school was approved, the parking ordinance required 0.3 spaces per student and allowed for an additional 20 percent for a maximum of 72 spaces. The facility was constructed with only 60-spaces and this project will expand the parking to 77 spaces.

The 2017 project was permitted under the NHDES Alteration of Terrain Bureau under Permit #AoT-1252, dated May 9, 2017. The propose gymnasium project will also require NHDSES permit approval and will be required to increase the rainfall intensity by 15% per the updated regulations for seacoast communities. All new drainage calculations will incorporate the 15% rainfall intensity increase to both the Pre and Post development analyses.

Pre-Development (Existing Conditions)

The pre-development site conditions reflect the conditions of the site after the 2017 construction of the new school and site improvements. In 2019, James Verra and Associates (JVA) performed a site survey of the proposed development area to accurately depict the current site conditions. The area of survey is shown on the development plans. The areas outside of the survey limit are shown as the proposed 2017 design plans indicated.

The site discharges to two primary discharge locations. The first discharge point is located behind the school to the south in the wetlands. This location will not be altered by the proposed gymnasium development and is not included in the analysis calculations. The second discharge point is in the northeast corner of the site, which drains to the ditch along Banfield Road. This watershed primarily includes the front of the school, ballfield, driveway, and parking areas. It is identified on the Watershed Plans as Point of Analysis #1. The pre-development site was modeled by using the post-development design model from the 2017 site improvements and updates from the 2019 survey data. The site is divided into multiple divided watersheds to reflect the current site conditions. The discharge point is POA #1, adjacent to Banfield Road in the northeast corner of the site.

Post-Development (Proposed Site Design)

The Hope for Tomorrow Foundation (HFTF) is proposing to construct a new 17,000 square foot gymnasium with associated parking, walkways, and stormwater infrastructure. All new parking areas will be constructed with permeable pavement or pavers. The proposed stormwater management plan will include permeable pavement, an 1100 square foot raingarden, roof dripline filter, and a stormwater retention pond. Because all new parking areas will be constructed with permeable surfaces, pre-treatment is not required for the roof and walkways. The stormwater management system proposed for the site will reduce peak flows and treat site runoff prior to discharging back to the surface stormwater system. The proposed development area is a tributary to Sagamore Creek, as referenced by the attached USGS map.

As described in the pre-development conditions, the proposed site improvements are located on the north side of the existing school. This watershed primarily includes the front of the school, ballfield, driveway, and parking areas and is identified on the Watershed Plans as Point of Analysis #1.

The proposed gymnasium site improvements are almost entirely on the west side of the access drive from Banfield Road. For this reason, Point of Analysis #2 is also included in the results to depict the Pre and Post development results at the driveway crossing. The two points of analysis are the same for the pre and post development models and are used for comparison of flows prior to construction and after the site is development as shown on the plans.

The "Post-Development Watershed Plan" illustrates the proposed stormwater management system. The subcatchments from the Pre-Development conditions have been divided into smaller areas to emulate the proposed grading and stormwater management system proposed for construction. The post-development conditions were analyzed at the same primary discharge point examined in the pre-development modeling.

Pollutant Removal

Based on the New Hampshire Stormwater Manual (Volume 2), the following pollutant removal rates would be expected from the implementation of the proposed raingardens:

Pollutant	<u>Removal %</u>
Total Suspended Solids (TSS)	90%
Total Nitrogen (TN)	65%
Total Phosphorus (TP)	65%

Drainage Analysis

A complete summary of the drainage model is included later in this report. The following table compares pre- and post-development peak rates of runoff for all analyzed storm events at the two Points of Analysis:

	2-Yr Storm	10-Yr Storm	25-Yr Storm	50-Yr Storm
	(3.23 inch)	(4.90 inch)	(6.21 inch)	(7.45 inch)
POA #1 – Banfield Road				
Pre	6.15	12.60	16.66	25.51
Post	5.67	11.76	15.73	24.15
Net Change	-0.48	-0.84	-0.93	-1.36
POA #2 – Driveway Crossing				
Pre	3.18	6.81	9.61	12.66
Post	2.40	4.51	8.50	12.02
Net Change	-0.78	-2.30	-1.11	-0.64

Stormwater Modeling Summary Peak Q (cfs) for Type III 24-Hour Storm Events

As the above table demonstrates, the proposed peak rates of runoff will be decreased from the existing conditions of the site at the analysis points for all analyzed storm events.

CONCLUSION

This proposed Saint Patrick Academy site development located at 315 Banfield Road in Portsmouth, NH will not have an adverse effect on abutting properties and infrastructure as a result of stormwater runoff. Post-construction peak rates of runoff from the site will be lower than the Pre-development conditions for all analyzed storm events. The construction of a comprehensive stormwater drainage system will provide the required treatment to stormwater runoff. Appropriate steps will be taken to properly mitigate erosion and sedimentation through the use of temporary and permanent Best Management Practices for sediment and erosion control.

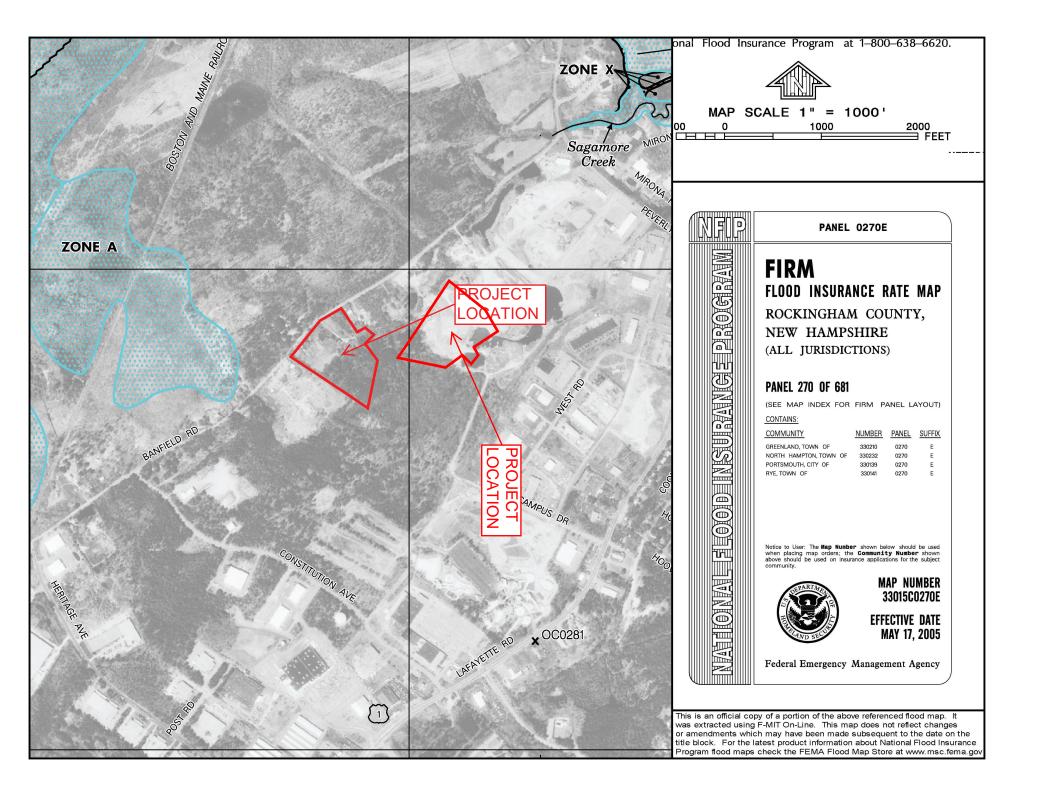
Site Soils

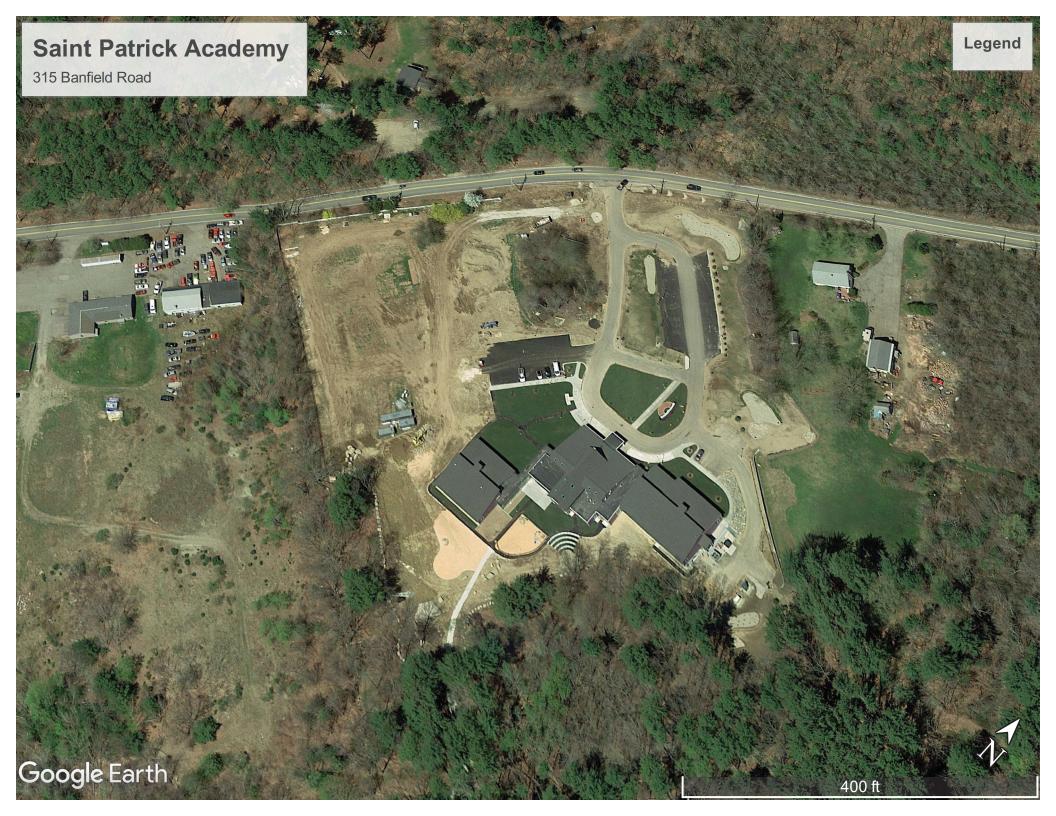
A Site Specific Soils Survey was conducted by Joseph Noel, New Hampshire Certified Soil Scientist No. 017, in December of 2016 to delineate the soils on site. The proposed project area was found to have soils that ranged from well drained to somewhat poorly drained, with the majority of the site being a hydrologic soil group (HSG) C. The following soils were identified on site:

NUMERICAL SYMBOL SOIL MAP UNIT NAME

<u>HSG</u>

40	CHATFIELD (WELL DRAINED)-HOLLIS (WELL DRAINED) COMPLEX	В
299	UDORTHENTS, SMOOTHED	С
448	SCITUATE	С
533	RAYNHAM (POORLY DRAINED)	D
926	RIDGEBURY (SOMEWHAT POORLY DRAINED)	D
931	RAYNHAM (SOMEWHAT POORLY DRAINED)	D


Due to the well-drained soils located on the majority of the site, test pits and infiltration tests were conducted by R.W. Gillespie & Associates, Inc. to determine the feasibility of infiltration and the depths of groundwater and bedrock on site.


CALCULATION METHODS

The drainage study was completed using the USDA SCS TR-20 Method within the HydroCAD Stormwater Modeling System. Reservoir routing was performed with the Dynamic Storage Indication method which automates the calculation of Tailwater conditions. A Type III 24-hour rainfall distribution was utilized in analyzing the data for the 2, 10, 25, and 50 Year - 24-hour storm events using rainfall data provided by Northeast Regional Climate Center – Extreme Precipitation Tables. A fifteen percent (15%) increase was added to the NRCC rainfall intensities for Seacoast Communities.

Disclaimer

Altus Engineering, Inc. notes that stormwater modeling is limited in its capacity to precisely predict peak rates of runoff and flood elevations. Results should not be considered to represent actual storm events due to the number of variables and assumptions involved in the modeling effort. Surface roughness coefficients (n), entrance loss coefficients (ke), velocity factors (kv) and times of concentration (Tc) are based on subjective field observations and engineering judgment using available data. For design purposes, curve numbers (Cn) describe the average conditions. However, curve numbers will vary from storm to storm depending on the antecedent runoff conditions (ARC) including saturation and frozen ground. Also, higher water elevations than predicted by modeling could occur if drainage channels, closed drain systems or culverts are not maintained and/or become blocked by debris before and/or during a storm event as this will impact flow capacity of the structures. Structures should be re-evaluated if future changes occur within relevant drainage areas in order to assess any required design modifications.

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Node RG-B: Raingarden B

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed the restrictions on unlined systems outlined in Env-V	W_{a} 1509 07(a)2
1.41 ac		wq 1508.07(a)?
	A = Area draining to the practice	
0.32 ac	A_{I} = Impervious area draining to the practice	
0.23 decimal	I = percent impervious area draining to the practice, in decimal form $P = P = \frac{2}{3} \frac{1}{2} \frac{1}{3} \frac{1}{3$	
0.25 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.36 ac-in	WQV=1" x Rv x A	
1,301 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
<u>325</u> cf	25% x WQV (check calc for sediment forebay volume)	
976 cf	75% x WQV (check calc for surface sand filter volume)	
NR-Roof Only	Method of Pretreatment? (not required for clean or roof runoff)	
N/A cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
<u>1,100</u> sf	A_{SA} = surface area of the practice	
2.50 iph	$K_{sat_{DESIGN}} = design infiltration rate^{1}$	
Yes Yes/No	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been	n provided?
5.7 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
45.50 feet	E_{FC} = elevation of the bottom of the filter course material ²	
44.25 feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
45.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	n of the test pit)
43.00 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	on of the test pit)
1.25 feet	$D_{FC \text{ to } UD}$ = depth to UD from the bottom of the filter course	← ≥ 1'
2.50 feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← ≥ 1'
0.50 feet	$D_{FC \text{ to SHWT}}$ = depth to SHWT from the bottom of the filter course	← ≥ 1'
47.85 ft	Peak elevation of the 50-year storm event (infiltration can be used in	analysis)
48.60 ft	Elevation of the top of the practice	
YES	50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface sand fi	lter or underground sand filter is proposed:	
YES ac	Drainage Area check.	← < 10 ac
cf	$V = volume of storage^3$ (attach a stage-storage table)	← ≥ 75%WQV
		← 18", or 24" if
inches	D_{FC} = filter course thickness	within GPA
Sheet	Note what sheet in the plan set contains the filter course specification	
Yes/No	Access grate provided?	← yes
	-	

If a bioretention area is proposed:

YES ac	Drainage Area no larger than 5 ac?	← yes
2,027 cf	$V = volume of storage^{3} (attach a stage-storage table)$	$\leftarrow \geq WQV$
inches 18.0	D_{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet D-7	Note what sheet in the plan set contains the filter course specification	
4.0 :1	Pond side slopes	← <u>>3</u> :1
Sheet L-1	Note what sheet in the plan set contains the planting plans and surface	e cover
If porous pavement	is proposed:	
	Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
0.0#02		
acres	A_{SA} = surface area of the pervious pavement	
#DIV/0! :1	A_{SA} = surface area of the pervious pavement ratio of the contributing area to the pervious surface area	← 5:1
		 ← 5:1 ← 12", or 18" if within GPA

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Note: The infiltration rate of 2.5 in/hr used for the modeling is for the media filter material. Exfiltration is not used for the design. Underdrains are provided.

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 11P: Raingarden B

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
44.25	1,100	0	46.85	1,100	679
44.30	1,100	22	46.90	1,100	685
44.35	1,100	44	46.95	1,100	690
44.40	1,100	66	47.00	1,100	696
44.45	1,100	88	47.05	1,145	784
44.50	1,100	110	47.10	1,190	873
44.55	1,100	132	47.15	1,235	962
44.60	1,100	154	47.20	1,280	1,051
44.65	1,100	176	47.25	1,325	1,140
44.70	1,100	198	47.30	1,370	1,228
44.75	1,100	220	47.35	1,415	1,317
44.80	1,100	242	47.40	1,460	1,406
44.85	1,100	264	47.45	1,505	1,495
44.90	1,100	286	47.50	1,550	1,583
44.95	1,100	308	47.55	1,595	1,672
45.00	1,100	330	47.60	1,640	1,761
45.05	1,100	352	47.65	1,685	1,849
45.10	1,100	374	47.70	1,730	1,938
45.15	1,100	396	47.75	1,775	2,027
45.20	1,100	418	47.80	1,820	2,116
45.25	1,100	440	47.85	1,865	2,205
45.30	1,100	458	47.90	1,910	2,293
45.35	1,100	476	47.95	1,955	2,382
45.40	1,100	494	48.00	2,000	2,471
45.45	1,100	513	48.05	2,045	2,559
45.50	1,100	531	48.10	2,090	2,648
45.55	1,100	536	48.15	2,135	2,737
45.60	1,100	542	48.20	2,180	2,826
45.65	1,100	547	48.25	2,225	2,915
45.70	1,100	553	48.30	2,270	3,003
45.75	1,100	558	48.35	2,315	3,092
45.80	1,100	564	48.40	2,360	3,181
45.85	1,100	569	48.45	2,405	3,270
45.90	1,100	575	48.50	2,450	3,358
45.95	1,100	580		000 · 202000 · 000	•
46.00	1,100	586			
46.05	1,100	591			
46.10	1,100	597			
46.15	1,100	602			
46.20	1,100	608			
46.25	1,100	613			
46.30	1,100	619			
46.35	1,100	624			
46.40	1,100	630			
46.45	1,100	635			
46.50	1,100	641			
46.55	1,100	646			
46.60	1,100	652			
46.65	1,100	657			
46.70	1,100	663			
46.75	1,100	668			
46.80	1,100	674			
			I		

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

Node 7P: Roof Dripline Filter

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

YesHave you reviewed the restrictions on unlined systems outlined in Env-Wq 0.19 acA = Area draining to the practice 0.18 acA _I = Impervious area draining to the practice 0.95 decimalI = percent impervious area draining to the practice, in decimal form 0.90 unitlessRv = Runoff coefficient = $0.05 + (0.9 \text{ x I})$ 0.17 ac-inWQV= 1" x Rv x A	1300.07(a):
0.18 ac A_I = Impervious area draining to the practice 0.95 decimalI = percent impervious area draining to the practice, in decimal form 0.90 unitlessRv = Runoff coefficient = $0.05 + (0.9 \text{ x I})$	
$\begin{array}{c c} 0.95 \\ \hline 0.90 \\ \hline 0.91 \\ \hline 0.9$	
0.90 unitless Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.17 ac in $WOV = 1$ " x Ry x A	
$623 ext{ cf} $	
156 cf 25% x WQV (check calc for sediment forebay volume)	
467 cf 75% x WQV (check calc for surface sand filter volume)	
NR-roof Method of Pretreatment? (not required for clean or roof runoff)	
N/A cf V_{SED} = sediment forebay volume, if used for pretreatment	$\approx \geq 25\% WQV$
360 sf A_{SA} = surface area of the practice	
2.50 iph $Ksat_{DESIGN} = design infiltration rate^{1}$	
Yes Yes/No If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been pr	rovided?
8.3 hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← ≤ 72-hrs
54.00 feet E_{FC} = elevation of the bottom of the filter course material ²	
53.00 feet E_{UD} = invert elevation of the underdrain (UD), if applicable	
50.00 feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of	f the test pit)
50.00 feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of	of the test pit)
1.00 feet $D_{FC \text{ to } UD}$ = depth to UD from the bottom of the filter course	<u>← ≥</u> 1'
4.00 feet $D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course \leftarrow	<u>← ≥</u> 1'
	< ≥1'
56.02 ft Peak elevation of the 50-year storm event (infiltration can be used in ana	alysis)
56.50 ft Elevation of the top of the practice	2)
	C yes
If a surface sand filter or underground sand filter is proposed:	
	. < 10 ac
cf $V = volume of storage^3 (attach a stage-storage table)$	$\leftarrow \geq 75\% WQV$
	- 18", or 24" if
inches $D_{FC} = $ filter course thickness w	vithin GPA
Sheet Note what sheet in the plan set contains the filter course specification	
	C yes

If a bioretention area is proposed:

YES ac	Drainage Area no larger than 5 ac?	← yes
292 cf	V = volume of storage ³ (attach a stage-storage table)	$\leftarrow \geq WQV$
inches	D_{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet D-	7 Note what sheet in the plan set contains the filter course specification	n
10.0 :1	Pond side slopes	← <u>>3</u> :1
Sheet L-	1 Note what sheet in the plan set contains the planting plans and surface	ce cover
If porous pavement	is proposed:	
acres	Type of pavement proposed (concrete? Asphalt? Pavers? Etc) A_{SA} = surface area of the pervious pavement	
#DIV/0! :1	ratio of the contributing area to the pervious surface area	← 5:1
inches	D_{FC} = filter course thickness	← 12", or 18" if within GPA

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

Note: The roofline drip filter is in addition of the Raingarden B.

The roof runoff will enter the dripline filter and overflow to surface flow, where

it will be conveyed to Rangarden B, therefoere being treated twice.

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 7P: Roof Dripline Filter & Cleanout

Elevation	Surface	Storage	Elevation	Surface	Storogo
(feet)	(sq-ft)	(cubic-feet)	(feet)	Surface (sq-ft)	Storage (cubic-feet)
52.50	360	0	55.10	360	218
52.55	360	6	55.15	360	220
52.60	360	12	55.20	360	221
52.65	360	18	55.25	360	223
52.70	360	24	55.30	360	225
52.75	360	30	55.35	360	227
52.80	360	36	55.40	360	229
52.85	360	42	55.45	360	230
52.90	360	48	55.50	360	232
52.95	360	53	55.55	360	238
53.00 53.05	360 360	59	55.60	360	244
53.10	360	65 71	55.65 55.70	360 360	250 256
53.15	360	77	55.75	360	262
53.20	360	83	55.80	360	268
53.25	360	89	55.85	360	274
53.30	360	95	55.90	360	280
53.35	360	101	55.95	360	286
53.40	360	107	56.00	360	292
53.45	360	113	56.05	360	298
53.50	360	119	56.10	360	303
53.55	360	125	56.15	360	309
53.60	360	131	56.20	360	315
53.65	360	137	56.25	360	321
53.70 53.75	360 360	143 149			
53.80	360	149			
53.85	360	160			
53.90	360	166			
53.95	360	172			
54.00	360	178			
54.05	360	180			
54.10	360	182			
54.15	360	184			
54.20	360	185			
54.25	360	187	-		
54.30 54.35	360 360	189 191			
54.40	360	193			
54.45	360	194			
54.50	360	196			
54.55	360	198			
54.60	360	200			
54.65	360	202			
54.70	360	203			
54.75	360	205			
54.80	360	207			
54.85 54.90	360 360	209 211			
54.90 54.95	360	211 212			
55.00	360	212			
55.05	360	214			
	000	2.0			

Extreme Precipitation Tables

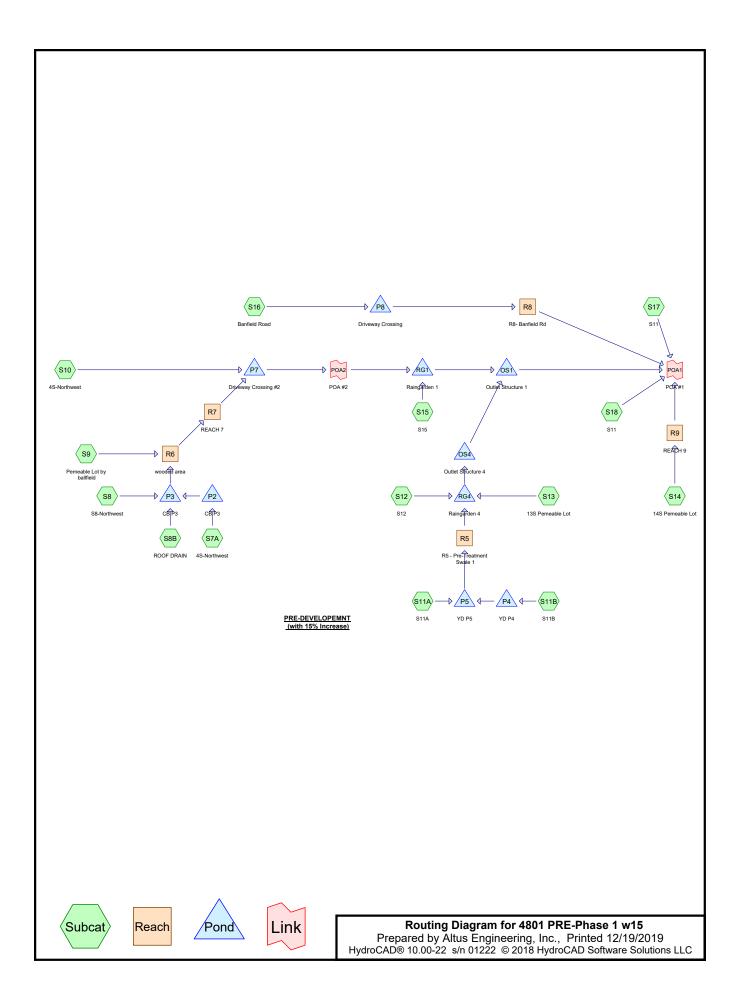
Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	70.788 degrees West
Latitude	43.044 degrees North
Elevation	0 feet
Date/Time	Sun, 22 Dec 2019 12:46:51 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.82	1.04	1yr	0.71	0.98	1.22	1.57	2.04	2.67	2.94	1yr	2.37	2.83	3.24	3.96	4.58	1yr
2yr	0.32	0.50	0.62	0.81	1.02	1.30	2yr	0.88	1.18	1.52	1.94	2.50	3.23	3.59	2yr	2.86	3.45	3.96	4.71	5.36	2yr
5yr	0.37	0.58	0.73	0.98	1.25	1.61	5yr	1.08	1.47	1.89	2.44	3.15	4.09	4.61	5yr	3.62	4.43	5.07	5.97	6.74	5yr
10yr	0.41	0.65	0.82	1.12	1.45	1.89	10yr	1.25	1.73	2.24	2.90	3.77	4.90	5.57	10yr	4.34	5.35	6.13	7.16	8.03	10yr
25yr	0.48	0.76	0.97	1.34	1.78	2.34	25yr	1.53	2.15	2.78	3.64	4.76	6.21	7.15	25yr	5.50	6.87	7.87	9.09	10.12	25yr
50yr	0.54	0.86	1.10	1.54	2.08	2.76	50yr	1.79	2.53	3.30	4.34	5.69	7.45	8.64	50yr	6.59	8.31	9.50	10.90	12.07	50yr
100yr	0.60	0.97	1.25	1.77	2.42	3.26	100yr	2.09	2.98	3.92	5.18	6.81	8.92	10.46	100yr	7.90	10.05	11.49	13.08	14.39	100yr
200yr	0.68	1.10	1.43	2.05	2.83	3.85	200yr	2.44	3.52	4.63	6.16	8.13	10.69	12.65	200yr	9.46	12.16	13.89	15.69	17.16	200yr
500yr	0.80	1.32	1.72	2.49	3.49	4.78	500yr	3.01	4.39	5.79	7.74	10.29	13.60	16.27	500yr	12.03	15.65	17.86	19.98	21.68	500yr


Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.73	0.89	1yr	0.63	0.87	0.92	1.33	1.67	2.24	2.55	1yr	1.99	2.45	2.88	3.17	3.91	1yr
2yr	0.32	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.82	2.34	3.08	3.48	2yr	2.72	3.35	3.85	4.58	5.11	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.41	5yr	1.01	1.38	1.61	2.12	2.73	3.82	4.24	5yr	3.38	4.08	4.76	5.59	6.30	5yr
10yr	0.39	0.60	0.74	1.03	1.33	1.60	10yr	1.15	1.57	1.81	2.39	3.06	4.41	4.93	10yr	3.91	4.74	5.52	6.49	7.28	10yr
25yr	0.44	0.67	0.84	1.19	1.57	1.91	25yr	1.36	1.86	2.10	2.76	3.54	4.75	6.00	25yr	4.20	5.77	6.78	7.92	8.80	25yr
50yr	0.49	0.74	0.92	1.32	1.78	2.18	50yr	1.54	2.13	2.35	3.08	3.94	5.37	6.95	50yr	4.75	6.68	7.91	9.22	10.17	50yr
100yr	0.54	0.82	1.03	1.48	2.03	2.48	100yr	1.75	2.42	2.63	3.42	4.36	6.04	8.04	100yr	5.35	7.73	9.24	10.74	11.76	100yr
200yr	0.60	0.90	1.14	1.66	2.31	2.83	200yr	1.99	2.77	2.94	3.78	4.81	6.78	9.31	200yr	6.00	8.95	10.79	12.52	13.61	200yr
500yr	0.70	1.04	1.34	1.94	2.76	3.39	500yr	2.38	3.31	3.42	4.32	5.49	7.89	11.30	500yr	6.99	10.86	13.26	15.37	16.49	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	\square
1yr	0.29	0.44	0.54	0.72	0.89	1.08	1yr	0.77	1.06	1.26	1.74	2.20	3.01	3.16	1yr	2.66	3.04	3.61	4.39	5.08	1yr
2yr	0.34	0.52	0.64	0.86	1.07	1.27	2yr	0.92	1.24	1.48	1.96	2.51	3.45	3.71	2yr	3.05	3.57	4.10	4.85	5.67	2yr
5yr	0.40	0.62	0.77	1.05	1.34	1.62	5yr	1.15	1.59	1.88	2.53	3.24	4.36	4.96	5yr	3.86	4.77	5.40	6.38	7.17	5yr
10yr	0.47	0.72	0.89	1.25	1.61	1.98	10yr	1.39	1.93	2.28	3.10	3.94	5.37	6.20	10yr	4.75	5.96	6.80	7.85	8.76	10yr
25yr	0.58	0.88	1.09	1.56	2.05	2.57	25yr	1.77	2.51	2.95	4.06	5.13	7.84	8.31	25yr	6.94	7.99	9.09	10.34	11.41	25yr
50yr	0.67	1.02	1.27	1.83	2.46	3.13	50yr	2.12	3.06	3.59	4.99	6.28	9.81	10.40	50yr	8.68	10.00	11.34	12.71	13.95	50yr
100yr	0.79	1.19	1.49	2.16	2.96	3.81	100yr	2.55	3.72	4.36	6.14	7.71	12.28	13.01	100yr	10.87	12.51	14.13	15.66	17.06	100yr
200yr	0.92	1.39	1.76	2.55	3.55	4.65	200yr	3.07	4.55	5.32	7.56	9.46	15.41	16.29	200yr	13.63	15.66	17.64	19.29	20.88	200yr
500yr	1.14	1.70	2.19	3.18	4.53	6.04	500yr	3.91	5.90	6.91	9.98	12.44	20.81	21.93	500yr	18.42	21.08	23.64	25.40	27.27	500yr

Area Listing (selected nodes)

Area	a CN	Description
(acres)	(subcatchment-numbers)
3.849	9 74	>75% Grass cover, Good, HSG C (S10, S11A, S11B, S12, S13, S14, S15, S16, S17, S18, S7A, S8, S9)
0.426	6 98	Paved parking, HSG C (S11A, S11B, S12, S13, S14, S15, S17)
0.164	4 98	Paved roads w/curbs & sewers, HSG C (S16, S17)
0.323	3 98	Permeable Pavement, HSG C (S13, S14, S9)
0.07	1 98	Roofs, HSG B (S7A, S8B)
0.093	3 98	Roofs, HSG C (S7A, S8)
0.109	9 98	Unconnected pavement, HSG C (S11A, S11B, S8, S9)
0.243	3 70	Woods, Good, HSG C (S16, S17, S18)
0.26	1 77	Woods, Good, HSG D (S10)
5.53	9 79	TOTAL AREA

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.071	HSG B	S7A, S8B
5.207	HSG C	S10, S11A, S11B, S12, S13, S14, S15, S16, S17, S18, S7A, S8, S9
0.261	HSG D	S10
0.000	Other	
5.539		TOTAL AREA

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	3.849	0.000	0.000	3.849	>75% Grass cover, Good	S10,
							S11
							А,
							S11
							В,
							S12,
							S13,
							S14,
							- · -
							S15,
							S16,
							S17,
							S18,
							S7A,
							S8,
							S9
0.000	0.000	0.426	0.000	0.000	0.426	Paved parking	S11
							А,
							S11
							В,
							S12,
							S13,
							S14,
							S15,
							S17
0.000	0.000	0.164	0.000	0.000	0.164	Paved roads w/curbs & sewers	S16,
							S17
0.000	0.000	0.323	0.000	0.000	0.323	Permeable Pavement	S13,
							S14,
							S9
0.000	0.071	0.093	0.000	0.000	0.164	Roofs	S7A,
							~~

4801 PRE-Phase 1 w15

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Printed 12/19/2019 Page 4

S8, S8B Ground Covers (selected nodes) (continued)

		HSG-B (acres)		HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0	.000	0.000	0.109	0.000	0.000	0.109	Unconnected pavement	S11 A, S11 B,
0	.000	0.000	0.243	0.261	0.000	0.504	Woods, Good	S8, S9 S10,
								S16, S17,
0	.000	0.071	5.207	0.261	0.000	5.539	TOTAL AREA	S18

Summary for Subcatchment S10: 4S-Northwest

Runoff = 2.56 cfs @ 12.22 hrs, Volume= 0.252 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

	Area	a (sf)	CN	Description	Description							
	83	,610	74	>75% Gras	s cover, Go	ood, HSG C						
	11	,369	77	Woods, Go	od, HSG D							
	94	,979	74	Weighted A	verage							
	94	,979		100.00% Pe	ervious Are	а						
Т		ength	Slope		Capacity	Description						
(min	ı)	(feet)	(ft/ft) (ft/sec)	(cfs)							
12.	9	100	0.0100	0.13		Sheet Flow,						
						Grass: Short n= 0.150 P2= 3.23"						
2.	4	300	0.0200	2.12		Shallow Concentrated Flow,						
						Grassed Waterway Kv= 15.0 fps						
15.	3	400	Total									

Summary for Subcatchment S11A: S11A

Runoff	=	0.51 cfs @	12.09 hrs.	Volume=	0.037 af.	Depth= 2.20"
rtanon			12.00 110,	Volumo	0.001 ai,	Dopai 2.20

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN	Description							
	4,731	74	>75% Gras	s cover, Go	ood, HSG C					
	1,530	98	Jnconnecte	ed pavemer	ent, HSG C					
	2,516	98	Paved park	ing, HSG C	C					
	8,777	85	Weighted Average							
	4,731	:	53.90% Pervious Area							
	4,046		46.10% Imp	pervious Ar	rea					
	1,530	:	37.82% Un	connected						
Тс	Length	Slope	,	Capacity	Description					
(min)	(feet)	(ft/ft)	/ft) (ft/sec) (cfs)							
6.0					Direct Entry,					

Summary for Subcatchment S11B: S11B

Runoff = 0.29 cfs @ 12.09 hrs, Volume= 0.021 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

4801 PRE-Phase 1 w15

Type III 24-hr 2-Year Rainfall=3.71" Printed 12/19/2019 LLC Page 7

Prepared by Altus Engineeri	ng, Inc.
HydroCAD® 10.00-22 s/n 01222	© 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	2,316	74	>75% Grass cover, Good, HSG C		
	530	98	Unconnected pavement, HSG C		
	1,960	98	Paved parking, HSG C		
	4,806	86	Weighted Av	/erage	
	2,316		48.19% Pervious Area		
	2,490		51.81% Impervious Area		
	530		21.29% Und	onnected	1
Тс	Length	Slop		Capacity	/ Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment S12: S12

Runoff = 0.88 cfs @ 12.09 hrs, Volume= 0.063 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

_	A	rea (sf)	CN Description			
		11,450	74 >75% Grass cover, Good, HSG C			
_		5,500	98 F			
		16,950	82 Weighted Average			
		11,450	67.55% Pervious Area			
		5,500	3	32.45% Imp	pervious Ar	ea
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.7	75	0.0700	0.27		Sheet Flow, sheet
						Grass: Short n= 0.150 P2= 3.23"
	0.4	50	0.0200	2.12		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	5.1	125	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.03 cfs @ 21.94 hrs, Volume= 0.024 af, Depth> 2.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

	Area (sf)	CN	Description		
	1,425	98	Paved parking, HSG C		
	131	74	>75% Grass cover, Good, HSG C		
*	2,990	98	Permeable Pavement, HSG C		
	4,546	97	Weighted Average		
	131		2.88% Pervious Area		
	4,415		97.12% Impervious Area		

Prepare		is Eng	ineering, In		D Software Solu		2-Year Rainfall=3.71" Printed 12/19/2019 Page 8			
Tc (min)	Length (feet)	Slop (ft/f								
790.0					Direct Entry	/,				
	Summary for Subcatchment S14: 14S Pemeable Lot									
Runoff	=	0.03	cfs @ 21.9	4 hrs, Volu	ume=	0.028 af, Depth> 2	.73"			
	Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"									
A	rea (sf)	CN	Description							
	1,723	98	Paved park							
	137	74			ood, HSG C					
*	3,440	98	Permeable	Pavement,	HSG C					
	5,300	97	Weighted Average							
	137		2.58% Perv	vious Area						
	5,163		97.42% Imp	pervious Ar	ea					

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
--	--

790.0

Direct Entry,

Summary for Subcatchment S15: S15

Runoff	=	0.60 cfs @	12.09 hrs,	Volume=	0.044 af, Depth= 1.96"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN E	CN Description							
	7,610	74 >	75% Gras	s cover, Go	bod, HSG C					
	4,045	98 F	Paved park	ing, HSG C						
	11,655	82 V	Veighted A	verage						
	7,610	6	5.29% Per	vious Area	1					
	4,045	3	4.71% Imp	pervious Ar	ea					
_				• •						
Тс	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.3	80	0.0600	0.25		Sheet Flow, sheet					
					Grass: Short n= 0.150 P2= 3.23"					
5.3	80	Total, Increased to minimum Tc = 6.0 min								

Summary for Subcatchment S16: Banfield Road

Runoff = 1.05 cfs @ 12.21 hrs, Volume= 0.100 af, Depth= 1.59"

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 2-Year Rainfall=3.71" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 9

 A	vrea (sf)	CN E	Description		
	27,713	74 >	75% Gras	s cover, Go	od, HSG C
	3,798	98 F	aved road	s w/curbs 8	k sewers, HSG C
	1,342	70 V	Voods, Go	od, HSG C	
	32,853	77 V	Veighted A	verage	
	29,055	8	8.44% Per	vious Area	
	3,798	1	1.56% Imp	ervious Are	ea
Тс	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.9	100	0.0100	0.13		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
1.7	280	0.0350	2.81		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
 14.6	380	Total			

Summary for Subcatchment S17: S11

Runoff	=	0.63 cfs @	12.11 hrs, Volume=	0.047 af, Depth= 1.96"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

	A	rea (sf)	CN I	Description					
		4,048	74 :	>75% Gras	s cover, Go	bod, HSG C			
		3,330	98	Paved road	s w/curbs &	& sewers, HSG C			
		1,395	98	Paved park	ing, HSG C				
		3,855	70	Noods, Go	od, HSG C				
		12,628	82	Neighted A	verage				
		7,903	(52.58% Per	vious Area				
		4,725		37.42% Imp	pervious Are	ea			
	-				o				
,	ŢĊ	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.6	70	0.0400	0.21		Sheet Flow, sheet			
						Grass: Short n= 0.150 P2= 3.23"			
	1.8	140	0.0650	1.27		Shallow Concentrated Flow,			
						Woodland Kv= 5.0 fps			
	7.4	210	Total						

Summary for Subcatchment S18: S11

Runoff 0.62 cfs @ 12.13 hrs, Volume= 0.051 af, Depth= 1.32" =

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 2-Year Rainfall=3.71" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 10

	Area (sf)	CN	Description					
	14,716		>75% Grass cover, Good, HSG C Woods, Good, HSG C					
	5,377		· · · ·	,				
	20,093 20,093		Weighted A 100.00% Pe		а			
To (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
3.4	60	0.1000	0.29		Sheet Flow, sheet Grass: Short n= 0.150	P2= 3.23"		

5.0 40 0.1200 0.13 Sheet Flow, sheet Woods: Light underbrush n= 0.400 P2= 3.23" Shallow Concentrated Flow, 0.2 50 0.0800 4.24 Grassed Waterway Kv= 15.0 fps

150 Total 8.6

Summary for Subcatchment S7A: 4S-Northwest

Runoff	=	0.20 cfs @	12.09 hrs,	Volume=	0.016 af, Depth= 3.15"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Α	rea (sf)	CN	Description					
	326	74	>75% Gras	s cover, Go	ood, HSG C			
	1,420	98	Roofs, HSG	ЭC				
	900	98	Roofs, HSC	ЭB				
	2,646	95	Weighted Average					
	326		12.32% Pervious Area					
	2,320		87.68% Imp	pervious Ar	rea			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	•			
6.0					Direct Entry,			

Summary for Subcatchment S8: S8-Northwest

Runoff = 0.58 cfs @ 12.20 hrs, Volume= 0.054 af, Depth= 1.88"

Area (sf)	CN	Description			
10,480	74	>75% Grass cover, Good, HSG C			
2,635	98	Roofs, HSG C			
1,910	98	Unconnected pavement, HSG C			
15,025	81	Weighted Average			
10,480		69.75% Pervious Area			
4,545		30.25% Impervious Area			
1,910		42.02% Unconnected			

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	12.9	100	0.0100	0.13		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.23"
	1.4	180	0.0200	2.12		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	14.3	280	Total			

Summary for Subcatchment S8B: ROOF DRAIN

Runoff = 0.18 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 3.48"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN [Description		
	2,190	98 F	Roofs, HSC	βB	
	2,190		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.05 cfs @ 21.94 hrs, Volume= 0.046 af, Depth> 2.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Α	rea (sf)	CN	Description				
	778	98	Unconnecte	ed pavemer	ent, HSG C		
	389	74 :	>75% Gras	s cover, Go	Good, HSG C		
*	7,655	98	Permeable	Pavement,	t, HSG C		
	8,822	97	97 Weighted Average				
	389		4.41% Pervious Area				
	8,433	9	95.59% Impervious Area				
	778	9	9.23% Unconnected				
Tc	Length	Slope		Capacity	•		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
790.0					Direct Entry,		

Summary for Reach R5: R5 - Pre-Treatment Swale 1

Inflow Area	=	0.312 ac, 48.12% Impervious, Inflow Depth = 2.23"	for 2-Year event
Inflow =	=	0.80 cfs @ 12.09 hrs, Volume= 0.058 af	
Outflow =	=	0.77 cfs @ 12.11 hrs, Volume= 0.058 af, Atte	n= 4%, Lag= 1.3 min

4801 PRE-Phase 1 w15 *Type* Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.71" Printed 12/19/2019 LLC Page 12

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 1.35 fps, Min. Travel Time= 0.9 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 2.3 min

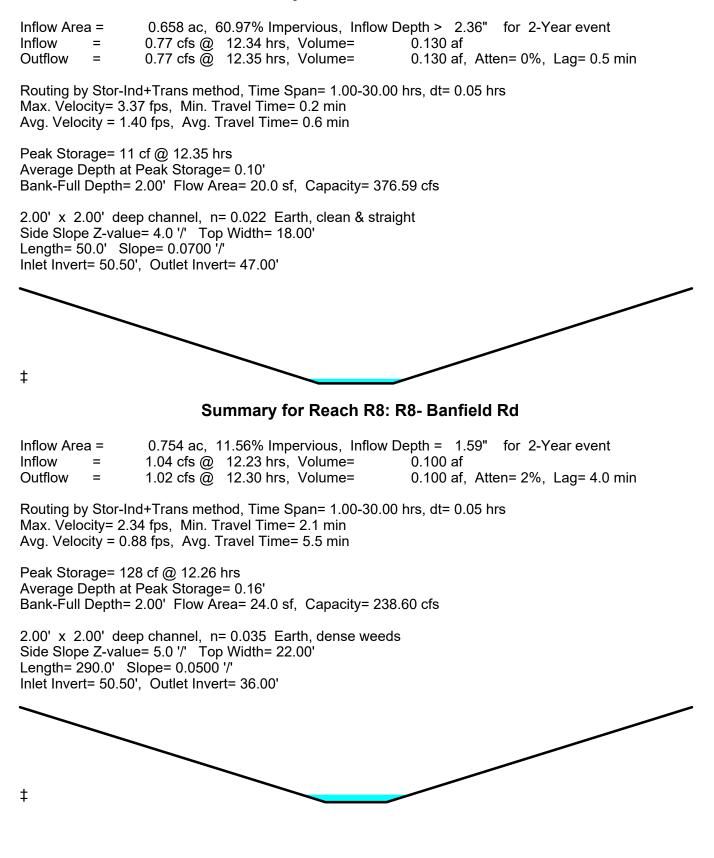
Peak Storage= 41 cf @ 12.10 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs

8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/' Inlet Invert= 48.00', Outlet Invert= 47.00'

‡

Summary for Reach R6: wooded area

Inflow Area =	0.658 ac, 60.97% Impervious, Inflow D	epth > 2.38" for 2-Year event
Inflow =	0.84 cfs @ 12.15 hrs, Volume=	0.131 af
Outflow =	0.77 cfs @ 12.34 hrs, Volume=	0.130 af, Atten= 9%, Lag= 11.7 min


Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 0.30 fps, Min. Travel Time= 6.6 min Avg. Velocity = 0.10 fps, Avg. Travel Time= 19.8 min

Peak Storage= 304 cf @ 12.23 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 1.00' Flow Area= 20.0 sf, Capacity= 14.61 cfs

10.00' x 1.00' deep channel, n= 0.100 Earth, dense brush, high stage Side Slope Z-value= 10.0 '/' Top Width= 30.00' Length= 120.0' Slope= 0.0042 '/' Inlet Invert= 51.00', Outlet Invert= 50.50'

‡

Summary for Reach R7: REACH 7

Summary for Reach R9: REACH 9

Inflow Area	a =	0.122 ac, 97.42% Impervious, Inflow Depth > 2.73" for 2-Yea	ir event
Inflow	=	0.03 cfs @ 21.94 hrs, Volume= 0.028 af	
Outflow	=	0.03 cfs $ar{@}$ 21.94 hrs, Volume= 0.028 af, Atten= 0%, La	ag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond OS1: Outlet Structure 1

Inflow Area =	3.912 ac, 2	22.29% Impervious,	Inflow Depth > 1	.53" for 2-Year event
Inflow =	4.37 cfs @	12.26 hrs, Volume	e= 0.498 af	
Outflow =	4.39 cfs @	12.26 hrs, Volume	e= 0.498 af	, Atten= 0%, Lag= 0.0 min
Primary =	4.39 cfs @	12.26 hrs, Volume	e= 0.498 af	_

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 39.34' @ 12.26 hrs Surf.Area= 13 sf Storage= 14 cf

Plug-Flow detention time= 0.0 min calculated for 0.497 af (100% of inflow) Center-of-Mass det. time= 0.0 min (951.0 - 951.0)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device #1	Routing Primary	37.50' 12.0 Inlet	et Devices J" Round Culvert L= 20.0' Ke= 0.500 t / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=4.34 cfs @ 12.26 hrs HW=39.32' (Free Discharge) **1=Culvert** (Inlet Controls 4.34 cfs @ 5.52 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area	a =	0.805 ac, 46.90% Impervious, Inflow Depth > 1.81" for 2-Year event	t
Inflow	=	.53 cfs @ 12.16 hrs, Volume= 0.122 af	
Outflow	=	.56 cfs @ 12.16 hrs, Volume= 0.122 af, Atten= 0%, Lag= 0.0) min
Primary	=	.56 cfs @ 12.16 hrs, Volume= 0.122 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.67' @ 12.16 hrs Surf.Area= 13 sf Storage= 5 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (981.8 - 981.7)

Volume	Invert	Avail.Storage	Storage Description
#1	42.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary		" Round Culvert L= 110.0' Ke= 0.500 / Outlet Invert= 42.00' / 37.85' S= 0.0377 '/' Cc= 0.900

n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=1.52 cfs @ 12.16 hrs HW=42.66' (Free Discharge) ↓ 1=Culvert (Inlet Controls 1.52 cfs @ 2.76 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac, 87.68% Impervious, Inflow I	Depth = 3.15" for 2-Year event
Inflow =	0.20 cfs @ 12.09 hrs, Volume=	0.016 af
Outflow =	0.21 cfs @12.09 hrs, Volume=	0.016 af, Atten= 0%, Lag= 0.0 min
Primary =	0.21 cfs @ 12.09 hrs, Volume=	0.016 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.52' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.2 min calculated for 0.016 af (100% of inflow) Center-of-Mass det. time= 0.2 min (776.7 - 776.5)

Volume	Invert	Avail.Storage	Storage Description
#1	53.30'	9 c	2.00'D x 3.00'H Vertical Cone/Cylinder
Device #1	Routing Primary	53.30' 12	tlet Devices .0" Round Culvert L= 72.0' Ke= 0.500 et / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.20 cfs @ 12.09 hrs HW=53.52' (Free Discharge) -1=Culvert (Inlet Controls 0.20 cfs @ 1.59 fps)

Summary for Pond P3: CB P3

Inflow Area	=	0.456 ac, 4	5.59% Imperviou	s, Inflow Depth =	2.22" fo	r 2-Year event
Inflow	=	0.84 cfs @	12.15 hrs, Volur	ne= 0.085	af	
Outflow :	=	0.84 cfs @	12.15 hrs, Volur	ne= 0.085	af, Atten=	= 0%, Lag= 0.1 min
Primary	=	0.84 cfs @	12.15 hrs, Volur	ne= 0.085	af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.01' @ 12.15 hrs Surf.Area= 13 sf Storage= 6 cf

Plug-Flow detention time= 0.4 min calculated for 0.084 af (100% of inflow) Center-of-Mass det. time= 0.4 min (813.6 - 813.2)

Volume	Invert	Avail.Storage	Storage Description
#1	51.50'	35 cf	4.00'D x 2.75'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 98.0' Ke= 0.500 t / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.84 cfs @ 12.15 hrs HW=52.01' (Free Discharge) ←1=Culvert (Barrel Controls 0.84 cfs @ 3.05 fps)

Summary for Pond P4: YD P4

Inflow Area =	0.110 ac, 51.81% Impervious, Inflow	Depth = 2.29" for 2-Year event
Inflow =	0.29 cfs @ 12.09 hrs, Volume=	0.021 af
Outflow =	0.29 cfs @ 12.09 hrs, Volume=	0.021 af, Atten= 0%, Lag= 0.0 min
Primary =	0.29 cfs @ 12.09 hrs, Volume=	0.021 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.04' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.2 min calculated for 0.021 af (100% of inflow) Center-of-Mass det. time= 0.2 min (816.4 - 816.3)

Volume	In	vert Ava	ail.Storage	Storage Description
#1	48	.75'	10 cf	2.00'D x 3.25'H Vertical Cone/Cylinder
#2	52	.00'	150 cf	Custom Stage DataListed below
			160 cf	Total Available Storage
Elevatio	on	Cum.Store		
(fee	et)	(cubic-feet)		
52.0	00	0		
53.0	00	150		
Device	Routing	g lı	nvert Ou	tlet Devices
#1	Primar	/ 4		0" Round Culvert L= 25.0' Ke= 0.500
			Inie	et / Outlet Invert= 48.75' / 48.60' S= 0.0060 '/' Cc= 0.900

Primary OutFlow Max=0.28 cfs @ 12.09 hrs HW=49.04' (Free Discharge) **1=Culvert** (Barrel Controls 0.28 cfs @ 2.24 fps)

Summary for Pond P5: YD P5

n= 0.011, Flow Area= 0.79 sf

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow	Depth = 2.23" for 2-Year event
Inflow =	0.80 cfs @ 12.09 hrs, Volume=	0.058 af
Outflow =	0.80 cfs @ 12.09 hrs, Volume=	0.058 af, Atten= 0%, Lag= 0.0 min
Primary =	0.80 cfs @ 12.09 hrs, Volume=	0.058 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.96' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.058 af (100% of inflow) Center-of-Mass det. time= 0.1 min (818.6 - 818.5)

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 2-Year Rainfall=3.71" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 17

Volume	Inv	ert Avail.Sto	orage	Storage [Description			
#1	48.	50'	11 cf	2.00'D x	3.50'H Vertica	I Cone/Cylinder		
#2	52.	00' 5	92 cf	Custom Stage Data (Prismatic)Listed below (Recalc)				
		6	03 cf	Total Ava	ilable Storage			
Elevatio (fee		Surf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)			
52.0	00	10		0	0			
53.00		680		345	345			
53.30		970		247	592			
Device	Routing	Invert	Outl	et Devices				
#1	#1 Primary 48.50' 12.0'' Round Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 48.50' / 48.00' S= 0.0077 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf							
Primary	Primary OutFlow Max=0.78 cfs @ 12.09 hrs. HW=48.95' (Free Discharge)							

Primary OutFlow Max=0.78 cfs @ 12.09 hrs HW=48.95' (Free Discharge) —1=Culvert (Barrel Controls 0.78 cfs @ 3.31 fps)

Summary for Pond P7: Driveway Crossing #2

Inflow Area =	2.839 ac, 14.14% Impervious, Inflow D	Depth > 1.61" for 2-Year event
Inflow =	3.18 cfs @ 12.25 hrs, Volume=	0.382 af
Outflow =	3.18 cfs @ 12.25 hrs, Volume=	0.382 af, Atten= 0%, Lag= 0.1 min
Primary =	3.18 cfs @ 12.25 hrs, Volume=	0.382 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 45.21' @ 12.25 hrs Surf.Area= 13 sf Storage= 15 cf

Plug-Flow detention time= 0.2 min calculated for 0.382 af (100% of inflow) Center-of-Mass det. time= 0.1 min (913.2 - 913.1)

Volume	Inv	ert Ava	il.Storage	Storage Descrip	ption		
#1	47.0		215 cf	•	Custom Stage Data (Prismatic)Listed below		
#2	44.(JU ¹	38 cf	4.00 ⁻ D X 3.00 ⁻ H	Vertical Cone/C	ylinder	
			253 cf	Total Available	Storage		
Elevatio		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
47.0	00	20	0.0	0	0		
48.0	00	410	100.0	215	215		
<u>Device</u> #1	Routing Primary		1.00' 12.0		rt L= 110.0' Ke=		
				t / Outlet Invert= 4).012, Flow Area		= 0.0091 '/' Cc= 0.900	

Primary OutFlow Max=3.18 cfs @ 12.25 hrs HW=45.21' (Free Discharge) **1=Culvert** (Inlet Controls 3.18 cfs @ 4.05 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area =	0.754 ac, 11.56% Impervious, Inflow I	Depth = 1.59" for 2-Year event
Inflow =	1.05 cfs @ 12.21 hrs, Volume=	0.100 af
Outflow =	1.04 cfs @_ 12.23 hrs, Volume=	0.100 af, Atten= 1%, Lag= 1.1 min
Primary =	1.04 cfs @ 12.23 hrs, Volume=	0.100 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.28' @ 12.23 hrs Surf.Area= 128 sf Storage= 60 cf

Plug-Flow detention time= 0.4 min calculated for 0.100 af (100% of inflow) Center-of-Mass det. time= 0.4 min (852.7 - 852.3)

Volume	Inv	ert Ava	il.Storage	Storage Descrip	otion	
#1	47.	00'	215 cf	Custom Stage	Data (Prismatic)L	isted below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
47.0	00	20	0.0	0	0	
48.0	00	410	100.0	215	215	
Device	Routing	Ir	vert Outl	et Devices		
#1	Primary	46	6.75' 12.0	" Round Culver	t L= 80.0' Ke= 0.	.500
			Inlet	/ Outlet Invert= 4	6.75' / 44.00' S=	0.0344 '/' Cc= 0.900
			n= 0	0.012, Flow Area=	= 0.79 sf	

Primary OutFlow Max=1.03 cfs @ 12.23 hrs HW=47.27' (Free Discharge) **1=Culvert** (Inlet Controls 1.03 cfs @ 2.47 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area	a =	3.106 ac, 15	5.91% Impervious	, Inflow Depth >	1.64" fo	or 2-Year event
Inflow	=	3.49 cfs @ 1	12.24 hrs, Volum	e= 0.425	af	
Outflow	=	3.40 cfs @	12.29 hrs, Volum	e= 0.376	af, Atten=	= 3%, Lag= 3.0 min
Primary	=	3.40 cfs @ ~	12.29 hrs, Volum	e= 0.376	af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.11' @ 12.29 hrs Surf.Area= 1,823 sf Storage= 2,868 cf

Plug-Flow detention time= 106.2 min calculated for 0.375 af (88% of inflow) Center-of-Mass det. time= 36.5 min (941.1 - 904.6)

Volume	Invert	Avail.Storage	Storage Description
#1	38.00'	4,413 cf	Custom Stage Data (Prismatic)Listed below

4801 PRE-Phase 1 w15

Prepared by Altus En	gineering, Inc.		
HydroCAD® 10.00-22 s/r	<u>n 01222 © 2018 F</u>	HydroCAD Software	Solutions LL

Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
38.00	1,000	0.0	0	0
39.00	1,000	33.0	330	330
40.50	1,000	33.0	495	825
40.75	1,000	10.0	25	850
41.00	1,000	33.0	83	933
43.00	2,480	100.0	3,480	4,413

Device	Routing	Invert	Outlet Devices
#1	Primary	41.75'	18.0" Horiz. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads
#2	Primary	38.00'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 2	38.00'	1.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=3.38 cfs @ 12.29 hrs HW=42.11' (Free Discharge) **1=Orifice/Grate** (Weir Controls 3.34 cfs @ 1.96 fps)

2=Orifice/Grate (Passes 0.04 cfs of 1.86 cfs potential flow) **3=Exfiltration** (Exfiltration Controls 0.04 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area =	0.805 ac, 46.90% Impervious, Inflow	Depth > 2.16" for 2-Year event
Inflow =	1.63 cfs @ 12.10 hrs, Volume=	0.145 af
Outflow =	1.53 cfs @ 12.16 hrs, Volume=	0.122 af, Atten= 6%, Lag= 3.1 min
Primary =	1.53 cfs @ 12.16 hrs, Volume=	0.122 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.71' @ 12.16 hrs Surf.Area= 1,248 sf Storage= 1,379 cf

Plug-Flow detention time= 172.3 min calculated for 0.121 af (84% of inflow) Center-of-Mass det. time= 73.2 min (981.7 - 908.5)

Volume	Inve	ert Ava	il.Storage	e Storage Descri	iption	
#1	42.5	50'	1,646 c	f Custom Stage	e Data (Prismatic)	Listed below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
42.5	50	400	0.0	0	0	
43.5	50	400	33.0	132	132	
43.7	75	400	33.0	33	165	
45.2	25	400	10.0	60	225	
45.8	50	400	33.0	33	258	
47.0	00	1,450	100.0	1,388	1,646	
Device	Routing	In	ivert Ou	utlet Devices		
#1	Primary	42	2.50' 6.0)" Vert. Orifice/G	rate C= 0.600	
#2	Primary	46	6.50' 18	.0" Horiz. Orifice	/Grate C= 0.600	
#3	Device 1	42		nited to weir flow a	at low heads ion over Surface	area

Primary OutFlow Max=1.49 cfs @ 12.16 hrs HW=46.71' (Free Discharge) 1=Orifice/Grate (Passes 0.03 cfs of 1.88 cfs potential flow) 3=Exfiltration (Exfiltration Controls 0.03 cfs) 2=Orifice/Grate (Weir Controls 1.47 cfs @ 1.49 fps)

Summary for Link POA1: POA #1

Inflow Area	a =	5.539 ac, 21.42% Impervious, Inflow Depth > 1.57" for 2-Year event	
Inflow	=	6.15 cfs @ 12.26 hrs, Volume= 0.723 af	
Primary	=	6.15 cfs @ 12.26 hrs, Volume= 0.723 af, Atten= 0%, Lag= 0.0 i	min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2

Inflow Are	a =	2.839 ac, 14.14% Impervious, Inflow Depth > 1.61" for 2-Year event	
Inflow	=	3.18 cfs @ 12.25 hrs, Volume= 0.382 af	
Primary	=	3.18 cfs @ 12.25 hrs, Volume= 0.382 af, Atten= 0%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Subcatchment S10: 4S-Northwest

Runoff = 5.50 cfs @ 12.22 hrs, Volume= 0.524 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

_	A	rea (sf)	CN	Description			
		83,610	74	>75% Gras	s cover, Go	ood, HSG C	
_		11,369	77	Woods, Go	od, HSG D		_
		94,979	74	Weighted A	verage		
		94,979		100.00% Pe		а	
	Tc	Length	Slope	,	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		_
	12.9	100	0.0100	0.13		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.23"	
	2.4	300	0.0200	2.12		Shallow Concentrated Flow,	
_						Grassed Waterway Kv= 15.0 fps	
	15.3	400	Total				

Summary for Subcatchment S11A: S11A

Runoff	=	0.90 cfs @	12.09 hrs.	Volume=	0.067 af,	Depth=	3.96"
rtanon			12.00 110,	Volumo	0.007 ui,	Dopui	0.00

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN I	Description				
	4,731	74 :	>75% Gras	s cover, Go	ood, HSG C		
	1,530	98	Jnconnecte	ed pavemer	ent, HSG C		
	2,516	98	Paved park	ing, HSG C	C		
	8,777	85	Weighted Average				
	4,731	!	53.90% Per	vious Area	a		
	4,046	4	46.10% Imp	ervious Ar	rea		
	1,530	:	37.82% Unconnected				
-		0		0			
Tc	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	/ft) (ft/sec) (cfs)				
6.0					Direct Entry,		

Summary for Subcatchment S11B: S11B

Runoff = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af, Depth= 4.07"

4801 PRE-Phase 1 w15

 Type III 24-hr
 10-Year Rainfall=5.64"

 Printed
 12/19/2019

 s LLC
 Page 22

Prepared by Altus Engineering, Inc.	
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC	;

A	rea (sf)	CN	Description				
	2,316	74	>75% Grass cover, Good, HSG C				
	530	98	Unconnected pavement, HSG C				
	1,960	98	Paved parking, HSG C				
	4,806	86	Weighted Average				
	2,316		48.19% Pervious Area				
	2,490		51.81% Impervious Area				
	530		21.29% Unconnected				
Тс	Length	Slop					
(min)	(feet)	(ft/f	ft) (ft/sec) (cfs)				
6.0			Direct Entry,				

Summary for Subcatchment S12: S12

Runoff = 1.62 cfs @ 12.09 hrs, Volume= 0.119 af, Depth= 3.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

_	A	rea (sf)	CN E	Description				
		11,450	74 >	75% Gras	s cover, Go	ood, HSG C		
_		5,500	98 F	aved park	ing, HSG C	,		
		16,950	82 V	Veighted A	verage			
		11,450	6	7.55% Per	vious Area			
		5,500	3	2.45% Imp	pervious Ar	ea		
	_		. .					
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	4.7	75	0.0700	0.27		Sheet Flow, sheet		
						Grass: Short n= 0.150 P2= 3.23"		
	0.4	50	0.0200	2.12		Shallow Concentrated Flow,		
						Grassed Waterway Kv= 15.0 fps		
	5.1	125	Total, I	ncreased t	o minimum	Tc = 6.0 min		

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.04 cfs @ 21.94 hrs, Volume= 0.038 af, Depth> 4.31"

	Area (sf)	CN	Description	
	1,425	98	Paved parking, HSG C	
	131	74	75% Grass cover, Good, HSG C	
*	2,990	98	Permeable Pavement, HSG C	
	4,546	97	Weighted Average	
	131		2.88% Pervious Area	
	4,415		97.12% Impervious Area	

Prepare		is Eng	ineering, In) Software So		<i>10-Year Rainfall=5.64"</i> Printed 12/19/2019 Page 23
					Description		
790.0					Direct Enti	ſ y ,	
	Summary for Subcatchment S14: 14S Pemeable Lot						
Runoff	=	0.05	cfs @ 21.9	4 hrs, Volu	ime=	0.044 af, Depth>	4.31"
			ethod, UH=S Rainfall=5.64		ted-CN, Time	e Span= 1.00-30.00) hrs, dt= 0.05 hrs
A	rea (sf)	CN	Description				
	1,723	98	Paved park				
	137	74			ood, HSG C		
*	3,440	98	Permeable	,	HSG C		
	5,300	97	Weighted A				
	137		2.58% Perv				
	5,163		97.42% lmp	pervious Ar	ea		

•			Capacity (cfs)	Description	
 (ieet)	(1011)	(11/300)	(013)		

790.0

Direct Entry,

Summary for Subcatchment S15: S15

Runoff	=	1.12 cfs @	12.09 hrs, V	/olume=	0.082 af, Depth= 3.66"	
--------	---	------------	--------------	---------	------------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN [Description							
	7,610	74 >	75% Gras	s cover, Go	bod, HSG C					
	4,045	98 F	Paved park	ing, HSG C						
	11,655	82 V	Veighted A	verage						
	7,610	6	5.29% Per	vious Area	l de la constante de					
	4,045	3	34.71% Imp	pervious Ar	ea					
т.	1	01) (a l a a itu i	O a m a aite i	Description					
	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
5.3	80	0.0600	0.25		Sheet Flow, sheet					
					Grass: Short n= 0.150 P2= 3.23"					
5.3	80	Total, I	otal, Increased to minimum Tc = 6.0 min							

Summary for Subcatchment S16: Banfield Road

Runoff = 2.13 cfs @ 12.20 hrs, Volume= 0.199 af, Depth= 3.17"

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 10-Year Rainfall=5.64" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 24

	A	rea (sf)	CN I	Description			
-		27,713	74 :	>75% Gras	s cover, Go	ood, HSG C	
		3,798	98	Paved road	s w/curbs &	& sewers, HSG C	
_		1,342	70	Noods, Go	od, HSG C		
		32,853	77 \	Neighted A	verage		
		29,055	8	38.44% Pei	vious Area		
		3,798		11.56% Imp	pervious Are	ea	
	Тс	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	12.9	100	0.0100	0.13		Sheet Flow, sheet	
						Grass: Short n= 0.150 P2= 3.23"	
	17	280	0 0350	2 81		Shallow Concontrated Flow	

Shallow Concentrated Flow, 2.81 1.7 280 0.0350 Grassed Waterway Kv= 15.0 fps

14.6 380 Total

Summary for Subcatchment S17: S11

Runoff	=	1.16 cfs @	12.11 hrs, Volume=	0.088 af, Depth= 3.66"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

	A	rea (sf)	CN	Description		
		4,048	74	>75% Gras	s cover, Go	bod, HSG C
		3,330	98	Paved road	s w/curbs &	& sewers, HSG C
		1,395	98	Paved park	ing, HSG C	
_		3,855	70	Woods, Go	od, HSG C	
		12,628	82	Weighted A	verage	
		7,903		62.58% Per	vious Area	
		4,725		37.42% Imp	pervious Are	ea
	Тс	Longth	Slope	Volocity	Capacity	Description
	(min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	5.6		0.0400	· · · · ·	(013)	Shoot Flow, about
	5.0	70	0.0400	0.21		Sheet Flow, sheet Grass: Short n= 0.150 P2= 3.23"
	1.8	140	0.0650	1.27		Shallow Concentrated Flow,
	1.0	140	0.0000	1.27		Woodland Kv= 5.0 fps
	7.4	210	Total			

Summary for Subcatchment S18: S11

Runoff 1.35 cfs @ 12.13 hrs, Volume= 0.107 af, Depth= 2.79" =

4801 PRE-Phase 1 w15

 Type III 24-hr
 10-Year Rainfall=5.64"

 Printed
 12/19/2019

 Is LLC
 Page 25

	• •
Prepared by Altus Engineering, Inc.	
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software So	olutions LLC

_	A	rea (sf)	CN [Description		
		14,716			,	ood, HSG C
_		5,377	70 \	Noods, Go	od, HSG C	
		20,093	73 \	Neighted A	verage	
		20,093			ervious Are	а
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
_	3.4	60	0.1000	0.29		Sheet Flow, sheet
						Grass: Short n= 0.150 P2= 3.23"
	5.0	40	0.1200	0.13		Sheet Flow, sheet
						Woods: Light underbrush n= 0.400 P2= 3.23"
	0.2	50	0.0800	4.24		Shallow Concentrated Flow,
	•					Grassed Waterway Kv= 15.0 fps
_	8.6	150	Total			

Summary for Subcatchment S7A: 4S-Northwest

Runoff	=	0.32 cfs @	12.09 hrs,	Volume=	0.026 af, Depth= 5.05"	
--------	---	------------	------------	---------	------------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN	Description						
	326	74	>75% Gras	s cover, Go	ood, HSG C				
	1,420	98	Roofs, HSG	G C					
	900	98	Roofs, HSC	БВ					
	2,646	95	Weighted A	verage					
	326		12.32% Per	vious Area	а				
	2,320		87.68% Imp	pervious Ar	rea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	,	(cfs)					
6.0	· · · ·	, ,	, , ,		Direct Entry,				

Summary for Subcatchment S8: S8-Northwest

Runoff = 1.10 cfs @ 12.20 hrs, Volume= 0.102 af, Depth= 3.56"

Area (sf)	CN	Description
10,480	74	>75% Grass cover, Good, HSG C
2,635	98	Roofs, HSG C
1,910	98	Unconnected pavement, HSG C
15,025	81	Weighted Average
10,480		69.75% Pervious Area
4,545		30.25% Impervious Area
1,910		42.02% Unconnected

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	12.9	100	0.0100	0.13		Sheet Flow, Grass: Short n= 0.150 P2= 3.23"
	1.4	180	0.0200	2.12		Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
-	14.3	280	Total			

Summary for Subcatchment S8B: ROOF DRAIN

Runoff = 0.27 cfs @ 12.09 hrs, Volume= 0.023 af, Depth> 5.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN I	Description		
	2,190	98	Roofs, HSC	βB	
	2,190		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.08 cfs @ 21.94 hrs, Volume= 0.073 af, Depth> 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

	Area (sf)	CN	Description				
	778	98	Unconnecte	ed pavemer	ent, HSG C		
	389	74	>75% Gras	s cover, Go	Good, HSG C		
*	7,655	98	Permeable	Pavement,	t, HSG C		
	8,822	97	Weighted Average				
	389		4.41% Pervious Area				
	8,433		95.59% Impervious Area				
	778		9.23% Unconnected				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)			
790.0					Direct Entry,		

Summary for Reach R5: R5 - Pre-Treatment Swale 1

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow [Depth = 4.00" for 10-Year event
Inflow =	1.41 cfs @ 12.09 hrs, Volume=	0.104 af
Outflow =	1.37 cfs @ 12.11 hrs, Volume=	0.104 af, Atten= 3%, Lag= 1.1 min

4801 PRE-Phase 1 w15 *Type* Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=5.64" Printed 12/19/2019 s LLC Page 27

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 1.67 fps, Min. Travel Time= 0.7 min Avg. Velocity = 0.54 fps, Avg. Travel Time= 2.1 min

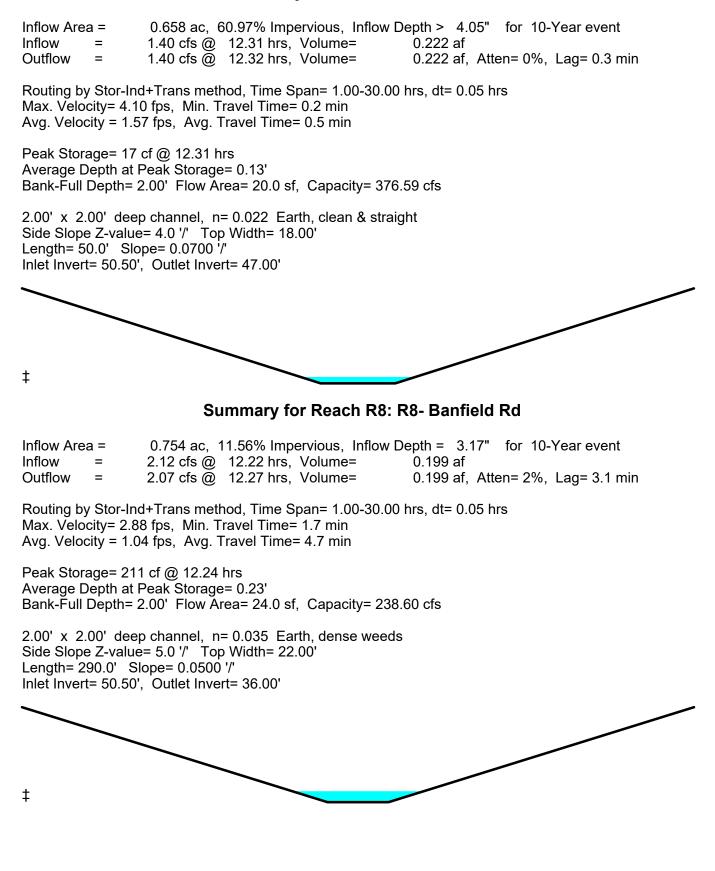
Peak Storage= 59 cf @ 12.10 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs

8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/' Inlet Invert= 48.00', Outlet Invert= 47.00'

‡

Summary for Reach R6: wooded area

Inflow Area	a =	0.658 ac, 6	0.97% Imp	ervious,	Inflow Dep	pth > 4.	.07" fo	r 10-	Year event
Inflow	=	1.51 cfs @	12.15 hrs,	Volume	=	0.223 af			
Outflow	=	1.40 cfs @	12.31 hrs,	Volume	=	0.222 af	, Atten=	7%,	Lag= 9.6 min


Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 0.37 fps, Min. Travel Time= 5.4 min Avg. Velocity = 0.12 fps, Avg. Travel Time= 16.5 min

Peak Storage= 458 cf @ 12.22 hrs Average Depth at Peak Storage= 0.29' Bank-Full Depth= 1.00' Flow Area= 20.0 sf, Capacity= 14.61 cfs

10.00' x 1.00' deep channel, n= 0.100 Earth, dense brush, high stage Side Slope Z-value= 10.0 '/' Top Width= 30.00' Length= 120.0' Slope= 0.0042 '/' Inlet Invert= 51.00', Outlet Invert= 50.50'

‡

Summary for Reach R7: REACH 7

Summary for Reach R9: REACH 9

Inflow Area	a =	0.122 ac, 97.42% Impervious, Inflow Depth > 4.31" for 10-Y	ear event
Inflow	=	0.05 cfs @ 21.94 hrs, Volume= 0.044 af	
Outflow	=	0.05 cfs $@$ 21.94 hrs, Volume= 0.044 af, Atten= 0%, L	_ag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond OS1: Outlet Structure 1

Inflow Area =	3.912 ac, 22.29% Impervious, Inflow	Depth > 3.10" for 10-Year event
Inflow =	8.67 cfs @ 12.17 hrs, Volume=	1.010 af
Outflow =	8.77 cfs @ 12.16 hrs, Volume=	1.010 af, Atten= 0%, Lag= 0.0 min
Primary =	8.77 cfs $\overline{@}$ 12.16 hrs, Volume=	1.010 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 43.37' @ 12.16 hrs Surf.Area= 13 sf Storage= 47 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (901.4 - 901.4)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
<u>Device</u> #1	Routing Primary	37.50' 12.0 Inlet	et Devices " Round Culvert L= 20.0' Ke= 0.500 : / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=8.62 cfs @ 12.16 hrs HW=43.20' (Free Discharge) **1=Culvert** (Inlet Controls 8.62 cfs @ 10.98 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area	=	0.805 ac, 40	6.90% Impervious	, Inflow Depth >	3.49"	for 10-Year event
Inflow	=	2.89 cfs @	12.12 hrs, Volum	e= 0.234	af	
Outflow	=	2.89 cfs @	12.12 hrs, Volum	e= 0.234	af, Atte	n= 0%, Lag= 0.1 min
Primary	=	2.89 cfs @	12.12 hrs, Volum	e= 0.234	af	-

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 43.08' @ 12.12 hrs Surf.Area= 13 sf Storage= 10 cf

Plug-Flow detention time= 0.0 min calculated for 0.234 af (100% of inflow) Center-of-Mass det. time= 0.0 min (918.1 - 918.0)

Volume	Invert	Avail.Storage	Storage Description
#1	42.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Outle	et Devices
#1	Primary		" Round Culvert L= 110.0' Ke= 0.500 / Outlet Invert= 42.00' / 37.85' S= 0.0377 '/' Cc= 0.900

n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.80 cfs @ 12.12 hrs HW=43.05' (Free Discharge) ↓ 1=Culvert (Inlet Controls 2.80 cfs @ 3.57 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac, 87.68% Impervious, Inf	low Depth = 5.05" for 10-Year event
Inflow =	0.32 cfs @ 12.09 hrs, Volume=	0.026 af
Outflow =	0.32 cfs @ 12.09 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.0 min
Primary =	0.32 cfs @ 12.09 hrs, Volume=	0.026 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.58' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.2 min calculated for 0.026 af (100% of inflow) Center-of-Mass det. time= 0.2 min (765.3 - 765.1)

Volume	Invert	Avail.Storage	Storage Description
#1	53.30'	9 cf	2.00'D x 3.00'H Vertical Cone/Cylinder
<u>Device</u> #1	Routing Primary	53.30' 12 . Inle	tlet Devices 0" Round Culvert L= 72.0' Ke= 0.500 et / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.31 cfs @ 12.09 hrs HW=53.57' (Free Discharge) -1=Culvert (Inlet Controls 0.31 cfs @ 1.78 fps)

Summary for Pond P3: CB P3

Inflow Area	a =	0.456 ac, 45.59% Impervious, Inflow Depth > 3.96" for 10-Year even	ent
Inflow	=	1.50 cfs @ 12.15 hrs, Volume= 0.150 af	
Outflow	=	I.50 cfs @ 12.15 hrs, Volume= 0.150 af, Atten= 0%, Lag= 0.	1 min
Primary	=	1.50 cfs @ 12.15 hrs, Volume= 0.150 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.22' @ 12.15 hrs Surf.Area= 13 sf Storage= 9 cf

Plug-Flow detention time= 0.3 min calculated for 0.150 af (100% of inflow) Center-of-Mass det. time= 0.3 min (801.1 - 800.8)

Volume	Invert	Avail.Storage	Storage Description
#1	51.50'	35 cf	4.00'D x 2.75'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 98.0' Ke= 0.500 t / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=1.50 cfs @ 12.15 hrs HW=52.22' (Free Discharge) ↓ 1=Culvert (Barrel Controls 1.50 cfs @ 3.49 fps)

Summary for Pond P4: YD P4

Inflow Area =	0.110 ac, 51.81% Impervious, Inflow	Depth = 4.07" for 10-Year event
Inflow =	0.50 cfs @ 12.09 hrs, Volume=	0.037 af
Outflow =	0.50 cfs @12.09 hrs, Volume=	0.037 af, Atten= 0%, Lag= 0.0 min
Primary =	0.50 cfs @ 12.09 hrs, Volume=	0.037 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.15' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.037 af (100% of inflow) Center-of-Mass det. time= 0.1 min (800.1 - 799.9)

Volume	Invert	Avail.Stor	age	Storage Description
#1	48.75'	1	0 cf	2.00'D x 3.25'H Vertical Cone/Cylinder
#2	52.00'	15	0 cf	Custom Stage DataListed below
		16	0 cf	Total Available Storage
Elevatio (fee 52.0	t) (cubic	Store <u>-feet)</u> 0		
53.0	0	150		
Device	Routing	Invert	Outle	et Devices
#1	Primary	48.75'	Inlet	" Round Culvert L= 25.0' Ke= 0.500 / Outlet Invert= 48.75' / 48.60' S= 0.0060 '/' Cc= 0.900 .011, Flow Area= 0.79 sf

Primary OutFlow Max=0.49 cfs @ 12.09 hrs HW=49.14' (Free Discharge) **1=Culvert** (Barrel Controls 0.49 cfs @ 2.55 fps)

Summary for Pond P5: YD P5

Inflow Area	=	0.312 ac, 48.12% Impervious, Inflow D	epth = 4.00" for 10-Year event
Inflow =	=	1.41 cfs @ 12.09 hrs, Volume=	0.104 af
Outflow =	=	1.41 cfs @ 12.09 hrs, Volume=	0.104 af, Atten= 0%, Lag= 0.0 min
Primary =	=	1.41 cfs @ 12.09 hrs, Volume=	0.104 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.14' @ 12.09 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.104 af (100% of inflow) Center-of-Mass det. time= 0.1 min (802.0 - 801.9)

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 10-Year Rainfall=5.64" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 32

Volume	Inv	ert Avail.Sto	orage	Storage I	Description		
#1	48.		11 cf	2.00'D x	3.50'H Vertical		
#2	52.	00' 5	92 cf	Custom	Stage Data (Pri	smatic)Listed below (Recalc)	
		6	03 cf	Total Ava	ailable Storage		
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)		
52.0	00	10		0	0		
53.0	00	680		345	345		
53.3	30	970		247	592		
Device	Routing	Invert	Outl	et Devices	i		
#1	Primary	48.50'	12.0	" Round	Culvert L= 65.0)' Ke= 0.500	
			Inlet	/ Outlet In	vert= 48.50' / 48	3.00' S= 0.0077 '/' Cc= 0.900	
			n= 0	0.011, Flov	v Area= 0.79 sf		
Drimary	Primary OutElow May 1 37 cfs @ 12.09 brs HW-19.13' (Free Discharge)						

Primary OutFlow Max=1.37 cfs @ 12.09 hrs HW=49.13' (Free Discharge) -1=Culvert (Barrel Controls 1.37 cfs @ 3.74 fps)

Summary for Pond P7: Driveway Crossing #2

Inflow Area =	2.839 ac, 14.14% Impervious, Inflow D	Depth > 3.15" for 10-Ye	ear event
Inflow =	6.68 cfs @ 12.23 hrs, Volume=	0.746 af	
Outflow =	6.81 cfs @ 12.25 hrs, Volume=	0.746 af, Atten= 0%, La	ag= 1.3 min
Primary =	6.81 cfs @ 12.25 hrs, Volume=	0.746 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.19' @ 12.25 hrs Surf.Area= 423 sf Storage= 253 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (883.6 - 883.4)

Volume	Inv	ert Ava	il.Storage	Storage Descrip	otion	
#1 #2	47. 44.		215 cf 38 cf	•	Data (Prismatic)L	
			253 cf	Total Available		
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
47.0 48.0		20 410	0.0 100.0	0 215	0 215	
Device	Routing	In	vert Outl	let Devices		
#1	#1 Primary 44.00' 12.0" Round Culvert L= 110.0' Ke= 0.500 Inlet / Outlet Invert= 44.00' / 43.00' S= 0.0091 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf					

Primary OutFlow Max=6.75 cfs @ 12.25 hrs HW=49.09' (Free Discharge) **1=Culvert** (Barrel Controls 6.75 cfs @ 8.59 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area =	0.754 ac, 11.56% Impervious, Inflow	Depth = 3.17" for 10-Year event
Inflow =	2.13 cfs @ 12.20 hrs, Volume=	0.199 af
Outflow =	2.12 cfs @ 12.22 hrs, Volume=	0.199 af, Atten= 1%, Lag= 1.0 min
Primary =	2.12 cfs @ 12.22 hrs, Volume=	0.199 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.57' @ 12.22 hrs Surf.Area= 242 sf Storage= 122 cf

Plug-Flow detention time= 0.5 min calculated for 0.199 af (100% of inflow) Center-of-Mass det. time= 0.5 min (832.8 - 832.3)

Volume	Inv	vert Ava	il.Storage	Storage Descrip	otion	
#1	47.	00'	215 cf	Custom Stage	Data (Prismatic)L	isted below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet <u>)</u>	
47.0	00	20	0.0	0	0	
48.0	00	410	100.0	215	215	
Device	Routing	Ir	vert Out	let Devices		
#1	Primary	46	Inle	t / Outlet Invert= 4		.500 0.0344 '/' Cc= 0.900
			n= (0.012, Flow Area	= 0.79 st	

Primary OutFlow Max=2.09 cfs @ 12.22 hrs HW=47.56' (Free Discharge) -1=Culvert (Inlet Controls 2.09 cfs @ 3.06 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area	=	3.106 ac, 1	15.91% Impervious	Inflow Depth >	3.20"	for 10-Year ever	nt
Inflow	=	7.36 cfs @	12.25 hrs, Volum	e= 0.828	af		
Outflow	=	6.76 cfs @	12.30 hrs, Volum	e= 0.776	af, Atte	en= 8%, Lag= 3.0	min
Primary	=	6.76 cfs @	12.30 hrs, Volum	e= 0.776	af		

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.37' @ 12.30 hrs Surf.Area= 2,016 sf Storage= 3,322 cf

Plug-Flow detention time= 61.4 min calculated for 0.776 af (94% of inflow) Center-of-Mass det. time= 19.8 min (896.4 - 876.5)

Volume	Invert	Avail.Storage	Storage Description
#1	38.00'	4,413 cf	Custom Stage Data (Prismatic)Listed below

4801 PRE-Phase 1 w15

Prepared by Altus Engineer	ing, Inc.
HydroCAD® 10.00-22 s/n 01222	© 2018 HydroCAD Software Solutions LL

Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
38.00	1,000	0.0	0	0
39.00	1,000	33.0	330	330
40.50	1,000	33.0	495	825
40.75	1,000	10.0	25	850
41.00	1,000	33.0	83	933
43.00	2,480	100.0	3,480	4,413

Routing	Invert	Outlet Devices
Primary	41.75'	18.0" Horiz. Orifice/Grate C= 0.600
		Limited to weir flow at low heads
Primary	38.00'	6.0" Vert. Orifice/Grate C= 0.600
Device 2	38.00'	1.000 in/hr Exfiltration over Surface area
	Routing Primary Primary Device 2	Primary 41.75' Primary 38.00'

Primary OutFlow Max=6.76 cfs @ 12.30 hrs HW=42.37' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 6.71 cfs @ 3.80 fps)

2=Orifice/Grate (Passes 0.05 cfs of 1.92 cfs potential flow) **3=Exfiltration** (Exfiltration Controls 0.05 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area =	0.805 ac, 46.90% Impervious, Inflow D	epth > 3.88" for 10-Year event
Inflow =	2.98 cfs @ 12.10 hrs, Volume=	0.260 af
Outflow =	2.89 cfs @ 12.12 hrs, Volume=	0.234 af, Atten= 3%, Lag= 1.2 min
Primary =	2.89 cfs @ 12.12 hrs, Volume=	0.234 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.83' @ 12.12 hrs Surf.Area= 1,328 sf Storage= 1,484 cf

Plug-Flow detention time= 102.5 min calculated for 0.233 af (90% of inflow) Center-of-Mass det. time= 35.4 min (918.0 - 882.7)

Volume	Inve	ert Ava	il.Storage	e Storage Descri	iption	
#1	42.5	50'	1,646 c	f Custom Stage	e Data (Prismatic)	Listed below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
42.5	50	400	0.0	0	0	
43.5	50	400	33.0	132	132	
43.7	75	400	33.0	33	165	
45.2	25	400	10.0	60	225	
45.8	50	400	33.0	33	258	
47.0	00	1,450	100.0	1,388	1,646	
Device	Routing	In	ivert Ou	utlet Devices		
#1	Primary	42	2.50' 6.0)" Vert. Orifice/G	rate C= 0.600	
#2	Primary	46	6.50' 18	.0" Horiz. Orifice	/Grate C= 0.600	
#3	Device 1	42		nited to weir flow a	at low heads ion over Surface	area

Primary OutFlow Max=2.81 cfs @ 12.12 hrs HW=46.82' (Free Discharge) 1=Orifice/Grate (Passes 0.03 cfs of 1.91 cfs potential flow) 3=Exfiltration (Exfiltration Controls 0.03 cfs) 2=Orifice/Grate (Weir Controls 2.78 cfs @ 1.85 fps)

Summary for Link POA1: POA #1

Inflow Area	a =	5.539 ac, 21.42% Impervious, Inflow	Depth > 3.14"	for 10-Year event
Inflow	=	12.60 cfs @ 12.16 hrs, Volume=	1.449 af	
Primary	=	12.60 cfs @ 12.16 hrs, Volume=	1.449 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2

Inflow Area	=	2.839 ac, 1	14.14% Imp	ervious,	Inflow De	epth >	3.15"	for 10	-Year event
Inflow :	=	6.81 cfs @	12.25 hrs,	Volume	;=	0.746	af		
Primary :	=	6.81 cfs @	12.25 hrs,	Volume	=	0.746	af, At	ten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

7.97 cfs @ 12.21 hrs, Volume= Runoff = 0.757 af, Depth= 4.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

 A	rea (sf)	CN I	Description			
	83,610	74 :	>75% Gras	s cover, Go	bod, HSG C	
	11,369	77 \	Noods, Go	od, HSG D		
	94,979	74	Neighted A	verage		
	94,979		100.00% Pe	ervious Are	а	
Тс	Length	Slope		Capacity	Description	
 <u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)		
12.9	100	0.0100	0.13		Sheet Flow,	
					Grass: Short n= 0.150 P2= 3.23"	
2.4	300	0.0200	2.12		Shallow Concentrated Flow,	
					Grassed Waterway Kv= 15.0 fps	
15.3	400	Total				

Summary for Subcatchment S11A: S11A

Runoff	=	1.21 cfs @	12 09 hrs	Volume=	0 090 af	Depth= 5.39"
TUTION	-	1.Z1 US (W)	12.091115,	volume-	0.090 al,	Depin- 5.58

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN	Description					
	4,731	74	>75% Gras	s cover, Go	ood, HSG C			
	1,530	98	Unconnecte	ed pavemer	ent, HSG C			
	2,516	98	Paved park	ing, HSG C	C			
	8,777	85	Weighted A	verage				
	4,731		53.90% Pei	vious Area	а			
	4,046		46.10% Impervious Area					
	1,530		37.82% Un	connected				
Тс	Length	Slope	,	Capacity				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment S11B: S11B

0.67 cfs @ 12.09 hrs, Volume= 0.051 af, Depth= 5.50" Runoff =

4801 PRE-Phase 1 w15

 Type III 24-hr
 25-Year Rainfall=7.14"

 Printed
 12/19/2019

 s LLC
 Page 37

Prepared by Altus Engineering, Inc.	
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC	

A	rea (sf)	CN	Description						
	2,316	74	>75% Grass cover, Good, HSG C						
	530	98	Inconnected pavement, HSG C						
	1,960	98	Paved parking, HSG C						
	4,806	86	Weighted Average						
	2,316		48.19% Pervious Area						
	2,490		51.81% Impervious Area						
	530		21.29% Unconnected						
Тс	Length	Slop							
(min)	(feet)	(ft/f	ft) (ft/sec) (cfs)						
6.0			Direct Entry,						

Summary for Subcatchment S12: S12

Runoff = 2.21 cfs @ 12.09 hrs, Volume= 0.164 af, Depth= 5.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

_	A	rea (sf)	CN E	CN Description						
		11,450	74 >	75% Gras	s cover, Go	ood, HSG C				
_		5,500	98 F	aved park	ing, HSG C					
		16,950	82 V	Veighted A	verage					
11,450 67.55% Pervious Area					vious Area					
5,500 32.45% Impervious Area						ea				
	_				_					
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	4.7	75	0.0700	0.27		Sheet Flow, sheet				
						Grass: Short n= 0.150 P2= 3.23"				
	0.4	50	0.0200	2.12		Shallow Concentrated Flow,				
						Grassed Waterway Kv= 15.0 fps				
	5.1	125	Total, I	ncreased t	o minimum	Tc = 6.0 min				

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.05 cfs @ 21.94 hrs, Volume= 0.048 af, Depth> 5.55"

	Area (sf)	CN	Description
	1,425	98	Paved parking, HSG C
	131	74	>75% Grass cover, Good, HSG C
*	2,990	98	Permeable Pavement, HSG C
	4,546	97	Weighted Average
	131		2.88% Pervious Area
	4,415		97.12% Impervious Area

Prepare	d by Altu	se 1 w15 Type III 24-hr 25-Year Rainfall=7.14" is Engineering, Inc. Printed 12/19/2019 22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 38							
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
790.0		Direct Entry,							
Summary for Subcatchment S14: 14S Pemeable Lot									
Runoff	=	0.06 cfs @ 21.94 hrs, Volume= 0.056 af, Depth> 5.55"							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"									
A	<u>rea (sf)</u> 1,723	CN Description 98 Paved parking, HSG C							
	137	74 >75% Grass cover, Good, HSG C							
*	3,440	98 Permeable Pavement, HSG C							
	5,300	97 Weighted Average							
	137	2.58% Pervious Area							
	5,163	97.42% Impervious Area							
Tc (min)	Length (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)							
790.0		Direct Entry,							

Summary for Subcatchment S15: S15

Runoff	=	1.52 cfs @	12.09 hrs, Volume=	0.113 af, Depth= 5.05"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

Α	rea (sf)	CN E	CN Description						
	7,610	74 >	74 >75% Grass cover, Good, HSG C						
	4,045	98 F	98 Paved parking, HSG C						
	11,655	82 V	Veighted A	verage					
	7,610	6	5.29% Per	vious Area					
	4,045	3	4.71% Imp	pervious Ar	ea				
τ.	1	0		0					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.3	80	0.0600	0.25		Sheet Flow, sheet				
					Grass: Short n= 0.150 P2= 3.23"				
5.3	80	Total, I	ncreased t	n Tc = 6.0 min					

Summary for Subcatchment S16: Banfield Road

Runoff = 3.02 cfs @ 12.20 hrs, Volume= 0.282 af, Depth= 4.49"

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 25-Year Rainfall=7.14" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 39

 A	rea (sf)	CN I	Description							
	27,713	74 :	>75% Gras	s cover, Go	ood, HSG C					
	3,798	98	Paved road	aved roads w/curbs & sewers, HSG C						
	1,342	70	Woods, Go	/oods, Good, HSG C						
	32,853	77 \	Weighted A	verage						
	29,055	8	38.44% Per	vious Area						
	3,798		11.56% Imp	ervious Are	ea					
Тс	Length	Slope		Capacity	Description					
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
12.9	100	0.0100	0.13		Sheet Flow, sheet					
					Grass: Short n= 0.150 P2= 3.23"					
1.7	280	0.0350	2.81		Shallow Concentrated Flow,					
					Grassed Waterway Kv= 15.0 fps					

14.6 380 Total

Summary for Subcatchment S17: S11

RUNDIT = $1.59 \text{ CIS}(Q) 12.11 \text{ Infs}, \text{ VOIUME} = 0.122 \text{ at}, \text{ Deptn} = 5.00 \text{ s}$	Runoff	=	1.59 cfs @	12.11 hrs, Volume=	0.122 af, Depth= 5.05"
--	--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

	A	rea (sf)	CN I	Description		
		4,048	74 :	>75% Gras	s cover, Go	bod, HSG C
		3,330	98	Paved road	s w/curbs &	& sewers, HSG C
		1,395	98	Paved park	ing, HSG C	
_		3,855	70	Noods, Go	od, HSG C	
		12,628	82	Neighted A	verage	
		7,903	(62.58% Per	vious Area	
		4,725	37.42% Impervious Ar			ea
	Та	Longth	Clana	Valaaitu	Consoitu	Description
	Tc (min)	Length	Slope		Capacity	Description
	(min)	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)	
	5.6	70	0.0400	0.21		Sheet Flow, sheet
						Grass: Short n= 0.150 P2= 3.23"
	1.8	140	0.0650	1.27		Shallow Concentrated Flow,
_						Woodland Kv= 5.0 fps
	7.4	210	Total			

Summary for Subcatchment S18: S11

Runoff 1.98 cfs @ 12.12 hrs, Volume= 0.156 af, Depth= 4.06" =

4801 PRE-Phase 1 w15

 Type III 24-hr
 25-Year Rainfall=7.14"

 Printed
 12/19/2019

 s LLC
 Page 40

Prepared by Altus Engineering, Inc.	
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Sol	utions LLC

	А	rea (sf)	CN I	Description		
	14,716 74 >75% Grass cover, Good					,
_		5,377	70 \	Noods, Go	<u>od, HSG C</u>	
	20,093 73 Weighted Average				verage	
20,093 100.00% Perv						a
	_					
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	3.4	60	0.1000	0.29		Sheet Flow, sheet
						Grass: Short n= 0.150 P2= 3.23"
	5.0	40	0.1200	0.13		Sheet Flow, sheet
						Woods: Light underbrush n= 0.400 P2= 3.23"
	0.2	50	0.0800	4.24		Shallow Concentrated Flow,
	5.2		2.2000			Grassed Waterway Kv= 15.0 fps
_	8.6	150	Total			

Summary for Subcatchment S7A: 4S-Northwest

Runoff	=	0.41 cfs @	12.09 hrs, Vo	olume=	0.033 af, Depth= 6.5	5"
--------	---	------------	---------------	--------	----------------------	----

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

Α	rea (sf)	CN	Description							
	326	74	4 >75% Grass cover, Good, HSG C							
	1,420	98	Roofs, HSG	ЭC						
	900	98	Roofs, HSG	ЭB						
	2,646	,646 95 Weighted Average								
	326		12.32% Pervious Area							
	2,320		87.68% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
6.0					Direct Entry,					

Summary for Subcatchment S8: S8-Northwest

Runoff = 1.51 cfs @ 12.20 hrs, Volume= 0.142 af, Depth= 4.94"

Area (sf)	CN	Description			
10,480	74	>75% Grass cover, Good, HSG C			
2,635	98	Roofs, HSG C			
1,910	98	Unconnected pavement, HSG C			
15,025	81	Weighted Average			
10,480		69.75% Pervious Area			
4,545		30.25% Impervious Area			
1,910		42.02% Unconnected			

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	12.9	100	0.0100	0.13		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.23"
	1.4	180	0.0200	2.12		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
_	14.3	280	Total			

Summary for Subcatchment S8B: ROOF DRAIN

Runoff = 0.34 cfs @ 12.09 hrs, Volume= 0.029 af, Depth> 6.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN I	Description					
	2,190	98	Roofs, HSC	βB				
	2,190		100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.10 cfs @ 21.94 hrs, Volume= 0.094 af, Depth> 5.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN	CN Description							
	778	98	98 Unconnected pavement, HSG C							
	389	74 :	>75% Grass cover, Good, HSG C							
*	7,655	98	Permeable Pavement, HSG C							
	8,822	322 97 Weighted Average								
	389	0 0								
	8,433	95.59% Impervious Area								
	778	9.23% Unconnected								
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	•					
790.0					Direct Entry,					

Summary for Reach R5: R5 - Pre-Treatment Swale 1

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow E	Depth = 5.43" for 25-Year event
Inflow =	1.88 cfs @ 12.09 hrs, Volume=	0.141 af
Outflow =	1.83 cfs @ 12.11 hrs, Volume=	0.141 af, Atten= 2%, Lag= 1.0 min

4801 PRE-Phase 1 w15 *Type* Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=7.14" Printed 12/19/2019 s LLC Page 42

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 1.86 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 2.1 min

Peak Storage= 71 cf @ 12.10 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs

8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/' Inlet Invert= 48.00', Outlet Invert= 47.00'

‡

Summary for Reach R6: wooded area

Inflow Area	a =	0.658 ac, 6	0.97% Imp	ervious,	Inflow De	pth > 5	.42" f	or 25-	Year event
Inflow	=	2.03 cfs @	12.15 hrs,	Volume	=	0.298 af			
Outflow	=	1.90 cfs @	12.30 hrs,	Volume	;=	0.296 af	, Atten	= 6%,	Lag= 8.8 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 0.41 fps, Min. Travel Time= 4.9 min Avg. Velocity = 0.13 fps, Avg. Travel Time= 14.8 min

Peak Storage= 566 cf @ 12.22 hrs Average Depth at Peak Storage= 0.35' Bank-Full Depth= 1.00' Flow Area= 20.0 sf, Capacity= 14.61 cfs

10.00' x 1.00' deep channel, n= 0.100 Earth, dense brush, high stage Side Slope Z-value= 10.0 '/' Top Width= 30.00' Length= 120.0' Slope= 0.0042 '/' Inlet Invert= 51.00', Outlet Invert= 50.50'

‡

Summary for Reach R7: REACH 7

Inflow Area = 0.658 ac, 60.97% Impervious, Inflow Depth > 5.40" for 25-Year event Inflow 1.90 cfs @ 12.30 hrs. Volume= 0.296 af = 1.90 cfs @ 12.31 hrs, Volume= Outflow = 0.296 af, Atten= 0%, Lag= 0.3 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.52 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.5 min Peak Storage= 21 cf @ 12.30 hrs Average Depth at Peak Storage= 0.16' Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 376.59 cfs 2.00' x 2.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 18.00' Length= 50.0' Slope= 0.0700 '/' Inlet Invert= 50.50', Outlet Invert= 47.00' ‡ Summary for Reach R8: R8- Banfield Rd Inflow Area = 0.754 ac, 11.56% Impervious, Inflow Depth = 4.49" for 25-Year event 2.96 cfs @ 12.23 hrs, Volume= Inflow = 0.282 af Outflow = 2.91 cfs @ 12.27 hrs, Volume= 0.282 af, Atten= 2%, Lag= 2.7 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.17 fps, Min. Travel Time= 1.5 min Avg. Velocity = 1.13 fps, Avg. Travel Time= 4.3 min Peak Storage= 269 cf @ 12.25 hrs Average Depth at Peak Storage= 0.27' Bank-Full Depth= 2.00' Flow Area= 24.0 sf, Capacity= 238.60 cfs 2.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 5.0 '/' Top Width= 22.00' Length= 290.0' Slope= 0.0500 '/' Inlet Invert= 50.50', Outlet Invert= 36.00' ‡

Summary for Reach R9: REACH 9

Inflow Area	ı =	0.122 ac, 97.42% Impervious, Inflow Depth > 5.55" for 25-Yea	ar event
Inflow	=	0.06 cfs @ 21.94 hrs, Volume= 0.056 af	
Outflow	=	0.06 cfs @21.94 hrs, Volume=0.056 af, Atten= 0%, La	g= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond OS1: Outlet Structure 1

Inflow Area	=	3.912 ac, 22.29% Impervious, Inflow Depth > 4.42" for 25-Year event	
Inflow	=	11.35 cfs @ 12.24 hrs, Volume= 1.440 af	
Outflow	=	11.36 cfs @ 12.20 hrs, Volume= 1.440 af, Atten= 0%, Lag= 0.0 min	I
Primary :	=	11.36 cfs @ 12.20 hrs, Volume= 1.440 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.03' @ 12.20 hrs Surf.Area= 13 sf Storage= 47 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (884.2 - 884.2)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
<u>Device</u> #1	Routing Primary	37.50' 12.0 Inlet	et Devices " Round Culvert L= 20.0' Ke= 0.500 t / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=11.36 cfs @ 12.20 hrs HW=47.03' (Free Discharge) —1=Culvert (Inlet Controls 11.36 cfs @ 14.47 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area	=	0.805 ac, 4	6.90% Impervious	, Inflow Depth >	4.86"	for 25-1	/ear event
Inflow	=	3.95 cfs @	12.11 hrs, Volum	e= 0.326	af		
Outflow	=	3.94 cfs @	12.12 hrs, Volum	e= 0.326	af, Atte	en= 0%,	Lag= 0.1 min
Primary	=	3.94 cfs @	12.12 hrs, Volum	e= 0.326	af		

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 43.58' @ 12.12 hrs Surf.Area= 13 sf Storage= 17 cf

Plug-Flow detention time= 0.0 min calculated for 0.325 af (100% of inflow) Center-of-Mass det. time= 0.0 min (897.8 - 897.8)

Volume	Invert	Avail.Storage Storage Description	
#1	42.25'	47 cf 4.00'D x 3.75'H Ver	ical Cone/Cylinder
Device	Routing	Invert Outlet Devices	
#1	Primary	42.00' 12.0" Round Culvert L= Inlet / Outlet Invert= 42.00	110.0' Ke= 0.500 '/37.85' S= 0.0377 '/' Cc= 0.900

n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=3.83 cfs @ 12.12 hrs HW=43.52' (Free Discharge) **1=Culvert** (Inlet Controls 3.83 cfs @ 4.87 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac, 87.68% Impervious, Inflow	Depth = 6.55" for 25-Year event
Inflow =	0.41 cfs @ 12.09 hrs, Volume=	0.033 af
Outflow =	0.41 cfs @ 12.09 hrs, Volume=	0.033 af, Atten= 0%, Lag= 0.0 min
Primary =	0.41 cfs @ 12.09 hrs, Volume=	0.033 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.62' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 0.1 min (759.7 - 759.6)

Volume	Invert	Avail.Storage	e Storage Description
#1	53.30'	9 c	f 2.00'D x 3.00'H Vertical Cone/Cylinder
Device #1	Routing Primary	53.30' 12 In	utlet Devices .0" Round Culvert L= 72.0' Ke= 0.500 et / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 = 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.40 cfs @ 12.09 hrs HW=53.61' (Free Discharge) -1=Culvert (Inlet Controls 0.40 cfs @ 1.90 fps)

Summary for Pond P3: CB P3

Inflow Area	=	0.456 ac, 4	5.59% Impervio	ous, Inflow Dep	oth > 5.37"	for 25-Year event	
Inflow	=	2.03 cfs @	12.15 hrs, Volu	ume= (0.204 af		
Outflow	=	2.03 cfs @	12.15 hrs, Volu	ume= (0.204 af, At	ten= 0%, Lag= 0.1 m	nin
Primary	=	2.03 cfs @	12.15 hrs, Volu	ume= (0.204 af	-	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.37' @ 12.15 hrs Surf.Area= 13 sf Storage= 11 cf

Plug-Flow detention time= 0.3 min calculated for 0.204 af (100% of inflow) Center-of-Mass det. time= 0.3 min (794.3 - 794.0)

Volume	Invert	Avail.Storage	Storage Description
#1	51.50'	35 cf	4.00'D x 2.75'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 98.0' Ke= 0.500 t / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=2.02 cfs @ 12.15 hrs HW=52.37' (Free Discharge) **1=Culvert** (Barrel Controls 2.02 cfs @ 3.73 fps)

Summary for Pond P4: YD P4

Inflow Area =	0.110 ac, 51.81% Impervious, Inflow D	Depth = 5.50" for 25-Year event
Inflow =	0.67 cfs @ 12.09 hrs, Volume=	0.051 af
Outflow =	0.67 cfs @ 12.09 hrs, Volume=	0.051 af, Atten= 0%, Lag= 0.0 min
Primary =	0.67 cfs @ 12.09 hrs, Volume=	0.051 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.22' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.050 af (100% of inflow) Center-of-Mass det. time= 0.1 min (791.7 - 791.6)

Volume	In	vert Ava	il.Storage	Storage Description
#1	48	.75'	10 cf	2.00'D x 3.25'H Vertical Cone/Cylinder
#2	52	.00'	150 cf	Custom Stage DataListed below
			160 cf	Total Available Storage
Elevatio	on	Cum.Store		
(fee	et)	(cubic-feet)		
52.0	00	0		
53.0	00	150		
Device	Routing	g In	vert Out	let Devices
11.4	D ·	40		

#1 Primary 48.75' **12.0" Round Culvert** L= 25.0' Ke= 0.500 Inlet / Outlet Invert= 48.75' / 48.60' S= 0.0060 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.66 cfs @ 12.09 hrs HW=49.21' (Free Discharge) -1=Culvert (Barrel Controls 0.66 cfs @ 2.72 fps)

Summary for Pond P5: YD P5

Inflow Area	=	0.312 ac, 48.12% Impervious	, Inflow Depth = 5.43"	for 25-Year event
Inflow	=	1.88 cfs @ 12.09 hrs, Volum	e= 0.141 af	
Outflow	=	1.88 cfs @ 12.09 hrs, Volum	e= 0.141 af, Att	en= 0%, Lag= 0.0 min
Primary	=	1.88 cfs @ 12.09 hrs, Volum	e= 0.141 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.27' @ 12.09 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.141 af (100% of inflow) Center-of-Mass det. time= 0.1 min (793.5 - 793.4)

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 25-Year Rainfall=7.14" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 47

Volume	Inv	ert Avail.Sto	orade	Storage	Description				
#1	48.		U	5	2.00'D x 3.50'H Vertical Cone/Cylinder				
#2	52.		592 cf			ismatic)Listed below (Recalc)			
		6	603 cf	Total Av	ailable Storage				
Elevatio (fee		Surf.Area (sq-ft)		c.Store c-feet)	Cum.Store (cubic-feet)				
			(cubi						
52.0		10		0	0				
53.0	00	680		345	345				
53.3	30	970		247	592				
Device	Routing	Invert	Outl	et Devices	6				
#1	Primary	48.50'	12.0	" Round	Culvert L= 65.	0' Ke= 0.500			
	,		Inlet	/ Outlet Ir	nvert= 48.50' / 48	8.00' S= 0.0077 '/' Cc= 0.900			
					w Area= 0.79 sf				
Primary OutFlow May=1.84 cfs @ 12.09 brs HW=49.26' (Free Discharge)									

Primary OutFlow Max=1.84 cfs @ 12.09 hrs HW=49.26' (Free Discharge) -1=Culvert (Barrel Controls 1.84 cfs @ 3.97 fps)

Summary for Pond P7: Driveway Crossing #2

Inflow Area	a =	2.839 ac, 14.14% Impervious, Inflow Depth > 4.45" for 25-Year event	
Inflow	=	9.64 cfs @ 12.22 hrs, Volume= 1.053 af	
Outflow	=	9.61 cfs @ 12.23 hrs, Volume=	٦
Primary	=	9.61 cfs @ 12.23 hrs, Volume= 1.053 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.33' @ 12.23 hrs Surf.Area= 423 sf Storage= 253 cf

Plug-Flow detention time= 0.3 min calculated for 1.053 af (100% of inflow) Center-of-Mass det. time= 0.2 min (870.0 - 869.8)

Volume	Inv	vert Ava	il.Storage	Storage Descrip	otion		
#1	47.		215 cf		Data (Prismatic)		
#2	44.	00	<u>38 cf</u> 253 cf	Total Available	Vertical Cone/C Storage	yiinder	
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
47.0 48.0	00	20 410	0.0 100.0	0 215	0 215		
Device	Routing	Ir	vert Outl	et Devices			
#1	Primary	44	Inlet	D" Round Culvert L= 110.0' Ke= 0.500 t / Outlet Invert= 44.00' / 43.00' S= 0.0091 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf			

Primary OutFlow Max=9.52 cfs @ 12.23 hrs HW=54.13' (Free Discharge) **1=Culvert** (Barrel Controls 9.52 cfs @ 12.12 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area =	=	0.754 ac, <i>´</i>	11.56% Impervious	, Inflow Depth =	4.49" for	25-Year event
Inflow =		3.02 cfs @	12.20 hrs, Volum	e= 0.282	af	
Outflow =		2.96 cfs @	12.23 hrs, Volum	e= 0.282	af, Atten= 2	2%, Lag= 1.5 min
Primary =		2.96 cfs @	12.23 hrs, Volum	e= 0.282	af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.86' @ 12.23 hrs Surf.Area= 356 sf Storage= 185 cf

Plug-Flow detention time= 0.6 min calculated for 0.282 af (100% of inflow) Center-of-Mass det. time= 0.6 min (822.8 - 822.3)

Volume	Inv	vert Ava	il.Storage	Storage Descrip	otion	
#1	47.	00'	215 cf	Custom Stage	Data (Prismatic)L	isted below
Elevatio		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
47.0	00	20	0.0	0	0	
48.0	00	410	100.0	215	215	
Device	Routing	Ir	vert Out	let Devices		
#1	Primary	46	Inle		rt L= 80.0' Ke= 0 46.75' / 44.00' S= = 0.79 sf	

Primary OutFlow Max=2.93 cfs @ 12.23 hrs HW=47.85' (Free Discharge) **1=Culvert** (Inlet Controls 2.93 cfs @ 3.73 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area =	3.106 ac, 15.91% Impervic	ous, Inflow Depth > 4.50" for 25-Year event
Inflow =	10.43 cfs @ 12.22 hrs, Vol	ume= 1.165 af
Outflow =	9.36 cfs @ 12.31 hrs, Vol	ume= 1.114 af, Atten= 10%, Lag= 5.4 min
Primary =	9.36 cfs @ 12.31 hrs, Vol	ume= 1.114 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.94' @ 12.31 hrs Surf.Area= 2,439 sf Storage= 4,316 cf

Plug-Flow detention time= 47.3 min calculated for 1.112 af (95% of inflow) Center-of-Mass det. time= 16.7 min (880.2 - 863.5)

Volume	Invert	Avail.Storage	Storage Description
#1	38.00'	4,413 cf	Custom Stage Data (Prismatic)Listed below

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
38.00	1,000	0.0	0	0
39.00	1,000	33.0	330	330
40.50	1,000	33.0	495	825
40.75	1,000	10.0	25	850
41.00	1,000	33.0	83	933
43.00	2,480	100.0	3,480	4,413

Device	Routing	Invert	Outlet Devices
#1	Primary	41.75'	18.0" Horiz. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads
#2	Primary	38.00'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 2	38.00'	1.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=9.33 cfs @ 12.31 hrs HW=42.94' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 9.27 cfs @ 5.25 fps)

2=Orifice/Grate (Passes 0.06 cfs of 2.05 cfs potential flow) **3=Exfiltration** (Exfiltration Controls 0.06 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area =	0.805 ac, 46.90% Impervious, Inflow I	Depth > 5.26" for 25-Year event
Inflow =	4.04 cfs @ 12.10 hrs, Volume=	0.353 af
Outflow =	3.95 cfs @ 12.11 hrs, Volume=	0.326 af, Atten= 2%, Lag= 1.1 min
Primary =	3.95 cfs @ 12.11 hrs, Volume=	0.326 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.90' @ 12.11 hrs Surf.Area= 1,381 sf Storage= 1,554 cf

Plug-Flow detention time= 81.3 min calculated for 0.326 af (92% of inflow) Center-of-Mass det. time= 27.2 min (897.8 - 870.6)

Volume	Inve	ert Ava	il.Storage	Storage Descri	iption		
#1	42.5	50'	1,646 cf	Custom Stage	e Data (Prismatic)	Listed below	
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
42.5	50	400	0.0	0	0		
43.8	50	400	33.0	132	132		
43.7	75	400	33.0	33	165		
45.2	25	400	10.0	60	225		
45.8	50	400	33.0	33	258		
47.0	00	1,450	100.0	1,388	1,646		
Device	Routing	In	ivert Ou	tlet Devices			
#1	Primary	42	2.50' 6.0	" Vert. Orifice/G	rate C= 0.600		
#2	Primary	46			/Grate C= 0.600		
#3	Device 1	42		nited to weir flow a 00 in/hr Exfiltrat	at low heads ion over Surface a	area	

Primary OutFlow Max=3.84 cfs @ 12.11 hrs HW=46.89' (Free Discharge) 1=Orifice/Grate (Passes 0.03 cfs of 1.92 cfs potential flow) 3=Exfiltration (Exfiltration Controls 0.03 cfs) 2=Orifice/Grate (Weir Controls 3.80 cfs @ 2.05 fps)

Summary for Link POA1: POA #1

Inflow Area	a =	5.539 ac, 21.42% Impervious, Inflov	w Depth > 4.45 "	for 25-Year event
Inflow	=	16.66 cfs @ 12.19 hrs, Volume=	2.056 af	
Primary	=	16.66 cfs @ 12.19 hrs, Volume=	2.056 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2

Inflow Area	a =	2.839 ac, 14.14% Impervious, Inflow Depth > 4.45" for 25-Year even	ent
Inflow	=	9.61 cfs @ 12.23 hrs, Volume= 1.053 af	
Primary	=	9.61 cfs @ 12.23 hrs, Volume= 1.053 af, Atten= 0%, Lag= 0.4	0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Subcatchment S10: 4S-Northwest

Runoff = 10.37 cfs @ 12.21 hrs, Volume= 0.988 af, Depth= 5.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

	A	rea (sf)	CN	Description		
		83,610	74	>75% Gras	s cover, Go	ood, HSG C
		11,369	77	Woods, Go	od, HSG D	
		94,979	74	Weighted A	verage	
		94,979		100.00% Pe	ervious Are	а
	Тс	Length	Slope		Capacity	Description
(r	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1	12.9	100	0.0100	0.13		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.23"
	2.4	300	0.0200	2.12		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
1	15.3	400	Total			

Summary for Subcatchment S11A: S11A

Runoff	_	1.50 cfs @	12.00 hrs	Volume-	0.114 af,	Denth-	6 76"
RUNOII	_	1.50 CIS (<i>W</i>)	12.09 1115,	volume-	0.114 al,	Depin-	0.70

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN	Description					
	4,731	74	>75% Gras	s cover, Go	ood, HSG C			
	1,530	98	Jnconnecte	ed pavemer	nt, HSG C			
	2,516	98	Paved park	ing, HSG C	C			
	8,777	85	Neighted A	verage				
	4,731	:	53.90% Pei	vious Area	3			
	4,046		16.10% Imp	pervious Ar	rea			
	1,530		37.82% Un	connected				
_								
Тс	Length	Slope	,	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment S11B: S11B

Runoff = 0.83 cfs @ 12.09 hrs, Volume= 0.063 af, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

4801 PRE-Phase 1 w15

 Type III 24-hr
 50-Year Rainfall=8.57"

 Printed
 12/19/2019

 s LLC
 Page 52

Prepared by Altus Engineering, Inc.	
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC	

A	rea (sf)	CN	Description						
	2,316	74	>75% Gras	s cover, Go	Good, HSG C				
	530	98	Unconnecte	ed pavemer	ent, HSG C				
	1,960	98	Paved park	ing, HSG C	С				
	4,806	86	Weighted A	verage					
	2,316		48.19% Pei	vious Area	а				
	2,490		51.81% Imp	pervious Ar	rea				
	530		21.29% Un	connected	1				
_									
Тс	Length	Slope		Capacity					
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment S12: S12

Runoff = 2.78 cfs @ 12.09 hrs, Volume= 0.208 af, Depth= 6.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

_	A	rea (sf)	CN E	escription		
		11,450	74 >	75% Gras	s cover, Go	ood, HSG C
_		5,500	98 F	aved park	ing, HSG C	,
		16,950	82 V	Veighted A	verage	
		11,450	6	7.55% Per	vious Area	
		5,500	3	2.45% Imp	pervious Ar	ea
	_		.			
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.7	75	0.0700	0.27		Sheet Flow, sheet
						Grass: Short n= 0.150 P2= 3.23"
	0.4	50	0.0200	2.12		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	5.1	125	Total, I	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.06 cfs @ 21.94 hrs, Volume= 0.058 af, Depth> 6.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

	Area (sf)	CN	Description			
	1,425	98	Paved parking, HSG C			
	131	74	>75% Grass cover, Good, HSG C			
*	2,990	98	Permeable Pavement, HSG C			
	4,546	97	Weighted Average			
	131		2.88% Pervious Area			
	4,415		97.12% Impervious Area			

4801 PRE- Prepared by <u>HydroCAD® 1</u>	Altus Engir	neering, Inc) Software Solu		24-hr 50-Year Print	Rainfall=8.57" ed 12/19/2019 Page 53		
	igth Slope eet) (ft/ft)		Capacity (cfs)	Description					
790.0				Direct Entry	/,				
	Summary for Subcatchment S14: 14S Pemeable Lot								
Runoff =	0.07 c	fs @ 21.94	hrs, Volu	me=	0.068 af, De	epth> 6.72"			
Type III 24-hr	50-Year Ra	ainfall=8.57"	CS, Weigh	ted-CN, Time	Span= 1.00	-30.00 hrs, dt= 0.	05 hrs		
<u>Area (</u> 1,7	1	Description Paved parki	ng HSG C						
		>75% Grass							
<u>*</u> 3,4		Permeable F							
5,3		Weighted Av							
	-	2.58% Pervi							
5,1	63 9	97.42% Imp	ervious Are	ea					
Tc Ler (min) (fe	igth Slope eet) (ft/ft)	,	Capacity (cfs)	Description					
790.0				Direct Entry	/,				

Summary for Subcatchment S15: S15

Runoff	=	1.91 cfs @	12.09 hrs, Volume	e= 0.143 af, Depth= 6.40"
--------	---	------------	-------------------	---------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

_	A	rea (sf)	CN E	CN Description						
		7,610	74 >	75% Gras	s cover, Go	ood, HSG C				
_		4,045	98 F	aved park	ing, HSG C	;				
		11,655	82 V	Veighted A	verage					
		7,610	6	5.29% Per	vious Area					
		4,045	3	4.71% Imp	pervious Ar	ea				
	_		~		• •	— • • • •				
	Tc	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.3	80	0.0600	0.25		Sheet Flow, sheet				
_				Grass: Short n= 0.150 P2= 3.23"						
	5.3	80	Total, I	al, Increased to minimum Tc = 6.0 min						

Summary for Subcatchment S16: Banfield Road

Runoff = 3.87 cfs @ 12.20 hrs, Volume= 0.365 af, Depth= 5.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 50-Year Rainfall=8.57" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 54

6.40"

A	rea (sf)	CN I	Description		
	27,713	74 >	>75% Gras	s cover, Go	ood, HSG C
	3,798	98 I	Paved road	s w/curbs &	& sewers, HSG C
	1,342	70 \	Noods, Go	od, HSG C	
	32,853	77 \	Neighted A	verage	
	29,055	8	38.44% Per	vious Area	
	3,798		11.56% Imp	pervious Are	ea
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.9	100	0.0100	0.13		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
1.7	280	0.0350	2.81		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps

14.6 380 Total

Summary for Subcatchment S17: S11

Runoff	=	1.99 cfs @	12.11 hrs,	Volume=	0.155 af, Depth=	
--------	---	------------	------------	---------	------------------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

	A	rea (sf)	CN	Description							
		4,048	74	74 >75% Grass cover, Good, HSG C							
		3,330	98	Paved road	s w/curbs &	& sewers, HSG C					
		1,395	98	Paved park	ing, HSG C						
_		3,855	70	Woods, Go	od, HSG C						
		12,628	82	Weighted A	verage						
		7,903		62.58% Per	vious Area						
		4,725		37.42% Imp	pervious Are	ea					
	Тс	Longth	Slope	Volocity	Capacity	Description					
	(min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description					
	5.6		0.0400	· · · · /	(013)	Shoot Flow, about					
	5.0	70	0.0400	0.21		Sheet Flow, sheet Grass: Short n= 0.150 P2= 3.23"					
	1.8	140	0.0650	1.27		Shallow Concentrated Flow,					
	1.0	140	0.0000	1.27		Woodland Kv= 5.0 fps					
	7.4	210	Total								

Summary for Subcatchment S18: S11

Runoff 2.59 cfs @ 12.12 hrs, Volume= 0.204 af, Depth= 5.32" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

4801 PRE-Phase 1 w15

 Type III 24-hr
 50-Year Rainfall=8.57"

 Printed
 12/19/2019

 s LLC
 Page 55

Prepared by Allus Engineeni	ng, inc.
HydroCAD® 10.00-22 s/n 01222	© 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN E	escription		
	14,716	74 >	75% Gras	s cover, Go	ood, HSG C
	5,377	70 V	Voods, Go	od, HSG C	
	20,093	73 V	Veighted A	verage	
	20,093	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.4	60	0.1000	0.29		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
5.0	40	0.1200	0.13		Sheet Flow, sheet
					Woods: Light underbrush n= 0.400 P2= 3.23"
0.2	50	0.0800	4.24		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
8.6	150	Total			

Summary for Subcatchment S7A: 4S-Northwest

Runoff	=	0.49 cfs @	12.09 hrs,	Volume=	0.040 af, Depth= 7.97"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

Α	rea (sf)	CN	Description				
	326	74	>75% Gras	s cover, Go	ood, HSG C		
	1,420	98	Roofs, HSG	ЭC			
	900	98	Roofs, HSG	ЭB			
	2,646	95	Weighted A	verage			
	326		12.32% Pervious Area				
	2,320		87.68% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment S8: S8-Northwest

Runoff = 1.91 cfs @ 12.19 hrs, Volume= 0.181 af, Depth= 6.28"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

Area (sf)	CN	Description
10,480	74	>75% Grass cover, Good, HSG C
2,635	98	Roofs, HSG C
1,910	98	Unconnected pavement, HSG C
15,025	81	Weighted Average
10,480		69.75% Pervious Area
4,545		30.25% Impervious Area
1,910		42.02% Unconnected

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	12.9	100	0.0100	0.13		Sheet Flow,
	1.4	180	0.0200	2.12		Grass: Short n= 0.150 P2= 3.23" Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	14.3	280	Total			

Summary for Subcatchment S8B: ROOF DRAIN

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.035 af, Depth> 8.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN [Description					
	2,190	98 F	Roofs, HSC	βB				
	2,190		100.00% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.12 cfs @ 21.94 hrs, Volume= 0.113 af, Depth> 6.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN	Description					
	778	98	Jnconnecte	ed pavemer	ent, HSG C			
	389	74	>75% Gras	s cover, Go	lood, HSG C			
*	7,655	98	Permeable Pavement, HSG C					
	8,822	22 97 Weighted Average						
	389	• •						
	8,433	3 95.59% Impervious Area						
	778		9.23% Unc	onnected				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	,	(cfs)				
790.0					Direct Entry,			

Summary for Reach R5: R5 - Pre-Treatment Swale 1

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow E	Depth = 6.81" for 50-Year event
Inflow =	2.33 cfs @ 12.09 hrs, Volume=	0.177 af
Outflow =	2.28 cfs @ 12.10 hrs, Volume=	0.177 af, Atten= 2%, Lag= 0.9 min

4801 PRE-Phase 1 w15 *Type* Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 50-Year Rainfall=8.57" Printed 12/19/2019 s LLC Page 57

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.01 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.58 fps, Avg. Travel Time= 2.0 min

Peak Storage= 81 cf @ 12.10 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs

8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/' Inlet Invert= 48.00', Outlet Invert= 47.00'

‡

Summary for Reach R6: wooded area

 Inflow Area =
 0.658 ac, 60.97% Impervious, Inflow Depth > 6.73" for 50-Year event

 Inflow =
 2.54 cfs @ 12.15 hrs, Volume=
 0.369 af

 Outflow =
 2.38 cfs @ 12.29 hrs, Volume=
 0.368 af, Atten= 6%, Lag= 8.2 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 0.44 fps, Min. Travel Time= 4.6 min Avg. Velocity = 0.15 fps, Avg. Travel Time= 13.7 min

Peak Storage= 662 cf @ 12.21 hrs Average Depth at Peak Storage= 0.40' Bank-Full Depth= 1.00' Flow Area= 20.0 sf, Capacity= 14.61 cfs

10.00' x 1.00' deep channel, n= 0.100 Earth, dense brush, high stage Side Slope Z-value= 10.0 '/' Top Width= 30.00' Length= 120.0' Slope= 0.0042 '/' Inlet Invert= 51.00', Outlet Invert= 50.50'

‡

Summary for Reach R7: REACH 7

Inflow Area = 0.658 ac, 60.97% Impervious, Inflow Depth > 6.70" for 50-Year event Inflow 2.38 cfs @ 12.29 hrs. Volume= 0.368 af = 2.38 cfs @ 12.30 hrs, Volume= Outflow = 0.368 af, Atten= 0%, Lag= 0.3 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.84 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.78 fps, Avg. Travel Time= 0.5 min Peak Storage= 25 cf @ 12.29 hrs Average Depth at Peak Storage= 0.18' Bank-Full Depth= 2.00' Flow Area= 20.0 sf, Capacity= 376.59 cfs 2.00' x 2.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 18.00' Length= 50.0' Slope= 0.0700 '/' Inlet Invert= 50.50', Outlet Invert= 47.00' ‡ Summary for Reach R8: R8- Banfield Rd Inflow Area = 0.754 ac, 11.56% Impervious, Inflow Depth = 5.80" for 50-Year event 4.17 cfs @ 12.20 hrs, Volume= Inflow = 0.365 af Outflow = 3.80 cfs @ 12.25 hrs, Volume= 0.365 af, Atten= 9%, Lag= 3.1 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 3.42 fps, Min. Travel Time= 1.4 min Avg. Velocity = 1.20 fps, Avg. Travel Time= 4.0 min Peak Storage= 331 cf @ 12.22 hrs Average Depth at Peak Storage= 0.32' Bank-Full Depth= 2.00' Flow Area= 24.0 sf, Capacity= 238.60 cfs 2.00' x 2.00' deep channel, n= 0.035 Earth, dense weeds Side Slope Z-value= 5.0 '/' Top Width= 22.00' Length= 290.0' Slope= 0.0500 '/' Inlet Invert= 50.50', Outlet Invert= 36.00' ‡

Summary for Reach R9: REACH 9

Inflow Area	a =	0.122 ac, 97.42% Impervious, Inflow Depth > 6.72" for 50-Ye	ear event
Inflow	=	0.07 cfs @ 21.94 hrs, Volume= 0.068 af	
Outflow	=	0.07 cfs @21.94 hrs, Volume=0.068 af, Atten= 0%, La	ag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Pond OS1: Outlet Structure 1

Inflow Area	a =	3.912 ac, 22.29% Impervious, Inflow Depth > 5.71" for 50-Year	event
Inflow	=	18.63 cfs @ 12.20 hrs, Volume= 1.863 af	
Outflow	=	18.60 cfs @12.20 hrs, Volume=1.863 af, Atten= 0%, Lag=	= 0.0 min
Primary	=	18.60 cfs @ 12.20 hrs, Volume= 1.863 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 62.17' @ 12.20 hrs Surf.Area= 13 sf Storage= 47 cf

Plug-Flow detention time= 0.0 min calculated for 1.863 af (100% of inflow) Center-of-Mass det. time= 0.0 min (873.0 - 872.9)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device #1	Routing Primary	37.50' 12.0	et Devices " Round Culvert L= 20.0' Ke= 0.500 / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900
			0.012, Flow Area= 0.79 sf

Primary OutFlow Max=18.46 cfs @ 12.20 hrs HW=61.83' (Free Discharge) —1=Culvert (Inlet Controls 18.46 cfs @ 23.51 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area =	=	0.805 ac, 4	6.90% Impervious	Inflow Depth >	6.20"	for 50-Year event	
Inflow =		4.95 cfs @	12.11 hrs, Volum	e= 0.416	af		
Outflow =		4.94 cfs @	12.11 hrs, Volum	e= 0.416	af, Atte	en= 0%, Lag= 0.2 m	nin
Primary =		4.94 cfs @	12.11 hrs, Volum	e= 0.416	af		

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 44.20' @ 12.11 hrs Surf.Area= 13 sf Storage= 24 cf

Plug-Flow detention time= 0.0 min calculated for 0.416 af (100% of inflow) Center-of-Mass det. time= 0.0 min (885.9 - 885.9)

Volume	Invert	Avail.Storage	Storage Description
#1	42.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Outle	et Devices
#1	Primary		" Round Culvert L= 110.0' Ke= 0.500 / Outlet Invert= 42.00' / 37.85' S= 0.0377 '/' Cc= 0.900

n= 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=4.81 cfs @ 12.11 hrs HW=44.12' (Free Discharge) **1=Culvert** (Inlet Controls 4.81 cfs @ 6.12 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac, 87.68% Impervious, In	flow Depth = 7.97" for 50-Year event
Inflow =	0.49 cfs @ 12.09 hrs, Volume=	0.040 af
Outflow =	0.49 cfs @ 12.09 hrs, Volume=	0.040 af, Atten= 0%, Lag= 0.0 min
Primary =	0.49 cfs @ 12.09 hrs, Volume=	0.040 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.65' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.040 af (100% of inflow) Center-of-Mass det. time= 0.1 min (755.7 - 755.6)

Volume	Invert	Avail.Storage	e Storage Description
#1	53.30'	9 c	f 2.00'D x 3.00'H Vertical Cone/Cylinder
Device #1	Routing Primary	53.30' 12 Inl	utlet Devices .0" Round Culvert L= 72.0' Ke= 0.500 et / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.48 cfs @ 12.09 hrs HW=53.64' (Free Discharge) -1=Culvert (Inlet Controls 0.48 cfs @ 2.00 fps)

Summary for Pond P3: CB P3

Inflow Area	a =	0.456 ac, 4	5.59% Impervious	, Inflow Depth >	6.73"	for 50-Year event
Inflow	=	2.53 cfs @	12.15 hrs, Volum	ie= 0.256	af	
Outflow	=	2.53 cfs @	12.15 hrs, Volum	ie= 0.256	af, Atte	n= 0%, Lag= 0.1 min
Primary	=	2.53 cfs @	12.15 hrs, Volum	ie= 0.256	af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.53' @ 12.15 hrs Surf.Area= 13 sf Storage= 13 cf

Plug-Flow detention time= 0.3 min calculated for 0.255 af (100% of inflow) Center-of-Mass det. time= 0.2 min (789.2 - 789.0)

Volume	Invert	Avail.Storage	Storage Description
#1	51.50'	35 cf	4.00'D x 2.75'H Vertical Cone/Cylinder
Device	Routing	Invert Out	let Devices
#1	Primary	Inle	D" Round Culvert L= 98.0' Ke= 0.500 t / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=2.52 cfs @ 12.15 hrs HW=52.52' (Free Discharge) —1=Culvert (Barrel Controls 2.52 cfs @ 3.90 fps)

Summary for Pond P4: YD P4

Inflow Area =	0.110 ac, 51.81% Impervious, Inflow D	Depth = 6.88" for 50-Year event
Inflow =	0.83 cfs @ 12.09 hrs, Volume=	0.063 af
Outflow =	0.83 cfs @ 12.09 hrs, Volume=	0.063 af, Atten= 0%, Lag= 0.0 min
Primary =	0.83 cfs @_ 12.09 hrs, Volume=	0.063 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.28' @ 12.09 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.063 af (100% of inflow) Center-of-Mass det. time= 0.1 min (785.6 - 785.5)

Volume	Invert	Avail.Stor	age	Storage Description
#1	48.75'	1	0 cf	2.00'D x 3.25'H Vertical Cone/Cylinder
#2	52.00'	15	i0 cf	Custom Stage DataListed below
		16	60 cf	Total Available Storage
Elevatio (fee 52.0	t) (cubio	.Store <u>c-feet)</u> 0		
53.0	-	150		
Device	Routing	Invert	Outle	et Devices
#1	Primary	48.75'	Inlet	" Round Culvert L= 25.0' Ke= 0.500 / Outlet Invert= 48.75' / 48.60' S= 0.0060 '/' Cc= 0.900 .011, Flow Area= 0.79 sf

Primary OutFlow Max=0.81 cfs @ 12.09 hrs HW=49.27' (Free Discharge) **1=Culvert** (Barrel Controls 0.81 cfs @ 2.86 fps)

Summary for Pond P5: YD P5

Inflow Area	=	0.312 ac, 48.12% Impervious, Inf	flow Depth = 6.81" for 50-Year event
Inflow	=	2.33 cfs @ 12.09 hrs, Volume=	0.177 af
Outflow	=	2.33 cfs @ 12.09 hrs, Volume=	0.177 af, Atten= 0%, Lag= 0.0 min
Primary	=	2.33 cfs @ 12.09 hrs, Volume=	0.177 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.39' @ 12.09 hrs Surf.Area= 3 sf Storage= 3 cf

Plug-Flow detention time= 0.1 min calculated for 0.177 af (100% of inflow) Center-of-Mass det. time= 0.1 min (787.3 - 787.3)

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Type III 24-hr 50-Year Rainfall=8.57" Printed 12/19/2019 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 62

Volume	Inv	ert Avail.Sto	orage	Storage	Description	
#1	48.					I Cone/Cylinder
#2	52.	00' 5	92 cf	Custom	Stage Data (P	rismatic)Listed below (Recalc)
		6	03 cf	Total Ava	ailable Storage	
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
52.0	00	10		0	0	
53.0	00	680		345	345	
53.3	30	970		247	592	
Device	Routing	Invert	Outl	et Devices	6	
#1	Primary	48.50'	12.0	" Round	Culvert L= 65	.0' Ke= 0.500
	,		Inlet	/ Outlet In	vert= 48.50' / 4	8.00' S= 0.0077 '/' Cc= 0.900
			n= 0	.011, Flov	v Area= 0.79 sf	
Drimony		Max-2.27 of	ລ 1 <u>2</u> (O bro LIVA	1-10 29' (Eroo	

Primary OutFlow Max=2.27 cfs @ 12.09 hrs HW=49.38' (Free Discharge) **1=Culvert** (Barrel Controls 2.27 cfs @ 4.14 fps)

Summary for Pond P7: Driveway Crossing #2

Inflow Area	=	2.839 ac, 14.14% Impervious, Inflow Depth > 5.73" for 50-Year event
Inflow	=	12.51 cfs @ 12.22 hrs, Volume= 1.356 af
Outflow	=	12.66 cfs @ 12.21 hrs, Volume= 1.356 af, Atten= 0%, Lag= 0.0 min
Primary	=	12.66 cfs @ 12.21 hrs, Volume= 1.356 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 61.89' @ 12.21 hrs Surf.Area= 423 sf Storage= 253 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (860.6 - 860.4)

Volume	Inv	vert Ava	il.Storage	Storage Descrip	otion	
#1 #2	47. 44.		215 cf 38 cf	•	Data (Prismatic) Vertical Cone/C	
		00	253 cf	Total Available		yinder
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
47.0 48.0	00	20 410	0.0 100.0	0 215	0 215	
Device	Routing	In	vert Outl	et Devices		
#1	Primary	44	Inlet			= 0.500 = 0.0091 '/' Cc= 0.900

Primary OutFlow Max=12.45 cfs @ 12.21 hrs HW=61.33' (Free Discharge) **1=Culvert** (Barrel Controls 12.45 cfs @ 15.85 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area =	0.754 ac, 11.56% Impervious, Inflow	Depth = 5.80" for 50-Year event
Inflow =	3.87 cfs @ 12.20 hrs, Volume=	0.365 af
Outflow =	4.17 cfs @ 12.20 hrs, Volume=	0.365 af, Atten= 0%, Lag= 0.0 min
Primary =	4.17 cfs @ 12.20 hrs, Volume=	0.365 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.46' @ 12.20 hrs Surf.Area= 410 sf Storage= 215 cf

Plug-Flow detention time= 0.6 min calculated for 0.364 af (100% of inflow) Center-of-Mass det. time= 0.6 min (815.6 - 815.0)

Volume	Inv	ert Ava	il.Storage	Storage Descrip	otion		_
#1	47.	00'	215 cf	Custom Stage	Data (Prismatic)L	isted below	
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
47.0	00	20	0.0	0	0		
48.0	00	410	100.0	215	215		
Device	Routing	Ir	vert Outl	et Devices			
#1	Primary	46	6.75' 12.0	" Round Culver	rt L= 80.0' Ke= 0.	.500	_
						0.0344 '/' Cc= 0.900	
			n= C).012, Flow Area	= 0.79 st		

Primary OutFlow Max=4.17 cfs @ 12.20 hrs HW=48.46' (Free Discharge) **1=Culvert** (Inlet Controls 4.17 cfs @ 5.31 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area	a =	3.106 ac, 15.91% Impervious, Inflov	v Depth > 5.79"	for 50-Year event
Inflow	=	13.72 cfs @ 12.21 hrs, Volume=	1.499 af	
Outflow	=	15.15 cfs @ 12.21 hrs, Volume=	1.447 af, Atte	en= 0%, Lag= 0.0 min
Primary	=	15.15 cfs @ 12.21 hrs, Volume=	1.447 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 44.88' @ 12.21 hrs Surf.Area= 2,480 sf Storage= 4,413 cf

Plug-Flow detention time= 40.0 min calculated for 1.447 af (97% of inflow) Center-of-Mass det. time= 14.8 min (869.2 - 854.4)

Volume	Invert	Avail.Storage	Storage Description
#1	38.00'	4,413 cf	Custom Stage Data (Prismatic)Listed below

4801 PRE-Phase 1 w15 Prepared by Altus Engineering, Inc.

Elevation (feet)	Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
38.00	1,000	0.0	0	0
39.00	1,000	33.0	330	330
40.50	1,000	33.0	495	825
40.75	1,000	10.0	25	850
41.00	1,000	33.0	83	933
43.00	2,480	100.0	3,480	4,413

Device	Routing	Invert	Outlet Devices
#1	Primary	41.75'	18.0" Horiz. Orifice/Grate C= 0.600
	-		Limited to weir flow at low heads
#2	Primary	38.00'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 2	38.00'	1.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=14.66 cfs @ 12.21 hrs HW=44.70' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 14.61 cfs @ 8.27 fps)

2=Orifice/Grate (Passes 0.06 cfs of 2.40 cfs potential flow) **3=Exfiltration** (Exfiltration Controls 0.06 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area =	0.805 ac, 46.90% Impervious, Inflow D	epth > 6.60" for 50-Year event
Inflow =	5.05 cfs @ 12.10 hrs, Volume=	0.443 af
Outflow =	4.95 cfs @ 12.11 hrs, Volume=	0.416 af, Atten= 2%, Lag= 1.0 min
Primary =	4.95 cfs @ 12.11 hrs, Volume=	0.416 af

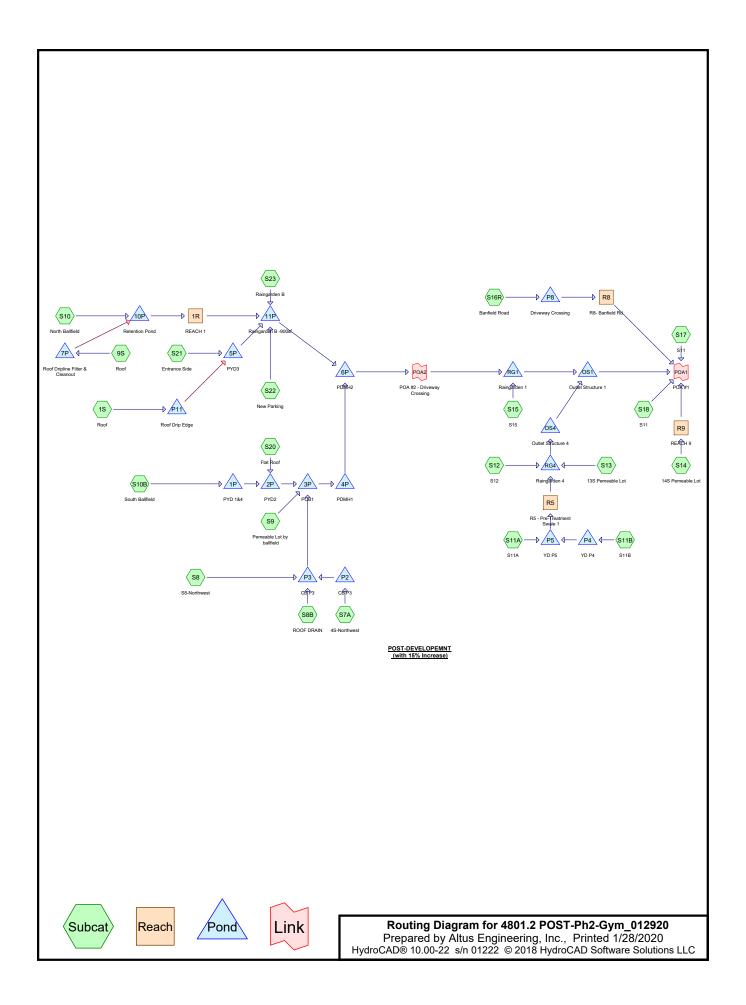
Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.97' @ 12.11 hrs Surf.Area= 1,427 sf Storage= 1,615 cf

Plug-Flow detention time= 68.2 min calculated for 0.415 af (94% of inflow) Center-of-Mass det. time= 23.7 min (885.9 - 862.2)

Volume	Inve	ert Ava	il.Storage	Storage Descri	ption		
#1	42.5	50'	1,646 cf	Custom Stage	e Data (Prismatic)	Listed below	
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
42.5	50	400	0.0	0	0		
43.	50	400	33.0	132	132		
43.	75	400	33.0	33	165		
45.2	25	400	10.0	60	225		
45.	50	400	33.0	33	258		
47.0	00	1,450	100.0	1,388	1,646		
Device	Routing	In	ivert Ou	tlet Devices			
#1	Primary	42	2.50' 6.0	" Vert. Orifice/G	rate C= 0.600		
#2	Primary	46	6.50' 18.	0" Horiz. Orifice	/Grate C= 0.600		
#3	Device 1	42		nited to weir flow a 00 in/hr Exfiltrat	at low heads ion over Surface	area	

Primary OutFlow Max=4.83 cfs @ 12.11 hrs HW=46.96' (Free Discharge) 1=Orifice/Grate (Passes 0.03 cfs of 1.94 cfs potential flow) 3=Exfiltration (Exfiltration Controls 0.03 cfs) 2=Orifice/Grate (Weir Controls 4.79 cfs @ 2.22 fps)

Summary for Link POA1: POA #1


Inflow Area	a =	5.539 ac, 21.42% Impervious, Inflow Depth > 5.75" for 50-	Year event
Inflow	=	25.51 cfs @ 12.20 hrs, Volume= 2.654 af	
Primary	=	25.51 cfs @ 12.20 hrs, Volume= 2.654 af, Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2

Inflow Area	a =	2.839 ac, 14.14% Impervious, Inflow Depth > 5.73" for 50-Year event	
Inflow	=	12.66 cfs @ 12.21 hrs, Volume= 1.356 af	
Primary	=	12.66 cfs @ 12.21 hrs, Volume= 1.356 af, Atten= 0%, Lag= 0.0 mir	۱

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Area Listing (all nodes)

A	Area	CN	Description
(ac	res)		(subcatchment-numbers)
3.	.531	74	>75% Grass cover, Good, HSG C (9S, S10, S10B, S11A, S11B, S12, S13, S14,
			S15, S16R, S17, S18, S20, S22, S23, S7A, S8, S9)
0.	.058	80	>75% Grass cover, Good, HSG D (1S, S21)
0.	.426	98	Paved parking, HSG C (S11A, S11B, S12, S13, S14, S15, S17)
0.	.164	98	Paved roads w/curbs & sewers, HSG C (S16R, S17)
0.	.323	98	Permeable Pavement, HSG C (S13, S14, S9)
0.	.055	98	Permeable Pavement, HSG D (S22)
0.	.071	98	Roofs, HSG B (S7A, S8B)
0.	.372	98	Roofs, HSG C (9S, S10B, S20, S7A, S8)
0.	.108	98	Roofs, HSG D (1S, 9S)
0.	.148	98	Unconnected pavement, HSG C (S10, S10B, S11A, S11B, S23, S8, S9)
0.	.030	98	Unconnected pavement, HSG D (S22)
0.	.243	70	Woods, Good, HSG C (S16R, S17, S18)
5.	.529	81	TOTAL AREA

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.071	HSG B	S7A, S8B
5.207	HSG C	9S, S10, S10B, S11A, S11B, S12, S13, S14, S15, S16R, S17, S18, S20, S22,
		S23, S7A, S8, S9
0.251	HSG D	1S, 9S, S21, S22
0.000	Other	
5.529		TOTAL AREA

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

Printed 1/28/2020 Page 4

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Softwa	are Solutions LLC

		G	round Cov	vers (all no	odes)		
HSG-A (acres)	HSG-B (acres)		HSG-D (acres)	Other (acres) (Total acres)	Ground Cover	Subcatchment Numbers
 0.000	0.000	3.531	0.058	0.000	3.589	>75% Grass cover, Good	1S, 9S, S10,
							S10 B, S11 A, S11 B,
							S12, S13,
							S14,
							S15,
							S16 R, S17,
							S18,
							S20,
							S21,
							S22,
							S23,
0.000	0.000	0.426	0.000	0.000	0.426	Paved parking	S7A, S8, S9 S11

S11 Β, S12,

Α,

S13,

S14,

S15,

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Printed 1/28/2020 Page 5

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
0.000	0.000	0.164	0.000	0.000	0.164	Paved roads w/curbs & sewers	S16 R, S17
0.000	0.000	0.323	0.055	0.000	0.378	Permeable Pavement	S13,
							S14, S22,
							S9
0.000	0.071	0.372	0.108	0.000	0.551	Roofs	1S, 9S,
							S10
							B, S20,
							S7A,
							S8, S8B
0.000	0.000	0.148	0.030	0.000	0.178	Unconnected pavement	S10,
							S10
							B,
							S11 A,
							S11
							В,
							S22,
							S23,
							S8, S9
0.000	0.000	0.243	0.000	0.000	0.243	Woods, Good	S16
							R,
							S17,
0.000	0.071	5.207	0.251	0.000	5.529	TOTAL AREA	S18
0.000	0.071	5.207	0.201	0.000	0.020		

Ground Covers (all nodes) (continued)

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Printed 1/28/2020 Page 6

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1P	50.00	49.65	65.0	0.0054	0.012	12.0	0.0	0.0
2	2P	49.55	49.40	30.0	0.0050	0.012	12.0	0.0	0.0
3	3P	49.30	48.90	60.0	0.0067	0.012	12.0	0.0	0.0
4	4P	48.80	44.20	160.0	0.0287	0.012	12.0	0.0	0.0
5	5P	47.35	47.15	35.0	0.0057	0.012	15.0	0.0	0.0
6	6P	44.10	42.00	100.0	0.0210	0.012	12.0	0.0	0.0
7	7P	53.00	52.00	25.0	0.0400	0.012	6.0	0.0	0.0
8	11P	44.25	44.15	5.0	0.0200	0.012	12.0	0.0	0.0
9	OS1	37.50	36.00	20.0	0.0750	0.012	12.0	0.0	0.0
10	OS4	42.00	37.85	110.0	0.0377	0.012	12.0	0.0	0.0
11	P2	53.30	51.60	72.0	0.0236	0.011	12.0	0.0	0.0
12	P3	51.50	51.00	98.0	0.0051	0.011	12.0	0.0	0.0
13	P4	48.75	48.60	25.0	0.0060	0.011	12.0	0.0	0.0
14	P5	48.50	48.00	65.0	0.0077	0.011	12.0	0.0	0.0
15	P8	46.75	44.00	80.0	0.0344	0.012	12.0	0.0	0.0

Pipe Listing (all nodes)

Type III 24-hr 2-Year Rainfall=3.71" Printed 1/28/2020 LLC Page 7

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

> Time span=1.00-30.00 hrs, dt=0.05 hrs, 581 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Roof	Runoff Area=4,180 sf 88.04% Impervious Runoff Depth=3.25" Tc=6.0 min CN=96 Runoff=0.33 cfs 0.026 af
Subcatchment9S: Roof	Runoff Area=8,320 sf 95.67% Impervious Runoff Depth=3.36" Flow Length=300' Tc=14.5 min CN=97 Runoff=0.52 cfs 0.054 af
Subcatchment S10: North Ballfield	Runoff Area=37,760 sf 1.06% Impervious Runoff Depth=1.39" Flow Length=300' Tc=14.5 min CN=74 Runoff=1.04 cfs 0.100 af
Subcatchment S10B: South Ballfield	Runoff Area=32,810 sf 8.63% Impervious Runoff Depth=1.52" Tc=6.0 min CN=76 Runoff=1.30 cfs 0.095 af
Subcatchment S11A: S11A	Runoff Area=8,777 sf 46.10% Impervious Runoff Depth=2.20" Tc=6.0 min CN=85 Runoff=0.51 cfs 0.037 af
SubcatchmentS11B: S11B	Runoff Area=4,806 sf 51.81% Impervious Runoff Depth=2.29" Tc=6.0 min CN=86 Runoff=0.29 cfs 0.021 af
Subcatchment S12: S12	Runoff Area=16,950 sf 32.45% Impervious Runoff Depth=1.96" Flow Length=125' Tc=6.0 min CN=82 Runoff=0.88 cfs 0.063 af
Subcatchment S13: 13S Pemeable Lot	Runoff Area=4,546 sf 97.12% Impervious Runoff Depth>2.73" Tc=790.0 min CN=97 Runoff=0.03 cfs 0.024 af
Subcatchment S14: 14S Pemeable Lot	Runoff Area=5,300 sf 97.42% Impervious Runoff Depth>2.73" Tc=790.0 min CN=97 Runoff=0.03 cfs 0.028 af
Subcatchment S15: S15 Flow Length=8	Runoff Area=11,655 sf 34.71% Impervious Runoff Depth=1.96" 0' Slope=0.0600 '/' Tc=6.0 min CN=82 Runoff=0.60 cfs 0.044 af
Subcatchment S16R: Banfield Road	Runoff Area=28,040 sf 13.54% Impervious Runoff Depth=1.59" Flow Length=425' Tc=15.0 min CN=77 Runoff=0.89 cfs 0.085 af
Subcatchment S17: S11	Runoff Area=12,628 sf 37.42% Impervious Runoff Depth=1.96" Flow Length=210' Tc=7.4 min CN=82 Runoff=0.63 cfs 0.047 af
Subcatchment S18: S11	Runoff Area=20,093 sf 0.00% Impervious Runoff Depth=1.32" Flow Length=150' Tc=8.6 min CN=73 Runoff=0.62 cfs 0.051 af
Subcatchment S20: Flat Roof	Runoff Area=2,890 sf 91.35% Impervious Runoff Depth=3.25" Tc=6.0 min CN=96 Runoff=0.23 cfs 0.018 af
Subcatchment S21: Entrance Side	Runoff Area=2,040 sf 0.00% Impervious Runoff Depth=1.80" Tc=6.0 min CN=80 Runoff=0.10 cfs 0.007 af
SubcatchmentS22: New Parking	Runoff Area=5,020 sf 73.31% Impervious Runoff Depth>2.27" Tc=790.0 min CN=92 Runoff=0.02 cfs 0.022 af

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018	<i>Type III 24-hr 2-Year Rainfall=3.71"</i> Printed 1/28/2020 HydroCAD Software Solutions LLC Page 8
Subcatchment S23: Raingarden B	Runoff Area=5,790 sf 8.64% Impervious Runoff Depth=1.45" Tc=6.0 min UI Adjusted CN=75 Runoff=0.22 cfs 0.016 af
SubcatchmentS7A: 4S-Northwest	Runoff Area=2,646 sf 87.68% Impervious Runoff Depth=3.15" Tc=6.0 min CN=95 Runoff=0.20 cfs 0.016 af
SubcatchmentS8: S8-Northwest	Runoff Area=15,025 sf 30.25% Impervious Runoff Depth=1.88" Flow Length=280' Tc=14.3 min CN=81 Runoff=0.58 cfs 0.054 af
SubcatchmentS8B: ROOF DRAIN	Runoff Area=2,190 sf 100.00% Impervious Runoff Depth=3.48" Tc=6.0 min CN=98 Runoff=0.18 cfs 0.015 af
SubcatchmentS9: Pemeable Lot by b	ballfield Runoff Area=9,372 sf 95.85% Impervious Runoff Depth>2.73" Tc=790.0 min CN=97 Runoff=0.05 cfs 0.049 af
Reach 1R: REACH 1 n=0.022	Avg. Flow Depth=0.06' Max Vel=2.18 fps Inflow=0.43 cfs 0.019 af 2 L=70.0' S=0.0500 '/' Capacity=77.07 cfs Outflow=0.42 cfs 0.019 af
Reach R5: R5 - Pre-Treatment Swale n=0.022	1 Avg. Flow Depth=0.07' Max Vel=1.35 fps Inflow=0.80 cfs 0.058 af L=70.0' S=0.0143 '/' Capacity=187.45 cfs Outflow=0.77 cfs 0.058 af
Reach R8: R8- Banfield Rd n=0.035	Avg. Flow Depth=0.14' Max Vel=2.22 fps Inflow=0.88 cfs 0.085 af L=290.0' S=0.0500 '/' Capacity=238.60 cfs Outflow=0.86 cfs 0.085 af
Reach R9: REACH 9	Inflow=0.03 cfs 0.028 af Outflow=0.03 cfs 0.028 af
Pond 1P: PYD 1&4 12.0" F	Peak Elev=50.68' Storage=2 cf Inflow=1.30 cfs 0.095 af Round Culvert n=0.012 L=65.0' S=0.0054 '/' Outflow=1.30 cfs 0.095 af
Pond 2P: PYD2 12.0" F	Peak Elev=50.33' Storage=2 cf Inflow=1.52 cfs 0.113 af Round Culvert n=0.012 L=30.0' S=0.0050 '/' Outflow=1.52 cfs 0.113 af
Pond 3P: PCB1 12.0" F	Peak Elev=50.26' Storage=12 cf Inflow=2.34 cfs 0.247 af Round Culvert n=0.012 L=60.0' S=0.0067 '/' Outflow=2.34 cfs 0.247 af
Pond 4P: PDMH1 12.0" Re	Peak Elev=49.68' Storage=11 cf Inflow=2.34 cfs 0.247 af ound Culvert n=0.012 L=160.0' S=0.0287 '/' Outflow=2.34 cfs 0.247 af
Pond 5P: PYD3 15.0" F	Peak Elev=47.73' Storage=1 cf Inflow=0.52 cfs 0.013 af Round Culvert n=0.012 L=35.0' S=0.0057 '/' Outflow=0.52 cfs 0.013 af
Pond 6P: PDMH2 12.0" Re	Peak Elev=45.00' Storage=11 cf Inflow=2.40 cfs 0.317 af ound Culvert n=0.012 L=100.0' S=0.0210 '/' Outflow=2.40 cfs 0.317 af
Pond 7P: Roof Dripline Filter & Clean Discarded=0.03 cfs 0.025 af Primary=0.04	out Peak Elev=56.01' Storage=293 cf Inflow=0.52 cfs 0.054 af cfs 0.015 af Secondary=0.49 cfs 0.013 af Outflow=0.57 cfs 0.054 af

Pond 10P: Retention PondPeak Elev=53.11' Storage=2,086 cfInflow=1.54 cfs0.128 afDiscarded=0.14 cfs0.109 afPrimary=0.43 cfs0.019 afOutflow=0.56 cfs0.128 af

Pond 11P: Raingarden B -900sf

Peak Elev=47.27' Storage=1,172 cf Inflow=0.73 cfs 0.070 af Outflow=0.08 cfs 0.070 af

4801.2 POST-Ph2-Gym	012920
4001.2 FUST-FIIZ-GyIII	012320

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Pond OS1: Outlet Structure 1	Peak Elev=39.09' Storage=11 cf Inflow=4.04 cfs 0.431 af 12.0" Round Culvert n=0.012 L=20.0' S=0.0750 '/' Outflow=4.00 cfs 0.431 af
Pond OS4: Outlet Structure 4	Peak Elev=42.67' Storage=5 cf Inflow=1.53 cfs 0.122 af 12.0" Round Culvert n=0.012 L=110.0' S=0.0377 '/' Outflow=1.56 cfs 0.122 af
Pond P11: Roof Drip Edge Discard	Peak Elev=54.01' Storage=171 cf Inflow=0.33 cfs 0.026 af ded=0.03 cfs 0.020 af Secondary=0.42 cfs 0.006 af Outflow=0.45 cfs 0.026 af
Pond P2: CB P3	Peak Elev=53.52' Storage=1 cf Inflow=0.20 cfs 0.016 af 12.0" Round Culvert n=0.011 L=72.0' S=0.0236 '/' Outflow=0.21 cfs 0.016 af
Pond P3: CB P3	Peak Elev=52.01' Storage=6 cf Inflow=0.84 cfs 0.085 af 12.0" Round Culvert n=0.011 L=98.0' S=0.0051 '/' Outflow=0.84 cfs 0.085 af
Pond P4: YD P4	Peak Elev=49.04' Storage=1 cf Inflow=0.29 cfs 0.021 af 12.0" Round Culvert n=0.011 L=25.0' S=0.0060 '/' Outflow=0.29 cfs 0.021 af
Pond P5: YD P5	Peak Elev=48.96' Storage=1 cf Inflow=0.80 cfs 0.058 af 12.0" Round Culvert n=0.011 L=65.0' S=0.0077 '/' Outflow=0.80 cfs 0.058 af
Pond P8: Driveway Crossing	Peak Elev=47.23' Storage=103 cf Inflow=0.89 cfs 0.085 af 12.0" Round Culvert n=0.012 L=80.0' S=0.0344 '/' Outflow=0.88 cfs 0.085 af
Pond RG1: Raingarden 1	Peak Elev=42.04' Storage=2,740 cf Inflow=3.00 cfs 0.360 af Outflow=2.44 cfs 0.309 af
Pond RG4: Raingarden 4	Peak Elev=46.71' Storage=1,379 cf Inflow=1.63 cfs 0.145 af Outflow=1.53 cfs 0.122 af
Link POA1: POA #1	Inflow=5.67 cfs 0.642 af Primary=5.67 cfs 0.642 af
Link POA2: POA #2 - Drivewa	y Crossing Inflow=2.40 cfs 0.317 af Primary=2.40 cfs 0.317 af
Total Runoff A	rea = 5 529 ac_ Runoff Volume = 0 871 af_Average Runoff Denth = 1 89'

Total Runoff Area = 5.529 acRunoff Volume = 0.871 afAverage Runoff Depth = 1.89"69.31% Pervious = 3.832 ac30.69% Impervious = 1.697 ac

Summary for Subcatchment 1S: Roof

Runoff = 0.33 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 3.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

	A	rea (sf)	CN	Description					
		500	80	>75% Gras	s cover, Go	bod, HSG D			
_		3,680	98	Roofs, HSC	G D				
		4,180 500 3,680		Weighted Average 11.96% Pervious Area 88.04% Impervious Area					
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	6.0					Direct Entry,			

Summary for Subcatchment 9S: Roof

Runoff = 0.52 cfs @ 12.19 hrs, Volume= 0.054 af, Depth= 3.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN E	CN Description					
	360	74 >	4 >75% Grass cover, Good, HSG C					
	6,930	98 F	Roofs, HSG	СС				
	1,030	98 F	Roofs, HSG	6 D				
	0	98 L	Unconnected pavement, HSG C					
	8,320	97 V	97 Weighted Average					
	360	4	4.33% Pervious Area					
	7,960	9	5.67% Imp	pervious Ar	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
12.9	100	0.0100	0.13		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.23"			
1.6	200	0.0200	2.12		Shallow Concentrated Flow,			
					Grassed Waterway Kv= 15.0 fps			
14.5	300	Total						

Summary for Subcatchment S10: North Ballfield

Runoff = 1.04 cfs @ 12.21 hrs, Volume= 0.100 af, Depth= 1.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Type III 24-hr 2-Year Rainfall=3.71" Printed 1/28/2020 LLC Page 11

Prepared by Altus Engineering	ng, Inc.
HydroCAD® 10.00-22 s/n 01222	© 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN [Description						
	37,360	74 >	•75% Grass cover, Good, HSG C						
	0	98 F	Roofs, HSG	i C					
	0	98 F	Roofs, HSG	i D					
	400	98 l	Jnconnecte	ed pavemer	nt, HSG C				
	37,760	74 \	Neighted A	verage					
	37,360	ç	98.94% Per	vious Area					
	400		1.06% Impe	ervious Area	а				
	400		100.00% Ur	nconnected	1				
Tc	Length	Slope		Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.9	100	0.0100	0.13		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.23"				
1.6	200	0.0200	2.12		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
14.5	300	Total							

Summary for Subcatchment S10B: South Ballfield

Runoff =

1.30 cfs @ 12.10 hrs, Volume= 0.095 af, Depth= 1.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Are	ea (sf)	CN I	Description						
2	29,980	74 :	>75% Gras	s cover, Go	ood, HSG C				
	2,590	98 I	Roofs, HSG	i C					
	240	98 0	Jnconnecte	ed pavemer	ent, HSG C				
3	32,810	76 \	Neighted A	verage					
2	29,980		91.37% Per		a				
	2,830	8	3.63% Impe	ervious Area	a				
	240	8	3.48% Unco	onnected					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
6.0					Direct Entry,				

Summary for Subcatchment S11A: S11A

Runoff = 0.51 cfs @ 12.09 hrs, Volume= 0.037 af, Depth= 2.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Area (sf)	CN	Description
4,731	74	>75% Grass cover, Good, HSG C
1,530	98	Unconnected pavement, HSG C
2,516	98	Paved parking, HSG C
8,777	85	Weighted Average
4,731		53.90% Pervious Area
4,046		46.10% Impervious Area
1,530		37.82% Unconnected

Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		

6.0

Direct Entry,

Summary for Subcatchment S11B: S11B

Runoff = 0.29 cfs @ 12.09 hrs, Volume= 0.021 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN	Description						
	2,316	74	>75% Gras	s cover, Go	lood, HSG C				
	530	98	Unconnecte	ed pavemer	ent, HSG C				
	1,960	98	Paved park	ing, HSG C	С				
	4,806	86	Weighted A	verage					
	2,316		48.19% Pei	vious Area	а				
	2,490		51.81% Imp	pervious Are	rea				
	530		21.29% Un	connected					
_				_					
Тс	Length	Slope		Capacity					
<u>(min)</u>	(feet)	(ft/ft)	t) (ft/sec) (cfs)						
6.0					Direct Entry,				

Summary for Subcatchment S12: S12

Runoff = 0.88 cfs @ 12.09 hrs, Volume= 0.063 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

 Area (sf)	CN	Description				
11,450	74	>75% Grass cover, Good, HSG C				
 5,500	98	Paved parking, HSG C				
16,950	82	Weighted Average				
11,450		67.55% Pervious Area				
5,500		32.45% Impervious Area				

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.7	75	0.0700	0.27		Sheet Flow, sheet
						Grass: Short n= 0.150 P2= 3.23"
	0.4	50	0.0200	2.12		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	5.1	125	Total, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.03 cfs @ 21.94 hrs, Volume= 0.024 af, Depth> 2.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Α	rea (sf)	CN I	Description					
	1,425			ing, HSG C				
	131	74 :	>75% Grass cover, Good, HSG C					
*	2,990	98	Permeable Pavement, HSG C					
	4,546 131 4,415	:	Veighted A 2.88% Perv 97.12% Imp		ea			
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
790.0					Direct Entry,			

Summary for Subcatchment S14: 14S Pemeable Lot

Runoff = 0.03 cfs @ 21.94 hrs, Volume= 0.028 af, Depth> 2.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

>75% Grass cover, Good, HSG C					
Permeable Pavement, HSG C					
Weighted Average					
2.58% Pervious Area					

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment S15: S15

Runoff = 0.60 cfs @ 12.09 hrs, Volume= 0.044 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN E	CN Description						
	7,610	74 >	75% Gras	s cover, Go	ood, HSG C				
	4,045	98 F	aved park	ing, HSG C	;				
	11,655	82 V	Veighted A	verage					
	7,610	6	5.29% Per	vious Area					
	4,045	3	34.71% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
5.3	80	0.0600	0.25		Sheet Flow, sheet Grass: Short n= 0.150 P2= 3.23"				
5.3	80	Total, Increased to minimum $Tc = 6.0 min$							

Summary for Subcatchment S16R: Banfield Road

Runoff = 0.89 cfs @ 12.22 hrs, Volume= 0.085 af, Depth= 1.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

_	A	rea (sf)	CN [Description						
		22,900	74 >	75% Gras	s cover, Go	bod, HSG C				
		3,798	98 F	Paved road	s w/curbs &	& sewers, HSG C				
		1,342	70 V	Voods, Go	od, HSG C					
		28,040	77 V	Weighted Average						
		24,242	8	86.46% Per	vious Area	l				
		3,798	1	3.54% Imp	ervious Ar	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	12.9	100	0.0100	0.13		Sheet Flow, sheet				
				Grass: Short n= 0.150 P2= 3.23"						
	2.1	325	0.0300	2.60		Shallow Concentrated Flow,				
_						Grassed Waterway Kv= 15.0 fps				
_	4 = 0	105								

15.0 425 Total

Summary for Subcatchment S17: S11

Runoff = 0.63 cfs @ 12.11 hrs, Volume= 0.047 af, Depth= 1.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Prepared by Altus Engineering, Inc.
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions L

A	rea (sf)	CN [Description						
	4,048	74 >	>75% Gras	s cover, Go	bod, HSG C				
	3,330	98 F	Paved road	s w/curbs &	& sewers, HSG C				
	1,395	98 F	Paved park	ing, HSG C					
	3,855	70 \	Noods, Go	Voods, Good, HSG C					
	12,628	82 \	Neighted A	verage					
	7,903	6	62.58% Per	vious Area					
	4,725	3	37.42% Imp	pervious Are	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.6	70	0.0400	0.21		Sheet Flow, sheet				
					Grass: Short n= 0.150 P2= 3.23"				
1.8	140	0.0650	1.27		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
7.4	210	Total							

Summary for Subcatchment S18: S11

Runoff	=	0.62 cfs @	12.13 hrs,	Volume=	0.051 af,	Depth= 1.32"
--------	---	------------	------------	---------	-----------	--------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN E	Description		
	14,716	74 >	75% Gras	s cover, Go	ood, HSG C
	5,377	70 V	Voods, Go	od, HSG C	
	20,093	73 V	Veighted A	verage	
	20,093	1	00.00% Pe	ervious Are	a
_					
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.4	60	0.1000	0.29		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
5.0	40	0.1200	0.13		Sheet Flow, sheet
					Woods: Light underbrush n= 0.400 P2= 3.23"
0.2	50	0.0800	4.24		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
8.6	150	Total			

Summary for Subcatchment S20: Flat Roof

Runoff = 0.23 cfs @ 12.09 hrs, Volume= 0.018 af, Depth= 3.25"

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description						
	250	74	>75% Gras	s cover, Go	ood, HSG C				
	2,640	98	Roofs, HSG C						
	2,890	96	Veighted Average						
	250		8.65% Pervious Area						
	2,640	1	91.35% Impervious Area						
Tc	Length	Slope	,	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment S21: Entrance Side

Runoff = 0.10 cfs @ 12.09 hrs, Volume= 0.007 af, Depth= 1.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN	Description					
	2,040	80	>75% Grass cover, Good, HSG D					
	0	98	Roofs, HSG D					
	2,040	80	Weighted Average					
	2,040		100.00% Pervious Area					
Tc	Length	Slop	,	Capacity	Description			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment S22: New Parking

Runoff = 0.02 cfs @ 21.96 hrs, Volume= 0.022 af, Depth> 2.27"

	Area (sf)	CN	Description							
	1,340	74	>75% Gras	s cover, Go	bood, HSG C					
*	2,380	98	Permeable	Pavement,	t, HSG D					
	1,300	98	Unconnecte	Jnconnected pavement, HSG D						
	5,020	92	Weighted Average							
	1,340		26.69% Pervious Area							
	3,680		73.31% Impervious Area							
	1,300		35.33% Unconnected							
Tc	Length	Slope	e Velocity	Capacity	Description					
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
790.0					Direct Entry,					

Summary for Subcatchment S23: Raingarden B

Runoff = 0.22 cfs @ 12.10 hrs, Volume= 0.016 af, Depth= 1.45"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

A	rea (sf)	CN	Adj De	scription					
	5,290	74	>7	5% Grass co	over, Good, HSG C				
	0	98	Ro	ofs, HSG C					
	500	98	Un	Unconnected pavement, HSG C					
	5,790	76	75 We	Weighted Average, UI Adjusted					
	5,290		91.	36% Perviou	us Area				
	500		8.6	4% Impervio	bus Area				
	500		100).00% Üncor	nnected				
Тс	Length	Slope			Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec) (cfs)					
6.0					Direct Entry,				

Summary for Subcatchment S7A: 4S-Northwest

Runoff = 0.20 cfs @ 12.09 hrs, Volume= 0.016 af, Depth= 3.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"

Α	rea (sf)	CN	Description					
	326	74	>75% Gras	s cover, Go	ood, HSG C			
	1,420	98	Roofs, HSG	G C				
	900	98	Roofs, HSC	ЪВ				
	2,646	95	5 Weighted Average					
	326		12.32% Pervious Area					
	2,320		87.68% Impervious Area					
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment S8: S8-Northwest

Runoff = 0.58 cfs @ 12.20 hrs, Volume= 0.054 af, Depth= 1.88"

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

Type III 24-hr 2-Year Rainfall=3.71" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 18

-	Aı	rea (sf)	CN [Description				•			
•		10,480	74 >	>75% Gras	s cover, Go	od, HSG C					
		2,635	98 F	Roofs, HSG	G C						
_		1,910	98 l	Jnconnecte	ed pavemer	nt, HSG C					
-		15,025	81 V	Weighted Average							
		10,480	6	9.75% Per	vious Area						
		4,545	3	30.25% Impervious Area							
		1,910	4	42.02% Unconnected							
	Tc	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	12.0	100	0 0100	0 13		Shoot Flow					

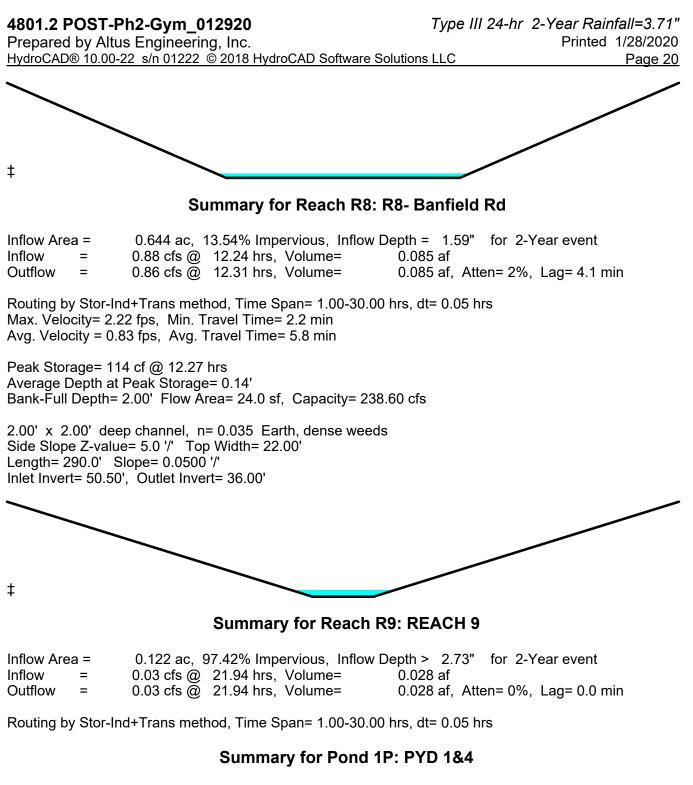
12.9	100 0.0100	0.13	Sheet Flow,
			Grass: Short n= 0.150 P2= 3.23"
1.4	180 0.0200	2.12	Shallow Concentrated Flow,
			Grassed Waterway Kv= 15.0 fps

14.3 280 Total

Summary for Subcatchment S8B: ROOF DRAIN

Runoff 0.18 cfs @ 12.09 hrs, Volume= 0.015 af, Depth= 3.48" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 2-Year Rainfall=3.71"


Area	a (sf)	CN D	escription					
2	2,190	98 F	Roofs, HSG B					
2	2,190	100.00% Impervious Area						
Tc L _(min)	ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.05 cfs @ 21.94 hrs, Volume= 0.049 af, Depth> 2.73"

	Area (sf)	CN	Description
	778	98	Unconnected pavement, HSG C
	389	74	>75% Grass cover, Good, HSG C
*	7,655	98	Permeable Pavement, HSG C
	550	98	Unconnected pavement, HSG C
	9,372	97	Weighted Average
	389		
	8,983		95.85% Impervious Area
	1,328		14.78% Unconnected

4801.2 POST-Ph2-Gym 012920 Type III 24-hr 2-Year Rainfall=3.71" Prepared by Altus Engineering, Inc. Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 19 Slope Velocity Capacity Description Tc Length (feet) (ft/ft) (ft/sec) (cfs) (min) 790.0 Direct Entry, Summary for Reach 1R: REACH 1 1.058 ac, 18.14% Impervious, Inflow Depth = 0.22" for 2-Year event Inflow Area = 0.43 cfs @ 12.61 hrs, Volume= Inflow 0.019 af = Outflow = 0.42 cfs @ 12.63 hrs, Volume= 0.019 af, Atten= 2%, Lag= 1.2 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.18 fps, Min. Travel Time= 0.5 min Avg. Velocity = 1.10 fps, Avg. Travel Time= 1.1 min Peak Storage= 13 cf @ 12.62 hrs Average Depth at Peak Storage= 0.06' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 77.07 cfs 3.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 11.00' Length= 70.0' Slope= 0.0500 '/' Inlet Invert= 53.00', Outlet Invert= 49.50' ‡ Summary for Reach R5: R5 - Pre-Treatment Swale 1 0.312 ac, 48.12% Impervious, Inflow Depth = 2.23" for 2-Year event Inflow Area = Inflow 0.80 cfs @ 12.09 hrs, Volume= 0.058 af = Outflow 0.77 cfs @ 12.11 hrs, Volume= 0.058 af, Atten= 4%, Lag= 1.3 min = Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 1.35 fps, Min. Travel Time= 0.9 min Avg. Velocity = 0.52 fps, Avg. Travel Time= 2.3 min Peak Storage= 41 cf @ 12.10 hrs Average Depth at Peak Storage= 0.07' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs 8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/' Inlet Invert= 48.00', Outlet Invert= 47.00'

Inflow Area =	0.753 ac,	8.63% Impervious, Inflow D	epth = 1.52" for 2-Year event
Inflow =	1.30 cfs @	12.10 hrs, Volume=	0.095 af
Outflow =	1.30 cfs @	12.10 hrs, Volume=	0.095 af, Atten= 0%, Lag= 0.0 min
Primary =	1.30 cfs @	12.10 hrs, Volume=	0.095 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Peak Elev= 50.68' @ 12.10 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.095 af (100% of inflow) Center-of-Mass det. time= 0.1 min (847.4 - 847.3)

Volume Invert Avail.Storage Storage Description					
#1 50.00' 11 cf 2.00'D x 3.50'H Vertical Cone/Cylinder #2 53.50' 200 cf Custom Stage Data Listed below					
#2 53.50' 200 cf Custom Stage Data Listed below 211 cf Total Available Storage					
ElevationCum.Store(feet)(cubic-feet)53.50054.00200					
Device Routing Invert Outlet Devices					
#1 Primary 50.00' 12.0" Round Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 50.00' / 49.65' S= 0.0054 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf					
Primary OutFlow Max=1.29 cfs @ 12.10 hrs HW=50.68' (Free Discharge) 1=Culvert (Barrel Controls 1.29 cfs @ 3.22 fps)					
Summary for Pond 2P: PYD2					
Inflow Area = 0.820 ac, 15.32% Impervious, Inflow Depth = 1.66" for 2-Year event Inflow = 1.52 cfs @ 12.10 hrs, Volume= 0.113 af Outflow = 1.52 cfs @ 12.10 hrs, Volume= 0.113 af, Atten= 0%, Lag= 0.0 min Primary = 1.52 cfs @ 12.10 hrs, Volume= 0.113 af					
Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 50.33' @ 12.10 hrs Surf.Area= 3 sf Storage= 2 cf					
Plug-Flow detention time= 0.1 min calculated for 0.113 af (100% of inflow) Center-of-Mass det. time= 0.1 min (835.2 - 835.1)					
Volume Invert Avail.Storage Storage Description					
#1 49.55' 12 cf 2.00'D x 3.90'H Vertical Cone/Cylinder					
Device Routing Invert Outlet Devices					
#1 Primary 49.55' 12.0" Round Culvert L= 30.0' Ke= 0.500 Inlet / Outlet Invert= 49.55' / 49.40' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf S S S S					
Primary OutFlow Max=1.51 cfs @ 12.10 hrs HW=50.33' (Free Discharge) ←1=Culvert (Barrel Controls 1.51 cfs @ 3.17 fps)					

Summary for Pond 3P: PCB1

Inflow Area =	1.491 ac, 36.20% Impervious, Inflov	w Depth > 1.99" for 2-Year event
Inflow =	2.34 cfs @ 12.10 hrs, Volume=	0.247 af
Outflow =	2.34 cfs @ 12.11 hrs, Volume=	0.247 af, Atten= 0%, Lag= 0.1 min
Primary =	2.34 cfs @ 12.11 hrs, Volume=	0.247 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 50.26' @ 12.11 hrs Surf.Area= 13 sf Storage= 12 cf

Plug-Flow detention time= 0.3 min calculated for 0.247 af (100% of inflow) Center-of-Mass det. time= 0.2 min (926.7 - 926.6)

Volume	Invert	Avail.Storage	Storage Description
#1	49.30'	63 cf	4.00'D x 5.00'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 60.0' Ke= 0.500 : / Outlet Invert= 49.30' / 48.90' S= 0.0067 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.31 cfs @ 12.11 hrs HW=50.25' (Free Discharge) -1=Culvert (Barrel Controls 2.31 cfs @ 3.85 fps)

Summary for Pond 4P: PDMH1

Inflow Area =	1.491 ac, 36.20% Impervious, Inflo	ow Depth > 1.99" for 2-Year event
Inflow =	2.34 cfs @ 12.11 hrs, Volume=	0.247 af
Outflow =	2.34 cfs @ 12.11 hrs, Volume=	0.247 af, Atten= 0%, Lag= 0.1 min
Primary =	2.34 cfs @ 12.11 hrs, Volume=	0.247 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 49.68' @ 12.11 hrs Surf.Area= 13 sf Storage= 11 cf

Plug-Flow detention time= 0.2 min calculated for 0.246 af (100% of inflow) Center-of-Mass det. time= 0.2 min (926.9 - 926.7)

Volume	Invert	Avail.Storage	Storage Description
#1	48.80'	58 cf	4.00'D x 4.60'H Vertical Cone/Cylinder
Device #1	Routing Primary	48.80' 12.0 Inlet	et Devices " Round Culvert L= 160.0' Ke= 0.500 : / Outlet Invert= 48.80' / 44.20' S= 0.0287 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.31 cfs @ 12.11 hrs HW=49.67' (Free Discharge) ←1=Culvert (Inlet Controls 2.31 cfs @ 3.18 fps)

Summary for Pond 5P: PYD3

O at the fit	a = = = =	0.52 cfs @ 0.52 cfs @	59.16% Impervious, Inflow D 12.10 hrs, Volume= 12.10 hrs, Volume= 12.10 hrs, Volume=	0.013 af	for 2-Year event n= 0%, Lag= 0.0 min
Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.73' @ 12.10 hrs Surf.Area= 3 sf Storage= 1 cf					

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (788.1 - 787.9)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription		
#1	47.	35'	9 cf	2.00'D x 3	.00'H Vertical C	one/Cylinder	
#2	50.	45'	56 cf	Custom S	tage Data (Pris	matic)Listed below	(Recalc)
			66 cf	Total Avai	lable Storage		
Elevatio	on	Surf.Area	Inc	.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)		
50.4	15	5		0	0		
51.0	00	200		56	56		
Device	Routing	Invert	Outl	et Devices			
#1	Primary	47.35'	Inlet	/ Outlet Inv	ert= 47.35' / 47. Area= 1.23 sf	Ke= 0.500 15' S= 0.0057 '/' C	Cc= 0.900
Primary OutFlow Max=0.50 cfs @ 12.10 hrs HW=47.72' (Free Discharge)							

1=Culvert (Barrel Controls 0.50 cfs @ 2.46 fps)

Summary for Pond 6P: PDMH2

Inflow Area =	2.939 ac, 31.03% Impervious, Inflow	Depth > 1.29" for 2-Year event
Inflow =	2.40 cfs @ 12.11 hrs, Volume=	0.317 af
Outflow =	2.40 cfs @ 12.11 hrs, Volume=	0.317 af, Atten= 0%, Lag= 0.1 min
Primary =	2.40 cfs @ 12.11 hrs, Volume=	0.317 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 45.00' @ 12.11 hrs Surf.Area= 13 sf Storage= 11 cf

Plug-Flow detention time= 0.2 min calculated for 0.317 af (100% of inflow) Center-of-Mass det. time= 0.2 min (964.9 - 964.7)

Volume	Invert	Avail.Storage	Storage Description
#1	44.10'	57 cf	4.00'D x 4.50'H Vertical Cone/Cylinder
Device #1	Routing Primary	44.10' 12.0 Inlet	et Devices " Round Culvert L= 100.0' Ke= 0.500 t / Outlet Invert= 44.10' / 42.00' S= 0.0210 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.37 cfs @ 12.11 hrs HW=44.99' (Free Discharge) **1=Culvert** (Inlet Controls 2.37 cfs @ 3.21 fps)

Summary for Pond 7P: Roof Dripline Filter & Cleanout

Inflow Area =	0.191 ac, 95.67% Impervious, Inflow De	epth = 3.36" for 2-Year event
Inflow =	0.52 cfs @ 12.19 hrs, Volume=	0.054 af
Outflow =	0.57 cfs @ 12.15 hrs, Volume=	0.054 af, Atten= 0%, Lag= 0.0 min
Discarded =	0.03 cfs @ 12.15 hrs, Volume=	0.025 af
Primary =	0.04 cfs @ 12.15 hrs, Volume=	0.015 af
Secondary =	0.49 cfs @ 12.15 hrs, Volume=	0.013 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 56.01' @ 12.15 hrs Surf.Area= 360 sf Storage= 293 cf

Plug-Flow detention time= 29.5 min calculated for 0.053 af (100% of inflow) Center-of-Mass det. time= 29.5 min (799.8 - 770.3)

Volume	Invert	Avail.S	torage	Storage Descrip	tion	
#1	52.50'		321 cf	Custom Stage	Data (Prismatic)Lis	sted below
Elevatio (fee		rf.Area V (sq-ft)	oids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
52.5	50	360	0.0	0	0	
54.0	00	360	33.0	178	178	
55.5			10.0	54	232	
56.2	25	360	33.0	89	321	
Device	Routing	Inve	rt Outl	et Devices		
#1	Primary	53.00			L= 25.0' Ke= 0.50	
				: / Outlet Invert= 5).012, Flow Area=		0.0400 '/' Cc= 0.900
#2	Secondary	56.00				ted Rectangular Weir
						1.20 1.40 1.60 1.80 2.00
				$3.00 \ 3.50 \ 4.00$.65 2.64 2.64 2.68 2.68
				2.81 2.92 2.97		.05 2.04 2.04 2.06 2.08
#3	Device 1	52.50			on over Surface ar	rea
		02.0			dwater Elevation =	
#4	Discarded	52.50			on over Surface ar	
			Con	ductivity to Groun	dwater Elevation =	48.00'

Discarded OutFlow Max=0.03 cfs @ 12.15 hrs HW=56.01' (Free Discharge) **4=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.04 cfs @ 12.15 hrs HW=56.01' (Free Discharge) -1=Culvert (Passes 0.04 cfs of 1.57 cfs potential flow) -3=Exfiltration (Controls 0.04 cfs)

Secondary OutFlow Max=0.31 cfs @ 12.15 hrs HW=56.01' (Free Discharge) -2=Broad-Crested Rectangular Weir (Weir Controls 0.31 cfs @ 0.25 fps)

Summary for Pond 10P: Retention Pond

Inflow Area = Inflow = Outflow = Discarded = Primary =	1.54 cfs @ 0.56 cfs @ 0.14 cfs @	12.23 h 12.61 h 12.61 h	mpervious, Inflow rs, Volume= rs, Volume= rs, Volume= rs, Volume=	/ Depth = 1.46" for 2-Year event 0.128 af 0.128 af, Atten= 63%, Lag= 22.4 m 0.109 af 0.019 af	iin
			= 1.00-30.00 hrs, rea= 2,073 sf Sto		
Plug-Flow deten Center-of-Mass				af (100% of inflow)	
Volume Ir	vert Avail.S	Storage	Storage Descrip	tion	
#1 52	.00' 3	8,290 cf	Custom Stage I	Data (Prismatic)Listed below	
Elevation (feet)	Surf.Area V (sq-ft)	/oids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
52.00	1,160	0.0	0	0	
	,		0.000		
53.75	2,000 1	00.0	3,290	3,290	
53.75 <u>Device Routin</u>	,		3,290 et Devices	3,290	

 #2
 Discarded
 52.00'
 2.65
 2.67
 2.66
 2.68
 2.70
 2.74
 2.79
 2.88

 #2
 Discarded
 52.00'
 2.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 50.00'

Discarded OutFlow Max=0.14 cfs @ 12.61 hrs HW=53.11' (Free Discharge) **2=Exfiltration** (Controls 0.14 cfs)

Primary OutFlow Max=0.42 cfs @ 12.61 hrs HW=53.11' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 0.42 cfs @ 0.77 fps)

Summary for Pond 11P: Raingarden B -900sf

Inflow Area =	=	1.449 ac, 25.70% Impervious, Inflow Depth > 0.58" for 2-Year event
Inflow =		0.73 cfs @ 12.10 hrs, Volume= 0.070 af
Outflow =		0.08 cfs @ 13.69 hrs, Volume= 0.070 af, Atten= 89%, Lag= 95.4 min
Primary =		0.08 cfs @ 13.69 hrs, Volume= 0.070 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.27' @ 13.69 hrs Surf.Area= 1,341 sf Storage= 1,172 cf

Plug-Flow detention time= 129.6 min calculated for 0.070 af (99% of inflow) Center-of-Mass det. time= 122.7 min (1,098.3 - 975.5)

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Avail.Storage Storage Description Volume Invert #1 44.25' 3.358 cf Custom Stage Data (Prismatic)Listed below Elevation Surf.Area Voids Inc.Store Cum.Store (feet) (cubic-feet) (cubic-feet) (sq-ft) (%) 44.25 1.100 0.0 0 0 45.25 1,100 40.0 440 440 1,100 531 45.50 33.0 91 696 47.00 1,100 10.0 165 48.50 2,450 100.0 2.663 3.358 Device Routing Invert Outlet Devices #1 Primary 44.25' 12.0" Round Culvert L= 5.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 44.25' / 44.15' S= 0.0200 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf 47.75' #2 Device 1 **18.0" Horiz. Orifice/Grate** C= 0.600 Limited to weir flow at low heads

#3	Device 1	44.25'	6.0" Vert. Orifice/Grate	C= 0.600
#4	Device 3	44.25'	2.500 in/hr Exfiltration of	over Surface area

Primary OutFlow Max=0.08 cfs @ 13.69 hrs HW=47.27' (Free Discharge)

1=Culvert (Passes 0.08 cfs of 6.00 cfs potential flow)

2=Orifice/Grate (Controls 0.00 cfs)

-3=Orifice/Grate (Passes 0.08 cfs of 1.57 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.08 cfs)

Summary for Pond OS1: Outlet Structure 1

Inflow Area =	4.012 ac, 34.46% Impe	ervious, Inflow Depth > 1	.29" for 2-Year event
Inflow =	4.04 cfs @ 12.17 hrs,	Volume= 0.431 a	f
Outflow =	4.00 cfs @ 12.17 hrs,	Volume= 0.431 a	f, Atten= 1%, Lag= 0.3 min
Primary =	4.00 cfs @ 12.17 hrs,	Volume= 0.431 a	f

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 39.09' @ 12.17 hrs Surf.Area= 13 sf Storage= 11 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (991.9 - 991.9)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device #1	Routing Primary	37.50' 12.0 Inlet	let Devices I'' Round Culvert L= 20.0' Ke= 0.500 t / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=3.79 cfs @ 12.17 hrs HW=39.00' (Free Discharge) -1=Culvert (Inlet Controls 3.79 cfs @ 4.82 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area	=	0.805 ac, 46.90% Impervious, Inflow Depth > 1.81" for 2-Year event	
Inflow	=	1.53 cfs @ 12.16 hrs, Volume= 0.122 af	
Outflow	=	I.56 cfs @12.16 hrs, Volume=0.122 af, Atten= 0%, Lag= 0.0 n	nin
Primary	=	I.56 cfs @ 12.16 hrs, Volume= 0.122 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.67' @ 12.16 hrs Surf.Area= 13 sf Storage= 5 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (981.8 - 981.7)

Volume	Invert	Avail.Storage	Storage Description
#1	42.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 110.0' Ke= 0.500 / Outlet Invert= 42.00' / 37.85' S= 0.0377 '/' Cc= 0.900 .012, Flow Area= 0.79 sf

Primary OutFlow Max=1.52 cfs @ 12.16 hrs HW=42.66' (Free Discharge) ←1=Culvert (Inlet Controls 1.52 cfs @ 2.76 fps)

Summary for Pond P11: Roof Drip Edge

Inflow Area =	0.096 ac, 88.04% Impervious, Inflow De	epth = 3.25" for 2-Year event
Inflow =	0.33 cfs @ 12.09 hrs, Volume=	0.026 af
Outflow =	0.45 cfs @ 12.10 hrs, Volume=	0.026 af, Atten= 0%, Lag= 0.9 min
Discarded =	0.03 cfs @ 12.10 hrs, Volume=	0.020 af
Secondary =	0.42 cfs @ 12.10 hrs, Volume=	0.006 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.01' @ 12.10 hrs Surf.Area= 500 sf Storage= 171 cf

Plug-Flow detention time= 33.1 min calculated for 0.026 af (100% of inflow) Center-of-Mass det. time= 33.1 min (803.0 - 770.0)

Volume	Invert	Avail.Sto	orage	Storage Descrip	tion	
#1	53.00'	2	90 cf	Custom Stage	Data (Prismatic)	Listed below
Elevation (feet)	Surf.A (sq		ds %)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
53.00	5	500 (0.0	0	0	
54.00	5	500 33	3.0	165	165	
54.25	5	500 100	0.0	125	290	
	couting secondary	Invert 54.00'	125. Hea		0 0.60 0.80 1.0	ested Rectangular Weir 00 1.20 1.40 1.60 1.80 2.00

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 2-Year Rainfall=3.71" Printed 1/28/2020 LLC Page 28

 #2
 Discarded
 53.00'
 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.72 2.81 2.92 2.97 3.07 3.32

 #2
 Discarded
 53.00'
 2.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 46.00'

Discarded OutFlow Max=0.03 cfs @ 12.10 hrs HW=54.01' (Free Discharge) **2=Exfiltration** (Controls 0.03 cfs)

Secondary OutFlow Max=0.40 cfs @ 12.10 hrs HW=54.01' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.40 cfs @ 0.27 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac,	87.68% Impervious,	Inflow Depth = 3.7	15" for 2-Year event
Inflow =	0.20 cfs @) 12.09 hrs, Volume	e 0.016 af	
Outflow =	0.21 cfs @) 12.09 hrs, Volume	e= 0.016 af,	Atten= 0%, Lag= 0.0 min
Primary =	0.21 cfs @	0 12.09 hrs, Volume	e= 0.016 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.52' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.2 min calculated for 0.016 af (100% of inflow) Center-of-Mass det. time= 0.2 min (776.7 - 776.5)

Volume	Invert	Avail.Storage	Storage Description
#1	53.30'	9 cf	2.00'D x 3.00'H Vertical Cone/Cylinder
Device #1	Routing Primary	53.30' 12.0 Inle	let Devices D" Round Culvert L= 72.0' Ke= 0.500 t / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.20 cfs @ 12.09 hrs HW=53.52' (Free Discharge)

Summary for Pond P3: CB P3

Inflow Area =	0.456 ac, 45.59% Impervious, Inflow I	Depth = 2.22" for 2-Year event
Inflow =	0.84 cfs @ 12.15 hrs, Volume=	0.085 af
Outflow =	0.84 cfs @ 12.15 hrs, Volume=	0.085 af, Atten= 0%, Lag= 0.1 min
Primary =	0.84 cfs $\overline{@}$ 12.15 hrs, Volume=	0.085 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.01' @ 12.15 hrs Surf.Area= 13 sf Storage= 6 cf

Plug-Flow detention time= 0.4 min calculated for 0.084 af (100% of inflow) Center-of-Mass det. time= 0.4 min (813.6 - 813.2)

Type III 24-hr 2-Year Rainfall=3.71" Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Printed 1/28/2020 Page 29

Volume	Invert	Avail.Stor	age Storage Description		
#1	51.50'		5 cf 4.00'D x 2.75'H Vertical Cone/Cylinder		
Device	Routing	Invert	Outlet Devices		
#1	Primary	51.50'	12.0" Round Culvert L= 98.0' Ke= 0.500 Inlet / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf		
) 12.15 hrs HW=52.01' (Free Discharge) I cfs @ 3.05 fps)		
			Summary for Pond P4: YD P4		
Inflow Ai Inflow Outflow Primary	= 0 = 0	.29 cfs @ 12 .29 cfs @ 12	81% Impervious, Inflow Depth = 2.29" for 2-Year event 2.09 hrs, Volume= 0.021 af 2.09 hrs, Volume= 0.021 af, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 0.021 af		
			Span= 1.00-30.00 hrs, dt= 0.05 hrs urf.Area= 3 sf Storage= 1 cf		
			calculated for 0.021 af (100% of inflow) (816.4 - 816.3)		
Volume	Invert	Avail.Stor			
#1 #2	48.75' 52.00'		0 cf 2.00'D x 3.25'H Vertical Cone/Cylinder i0 cf Custom Stage DataListed below		
112	02.00		i0 cf Total Available Storage		
Elevatio (fee 52.0 53.0	et) (cub)0	n.Store <u>ic-feet)</u> 0 150			
Device	Routing	Invert	Outlet Devices		
#1	Primary	48.75'	12.0" Round Culvert L= 25.0' Ke= 0.500 Inlet / Outlet Invert= 48.75' / 48.60' S= 0.0060 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf		
Primary OutFlow Max=0.28 cfs @ 12.09 hrs HW=49.04' (Free Discharge)					
Summary for Pond P5: YD P5					
Inflow Ai	rea = () 312 ac 48 1	2% Impervious, Inflow Depth = 2.23" for 2-Year event		

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow [Depth = 2.23" for 2-Year event
Inflow =	0.80 cfs @ 12.09 hrs, Volume=	0.058 af
Outflow =	0.80 cfs $\overline{\textcircled{0}}$ 12.09 hrs, Volume=	0.058 af, Atten= 0%, Lag= 0.0 min
Primary =	0.80 cfs @ 12.09 hrs, Volume=	0.058 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Peak Elev= 48.96' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.058 af (100% of inflow) Center-of-Mass det. time= 0.1 min (818.6 - 818.5)

Volume	Inv	ert Avail.Sto	rage	Storage D	escription	
#1	48.	50'	11 cf	2.00'D x 3	50'H Vertica	I Cone/Cylinder
#2	52.0	DO' 5	92 cf	Custom S	Stage Data (P	rismatic)Listed below (Recalc)
		6	03 cf	Total Avai	lable Storage	
Elevatio	•••	Surf.Area		Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
52.0	0	10		0	0	
53.0	00	680		345	345	
53.3	80	970		247	592	
Device	Routing	Invert	Outl	et Devices		
#1	Primary	48.50'	12.0" Round Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 48.50' / 48.00' S= 0.0077 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf			

Primary OutFlow Max=0.78 cfs @ 12.09 hrs HW=48.95' (Free Discharge) -1=Culvert (Barrel Controls 0.78 cfs @ 3.31 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area =	0.644 ac, 13.54% Impervious, Inflow D	epth = 1.59" for 2-Year event
Inflow =	0.89 cfs @ 12.22 hrs, Volume=	0.085 af
Outflow =	0.88 cfs @ 12.24 hrs, Volume=	0.085 af, Atten= 1%, Lag= 1.3 min
Primary =	0.88 cfs @ 12.24 hrs, Volume=	0.085 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.23' @ 12.24 hrs Surf Area= 103 sf Storage= 103 cf

Plug-Flow detention time= 5.6 min calculated for 0.085 af (100% of inflow) Center-of-Mass det. time= 5.4 min (858.1 - 852.7)

Volume	Inv	ert Ava	il.Storage	Storage Descri	iption	
#1	46.	75'	484 cf	Custom Stage	e Data (Prismatic	Listed below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
46.7	-	20	0.0	0	0	
49.0	00	410	100.0	484	484	
Device	Routing	Ir	vert Ou	tlet Devices		
#1	Primary	46	Inle			0.500 = 0.0344 '/' Cc= 0.900

Primary OutFlow Max=0.87 cfs @ 12.24 hrs HW=47.23' (Free Discharge) **1=Culvert** (Inlet Controls 0.87 cfs @ 2.35 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area =	3.207 ac, 31.33% Impervious, Inflow De	epth > 1.35" for 2-Year event
Inflow =	3.00 cfs @ 12.10 hrs, Volume=	0.360 af
Outflow =	2.44 cfs @ 12.19 hrs, Volume=	0.309 af, Atten= 19%, Lag= 5.0 min
Primary =	2.44 cfs @ 12.19 hrs, Volume=	0.309 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.04' @ 12.19 hrs Surf.Area= 1,769 sf Storage= 2,740 cf

Plug-Flow detention time= 136.6 min calculated for 0.309 af (86% of inflow) Center-of-Mass det. time= 47.4 min (995.9 - 948.5)

Volume	Inve	rt Ava	il.Storage	Storage Descri	ption		
#1	38.00	0'	4,413 cf	Custom Stage	• Data (Prismatic)Liste	ed below	
Elevatio (fee 38.0 39.0 40.5 40.5	90 90 90 50 75	Surf.Area (sq-ft) 1,000 1,000 1,000 1,000	Voids (%) 0.0 33.0 33.0 10.0	Inc.Store (cubic-feet) 0 330 495 25	Cum.Store (cubic-feet) 0 330 825 850		
41.0 43.0		1,000 2,480	33.0 100.0	83 3,480	933 4,413		
<u>Device</u> #1 #2 #3	Routing Primary Primary Device 2	<u>In</u> 41 38	vert Out .75' 18.0 Limi 3.00' 6.0 "	let Devices)" Horiz. Orifice/ ited to weir flow a ' Vert. Orifice/Gi	/ Grate C= 0.600 at low heads	a	

Primary OutFlow Max=2.40 cfs @ 12.19 hrs HW=42.04' (Free Discharge)

-1=Orifice/Grate (Weir Controls 2.36 cfs @ 1.75 fps)

-2=Orifice/Grate (Passes 0.04 cfs of 1.84 cfs potential flow)

1-3=Exfiltration (Exfiltration Controls 0.04 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area	=	0.805 ac, 4	46.90% Impervic	ous, Inflow De	epth > 2	2.16" 1	for 2-Y	ear event
Inflow	=	1.63 cfs @	12.10 hrs, Vol	ume=	0.145 a	ıf		
Outflow	=	1.53 cfs @	12.16 hrs, Vol	ume=	0.122 a	if, Atter	n= 6%,	Lag= 3.1 min
Primary	=	1.53 cfs @	12.16 hrs, Vol	ume=	0.122 a	f		

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.71' @ 12.16 hrs Surf.Area= 1,248 sf Storage= 1,379 cf

Plug-Flow detention time= 172.3 min calculated for 0.121 af (84% of inflow)

Volume	١n	vert Ava	il.Stora	age St	orage Descri	ption	
#1	42.	50'	1,64	6 cf C i	ustom Stage	Data (Prismatio)Listed below
Elevatio (fee		Surf.Area (sq-ft)	Void (%	-	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
42.5	50	400	0.0	0	0	0	
43.5	50	400	33.0	0	132	132	
43.7	75	400	33.0	0	33	165	
45.2	25	400	10.0	0	60	225	
45.8	50	400	33.0	0	33	258	
47.(00	1,450	100.0	0	1,388	1,646	
Device	Routing	Ir	nvert	Outlet E	Devices		
#1	Primary	42	2.50'	6.0" Ve	rt. Orifice/G	rate C= 0.600	
#2	Primary	46	6.50'	18.0" H	oriz. Orifice	Grate C= 0.600)
	,			Limited	to weir flow a	at low heads	
#3	Device	1 42	2.50'	1.000 ir	n/hr Exfiltrati	ion over Surface	e area
Primary OutFlow Max=1.49 cfs @ 12.16 hrs HW=46.71' (Free Discharge)							

Center-of-Mass det. time= 73.2 min (981.7 - 908.5)

-1=Orifice/Grate (Passes 0.03 cfs of 1.88 cfs potential flow) -3=Exfiltration (Exfiltration Controls 0.03 cfs) -2=Orifice/Grate (Weir Controls 1.47 cfs @ 1.49 fps)

-2=Orifice/Grate (Weir Controls 1.47 cfs @ 1.49 fps)

Summary for Link POA1: POA #1

Inflow Are	a =	5.529 ac, 30.69% Impervious, Inflow Depth > 1.39" for 2-Year event	
Inflow	=	5.67 cfs @ 12.17 hrs, Volume= 0.642 af	
Primary	=	5.67 cfs @ 12.17 hrs, Volume= 0.642 af, Atten= 0%, Lag= 0.0 min	I

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2 - Driveway Crossing

Inflow Area =	2.939 ac,	31.03% Impervious	Inflow Depth > 1.	.29" for 2-Year event
Inflow =	2.40 cfs @	12.11 hrs, Volum	e= 0.317 af	
Primary =	2.40 cfs @	12.11 hrs, Volum	e= 0.317 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

 Type III 24-hr
 10-Year Rainfall=5.64"

 Printed
 1/28/2020

 hs LLC
 Page 33

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Time span=1.00-30.00 hrs, dt=0.05 hrs, 581 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Roof	Runoff Area=4,180 sf 88.04% Impervious Runoff Depth=5.17" Tc=6.0 min CN=96 Runoff=0.51 cfs 0.041 af
Subcatchment9S: Roof	Runoff Area=8,320 sf 95.67% Impervious Runoff Depth=5.29" Flow Length=300' Tc=14.5 min CN=97 Runoff=0.81 cfs 0.084 af
Subcatchment S10: North Ballfield	Runoff Area=37,760 sf 1.06% Impervious Runoff Depth=2.88" Flow Length=300' Tc=14.5 min CN=74 Runoff=2.23 cfs 0.208 af
Subcatchment S10B: South Ballfield	Runoff Area=32,810 sf 8.63% Impervious Runoff Depth=3.07" Tc=6.0 min CN=76 Runoff=2.66 cfs 0.193 af
Subcatchment S11A: S11A	Runoff Area=8,777 sf 46.10% Impervious Runoff Depth=3.96" Tc=6.0 min CN=85 Runoff=0.90 cfs 0.067 af
Subcatchment S11B: S11B	Runoff Area=4,806 sf 51.81% Impervious Runoff Depth=4.07" Tc=6.0 min CN=86 Runoff=0.50 cfs 0.037 af
Subcatchment S12: S12	Runoff Area=16,950 sf 32.45% Impervious Runoff Depth=3.66" Flow Length=125' Tc=6.0 min CN=82 Runoff=1.62 cfs 0.119 af
Subcatchment S13: 13S Pemeable Lot	Runoff Area=4,546 sf 97.12% Impervious Runoff Depth>4.31" Tc=790.0 min CN=97 Runoff=0.04 cfs 0.038 af
Subcatchment S14: 14S Pemeable Lot	Runoff Area=5,300 sf 97.42% Impervious Runoff Depth>4.31" Tc=790.0 min CN=97 Runoff=0.05 cfs 0.044 af
Subcatchment S15: S15 Flow Length=8	Runoff Area=11,655 sf 34.71% Impervious Runoff Depth=3.66" 0' Slope=0.0600 '/' Tc=6.0 min CN=82 Runoff=1.12 cfs 0.082 af
Subcatchment S16R: Banfield Road	Runoff Area=28,040 sf 13.54% Impervious Runoff Depth=3.17" Flow Length=425' Tc=15.0 min CN=77 Runoff=1.80 cfs 0.170 af
Subcatchment S17: S11	Runoff Area=12,628 sf 37.42% Impervious Runoff Depth=3.66" Flow Length=210' Tc=7.4 min CN=82 Runoff=1.16 cfs 0.088 af
Subcatchment S18: S11	Runoff Area=20,093 sf 0.00% Impervious Runoff Depth=2.79" Flow Length=150' Tc=8.6 min CN=73 Runoff=1.35 cfs 0.107 af
Subcatchment S20: Flat Roof	Runoff Area=2,890 sf 91.35% Impervious Runoff Depth=5.17" Tc=6.0 min CN=96 Runoff=0.35 cfs 0.029 af
Subcatchment S21: Entrance Side	Runoff Area=2,040 sf 0.00% Impervious Runoff Depth=3.46" Tc=6.0 min CN=80 Runoff=0.19 cfs 0.013 af
SubcatchmentS22: New Parking	Runoff Area=5,020 sf 73.31% Impervious Runoff Depth>3.80" Tc=790.0 min CN=92 Runoff=0.04 cfs 0.036 af

4801.2 POST-Ph2-Gym_012920	Type III 24-hr 10-Year Rainfall=5.64"
Prepared by Altus Engineering, Inc.	Printed 1/28/2020
<u>HydroCAD® 10.00-22</u> s/n 01222 © 2018 Hy	AdroCAD Software Solutions LLC Page 34
Subcatchment S23: Raingarden B	Runoff Area=5,790 sf 8.64% Impervious Runoff Depth=2.98" Tc=6.0 min UI Adjusted CN=75 Runoff=0.45 cfs 0.033 af
SubcatchmentS7A: 4S-Northwest	Runoff Area=2,646 sf 87.68% Impervious Runoff Depth=5.05" Tc=6.0 min CN=95 Runoff=0.32 cfs 0.026 af
SubcatchmentS8: S8-Northwest	Runoff Area=15,025 sf 30.25% Impervious Runoff Depth=3.56" Flow Length=280' Tc=14.3 min CN=81 Runoff=1.10 cfs 0.102 af
Subcatchment S8B: ROOF DRAIN	Runoff Area=2,190 sf 100.00% Impervious Runoff Depth>5.40" Tc=6.0 min CN=98 Runoff=0.27 cfs 0.023 af
Subcatchment S9: Pemeable Lot by ba	Ilfield Runoff Area=9,372 sf 95.85% Impervious Runoff Depth>4.31" Tc=790.0 min CN=97 Runoff=0.08 cfs 0.077 af
Reach 1R: REACH 1 n=0.022	Avg. Flow Depth=0.17' Max Vel=4.07 fps Inflow=2.50 cfs 0.118 af L=70.0' S=0.0500 '/' Capacity=77.07 cfs Outflow=2.48 cfs 0.118 af
Reach R5: R5 - Pre-Treatment Swale 1	Avg. Flow Depth=0.10' Max Vel=1.67 fps Inflow=1.41 cfs 0.104 af
n=0.022 L	=70.0' S=0.0143 '/' Capacity=187.45 cfs Outflow=1.37 cfs 0.104 af
Reach R8: R8- Banfield Rd n=0.035 L=	Avg. Flow Depth=0.21' Max Vel=2.75 fps Inflow=1.79 cfs 0.170 af =290.0' S=0.0500 '/' Capacity=238.60 cfs Outflow=1.74 cfs 0.170 af
Reach R9: REACH 9	Inflow=0.05 cfs 0.044 af Outflow=0.05 cfs 0.044 af
Pond 1P: PYD 1&4	Peak Elev=51.12' Storage=4 cf Inflow=2.66 cfs 0.193 af
12.0" Ro	und Culvert n=0.012 L=65.0' S=0.0054 '/' Outflow=2.66 cfs 0.193 af
Pond 2P: PYD2	Peak Elev=50.92' Storage=4 cf Inflow=3.01 cfs 0.221 af
12.0" Ro	und Culvert n=0.012 L=30.0' S=0.0050 '/' Outflow=3.01 cfs 0.221 af
Pond 3P: PCB1	Peak Elev=51.45' Storage=27 cf Inflow=4.44 cfs 0.449 af
12.0" Ro	und Culvert n=0.012 L=60.0' S=0.0067 '/' Outflow=4.45 cfs 0.449 af
Pond 4P: PDMH1	Peak Elev=50.69' Storage=24 cf Inflow=4.45 cfs 0.449 af
12.0" Rou	nd Culvert n=0.012 L=160.0' S=0.0287 '/' Outflow=4.45 cfs 0.449 af
Pond 5P: PYD3	Peak Elev=47.79' Storage=1 cf Inflow=0.70 cfs 0.029 af
15.0" Ro	und Culvert n=0.012 L=35.0' S=0.0057 '/' Outflow=0.69 cfs 0.029 af
Pond 6P: PDMH2	Peak Elev=46.02' Storage=24 cf Inflow=4.52 cfs 0.664 af
12.0" Rou	nd Culvert n=0.012 L=100.0' S=0.0210 '/' Outflow=4.51 cfs 0.664 af
Pond 7P: Roof Dripline Filter & Cleano	ut Peak Elev=56.02' Storage=293 cf Inflow=0.81 cfs 0.084 af
Discarded=0.03 cfs 0.032 af Primary=0.04 c	fs 0.023 af Secondary=0.74 cfs 0.029 af Outflow=0.81 cfs 0.084 af
Pond 10P: Retention Pond	Peak Elev=53.35' Storage=2,531 cf Inflow=3.01 cfs 0.260 af
Discarded=0.1	6 cfs 0.142 af Primary=2.50 cfs 0.118 af Outflow=2.66 cfs 0.260 af
Pond 11P: Raingarden B -900sf	Peak Elev=48.03' Storage=2,523 cf Inflow=2.96 cfs 0.217 af

4801.2 POST-Ph2-Gym_012920	Type III 24-ł
Prepared by Altus Engineering, Inc.	
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Softwar	e Solutions LLC

Pond OS1: Outlet Structure 1	Peak Elev=42.71' Storage=47 cf Inflow=8.15 cfs 0.927 af 12.0" Round Culvert n=0.012 L=20.0' S=0.0750 '/' Outflow=8.22 cfs 0.927 af
Pond OS4: Outlet Structure 4	Peak Elev=43.08' Storage=10 cf Inflow=2.89 cfs 0.234 af 12.0" Round Culvert n=0.012 L=110.0' S=0.0377 '/' Outflow=2.89 cfs 0.234 af
Pond P11: Roof Drip Edge Discard	Peak Elev=54.01' Storage=172 cf Inflow=0.51 cfs 0.041 af led=0.03 cfs 0.026 af Secondary=0.52 cfs 0.015 af Outflow=0.54 cfs 0.041 af
Pond P2: CB P3	Peak Elev=53.58' Storage=1 cf Inflow=0.32 cfs 0.026 af 12.0" Round Culvert n=0.011 L=72.0' S=0.0236 '/' Outflow=0.32 cfs 0.026 af
Pond P3: CB P3	Peak Elev=52.22' Storage=9 cf Inflow=1.50 cfs 0.150 af 12.0" Round Culvert n=0.011 L=98.0' S=0.0051 '/' Outflow=1.50 cfs 0.150 af
Pond P4: YD P4	Peak Elev=49.15' Storage=1 cf Inflow=0.50 cfs 0.037 af 12.0" Round Culvert n=0.011 L=25.0' S=0.0060 '/' Outflow=0.50 cfs 0.037 af
Pond P5: YD P5	Peak Elev=49.14' Storage=2 cf Inflow=1.41 cfs 0.104 af 12.0" Round Culvert n=0.011 L=65.0' S=0.0077 '/' Outflow=1.41 cfs 0.104 af
Pond P8: Driveway Crossing	Peak Elev=47.48' Storage=157 cf Inflow=1.80 cfs 0.170 af 12.0" Round Culvert n=0.012 L=80.0' S=0.0344 '/' Outflow=1.79 cfs 0.170 af
Pond RG1: Raingarden 1	Peak Elev=42.24' Storage=3,088 cf Inflow=5.61 cfs 0.745 af Outflow=5.31 cfs 0.693 af
Pond RG4: Raingarden 4	Peak Elev=46.83' Storage=1,484 cf Inflow=2.98 cfs 0.260 af Outflow=2.89 cfs 0.234 af
Link POA1: POA #1	Inflow=11.76 cfs 1.336 af Primary=11.76 cfs 1.336 af
Link POA2: POA #2 - Driveway	v CrossingInflow=4.51 cfs0.664 afPrimary=4.51 cfs0.664 af

Total Runoff Area = 5.529 acRunoff Volume = 1.617 afAverage Runoff Depth = 3.51"69.31% Pervious = 3.832 ac30.69% Impervious = 1.697 ac

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: Roof

Runoff = 0.51 cfs @ 12.09 hrs, Volume= 0.041 af, Depth= 5.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN I	Description					
	500	80 :	>75% Gras	s cover, Go	bod, HSG D			
	3,680	98 I	Roofs, HSG	G D				
	4,180		Weighted Average					
	500		11.96% Pervious Area					
	3,680	8	88.04% Impervious Area					
-				0				
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			
					-			

Summary for Subcatchment 9S: Roof

Runoff = 0.81 cfs @ 12.19 hrs, Volume= 0.084 af, Depth= 5.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN E	Description		
	360	74 >	75% Gras	s cover, Go	ood, HSG C
	6,930	98 F	Roofs, HSG	G C	
	1,030	98 F	Roofs, HSG	D D	
	0	98 L	Inconnecte	ed pavemer	nt, HSG C
	8,320	97 V	Veighted A	verage	
	360	4	.33% Perv	ious Area	
	7,960	ç	5.67% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.9	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.23"
1.6	200	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
14.5	300	Total			

Summary for Subcatchment S10: North Ballfield

Runoff = 2.23 cfs @ 12.21 hrs, Volume= 0.208 af, Depth= 2.88"

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

Type III 24-hr 10-Year Rainfall=5.64" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 37

A	rea (sf)	CN [Description				
	37,360	74 >	>75% Gras	s cover, Go	ood, HSG C		
	0		Roofs, HSG		,		
	0	98 F	Roofs, HSG	5 D			
	400	98 l	Jnconnecte	ed pavemer	nt, HSG C		
	37,760	74 \	Neighted A	verage			
	37,360	ę	98.94% Per	vious Area			
	400		1.06% Impervious Area				
	400	-	100.00% Ui	nconnected	1		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description		
12.9	100	0.0100	0.13	(010)	Sheet Flow,		
12.5	100	0.0100	0.10		Grass: Short n= 0.150 P2= 3.23"		
1.6	200	0.0200	2.12		Shallow Concentrated Flow,		
	200	5.0200			Grassed Waterway Kv= 15.0 fps		
14.5	300	Total					

Summary for Subcatchment S10B: South Ballfield

Runoff = 2.66 cfs @ 12.09 hrs, Volume= 0.193 af, Depth= 3.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

Ar	rea (sf)	CN	Description		
	29,980	74 :	>75% Grass	s cover, Go	ood, HSG C
	2,590	98	Roofs, HSG	i C	
	240	98	Unconnecte	ed pavemer	ent, HSG C
	32,810	76	Weighted A	verage	
:	29,980		91.37% Per		a
	2,830	1	8.63% Impe	ervious Area	a
	240	i	8.48% Unco	onnected	
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment S11A: S11A

Runoff 0.90 cfs @ 12.09 hrs, Volume= 0.067 af, Depth= 3.96" =

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description					
	4,731	74	>75% Grass cover, Good, HSG C					
	1,530	98	Unconnected pavement, HSG C					
	2,516	98	Paved parking, HSG C					
	8,777	85	Weighted Average					
	4,731		53.90% Pervious Area					
	4,046		46.10% Impervious Area					
	1,530		37.82% Unconnected					
Тс	Length	Slop	e Velocity Capacity Description					
(min)	(feet)	(ft/f						

6.0

Direct Entry,

Summary for Subcatchment S11B: S11B

Runoff = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af, Depth= 4.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

Α	rea (sf)	CN	Description					
	2,316	74	>75% Gras	s cover, Go	iood, HSG C			
	530	98	Unconnecte	ed pavemer	ent, HSG C			
	1,960	98	Paved park	ing, HSG C	C			
	4,806	86	Weighted A	verage				
	2,316		48.19% Pervious Area					
	2,490		51.81% Impervious Area					
	530		21.29% Unconnected					
_				.				
Tc	Length	Slope		Capacity	•			
<u>(min)</u>	(feet)	(ft/ft	(ft/sec)	(cfs)				
6.0					Direct Entry,			

Summary for Subcatchment S12: S12

Runoff = 1.62 cfs @ 12.09 hrs, Volume= 0.119 af, Depth= 3.66"

 Area (sf)	CN	Description	
11,450	74	>75% Grass cover, Good, HSG C	
 5,500	98	Paved parking, HSG C	
16,950	82	Weighted Average	
11,450		67.55% Pervious Area	
5,500		32.45% Impervious Area	

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

 Type III 24-hr
 10-Year Rainfall=5.64"

 Printed
 1/28/2020

 ns LLC
 Page 39

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.7	75	0.0700	0.27		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
0.4	50	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
5.1	125	Total, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.04 cfs @ 21.94 hrs, Volume= 0.038 af, Depth> 4.31"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN I	Description				
	1,425		Paved park				
	131	74 :	>75% Gras	s cover, Go	bod, HSG C		
*	2,990	98	Permeable	Pavement,	HSG C		
	4,546 131 4,415	:	Weighted Average 2.88% Pervious Area 97.12% Impervious Area				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
790.0					Direct Entry,		

Summary for Subcatchment S14: 14S Pemeable Lot

Runoff = 0.05 cfs @ 21.94 hrs, Volume= 0.044 af, Depth> 4.31"

A	rea (sf)	CN	Description			
	1,723		Paved park			
	137	74	>75% Gras	s cover, Go	ood, HSG C	
*	3,440	98	Permeable	Pavement,	, HSG C	
	5,300	97	Weighted A	verage		
	137		2.58% Perv	ious Area		
	5,163		97.42% Imp	pervious Ar	rea	
Тс	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
790.0					Direct Entry,	

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment S15: S15

Runoff = 1.12 cfs @ 12.09 hrs, Volume= 0.082 af, Depth= 3.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN E	CN Description							
	7,610	74 >	75% Gras	s cover, Go	bod, HSG C					
	4,045	98 F	aved park	ing, HSG C						
	11,655	82 V	Veighted A	verage						
	7,610	6	5.29% Per	vious Area						
	4,045	3	4.71% Imp	pervious Are	ea					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
5.3	80	0.0600	0.25		Sheet Flow, sheet					
					Grass: Short n= 0.150 P2= 3.23"					
5.3	80	Total, I	ncreased t	o minimum	1 Tc = 6.0 min					

Summary for Subcatchment S16R: Banfield Road

Runoff = 1.80 cfs @ 12.21 hrs, Volume= 0.170 af, Depth= 3.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN E	Description						
	22,900	74 >	75% Gras	s cover, Go	bod, HSG C				
	3,798	98 F	Paved road	s w/curbs &	& sewers, HSG C				
	1,342	70 V	Voods, Go	od, HSG C					
	28,040	77 V							
	24,242	8	36.46% Per	vious Area	l				
	3,798	1	3.54% Imp	pervious Ar	ea				
_									
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.9	100	0.0100	0.13		Sheet Flow, sheet				
					Grass: Short n= 0.150 P2= 3.23"				
2.1	325	0.0300	2.60		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
45.0	105	T ()							

15.0 425 Total

Summary for Subcatchment S17: S11

Runoff = 1.16 cfs @ 12.11 hrs, Volume= 0.088 af, Depth= 3.66"

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

Type III 24-hr 10-Year Rainfall=5.64" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 41

_	A	rea (sf)	CN I	Description								
_		4,048	74 :	>75% Gras	s cover, Go	bod, HSG C						
		3,330	98	Paved road	s w/curbs &	& sewers, HSG C						
		1,395			ing, HSG C							
_		3,855	70	Noods, Go	od, HSG C							
		12,628	82	Neighted A	verage							
		7,903	(52.58% Per	vious Area							
		4,725	4	37.42% Imp	pervious Are	ea						
	Tc	Length	Slope		Capacity	Description						
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	5.6	70	0.0400	0.21		Sheet Flow, sheet						
						Grass: Short n= 0.150 P2= 3.23"						
	1.8	140	0.0650	1.27		Shallow Concentrated Flow,						
_						Woodland Kv= 5.0 fps						

7.4 210 Total

Summary for Subcatchment S18: S11

Runoff	=	1.35 cfs @	12.13 hrs,	Volume=	0.107 af, Depth= 2.79"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	vrea (sf)	CN E	Description		
	14,716			,	ood, HSG C
	5,377	70 V	Voods, Go	od, HSG C	
	20,093	73 V	Veighted A	verage	
	20,093	1	00.00% Pe	ervious Are	а
_					
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.4	60	0.1000	0.29		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
5.0	40	0.1200	0.13		Sheet Flow, sheet
					Woods: Light underbrush n= 0.400 P2= 3.23"
0.2	50	0.0800	4.24		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
8.6	150	Total			

Summary for Subcatchment S20: Flat Roof

0.35 cfs @ 12.09 hrs, Volume= 0.029 af, Depth= 5.17" Runoff =

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	250	74	>75% Gras	s cover, Go	ood, HSG C
	2,640	98	Roofs, HSG	G C	
	2,890	96	Weighted A	verage	
	250		8.65% Perv	ious Area	
	2,640		91.35% Imp	ervious Ar	rea
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment S21: Entrance Side

Runoff = 0.19 cfs @ 12.09 hrs, Volume= 0.013 af, Depth= 3.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN	Description						
	2,040	80	>75% Gras	s cover, Go	bod, HSG D				
	0	98	Roofs, HSC	G D					
	2,040	80	Weighted A	verage					
	2,040		100.00% Pe	ervious Are	a				
Тс	Length	Slop	e Velocity	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment S22: New Parking

Runoff = 0.04 cfs @ 21.95 hrs, Volume= 0.036 af, Depth> 3.80"

	Area (sf)	CN	Description							
	1,340	74	>75% Gras	s cover, Go	Good, HSG C					
*	2,380	98	Permeable	Pavement,	t, HSG D					
	1,300	98	Unconnecte	ed pavemer	ent, HSG D					
	5,020	92	Weighted A	verage						
	1,340		26.69% Pe	rvious Area	a					
	3,680		73.31% Imp	pervious Ar	rea					
	1,300		35.33% Un	connected						
Г	c Length	Slop		Capacity	•					
(mii	n) (feet)	(ft/f	i) (ft/sec)	(cfs)						
790	.0				Direct Entry,					

Summary for Subcatchment S23: Raingarden B

Runoff = 0.45 cfs @ 12.09 hrs, Volume= 0.033 af, Depth= 2.98"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN	Adj D	Description				
	5,290	74	>	75% Grass cov	ver, Good, HSG C			
	0	98	R	loofs, HSG C				
	500	98	U	Inconnected pa	avement, HSG C			
	5,790	76	75 W	Veighted Avera	ige, UI Adjusted			
	5,290		9	1.36% Perviou	is Area			
	500		8.	.64% Impervio	us Area			
	500		1(00.00% Üncon	inected			
Тс	Length	Slope			Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/se	ec) (cfs)				
6.0					Direct Entry,			

Summary for Subcatchment S7A: 4S-Northwest

Runoff = 0.32 cfs @ 12.09 hrs, Volume= 0.026 af, Depth= 5.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

Α	rea (sf)	CN	Description						
	326	74	>75% Gras	s cover, Go	ood, HSG C				
	1,420	98	Roofs, HSG	G C					
	900	98	Roofs, HSC	ЪВ					
	2,646	95	Weighted A	verage					
	326		12.32% Per	vious Area	3				
	2,320		87.68% Imp	pervious Ar	rea				
Тс	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment S8: S8-Northwest

Runoff = 1.10 cfs @ 12.20 hrs, Volume= 0.102 af, Depth= 3.56"

4801.2 POST-Ph2-Gym 012920 Prepared by Altus Engineering, Inc.

Type III 24-hr 10-Year Rainfall=5.64" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 44

А	rea (sf)	CN [Description		
	10,480	74 >	75% Gras	s cover, Go	bod, HSG C
	2,635	98 F	Roofs, HSG	G C	
	1,910	98 l	Inconnecte	ed paveme	nt, HSG C
	15,025	81 V	Veighted A	verage	
	10,480	6	9.75% Pe	rvious Area	l de la constante de
	4,545			pervious Ar	ea
	1,910	Z	2.02% Un	connected	
Та	Longth	Clana	Valacity	Consoitu	Description
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
			1 /	(05)	
12.9	100	0.0100	0.13		Sheet Flow,
	400	0 0000	0.40		Grass: Short n= 0.150 P2= 3.23"
1.4	180	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
14.3	280	Total			

Summary for Subcatchment S8B: ROOF DRAIN

Runoff 0.27 cfs @ 12.09 hrs, Volume= 0.023 af, Depth> 5.40" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 10-Year Rainfall=5.64"

A	rea (sf)	CN	Description		
	2,190	98	Roofs, HSG	βB	
	2,190		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.08 cfs @ 21.94 hrs, Volume= 0.077 af, Depth> 4.31"

	Area (sf)	CN	Description
	778	98	Unconnected pavement, HSG C
	389	74	>75% Grass cover, Good, HSG C
*	7,655	98	Permeable Pavement, HSG C
	550	98	Unconnected pavement, HSG C
	9,372	97	Weighted Average
	389		4.15% Pervious Area
	8,983		95.85% Impervious Area
	1,328		14.78% Unconnected

4801.2 POST-Ph2-Gym 012920 Type III 24-hr 10-Year Rainfall=5.64" Prepared by Altus Engineering, Inc. Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 45 Slope Velocity Capacity Description Tc Length (feet) (ft/ft) (ft/sec) (cfs) (min) 790.0 Direct Entry, Summary for Reach 1R: REACH 1 1.058 ac, 18.14% Impervious, Inflow Depth = 1.34" for 10-Year event Inflow Area = 2.50 cfs @ 12.29 hrs, Volume= Inflow 0.118 af = Outflow = 2.48 cfs @ 12.30 hrs, Volume= 0.118 af, Atten= 1%, Lag= 0.7 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.07 fps, Min. Travel Time= 0.3 min Avg. Velocity = 1.50 fps, Avg. Travel Time= 0.8 min Peak Storage= 43 cf @ 12.29 hrs Average Depth at Peak Storage= 0.17' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 77.07 cfs 3.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 11.00' Length= 70.0' Slope= 0.0500 '/' Inlet Invert= 53.00', Outlet Invert= 49.50' ‡ Summary for Reach R5: R5 - Pre-Treatment Swale 1 0.312 ac, 48.12% Impervious, Inflow Depth = 4.00" for 10-Year event Inflow Area = Inflow 1.41 cfs @ 12.09 hrs, Volume= 0.104 af = Outflow 1.37 cfs @ 12.11 hrs, Volume= 0.104 af, Atten= 3%, Lag= 1.1 min = Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 1.67 fps, Min. Travel Time= 0.7 min Avg. Velocity = 0.54 fps, Avg. Travel Time= 2.1 min Peak Storage= 59 cf @ 12.10 hrs Average Depth at Peak Storage= 0.10' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs 8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/' Inlet Invert= 48.00', Outlet Invert= 47.00'

Inflow Area =	0.753 ac,	8.63% Impervious, Inflo	ow Depth = 3.07"	for 10-Year event
Inflow =	2.66 cfs @	12.09 hrs, Volume=	0.193 af	
Outflow =	2.66 cfs @	12.09 hrs, Volume=	0.193 af, Atte	en= 0%, Lag= 0.0 min
Primary =	2.66 cfs @	12.09 hrs, Volume=	0.193 af	-

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Peak Elev= 51.12' @ 12.09 hrs Surf.Area= 3 sf Storage= 4 cf

Plug-Flow detention time= 0.1 min calculated for 0.192 af (100% of inflow) Center-of-Mass det. time= 0.1 min (826.8 - 826.8)

Volume Invert Avail.Storage Storage Description				
#1 50.00' 11 cf 2.00'D x 3.50'H Vertical Cone/Cylinder				
#2 53.50' 200 cf Custom Stage Data Listed below				
211 cf Total Available Storage				
Elevation Cum.Store				
(feet) (cubic-feet)				
53.50 0				
54.00 200				
Device Routing Invert Outlet Devices				
#1 Primary 50.00' 12.0" Round Culvert L= 65.0' Ke= 0.500				
Inlet / Outlet Invert= 50.00' / 49.65' S= 0.0054 '/' Cc= 0.900				
n= 0.012, Flow Area= 0.79 sf				
Primary OutFlow Max=2.62 cfs @ 12.09 hrs HW=51.10' (Free Discharge)				
Summary for Pond 2P: PYD2				
Inflow Area = 0.820 ac, 15.32% Impervious, Inflow Depth = 3.24" for 10-Year event				
Inflow = 3.01 cfs @ 12.09 hrs, Volume= 0.221 af				
Outflow = 3.01 cfs @ 12.09 hrs, Volume= 0.221 af, Atten= 0%, Lag= 0.0 min				
Primary = 3.01 cfs @ 12.09 hrs, Volume= 0.221 af				
Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs				
Peak Elev= 50.92' @ 12.10 hrs Surf.Area= 3 sf Storage= 4 cf				
Plug-Flow detention time= 0.1 min calculated for 0.221 af (100% of inflow) Center-of-Mass det. time= 0.1 min (818.2 - 818.2)				
Center-or-mass det. time= 0.1 min (010.2 - 010.2)				
Volume Invert Avail.Storage Storage Description				
#1 49.55' 12 cf 2.00'D x 3.90'H Vertical Cone/Cylinder				
Device Routing Invert Outlet Devices				
DeviceRoutingInvertOutlet Devices#1Primary49.55' 12.0'' Round Culvert L= 30.0'Ke= 0.500				
Inlet / Outlet Invert= 49.55' / 49.40' S= 0.0050 '/' Cc= 0.900				
n= 0.012, Flow Area= 0.79 sf				
Primary OutFlow Max=2.92 cfs @ 12.09 hrs HW=50.90' (Free Discharge)				
T—1=Culvert (Barrel Controls 2.92 cfs @ 3.72 fps)				

Summary for Pond 3P: PCB1

Inflow Area =	1.491 ac, 36.20% Impervious, Inflo	w Depth > 3.62" for 10-Year event
Inflow =	4.44 cfs @ 12.10 hrs, Volume=	0.449 af
Outflow =	4.45 cfs @_ 12.10 hrs, Volume=	0.449 af, Atten= 0%, Lag= 0.1 min
Primary =	4.45 cfs @ 12.10 hrs, Volume=	0.449 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 51.45' @ 12.10 hrs Surf.Area= 13 sf Storage= 27 cf

Plug-Flow detention time= 0.2 min calculated for 0.448 af (100% of inflow) Center-of-Mass det. time= 0.1 min (899.9 - 899.8)

Volume	Invert	Avail.Storage	Storage Description
#1	49.30'	63 cf	4.00'D x 5.00'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 60.0' Ke= 0.500 / Outlet Invert= 49.30' / 48.90' S= 0.0067 '/' Cc= 0.900 .012, Flow Area= 0.79 sf

Primary OutFlow Max=4.41 cfs @ 12.10 hrs HW=51.42' (Free Discharge) ←1=Culvert (Barrel Controls 4.41 cfs @ 5.62 fps)

Summary for Pond 4P: PDMH1

Inflow Area =	1.491 ac,	36.20% Impervious,	Inflow Depth >	3.62" for 10-Year	event
Inflow =	4.45 cfs @) 12.10 hrs, Volume	e= 0.449	af	
Outflow =	4.45 cfs @) 12.11 hrs, Volume	e= 0.449	af, Atten= 0%, Lag=	= 0.1 min
Primary =	4.45 cfs @) 12.11 hrs, Volume	e= 0.449	af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 50.69' @ 12.11 hrs Surf.Area= 13 sf Storage= 24 cf

Plug-Flow detention time= 0.2 min calculated for 0.448 af (100% of inflow) Center-of-Mass det. time= 0.1 min (900.1 - 899.9)

Volume	Invert	Avail.Storage	Storage Description
#1	48.80'	58 cf	4.00'D x 4.60'H Vertical Cone/Cylinder
Device #1	Routing Primary	48.80' 12.0 Inlet	et Devices " Round Culvert L= 160.0' Ke= 0.500 : / Outlet Invert= 48.80' / 44.20' S= 0.0287 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=4.39 cfs @ 12.11 hrs HW=50.65' (Free Discharge)

Summary for Pond 5P: PYD3

Inflow Area	a =	0.143 ac, 59.16% Impervious, Inflow Depth = 2.41" for 10-Year event
Inflow	=	0.70 cfs @ 12.10 hrs, Volume= 0.029 af
Outflow	=	0.69 cfs @ 12.09 hrs, Volume= 0.029 af, Atten= 1%, Lag= 0.0 min
Primary	=	0.69 cfs @ 12.09 hrs, Volume= 0.029 af
-		•

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.79' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.1 min (773.3 - 773.1)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription		
#1	47.3	35'	9 cf	2.00'D x 3	.00'H Vertica	I Cone/Cylinder	
#2	50.4	45'	56 cf	Custom S	Stage Data (P	rismatic)Listed below	v (Recalc)
			66 cf	Total Avai	lable Storage		
Elevatio	n	Surf.Area	Inc	Store	Cum.Store		
(feet		(sq-ft)		c-feet)	(cubic-feet)		
50.4	5	5		0	0		
51.0	0	200		56	56		
Device	Routing	Invert	Outl	et Devices			
#1	Primary	47.35'	15.0	" Round C	ulvert L= 35	5.0' Ke= 0.500	
			Inlet	/ Outlet Inv	/ / ert= 47.35'	47.15' S= 0.0057 '/'	Cc= 0.900
			n= 0	.012, Flow	Area= 1.23 s	f	
Primary OutFlow Max=0.68 cfs @ 12.09 hrs HW=47.79' (Free Discharge)							

1=Culvert (Barrel Controls 0.68 cfs @ 2.65 fps)

Summary for Pond 6P: PDMH2

Inflow Area =	2.939 ac, 31.03% Impervio	ous, Inflow Depth > 2.71" for 10-Year event
Inflow =	4.52 cfs @ 12.11 hrs, Volu	ume= 0.664 af
Outflow =	4.51 cfs @ 12.11 hrs, Volu	ume= 0.664 af, Atten= 0%, Lag= 0.1 min
Primary =	4.51 cfs @ 12.11 hrs, Volu	ume= 0.664 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.02' @ 12.11 hrs Surf.Area= 13 sf Storage= 24 cf

Plug-Flow detention time= 0.2 min calculated for 0.663 af (100% of inflow) Center-of-Mass det. time= 0.1 min (936.1 - 936.0)

Volume	Invert	Avail.Storage	Storage Description	
#1	44.10'	57 cf	4.00'D x 4.50'H Vertical Cone/Cylinder	
Device #1	Routing Primary	44.10' 12.0 Inlet	let Devices P' Round Culvert L= 100.0' Ke= 0.500 t / Outlet Invert= 44.10' / 42.00' S= 0.0210 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf	

Primary OutFlow Max=4.44 cfs @ 12.11 hrs HW=45.98' (Free Discharge) **1=Culvert** (Inlet Controls 4.44 cfs @ 5.65 fps)

Summary for Pond 7P: Roof Dripline Filter & Cleanout

Inflow Area =	0.191 ac, 95.67% Impervious, Inflow De	epth = 5.29" for 10-Year event
Inflow =	0.81 cfs @ 12.19 hrs, Volume=	0.084 af
Outflow =	0.81 cfs @ 12.19 hrs, Volume=	0.084 af, Atten= 0%, Lag= 0.1 min
Discarded =	0.03 cfs @ 12.19 hrs, Volume=	0.032 af
Primary =	0.04 cfs @ 12.19 hrs, Volume=	0.023 af
Secondary =	0.74 cfs @ 12.19 hrs, Volume=	0.029 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 56.02' @ 12.19 hrs Surf.Area= 360 sf Storage= 293 cf

Plug-Flow detention time= 28.2 min calculated for 0.084 af (100% of inflow) Center-of-Mass det. time= 28.2 min (789.4 - 761.2)

Invert	Avail.S	orage	Storage Description					
52.50'		321 cf	21 cf Custom Stage Data (Prismatic)Listed below					
	rf.Area Vo (sq-ft)		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)				
50	360		0	0				
00	360 3	3.0	178	178				
			54	232				
25	360 3	3.0	89	321				
Routing	Inver	t Outl	et Devices					
Primary	53.00		6.0" Round Culvert L= 25.0' Ke= 0.500					
					0.0400 '/' Cc= 0.900			
Secondary	56.00'							
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00					
					65 2 64 2 64 2 68 2 68			
Device 1	52.50							
		Con	Conductivity to Groundwater Elevation = 48.00'					
Discarded	52.50		2.000 in/hr Exfiltration over Surface area					
		Con	ductivity to Groun	dwater Elevation =	= 48.00'			
	52.50' on Sur 50 50 25 <u>Routing</u> Primary Secondary Device 1	52.50' on Surf.Area Volume 50 360 50 360 360 50 360 360 50 360 360 50 360 3 25 360 3 Routing Inverter Primary 53.00 Secondary 56.00 Device 1 52.50	52.50' 321 cf on Surf.Area Voids at) (sq-ft) (%) 50 360 0.0 50 360 33.0 50 360 10.0 25 360 33.0 Routing Invert Outled Primary 53.00' 6.0" Inlet n= 0 Secondary 56.00' 125 Device 1 52.50' 3.00 Discarded 52.50' 2.00	52.50' 321 cf Custom Stage on Surf.Area Voids Inc.Store et) (sq-ft) (%) (cubic-feet) 50 360 0.0 0 50 360 33.0 178 50 360 10.0 54 25 360 33.0 89 Routing Invert Outlet Devices Primary 53.00' 6.0" Round Culvert Inlet / Outlet Invert= 5 n= 0.012, Flow Area= Secondary 56.00' 125.0' long x 3.0' br Head (feet) 0.20 0.4 2.50 3.00 3.50 Device 1 52.50' 3.000 in/hr Exfiltration Discarded 52.50' 2.000 in/hr Exfiltration	52.50' 321 cf Custom Stage Data (Prismatic)Li on Surf.Area Voids Inc.Store Cum.Store et) (sq-ft) (%) (cubic-feet) (cubic-feet) 50 360 0.0 0 0 50 360 33.0 178 178 50 360 10.0 54 232 25 360 33.0 89 321 Routing Invert Outlet Devices Primary 53.00' 6.0" Round Culvert L= 25.0' Ke= 0.5 Inlet / Outlet Invert= 53.00' 56.0' 125.0' Ing x 3.0' breadth Broad-Cres Primary 56.00' 125.0' Iong x 3.0' breadth Broad-Cres Head (feet) 0.20 0.40 0.60 0.80 1.00 2.50 3.00 3.50 4.00 4.50 Coef. (English) 2.44 2.58 2.68 2.67 2 Device 1 52.50' 3.000 in/hr Exfil			

Discarded OutFlow Max=0.03 cfs @ 12.19 hrs HW=56.02' (Free Discharge) **4=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.04 cfs @ 12.19 hrs HW=56.02' (Free Discharge) -1=Culvert (Passes 0.04 cfs of 1.57 cfs potential flow) -3=Exfiltration (Controls 0.04 cfs)

Secondary OutFlow Max=0.57 cfs @ 12.19 hrs HW=56.02' (Free Discharge) -2=Broad-Crested Rectangular Weir (Weir Controls 0.57 cfs @ 0.30 fps)

Summary for Pond 10P: Retention Pond

Inflow Area =	1.058 ac, 18.14% Impervious, Inflow De	epth = 2.95" for 10-Year event
Inflow =	3.01 cfs @ 12.20 hrs, Volume=	0.260 af
Outflow =	2.66 cfs @ 12.29 hrs, Volume=	0.260 af, Atten= 12%, Lag= 5.1 min
Discarded =	0.16 cfs @ 12.29 hrs, Volume=	0.142 af
Primary =	2.50 cfs @ 12.29 hrs, Volume=	0.118 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.35' @ 12.29 hrs Surf.Area= 2,268 sf Storage= 2,531 cf

Plug-Flow detention time= 107.1 min calculated for 0.260 af (100% of inflow) Center-of-Mass det. time= 107.2 min (931.5 - 824.2)

Volume	Invert	Avail.S	Storage	Storage Descrip	otion	
#1	52.00'	3	3,290 cf	Custom Stage	Data (Prismatic)L	isted below
Elevatio	et)	(sq-ft)	/oids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
52.0 53.7		1,160 2,600 1	0.0 00.0	0 3,290	0 3,290	
Device	Routing	Inve		et Devices	0,200	
#1	Primary	53.0	Hea 2.50	d (feet) 0.20 0.4 3.00 3.50 4.00	0 0.60 0.80 1.00 4.50 5.00 5.50	ed Rectangular Weir 1.20 1.40 1.60 1.80 2.00 2.68 2.66 2.65 2.65 2.65
#2	Discarded	52.0	2.65 0' 2.00	2.67 2.66 2.68 0 in/hr Exfiltratio	2.70 2.74 2.79 on over Surface and water Elevation	2.88 area

Discarded OutFlow Max=0.16 cfs @ 12.29 hrs HW=53.34' (Free Discharge) **2=Exfiltration** (Controls 0.16 cfs)

Primary OutFlow Max=2.47 cfs @ 12.29 hrs HW=53.34' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 2.47 cfs @ 1.44 fps)

Summary for Pond 11P: Raingarden B -900sf

Inflow Area =	1.449 ac, 25.70% Impervious, Inflow	Depth > 1.79" for 10-Year event
Inflow =	2.96 cfs @ 12.29 hrs, Volume=	0.217 af
Outflow =	2.39 cfs @ 12.42 hrs, Volume=	0.215 af, Atten= 19%, Lag= 8.1 min
Primary =	2.39 cfs @ 12.42 hrs, Volume=	0.215 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.03' @ 12.42 hrs Surf.Area= 2,027 sf Storage= 2,523 cf

Plug-Flow detention time= 141.7 min calculated for 0.215 af (99% of inflow) Center-of-Mass det. time= 133.7 min (1,011.0 - 877.3)

Type III 24-hr 10-Year Rainfall=5.64" Printed 1/28/2020 s LLC Page 52

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Volume	Inve	rt Ava	il.Storage	Storage Descrip	tion	
#1	44.2	5'	3,358 cf	Custom Stage	Data (Prismatic)Lis	ted below
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
44.2	25	1,100	0.0	0	0	
45.2	25	1,100	40.0	440	440	
45.5	50	1,100	33.0	91	531	
47.0	00	1,100	10.0	165	696	
48.5	50	2,450	100.0	2,663	3,358	
Device	Routing	In	vert Outl	et Devices		
#1	Primary	44	.25' 12.0	" Round Culver	t	
	,		L= 5	5.0' RCP, square	edge headwall, Ke	= 0.500
			Inlet	/ Outlet Invert= 4	4.25' / 44.15' S= 0	.0200 '/' Cc= 0.900
			n= 0	0.012, Flow Area=	= 0.79 sf	
#2	Device 1	47	.75' 18.0	" Horiz. Orifice/O	Grate C= 0.600	
			Limi	ted to weir flow at	low heads	
#3	Device 1	44	.25' 6.0 "	Vert. Orifice/Gra	ate C= 0.600	
#4	Device 3	44	.25' 2.50	0 in/hr Exfiltratio	on over Surface are	a

Primary OutFlow Max=2.30 cfs @ 12.42 hrs HW=48.02' (Free Discharge)

1=Culvert (Passes 2.30 cfs of 6.84 cfs potential flow)

-2=Orifice/Grate (Weir Controls 2.19 cfs @ 1.71 fps)

-3=Orifice/Grate (Passes 0.12 cfs of 1.77 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.12 cfs)

Summary for Pond OS1: Outlet Structure 1

Inflow Area =	4.0	12 ac, 34.46 ⁹	% Impervious	, Inflow Depth >	2.77"	for 10-`	Year event
Inflow =	8.15	cfs @ 12.1	3 hrs, Volum	e= 0.927	′ af		
Outflow =	8.22	cfs @ 12.1	4 hrs, Volum	e= 0.927	′af, Att	en= 0%,	Lag= 0.3 min
Primary =	8.22	2 cfs @ 12.1	4 hrs, Volum	e= 0.927	′ af		-

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.71' @ 12.14 hrs Surf.Area= 13 sf Storage= 47 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (940.0 - 940.0)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device #1	Routing Primary	37.50' 12.0 Inlet	et Devices " Round Culvert L= 20.0' Ke= 0.500 / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=8.05 cfs @ 12.14 hrs HW=42.53' (Free Discharge) 1=Culvert (Inlet Controls 8.05 cfs @ 10.25 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area =	0.805 ac, 46.90% Impervious, Inflov	w Depth > 3.49" for 10-Year event
Inflow =	2.89 cfs @ 12.12 hrs, Volume=	0.234 af
Outflow =	2.89 cfs @ 12.12 hrs, Volume=	0.234 af, Atten= 0%, Lag= 0.1 min
Primary =	2.89 cfs @ 12.12 hrs, Volume=	0.234 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 43.08' @ 12.12 hrs Surf.Area= 13 sf Storage= 10 cf

Plug-Flow detention time= 0.0 min calculated for 0.234 af (100% of inflow) Center-of-Mass det. time= 0.0 min (918.1 - 918.0)

Volume	Invert	Avail.Storage	Storage Description
#1	42.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 110.0' Ke= 0.500 : / Outlet Invert= 42.00' / 37.85' S= 0.0377 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=2.80 cfs @ 12.12 hrs HW=43.05' (Free Discharge) ←1=Culvert (Inlet Controls 2.80 cfs @ 3.57 fps)

Summary for Pond P11: Roof Drip Edge

Inflow Area =	0.096 ac, 88.04% Impervious, Inflow De	epth = 5.17" for 10-Year event
Inflow =	0.51 cfs @ 12.09 hrs, Volume=	0.041 af
Outflow =	0.54 cfs @ 12.10 hrs, Volume=	0.041 af, Atten= 0%, Lag= 0.6 min
Discarded =	0.03 cfs @ 12.09 hrs, Volume=	0.026 af
Secondary =	0.52 cfs @ 12.10 hrs, Volume=	0.015 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.01' @ 12.09 hrs Surf.Area= 500 sf Storage= 172 cf

Plug-Flow detention time= 30.4 min calculated for 0.041 af (100% of inflow) Center-of-Mass det. time= 30.4 min (790.0 - 759.6)

Invert Av	ail.Storage	Storage Descrip	otion	
53.00'	290 cf	Custom Stage	Data (Prismatic)	Listed below
		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
500	0.0	0	0	
500	33.0	165	165	
500	100.0	125	290	
	4.00' 125 Hea	.0' long x 3.0' br d (feet) 0.20 0.4	0 0.60 0.80 1.0	
	53.00' Surf.Area (sq-ft) 500 500 500 500	53.00' 290 cf Surf.Area Voids (sq-ft) (%) 500 0.0 500 33.0 500 100.0 uting Invert Outl condary 54.00' 125	53.00' 290 cf Custom Stage Surf.Area Voids Inc.Store (sq-ft) (%) (cubic-feet) 500 0.0 0 500 33.0 165 500 100.0 125 uting Invert Outlet Devices condary 54.00' 125.0' long x 3.0' br	53.00'290 cfCustom Stage Data (Prismatic)Surf.AreaVoidsInc.StoreCum.Store(sq-ft)(%)(cubic-feet)(cubic-feet)5000.00050033.0165165500100.0125290utingInvertOutlet Devices

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 10-Year Rainfall=5.64" Printed 1/28/2020 s LLC Page 54

 #2
 Discarded
 53.00'
 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.72 2.81 2.92 2.97 3.07 3.32

 #2
 Discarded
 53.00'
 2.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 46.00'

Discarded OutFlow Max=0.03 cfs @ 12.09 hrs HW=54.01' (Free Discharge) **2=Exfiltration** (Controls 0.03 cfs)

Secondary OutFlow Max=0.49 cfs @ 12.10 hrs HW=54.01' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.49 cfs @ 0.29 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac, 87.68% Impervious,	Inflow Depth = 5.05" for 10-Year event
Inflow =	0.32 cfs @ 12.09 hrs, Volume	= 0.026 af
Outflow =	0.32 cfs @ 12.09 hrs, Volume:	= 0.026 af, Atten= 0%, Lag= 0.0 min
Primary =	0.32 cfs @ 12.09 hrs, Volume	= 0.026 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.58' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.2 min calculated for 0.026 af (100% of inflow) Center-of-Mass det. time= 0.2 min (765.3 - 765.1)

Volume	Invert	Avail.Storage	Storage Description
#1	53.30'	9 cf	2.00'D x 3.00'H Vertical Cone/Cylinder
<u>Device</u> #1	Routing Primary	53.30' 12. Inle	let Devices 0" Round Culvert L= 72.0' Ke= 0.500 it / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.31 cfs @ 12.09 hrs HW=53.57' (Free Discharge) -1=Culvert (Inlet Controls 0.31 cfs @ 1.78 fps)

Summary for Pond P3: CB P3

Inflow Area =	0.456 ac,	45.59% Impervious,	Inflow Depth > 3.	96" for 10-Year event
Inflow =	1.50 cfs @	12.15 hrs, Volume	e= 0.150 af	
Outflow =	1.50 cfs @	12.15 hrs, Volume	e= 0.150 af,	, Atten= 0%, Lag= 0.1 min
Primary =	1.50 cfs @	12.15 hrs, Volume	e= 0.150 af	-

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.22' @ 12.15 hrs Surf.Area= 13 sf Storage= 9 cf

Plug-Flow detention time= 0.3 min calculated for 0.150 af (100% of inflow) Center-of-Mass det. time= 0.3 min (801.1 - 800.8)

Type III 24-hr 10-Year Rainfall=5.64" Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Printed 1/28/2020 Page 55

Volume	Inver	t Avail.Stor	rage	Storage Description			
#1	51.50		35 cf				
Device	Routing	Invert	Outle	et Devices			
#1	Primary	51.50'	Inlet	" Round Culvert L= 98.0' Ke= 0.500 / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 .011, Flow Area= 0.79 sf			
		Max=1.50 cfs @ el Controls 1.50		I5 hrs HW=52.22' (Free Discharge) @ 3.49 fps)			
			Sum	nmary for Pond P4: YD P4			
Inflow Outflow	Inflow Area = 0.110 ac, 51.81% Impervious, Inflow Depth = 4.07" for 10-Year event Inflow = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af Outflow = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af, Atten= 0%, Lag= 0.0 min Primary = 0.50 cfs @ 12.09 hrs, Volume= 0.037 af						
				= 1.00-30.00 hrs, dt= 0.05 hrs rea= 3 sf Storage= 1 cf			
		n time= 0.1 min . time= 0.1 min		llated for 0.037 af (100% of inflow) .1 - 799.9)			
Volume	Inver			Storage Description			
#1 #2	48.75 52.00		10 cf 50 cf				
<u> </u>	52.00			Total Available Storage			
Elevatio (fee 52.0 53.0	<u>t) (cu</u> 0	um.Store <u>Ibic-feet)</u> 0 150					
Device	Routing	Invert	Outle	et Devices			
#1	#1 Primary 48.75' 12.0" Round Culvert L= 25.0' Ke= 0.500 Inlet / Outlet Invert= 48.75' / 48.60' S= 0.0060 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf						
	Primary OutFlow Max=0.49 cfs @ 12.09 hrs HW=49.14' (Free Discharge)						
	Summary for Pond P5: YD P5						

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow I	Depth = 4.00" for 10-Year event
Inflow =	1.41 cfs @ 12.09 hrs, Volume=	0.104 af
Outflow =	1.41 cfs @ 12.09 hrs, Volume=	0.104 af, Atten= 0%, Lag= 0.0 min
Primary =	1.41 cfs @ 12.09 hrs, Volume=	0.104 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Peak Elev= 49.14' @ 12.09 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.104 af (100% of inflow) Center-of-Mass det. time= 0.1 min (802.0 - 801.9)

Volume	Inv	ert Avail.Sto	rage	Storage D	escription	
#1	48.5	-	11 cf			I Cone/Cylinder
#2	52.0	<u>)0' 5</u>	92 cf	Custom S	Stage Data (Pi	rismatic)Listed below (Recalc)
		6	03 cf	Total Avai	lable Storage	
Elevatio		Surf.Area		.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
52.0	00	10		0	0	
53.0	00	680		345	345	
53.3	80	970		247	592	
Device	Routing	Invert	Outle	et Devices		
#1	Primary	48.50'	12.0" Round Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 48.50' / 48.00' S= 0.0077 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf			

Primary OutFlow Max=1.37 cfs @ 12.09 hrs HW=49.13' (Free Discharge) **1=Culvert** (Barrel Controls 1.37 cfs @ 3.74 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area	=	0.644 ac, 13.54% Impervious, Inflow Depth = 3.7	17" for 10-Year event
Inflow	=	1.80 cfs @ 12.21 hrs, Volume= 0.170 af	
Outflow	=	1.79 cfs @ 12.22 hrs, Volume= 0.170 af,	Atten= 1%, Lag= 0.9 min
Primary	=	1.79 cfs $@$ 12.22 hrs, Volume= 0.170 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.48' @ 12.22 hrs Surf.Area= 147 sf Storage= 157 cf

Plug-Flow detention time= 4.2 min calculated for 0.170 af (100% of inflow) Center-of-Mass det. time= 4.0 min (836.7 - 832.6)

Volume	Inv	ert Ava	il.Storage	Storage Descrip	otion	
#1	46.	75'	484 cf	Custom Stage	Data (Prismatic)Lis	ted below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
46.7	75	20	0.0	0	0	
49.0	00	410	100.0	484	484	
Device	Routing			et Devices		
#1	Primary	46	Inlet			.00 .0344 '/' Cc= 0.900

Primary OutFlow Max=1.76 cfs @ 12.22 hrs HW=47.47' (Free Discharge) **1=Culvert** (Inlet Controls 1.76 cfs @ 2.90 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area =	3.207 ac, 31.33% Impervious, Inflow D	Depth > 2.79" for 10-Year event
Inflow =	5.61 cfs @ 12.10 hrs, Volume=	0.745 af
Outflow =	5.31 cfs @ 12.14 hrs, Volume=	0.693 af, Atten= 5%, Lag= 2.1 min
Primary =	5.31 cfs @ 12.14 hrs, Volume=	0.693 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.24' @ 12.14 hrs Surf.Area= 1,917 sf Storage= 3,088 cf

Plug-Flow detention time= 77.7 min calculated for 0.692 af (93% of inflow) Center-of-Mass det. time= 24.9 min (947.3 - 922.4)

Volume	Inver	t Ava	il.Storage	Storage Descri	ption		
#1	38.00)'	4,413 cf	Custom Stage	• Data (Prismatic)Liste	ed below	
Elevation (feet 38.00 39.00 40.50 40.75 40.75) 0 0 0 5	Surf.Area (sq-ft) 1,000 1,000 1,000 1,000 1,000	Voids (%) 0.0 33.0 33.0 10.0 33.0	Inc.Store (cubic-feet) 0 330 495 25 83	Cum.Store (cubic-feet) 0 330 825 850 933		
43.0		2,480	100.0	3,480	4,413		
-	Routing Primary Primary Device 2	<u>In</u> 41 38	.75' 18.0 Lim 3.00' 6.0'	Outlet Devices 18.0" Horiz. Orifice/Grate C= 0.600 Limited to weir flow at low heads 6.0" Vert. Orifice/Grate C= 0.600 1.000 in/hr Exfiltration over Surface area			

Primary OutFlow Max=5.23 cfs @ 12.14 hrs HW=42.23' (Free Discharge)

-1=Orifice/Grate (Weir Controls 5.19 cfs @ 2.27 fps)

-2=Orifice/Grate (Passes 0.04 cfs of 1.89 cfs potential flow)

1-3=Exfiltration (Exfiltration Controls 0.04 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area =	0.805 ac,	46.90% Impervious,	Inflow Depth > 3.	.88" for 10-Year event
Inflow =	2.98 cfs @) 12.10 hrs, Volume	e= 0.260 af	
Outflow =	2.89 cfs @) 12.12 hrs, Volume	;= 0.234 af	, Atten= 3%, Lag= 1.2 min
Primary =	2.89 cfs @) 12.12 hrs, Volume	e= 0.234 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.83' @ 12.12 hrs Surf.Area= 1,328 sf Storage= 1,484 cf

Plug-Flow detention time= 102.5 min calculated for 0.233 af (90% of inflow)

Volume	In	vert Ava	ail.Stor	age Storage De	scripti	on		
#1	42	.50'	1,64	6 cf Custom St	age D	ata (Prismatic) Li	sted below	
Elevatio (fee		Surf.Area (sq-ft)	Void (%		-	Cum.Store (cubic-feet)		
42.5		400	0.0		0	0		
43.5		400	33.		•	132		
43.	75	400	33.	0 3	33	165		
45.2	25	400	10.	0 6	60	225		
45.5	50	400	33.	0 3	33	258		
47.0	00	1,450	100.	0 1,38	88	1,646		
Device	Routing	g li	nvert	Outlet Devices				
#1	Primary	/ 4	2.50'	6.0" Vert. Orifice	e/Grat	e C= 0.600		
#2	Primary	/ 4	6.50'	18.0" Horiz. Orif	ice/G	rate C= 0.600		
	-			Limited to weir flow at low heads				
#3	Device	1 4	2.50'	1.000 in/hr Exfilt	tratior	over Surface a	rea	
Primary OutFlow Max=2.81 cfs @ 12.12 hrs HW=46.82' (Free Discharge)								

Center-of-Mass det. time= 35.4 min (918.0 - 882.7)

1=Orifice/Grate (Passes 0.03 cfs of 1.91 cfs potential flow) **3=Exfiltration** (Exfiltration Controls 0.03 cfs)

-2=Orifice/Grate (Weir Controls 2.78 cfs @ 1.85 fps)

Summary for Link POA1: POA #1

Inflow Are	a =	5.529 ac, 30.69% Impervious, Inflow Depth > 2.90" for 10-Year event
Inflow	=	11.76 cfs @ 12.14 hrs, Volume= 1.336 af
Primary	=	11.76 cfs @ 12.14 hrs, Volume= 1.336 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2 - Driveway Crossing

Inflow Are	a =	2.939 ac, 31.03% li	mpervious, Inflow D	epth > 2.71"	for 10-Year event
Inflow	=	4.51 cfs @ 12.11 h	rs, Volume=	0.664 af	
Primary	=	4.51 cfs @ 12.11 h	rs, Volume=	0.664 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

 Type III 24-hr
 25-Year Rainfall=7.14"

 Printed
 1/28/2020

 hs LLC
 Page 59

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

> Time span=1.00-30.00 hrs, dt=0.05 hrs, 581 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Roof	Runoff Area=4,180 sf 88.04% Impervious Runoff Depth=6.66" Tc=6.0 min CN=96 Runoff=0.65 cfs 0.053 af
Subcatchment9S: Roof	Runoff Area=8,320 sf 95.67% Impervious Runoff Depth>6.78" Flow Length=300' Tc=14.5 min CN=97 Runoff=1.02 cfs 0.108 af
Subcatchment S10: North Ballfield	Runoff Area=37,760 sf 1.06% Impervious Runoff Depth=4.16" Flow Length=300' Tc=14.5 min CN=74 Runoff=3.23 cfs 0.301 af
Subcatchment S10B: South Ballfield	Runoff Area=32,810 sf 8.63% Impervious Runoff Depth=4.38" Tc=6.0 min CN=76 Runoff=3.78 cfs 0.275 af
Subcatchment S11A: S11A	Runoff Area=8,777 sf 46.10% Impervious Runoff Depth=5.39" Tc=6.0 min CN=85 Runoff=1.21 cfs 0.090 af
Subcatchment S11B: S11B	Runoff Area=4,806 sf 51.81% Impervious Runoff Depth=5.50" Tc=6.0 min CN=86 Runoff=0.67 cfs 0.051 af
Subcatchment S12: S12	Runoff Area=16,950 sf 32.45% Impervious Runoff Depth=5.05" Flow Length=125' Tc=6.0 min CN=82 Runoff=2.21 cfs 0.164 af
Subcatchment S13: 13S Pemeable Lot	Runoff Area=4,546 sf 97.12% Impervious Runoff Depth>5.55" Tc=790.0 min CN=97 Runoff=0.05 cfs 0.048 af
Subcatchment S14: 14S Pemeable Lot	Runoff Area=5,300 sf 97.42% Impervious Runoff Depth>5.55" Tc=790.0 min CN=97 Runoff=0.06 cfs 0.056 af
Subcatchment S15: S15 Flow Length=8	Runoff Area=11,655 sf 34.71% Impervious Runoff Depth=5.05" 0' Slope=0.0600 '/' Tc=6.0 min CN=82 Runoff=1.52 cfs 0.113 af
Subcatchment S16R: Banfield Road	Runoff Area=28,040 sf 13.54% Impervious Runoff Depth=4.49" Flow Length=425' Tc=15.0 min CN=77 Runoff=2.55 cfs 0.241 af
Subcatchment S17: S11	Runoff Area=12,628 sf 37.42% Impervious Runoff Depth=5.05" Flow Length=210' Tc=7.4 min CN=82 Runoff=1.59 cfs 0.122 af
Subcatchment S18: S11	Runoff Area=20,093 sf 0.00% Impervious Runoff Depth=4.06" Flow Length=150' Tc=8.6 min CN=73 Runoff=1.98 cfs 0.156 af
Subcatchment S20: Flat Roof	Runoff Area=2,890 sf 91.35% Impervious Runoff Depth=6.66" Tc=6.0 min CN=96 Runoff=0.45 cfs 0.037 af
Subcatchment S21: Entrance Side	Runoff Area=2,040 sf 0.00% Impervious Runoff Depth=4.82" Tc=6.0 min CN=80 Runoff=0.26 cfs 0.019 af
Subcatchment S22: New Parking	Runoff Area=5,020 sf 73.31% Impervious Runoff Depth>5.01" Tc=790.0 min CN=92 Runoff=0.05 cfs 0.048 af

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 Hy	Type III 24-hr 25-Year Rainfall=7.14"Printed 1/28/2020ydroCAD Software Solutions LLCPage 60
Subcatchment S23: Raingarden B	Runoff Area=5,790 sf 8.64% Impervious Runoff Depth=4.27" Tc=6.0 min UI Adjusted CN=75 Runoff=0.65 cfs 0.047 af
SubcatchmentS7A: 4S-Northwest	Runoff Area=2,646 sf 87.68% Impervious Runoff Depth=6.55" Tc=6.0 min CN=95 Runoff=0.41 cfs 0.033 af
SubcatchmentS8: S8-Northwest	Runoff Area=15,025 sf 30.25% Impervious Runoff Depth=4.94" Flow Length=280' Tc=14.3 min CN=81 Runoff=1.51 cfs 0.142 af
Subcatchment S8B: ROOF DRAIN	Runoff Area=2,190 sf 100.00% Impervious Runoff Depth>6.90" Tc=6.0 min CN=98 Runoff=0.34 cfs 0.029 af
Subcatchment S9: Pemeable Lot by ba	Ilfield Runoff Area=9,372 sf 95.85% Impervious Runoff Depth>5.55" Tc=790.0 min CN=97 Runoff=0.10 cfs 0.099 af
Reach 1R: REACH 1 n=0.022	Avg. Flow Depth=0.21' Max Vel=4.71 fps Inflow=3.90 cfs 0.210 af L=70.0' S=0.0500 '/' Capacity=77.07 cfs Outflow=3.89 cfs 0.210 af
Reach R5: R5 - Pre-Treatment Swale 1 n=0.022	Avg. Flow Depth=0.12' Max Vel=1.86 fps Inflow=1.88 cfs 0.141 af _=70.0' S=0.0143 '/' Capacity=187.45 cfs Outflow=1.83 cfs 0.141 af
Reach R8: R8- Banfield Rd n=0.035 L=	Avg. Flow Depth=0.25' Max Vel=3.03 fps Inflow=2.52 cfs 0.241 af =290.0' S=0.0500 '/' Capacity=238.60 cfs Outflow=2.47 cfs 0.241 af
Reach R9: REACH 9	Inflow=0.06 cfs 0.056 af Outflow=0.06 cfs 0.056 af
Pond 1P: PYD 1&4 12.0" Rc	Peak Elev=51.82' Storage=6 cf Inflow=3.78 cfs 0.275 af ound Culvert n=0.012 L=65.0' S=0.0054 '/' Outflow=3.79 cfs 0.275 af
Pond 2P: PYD2 12.0" Rc	Peak Elev=51.44' Storage=6 cf Inflow=4.24 cfs 0.312 af ound Culvert n=0.012 L=30.0' S=0.0050 '/' Outflow=4.24 cfs 0.312 af
Pond 3P: PCB1 12.0" Rc	Peak Elev=52.85' Storage=45 cf Inflow=6.16 cfs 0.615 af ound Culvert n=0.012 L=60.0' S=0.0067 '/' Outflow=6.14 cfs 0.615 af
Pond 4P: PDMH1 12.0" Rou	Peak Elev=51.94' Storage=39 cf Inflow=6.14 cfs 0.615 af ind Culvert n=0.012 L=160.0' S=0.0287 '/' Outflow=6.14 cfs 0.615 af
Pond 5P: PYD3 15.0" Rc	Peak Elev=47.85' Storage=2 cf Inflow=0.88 cfs 0.042 af ound Culvert n=0.012 L=35.0' S=0.0057 '/' Outflow=0.88 cfs 0.042 af
Pond 6P: PDMH2 12.0" Rou	Peak Elev=50.59' Storage=57 cf Inflow=8.26 cfs 0.951 af ind Culvert n=0.012 L=100.0' S=0.0210 '/' Outflow=8.50 cfs 0.951 af
Pond 7P: Roof Dripline Filter & Cleano Discarded=0.03 cfs 0.036 af Primary=0.04 c	utPeak Elev=56.02'Storage=294 cfInflow=1.02 cfs0.108 afcfs0.029 afSecondary=1.00 cfs0.043 afOutflow=1.07 cfs0.108 af
Pond 10P: Retention Pond Discarded=0.1	Peak Elev=53.45' Storage=2,733 cf Inflow=4.27 cfs 0.372 af 16 cfs 0.162 af Primary=3.90 cfs 0.210 af Outflow=4.07 cfs 0.372 af
Pond 11P: Raingarden B -900sf	Peak Elev=48.18' Storage=2,789 cf Inflow=4.65 cfs 0.348 af Outflow=4.46 cfs 0.336 af

4801.2 POST-Ph2-Gym_012920	
----------------------------	--

Type III 24-hr 25-Year Rainfall=7.14" Printed 1/28/2020

Page 61

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Pond OS1: Outlet Structure 1	Peak Elev=46.33' Storage=47 cf Inflow=10.74 cfs 1.338 af 0" Round Culvert n=0.012 L=20.0' S=0.0750 '/' Outflow=10.95 cfs 1.338 af
Pond OS4: Outlet Structure 4	Peak Elev=43.58' Storage=17 cf Inflow=3.95 cfs 0.326 af 0" Round Culvert n=0.012 L=110.0' S=0.0377 '/' Outflow=3.94 cfs 0.326 af
Pond P11: Roof Drip Edge Discarded	Peak Elev=54.02' Storage=173 cf Inflow=0.65 cfs 0.053 af =0.03 cfs 0.030 af Secondary=0.63 cfs 0.023 af Outflow=0.65 cfs 0.053 af
Pond P2: CB P3 12	Peak Elev=53.62' Storage=1 cf Inflow=0.41 cfs 0.033 af 2.0" Round Culvert n=0.011 L=72.0' S=0.0236 '/' Outflow=0.41 cfs 0.033 af
Pond P3: CB P3 12	Peak Elev=52.37' Storage=11 cf Inflow=2.03 cfs 0.204 af 2.0" Round Culvert n=0.011 L=98.0' S=0.0051 '/' Outflow=2.03 cfs 0.204 af
Pond P4: YD P4 12	Peak Elev=49.22' Storage=1 cf Inflow=0.67 cfs 0.051 af 2.0" Round Culvert n=0.011 L=25.0' S=0.0060 '/' Outflow=0.67 cfs 0.051 af
Pond P5: YD P5 12	Peak Elev=49.27' Storage=2 cf Inflow=1.88 cfs 0.141 af 2.0" Round Culvert n=0.011 L=65.0' S=0.0077 '/' Outflow=1.88 cfs 0.141 af
Pond P8: Driveway Crossing	Peak Elev=47.69' Storage=201 cf Inflow=2.55 cfs 0.241 af 2.0" Round Culvert n=0.012 L=80.0' S=0.0344 '/' Outflow=2.52 cfs 0.241 af
Pond RG1: Raingarden 1	Peak Elev=42.67' Storage=3,837 cf Inflow=9.24 cfs 1.064 af Outflow=8.21 cfs 1.012 af
Pond RG4: Raingarden 4	Peak Elev=46.90' Storage=1,554 cf Inflow=4.04 cfs 0.353 af Outflow=3.95 cfs 0.326 af
Link POA1: POA #1	Inflow=15.73 cfs 1.913 af Primary=15.73 cfs 1.913 af
Link POA2: POA #2 - Driveway C	crossingInflow=8.50 cfs0.951 afPrimary=8.50 cfs0.951 af
Total Runoff Area	= 5.529 ac Runoff Volume = 2.232 af Average Runoff Depth = 4.84"

Total Runoff Area = 5.529 acRunoff Volume = 2.232 afAverage Runoff Depth = 4.84"69.31% Pervious = 3.832 ac30.69% Impervious = 1.697 ac

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment 1S: Roof

Runoff = 0.65 cfs @ 12.09 hrs, Volume= 0.053 af, Depth= 6.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN I	Description		
	500	80 >	>75% Gras	s cover, Go	bod, HSG D
	3,680	98 I	Roofs, HSG	6 D	
	4,180		Neighted A		
	500		11.96% Per	vious Area	
	3,680	8	38.04% Imp	pervious Are	ea
-				o	
Тс	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,
					-

Summary for Subcatchment 9S: Roof

Runoff = 1.02 cfs @ 12.19 hrs, Volume= 0.108 af, Depth> 6.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN E	Description		
	360	74 >	75% Gras	s cover, Go	ood, HSG C
	6,930	98 F	Roofs, HSG	G C	
	1,030	98 F	Roofs, HSG	D D	
	0	98 L	Inconnecte	ed pavemer	nt, HSG C
	8,320	97 V	Veighted A	verage	
	360	4	.33% Perv	ious Area	
	7,960	ç	5.67% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.9	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.23"
1.6	200	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
14.5	300	Total			

Summary for Subcatchment S10: North Ballfield

Runoff = 3.23 cfs @ 12.20 hrs, Volume= 0.301 af, Depth= 4.16"

 Type III 24-hr
 25-Year Rainfall=7.14"

 Printed
 1/28/2020

 s LLC
 Page 63

Prepared by Altus Engineering, Inc.	
HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC	

A	rea (sf)	CN E	Description		
	37,360	74 >	75% Grass	s cover, Go	ood, HSG C
	0	98 F	Roofs, HSG	i C	
	0	98 F	Roofs, HSG	6 D	
	400	98 l	Inconnecte	ed pavemer	nt, HSG C
	37,760	74 V	Veighted A	verage	
	37,360	ç	98.94% Per	vious Area	
	400	1	.06% Impe	ervious Area	а
	400	1	00.00% Ur	nconnected	1
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
12.9	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.23"
1.6	200	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
14.5	300	Total			

Summary for Subcatchment S10B: South Ballfield

Runoff =

3.78 cfs @ 12.09 hrs, Volume= 0.275 af, Depth= 4.38"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN [Description			
	29,980	74 >	>75% Gras	s cover, Go	ood, HSG C	
	2,590	98 F	Roofs, HSG	G C		
	240	98 l	Jnconnecte	ed pavemer	nt, HSG C	
	32,810	76 \	Veighted A	verage		
	29,980	ç	91.37% Per	vious Area	a	
	2,830	8	8.63% Impervious Area			
	240	8	3.48% Unco	onnected		
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	
					-	

Summary for Subcatchment S11A: S11A

Runoff = 1.21 cfs @ 12.09 hrs, Volume= 0.090 af, Depth= 5.39"

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description				
	4,731	74	>75% Grass cover, Good, HSG C				
	1,530	98	Unconnected pavement, HSG C				
	2,516	98	Paved parking, HSG C				
	8,777	85	Weighted Average				
	4,731		53.90% Pervious Area				
	4,046		46.10% Impervious Area				
	1,530		37.82% Unconnected				
Тс	Length	Slop	e Velocity Capacity Description				
(min)	(feet)	(ft/f					

6.0

Direct Entry,

Summary for Subcatchment S11B: S11B

Runoff = 0.67 cfs @ 12.09 hrs, Volume= 0.051 af, Depth= 5.50"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

Α	rea (sf)	CN	Description				
	2,316	74	>75% Gras	s cover, Go	ood, HSG C		
	530	98	Unconnecte	ed pavemer	nt, HSG C		
	1,960	98	Paved park	ing, HSG C			
	4,806	86	Weighted A	verage			
	2,316		48.19% Pervious Area				
	2,490		51.81% Impervious Area				
	530		21.29% Unconnected				
_							
Tc	Length	Slope	,	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment S12: S12

Runoff = 2.21 cfs @ 12.09 hrs, Volume= 0.164 af, Depth= 5.05"

Area (s	f) CN	Description
11,45	0 74	>75% Grass cover, Good, HSG C
5,50	0 98	Paved parking, HSG C
16,95	0 82	Weighted Average
11,45	0	67.55% Pervious Area
5,50	0	32.45% Impervious Area

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

 Type III 24-hr
 25-Year Rainfall=7.14"

 Printed
 1/28/2020

 ns LLC
 Page 65

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	4.7	75	0.0700	0.27		Sheet Flow, sheet
						Grass: Short n= 0.150 P2= 3.23"
	0.4	50	0.0200	2.12		Shallow Concentrated Flow,
_						Grassed Waterway Kv= 15.0 fps
	5.1	125	Total, li	ncreased t	o minimum	Tc = 6.0 min

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.05 cfs @ 21.94 hrs, Volume= 0.048 af, Depth> 5.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

Α	rea (sf)	CN I	Description							
	1,425		Paved parking, HSG C							
	131	74 :	>75% Gras	s cover, Go	bod, HSG C					
*	2,990	98	Permeable Pavement, HSG C							
	4,546 131 4,415	:	Veighted A 2.88% Perv 97.12% Imp		ea					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description					
790.0					Direct Entry,					

Summary for Subcatchment S14: 14S Pemeable Lot

Runoff = 0.06 cfs @ 21.94 hrs, Volume= 0.056 af, Depth> 5.55"

A	rea (sf)	CN	Description					
	1,723		Paved parking, HSG C					
	137	74	>75% Grass cover, Good, HSG C					
*	3,440	98	Permeable Pavement, HSG C					
	5,300	97	Weighted Average					
	137		2.58% Pervious Area					
	5,163		97.42% Imp	pervious Ar	rea			
Tc	Length	Slope		Capacity				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
790.0					Direct Entry,			
(min)	5,163 Length		97.42% Imp Velocity	pervious Ar	rea / Description)			

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment S15: S15

Runoff = 1.52 cfs @ 12.09 hrs, Volume= 0.113 af, Depth= 5.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN E									
	7,610	74 >	74 >75% Grass cover, Good, HSG C								
	4,045	98 F	Paved parking, HSG C								
	11,655	82 V	82 Weighted Average								
	7,610	6	5.29% Per	vious Area							
	4,045	3	4.71% Imp	ervious Ar	ea						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
5.3	80	0.0600	0.25		Sheet Flow, sheet						
					Grass: Short n= 0.150 P2= 3.23"						
5.3	80	Total, I	Total, Increased to minimum Tc = 6.0 min								

Summary for Subcatchment S16R: Banfield Road

Runoff = 2.55 cfs @ 12.21 hrs, Volume= 0.241 af, Depth= 4.49"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN E	Description								
	22,900	74 >	74 >75% Grass cover, Good, HSG C								
	3,798	98 F	Paved road	s w/curbs &	& sewers, HSG C						
	1,342	70 V	Voods, Go	od, HSG C							
28,040 77 Weighted Average											
	24,242	8	36.46% Per	vious Area	l						
	3,798	1	3.54% Imp	pervious Ar	ea						
_											
Tc	Length	Slope	Velocity	Capacity	Description						
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)							
12.9	100	0.0100	0.13		Sheet Flow, sheet						
					Grass: Short n= 0.150 P2= 3.23"						
2.1	325	0.0300	2.60		Shallow Concentrated Flow,						
					Grassed Waterway Kv= 15.0 fps						
45.0	105	T ()									

15.0 425 Total

Summary for Subcatchment S17: S11

Runoff = 1.59 cfs @ 12.11 hrs, Volume= 0.122 af, Depth= 5.05"

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

 Type III 24-hr
 25-Year Rainfall=7.14"

 Printed
 1/28/2020

 is LLC
 Page 67

CAD® 10.00-	<u>22 s/n</u>	01222 © 2018 HydroCAD Software Solutions LLC
Area (sf)	CN	Description
4,048	74	>75% Grass cover, Good, HSG C
3,330	98	Paved roads w/curbs & sewers, HSG C
	Area (sf) 4,048	Area (sf) CN 4,048 74

_		1,395 3,855		Paved parking, HSG C Woods, Good, HSG C						
_		12,628 7,903 4,725	(Weighted A 62.58% Pe 37.42% Imp						
	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
_	5.6	70	0.0400	0.21		Sheet Flow, sheet Grass: Short n= 0.150 P2= 3.23"				
	1.8	140	0.0650	1.27		Shallow Concentrated Flow, Woodland Kv= 5.0 fps				
-	7.4	040	T . 4 . 1							

7.4 210 Total

Summary for Subcatchment S18: S11

Runoff =	= 1.98 cfs @	12.12 hrs, Volume	= 0.156 af, Depth= 4.06"
----------	--------------	-------------------	--------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN E	Description							
	14,716		>75% Grass cover, Good, HSG C							
	5,377	70 V	Voods, Goo	od, HSG C						
	20,093	73 V	Veighted A	verage						
	20,093	1	00.00% Pe	ervious Are	a					
_										
Тс	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
3.4	60	0.1000	0.29		Sheet Flow, sheet					
					Grass: Short n= 0.150 P2= 3.23"					
5.0	40	0.1200	0.13		Sheet Flow, sheet					
					Woods: Light underbrush n= 0.400 P2= 3.23"					
0.2	50	0.0800	4.24		Shallow Concentrated Flow,					
					Grassed Waterway Kv= 15.0 fps					
8.6	150	Total			· · · ·					

Summary for Subcatchment S20: Flat Roof

Runoff = 0.45 cfs @ 12.09 hrs, Volume= 0.037 af, Depth= 6.66"

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description							
	250	74	>75% Grass cover, Good, HSG C							
	2,640	98	Roofs, HSG C							
	2,890	96	Weighted Average							
	250	1	3.65% Perv	ious Area						
	2,640	9	91.35% Imp	pervious Ar	rea					
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	1					
6.0					Direct Entry,					

Summary for Subcatchment S21: Entrance Side

Runoff = 0.26 cfs @ 12.09 hrs, Volume= 0.019 af, Depth= 4.82"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN	Description						
	2,040	80	>75% Grass cover, Good, HSG D						
	0	98	Roofs, HSG D						
	2,040	80	Weighted Average						
	2,040		100.00% Pe	ervious Are	a				
Tc	Length	Slop	,	Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Summary for Subcatchment S22: New Parking

Runoff = 0.05 cfs @ 21.95 hrs, Volume= 0.048 af, Depth> 5.01"

A	rea (sf)	CN	Description						
	1,340	74	>75% Grass cover, Good, HSG C						
*	2,380	98	Permeable	Pavement,	HSG D				
	1,300	98	Unconnecte	ed pavemer	nt, HSG D				
	5,020	92	Weighted Average						
	1,340		26.69% Pervious Area						
	3,680		73.31% Imp	pervious Ar	ea				
	1,300	:	35.33% Un	connected					
Tc	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
790.0					Direct Entry,				

Summary for Subcatchment S23: Raingarden B

Runoff = 0.65 cfs @ 12.09 hrs, Volume= 0.047 af, Depth= 4.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

A	rea (sf)	CN	Adj D	escription		
	5,290	74	>	75% Grass cov	ver, Good, HSG C	
	0	98	R	loofs, HSG C		
	500	98	U	Unconnected pavement, HSG C		
	5,790	76	75 W	Veighted Avera	ige, UI Adjusted	
	5,290		9	1.36% Perviou	is Area	
	500		8.	.64% Impervio	us Area	
	500		1(00.00% Üncon	inected	
Тс	Length	Slope			Description	
<u>(min)</u>	(feet)	(ft/ft)	(ft/se	ec) (cfs)		
6.0					Direct Entry,	

Summary for Subcatchment S7A: 4S-Northwest

Runoff = 0.41 cfs @ 12.09 hrs, Volume= 0.033 af, Depth= 6.55"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"

Α	rea (sf)	CN	Description				
	326	74	>75% Gras	s cover, Go	ood, HSG C		
	1,420	98	Roofs, HSG	G C			
	900	98	Roofs, HSC	ЪВ			
	2,646	95	Weighted A	verage			
	326		12.32% Pervious Area				
	2,320		87.68% Impervious Area				
Тс	Length	Slope		Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.0					Direct Entry,		

Summary for Subcatchment S8: S8-Northwest

Runoff = 1.51 cfs @ 12.20 hrs, Volume= 0.142 af, Depth= 4.94"

4801.2 POST-Ph2-Gym 012920 Prepared by Altus Engineering, Inc.

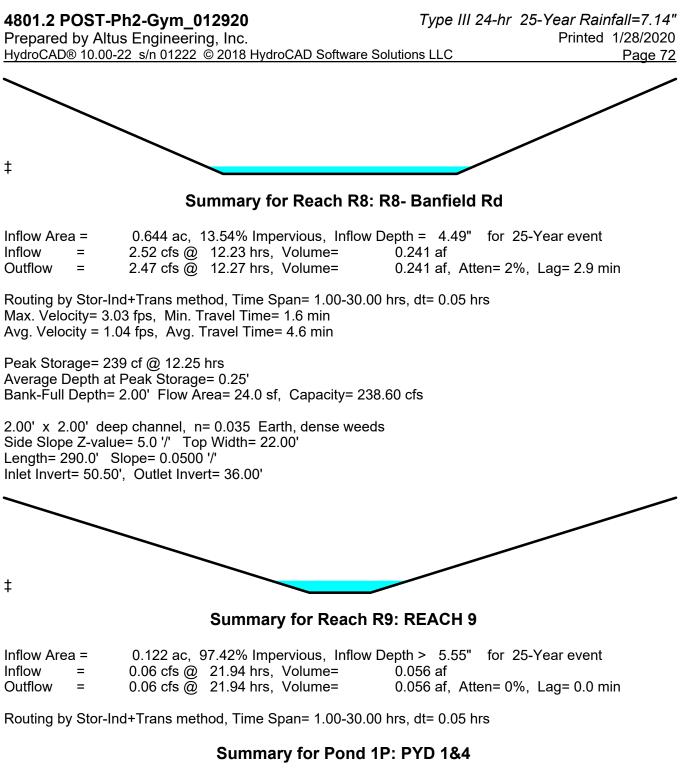
Type III 24-hr 25-Year Rainfall=7.14" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 70

А	rea (sf)	CN I	Description		
	10,480				ood, HSG C
	2,635		Roofs, HSC		500, 1100 0
	,		,		
	1,910			ed pavemer	nt, HSG C
	15,025		Veighted A		
	10,480	6	69.75% Pei	rvious Area	
	4,545	3	30.25% Imp	pervious Ar	ea
	1,910	4	12.02% Un	connected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
12.9	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.23"
1.4	180	0.0200	2.12		Shallow Concentrated Flow,
	100	0.0200	2.12		Grassed Waterway Kv= 15.0 fps
14.2	200	Tatal			
14.3	280	Total			
		-			

Summary for Subcatchment S8B: ROOF DRAIN

0.34 cfs @ 12.09 hrs, Volume= Runoff 0.029 af, Depth> 6.90" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 25-Year Rainfall=7.14"


A	rea (sf)	CN	Description		
	2,190	98	Roofs, HSG	βB	
	2,190		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
6.0					Direct Entry,

Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.10 cfs @ 21.94 hrs, Volume= 0.099 af, Depth> 5.55"

	Area (sf)	CN	Description		
	778	98	Unconnected pavement, HSG C		
	389	74	>75% Grass cover, Good, HSG C		
*	7,655	98	Permeable Pavement, HSG C		
	550	98	Unconnected pavement, HSG C		
	9,372	97	Weighted Average		
	389		4.15% Pervious Area		
	8,983	983 95.85% Impervious Area			
	1,328		14.78% Unconnected		

4801.2 POST-Ph2-Gym 012920 Type III 24-hr 25-Year Rainfall=7.14" Prepared by Altus Engineering, Inc. Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 71 Slope Velocity Capacity Description Tc Length (feet) (ft/ft) (ft/sec) (cfs) (min) 790.0 Direct Entry, Summary for Reach 1R: REACH 1 1.058 ac, 18.14% Impervious, Inflow Depth = 2.39" for 25-Year event Inflow Area = 3.90 cfs @ 12.24 hrs, Volume= Inflow 0.210 af = Outflow = 3.89 cfs @ 12.25 hrs, Volume= 0.210 af, Atten= 0%, Lag= 0.5 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 4.71 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.68 fps, Avg. Travel Time= 0.7 min Peak Storage= 58 cf @ 12.25 hrs Average Depth at Peak Storage= 0.21' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 77.07 cfs 3.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 11.00' Length= 70.0' Slope= 0.0500 '/' Inlet Invert= 53.00', Outlet Invert= 49.50' ‡ Summary for Reach R5: R5 - Pre-Treatment Swale 1 0.312 ac, 48.12% Impervious, Inflow Depth = 5.43" for 25-Year event Inflow Area = Inflow 1.88 cfs @ 12.09 hrs, Volume= 0.141 af = Outflow 1.83 cfs @ 12.11 hrs, Volume= 0.141 af, Atten= 2%, Lag= 1.0 min = Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 1.86 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.56 fps, Avg. Travel Time= 2.1 min Peak Storage= 71 cf @ 12.10 hrs Average Depth at Peak Storage= 0.12' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs 8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/' Inlet Invert= 48.00', Outlet Invert= 47.00'

Inflow Area =	0.753 ac,	8.63% Impervious, Inflow De	epth = 4.38" for 25-Year event
Inflow =	3.78 cfs @	12.09 hrs, Volume=	0.275 af
Outflow =	3.79 cfs @	12.09 hrs, Volume=	0.275 af, Atten= 0%, Lag= 0.0 min
Primary =	3.79 cfs @	12.09 hrs, Volume=	0.275 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Peak Elev= 51.82' @ 12.09 hrs Surf.Area= 3 sf Storage= 6 cf

Plug-Flow detention time= 0.1 min calculated for 0.275 af (100% of inflow) Center-of-Mass det. time= 0.1 min (816.6 - 816.6)

Volume Invert Avail.Storage Storage Description
#1 50.00' 11 cf 2.00'D x 3.50'H Vertical Cone/Cylinder
#2 53.50' 200 cf Custom Stage DataListed below 211 cf Total Available Storage
211 Ci Total Avaliable Storage
Elevation Cum.Store
(feet) (cubic-feet)
53.50 0 54.00 200
54.00 200
Device Routing Invert Outlet Devices
#1 Primary 50.00' 12.0" Round Culvert L= 65.0' Ke= 0.500
Inlet / Outlet Invert= 50.00' / 49.65' S= 0.0054 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf
11-0.012, FIOW Area - 0.79 SI
Primary OutFlow Max=3.72 cfs @ 12.09 hrs HW=51.78' (Free Discharge)
└──1=Culvert (Barrel Controls 3.72 cfs @ 4.73 fps)
Summary for Pond 2P: PYD2
Summary for Fond ZF. FTD2
Inflow Area = 0.820 ac, 15.32% Impervious, Inflow Depth = 4.57" for 25-Year event
Inflow = 4.24 cfs @ 12.09 hrs, Volume= 0.312 af
Outflow = 4.24 cfs @ 12.09 hrs, Volume= 0.312 af, Atten= 0%, Lag= 0.0 min Primary = 4.24 cfs @ 12.09 hrs, Volume= 0.312 af
Printary = 4.24 Cis (t) = 12.09 Firs, volume = 0.312 ar
Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs
Peak Elev= 51.44' @ 12.09 hrs Surf.Area= 3 sf Storage= 6 cf
Plug-Flow detention time= 0.1 min calculated for 0.311 af (100% of inflow)
Center-of-Mass det. time= 0.1 min (809.4 - 809.3)
Volume Invert Avail.Storage Storage Description
#1 49.55' 12 cf 2.00'D x 3.90'H Vertical Cone/Cylinder
Device Routing Invert Outlet Devices
#1 Primary 49.55' 12.0" Round Culvert L= 30.0' Ke= 0.500
Inlet / Outlet Invert= 49.55' / 49.40' S= 0.0050 '/' Cc= 0.900
n= 0.012, Flow Area= 0.79 sf
Primary OutFlow Max=4.16 cfs @ 12.09 hrs HW=51.40' (Free Discharge)
1=Culvert (Barrel Controls 4.16 cfs @ 5.30 fps)

Summary for Pond 3P: PCB1

Inflow Area =	1.491 ac, 36.20% Impervious, Inflo	w Depth > 4.95" for 25-Year event
Inflow =	6.16 cfs @ 12.10 hrs, Volume=	0.615 af
Outflow =	6.14 cfs @ 12.10 hrs, Volume=	0.615 af, Atten= 0%, Lag= 0.2 min
Primary =	6.14 cfs @ 12.10 hrs, Volume=	0.615 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.85' @ 12.10 hrs Surf.Area= 13 sf Storage= 45 cf

Plug-Flow detention time= 0.2 min calculated for 0.614 af (100% of inflow) Center-of-Mass det. time= 0.1 min (887.3 - 887.2)

Volume	Invert	Avail.Storage	Storage Description
#1	49.30'	63 cf	4.00'D x 5.00'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 60.0' Ke= 0.500 / Outlet Invert= 49.30' / 48.90' S= 0.0067 '/' Cc= 0.900 .012, Flow Area= 0.79 sf

Primary OutFlow Max=6.09 cfs @ 12.10 hrs HW=52.80' (Free Discharge) ←1=Culvert (Barrel Controls 6.09 cfs @ 7.76 fps)

Summary for Pond 4P: PDMH1

Inflow Area	a =	1.491 ac, 36.20% Impervious, Inflow Depth > 4.95" for 25-Year event	
Inflow	=	6.14 cfs @ 12.10 hrs, Volume= 0.615 af	
Outflow	=	6.14 cfs @ 12.11 hrs, Volume= 0.615 af, Atten= 0%, Lag= 0.2 min	
Primary	=	6.14 cfs @ 12.11 hrs, Volume= 0.615 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 51.94' @ 12.11 hrs Surf.Area= 13 sf Storage= 39 cf

Plug-Flow detention time= 0.2 min calculated for 0.615 af (100% of inflow) Center-of-Mass det. time= 0.1 min (887.4 - 887.3)

Volume	Invert	Avail.Storage	Storage Description
#1	48.80'	58 cf	4.00'D x 4.60'H Vertical Cone/Cylinder
Device #1	Routing Primary	48.80' 12.0 Inlet	et Devices P" Round Culvert L= 160.0' Ke= 0.500 t / Outlet Invert= 48.80' / 44.20' S= 0.0287 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=6.06 cfs @ 12.11 hrs HW=51.87' (Free Discharge) -1=Culvert (Inlet Controls 6.06 cfs @ 7.71 fps)

Summary for Pond 5P: PYD3

Inflow Area =	0.143 ac, 59.16% Impervious, Inflow D	epth = 3.54" for 25-Year event
Inflow =	0.88 cfs @ 12.09 hrs, Volume=	0.042 af
Outflow =	0.88 cfs @_ 12.09 hrs, Volume=	0.042 af, Atten= 1%, Lag= 0.0 min
Primary =	0.88 cfs @ 12.09 hrs, Volume=	0.042 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.85' @ 12.09 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.042 af (100% of inflow) Center-of-Mass det. time= 0.1 min (767.8 - 767.7)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription		
#1	47.3	35'	9 cf	2.00'D x 3	.00'H Vertica	al Cone/Cylinder	
#2	50.4	45'	56 cf	Custom S	stage Data (P	Prismatic)Listed below (Recalc)	
			66 cf	Total Avai	lable Storage	e	
Elevatio	n	Surf.Area	Inc	Store	Cum.Store		
(fee	t)	(sq-ft)	(cubi	c-feet)	(cubic-feet)		
50.4	5	5		0	0)	
51.0	0	200		56	56	3	
Device	Routing	Invert	Outl	et Devices			
#1	Primary	47.35'	15.0	" Round C	ulvert L= 35	5.0' Ke= 0.500	
			Inlet	/ Outlet Inv	/ ert= 47.35' /	47.15' S= 0.0057 '/' Cc= 0.900	
			n= 0	.012, Flow	Area= 1.23 s	sf	
Primary	Primary OutFlow Max=0.86 cfs @ 12.09 hrs HW=47.85' (Free Discharge)						

1=Culvert (Barrel Controls 0.86 cfs @ 2.80 fps)

Summary for Pond 6P: PDMH2

Inflow Area =	2.939 ac, 31.03% Impervious, Inflow I	Depth > 3.88" for 25-Year event	
Inflow =	8.26 cfs @ 12.26 hrs, Volume=	0.951 af	
Outflow =	8.50 cfs @ 12.25 hrs, Volume=	0.951 af, Atten= 0%, Lag= 0.0 min	1
Primary =	8.50 cfs @ 12.25 hrs, Volume=	0.951 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 50.59' @ 12.25 hrs Surf.Area= 13 sf Storage= 57 cf

Plug-Flow detention time= 0.1 min calculated for 0.950 af (100% of inflow) Center-of-Mass det. time= 0.1 min (904.8 - 904.7)

Volume	Invert	Avail.Storage	Storage Description
#1	44.10'	57 cf	4.00'D x 4.50'H Vertical Cone/Cylinder
Device #1	Routing Primary	44.10' 12.0 Inlet	et Devices P Round Culvert L= 100.0' Ke= 0.500 t / Outlet Invert= 44.10' / 42.00' S= 0.0210 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=8.41 cfs @ 12.25 hrs HW=50.44' (Free Discharge) **1=Culvert** (Barrel Controls 8.41 cfs @ 10.71 fps)

Summary for Pond 7P: Roof Dripline Filter & Cleanout

Inflow Area =	0.191 ac, 95.67% Impervious, Inflow D	epth > 6.78" for 25-Year event
Inflow =	1.02 cfs @ 12.19 hrs, Volume=	0.108 af
Outflow =	1.07 cfs @ 12.20 hrs, Volume=	0.108 af, Atten= 0%, Lag= 0.3 min
Discarded =	0.03 cfs @ 12.20 hrs, Volume=	0.036 af
Primary =	0.04 cfs @ 12.20 hrs, Volume=	0.029 af
Secondary =	1.00 cfs @ 12.20 hrs, Volume=	0.043 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 56.02' @ 12.20 hrs Surf.Area= 360 sf Storage= 294 cf

Plug-Flow detention time= 28.1 min calculated for 0.108 af (100% of inflow) Center-of-Mass det. time= 28.1 min (785.0 - 756.9)

Volume	Invert	Avail.S	torage	Storage Descrip	tion	
#1	52.50'		321 cf	Custom Stage	Data (Prismatic)Lis	sted below
Elevatio (fee		rf.Area V (sq-ft)	oids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
52.5	50	360	0.0	0	0	
54.0	00	360	33.0	178	178	
55.5			10.0	54	232	
56.2	25	360	33.0	89	321	
Device	Routing	Inve	rt Outl	et Devices		
#1	Primary	53.00			L= 25.0' Ke= 0.50	
				: / Outlet Invert= 5).012, Flow Area=		0.0400 '/' Cc= 0.900
#2	Secondary	56.00				ted Rectangular Weir
						1.20 1.40 1.60 1.80 2.00
				$3.00 \ 3.50 \ 4.00$.65 2.64 2.64 2.68 2.68
				2.81 2.92 2.97		.05 2.04 2.04 2.06 2.08
#3	Device 1	52.50			on over Surface ar	.ea
		02.0			dwater Elevation =	
#4	Discarded	52.50			on over Surface ar	
			Con	ductivity to Groun	dwater Elevation =	48.00'

Discarded OutFlow Max=0.03 cfs @ 12.20 hrs HW=56.02' (Free Discharge) **4=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.04 cfs @ 12.20 hrs HW=56.02' (Free Discharge)

-1=Culvert (Passes 0.04 cfs of 1.57 cfs potential flow) -3=Exfiltration (Controls 0.04 cfs)

Secondary OutFlow Max=0.90 cfs @ 12.20 hrs HW=56.02' (Free Discharge) -2=Broad-Crested Rectangular Weir (Weir Controls 0.90 cfs @ 0.35 fps)

Summary for Pond 10P: Retention Pond

Inflow Area =	1.058 ac, 18.14% Impervious, Inflow D	epth = 4.23" for 25-Year event
Inflow =	4.27 cfs @ 12.20 hrs, Volume=	0.372 af
Outflow =	4.07 cfs @ 12.24 hrs, Volume=	0.372 af, Atten= 5%, Lag= 2.6 min
Discarded =	0.16 cfs @12.24 hrs, Volume=	0.162 af
Primary =	3.90 cfs @ 12.24 hrs, Volume=	0.210 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.45' @ 12.24 hrs Surf.Area= 2,356 sf Storage= 2,733 cf

Plug-Flow detention time= 88.1 min calculated for 0.372 af (100% of inflow) Center-of-Mass det. time= 88.3 min (904.4 - 816.0)

Volume	Invert	Avail.S	Storage	Storage Descrip	otion	
#1	52.00'	3	,290 cf	Custom Stage	Data (Prismatic)Lis	sted below
Elevatio (fee 52.0 53.7	it) 00	(sq-ft) 1,160	′oids <u>(%)</u> 0.0 00.0	Inc.Store (cubic-feet) 0 3,290	Cum.Store (cubic-feet) 0 3,290	
Device #1	Routing Primary	Inve 53.00	-	et Devices long x 5.0' brea	dth Broad-Crested	Rectangular Weir
				. ,	0 0.60 0.80 1.00 4.50 5.00 5.50	1.20 1.40 1.60 1.80 2.00
#2	Discarded	52.00	Coet 2.65 0' 2.00	f. (English) 2.34 2.67 2.66 2.68 0 in/hr Exfiltratio		rea

Discarded OutFlow Max=0.16 cfs @ 12.24 hrs HW=53.45' (Free Discharge) **2=Exfiltration** (Controls 0.16 cfs)

Primary OutFlow Max=3.88 cfs @ 12.24 hrs HW=53.45' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 3.88 cfs @ 1.72 fps)

Summary for Pond 11P: Raingarden B -900sf

Inflow Area	=	1.449 ac, 2	25.70% Imper	vious, Inflow De	epth > 2.88	" for 25-Year event
Inflow =	=	4.65 cfs @	12.23 hrs, V	/olume=	0.348 af	
Outflow =	=	4.46 cfs @	12.29 hrs, V	/olume=	0.336 af, A	Atten= 4%, Lag= 3.3 min
Primary =	=	4.46 cfs @	12.29 hrs, V	/olume=	0.336 af	-

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.18' @ 12.29 hrs Surf.Area= 2,161 sf Storage= 2,789 cf

Plug-Flow detention time= 107.4 min calculated for 0.336 af (97% of inflow) Center-of-Mass det. time= 79.5 min (936.3 - 856.8)

Type III 24-hr 25-Year Rainfall=7.14" Printed 1/28/2020 s LLC Page 78

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Volume	Invert	Avai	il.Storage	Storage Descrip	otion	
#1	44.25'		3,358 cf	Custom Stage	Data (Prismatic)Li	sted below
	-					
Elevation		ırf.Area	Voids	Inc.Store	Cum.Store	
(feet)		(sq-ft)	(%)	(cubic-feet)	(cubic-feet)	
44.25	5	1,100	0.0	0	0	
45.25)	1,100	40.0	440	440	
45.50		1,100	33.0	91	531	
47.00		1,100	10.0	165	696	
48.50		2,450	100.0	2,663	3,358	
		,		,	,	
Device F	Routing	In	vert Out	tlet Devices		
#1 F	Primary	44	.25' 12.	0" Round Culver	t	
	,		L=	5.0' RCP. square	edge headwall, K	e= 0.500
				•	•	0.0200 '/' Cc= 0.900
				0.012, Flow Area		
#2 E	Device 1	47		0" Horiz. Orifice/(
<i>"-</i> -				ited to weir flow at		
#3 E	Device 1	44		" Vert. Orifice/Gra		
	Device 3				on over Surface a	103

Primary OutFlow Max=4.42 cfs @ 12.29 hrs HW=48.18' (Free Discharge)

-**1=Culvert** (Passes 4.42 cfs of 7.00 cfs potential flow)

-2=Orifice/Grate (Weir Controls 4.29 cfs @ 2.14 fps)

-3=Orifice/Grate (Passes 0.12 cfs of 1.81 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.12 cfs)

Summary for Pond OS1: Outlet Structure 1

Inflow Area	=	4.012 ac, 34.46% Impervious, Inflow Depth > 4.00" for 25-Year	event
Inflow =	=	10.74 cfs @ 12.14 hrs, Volume= 1.338 af	
Outflow =	=	10.95 cfs @ 12.12 hrs, Volume= 1.338 af, Atten= 0%, Lag=	0.0 min
Primary =	=	10.95 cfs @ 12.12 hrs, Volume= 1.338 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.33' @ 12.12 hrs Surf.Area= 13 sf Storage= 47 cf

Plug-Flow detention time= 0.0 min calculated for 1.338 af (100% of inflow) Center-of-Mass det. time= 0.0 min (909.4 - 909.4)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 20.0' Ke= 0.500 / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=10.64 cfs @ 12.12 hrs HW=45.92' (Free Discharge) -1=Culvert (Inlet Controls 10.64 cfs @ 13.55 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area	a =	0.805 ac, 46.90% Impervious, Inflow Depth > 4.86" for 25-Year event	
Inflow	=	3.95 cfs @ 12.11 hrs, Volume= 0.326 af	
Outflow	=	3.94 cfs @ 12.12 hrs, Volume= 0.326 af, Atten= 0%, Lag= 0.1 m	nin
Primary	=	3.94 cfs @ 12.12 hrs, Volume= 0.326 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 43.58' @ 12.12 hrs Surf.Area= 13 sf Storage= 17 cf

Plug-Flow detention time= 0.0 min calculated for 0.325 af (100% of inflow) Center-of-Mass det. time= 0.0 min (897.8 - 897.8)

Volume	Invert	Avail.Storage	Storage Description
#1	42.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Out	et Devices
#1	Primary	Inlet	P'' Round Culvert L= 110.0' Ke= 0.500 t / Outlet Invert= 42.00' / 37.85' S= 0.0377 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=3.83 cfs @ 12.12 hrs HW=43.52' (Free Discharge) -1=Culvert (Inlet Controls 3.83 cfs @ 4.87 fps)

Summary for Pond P11: Roof Drip Edge

Inflow Area =	0.096 ac, 88.04% Impervious, Inflow De	epth = 6.66" for 25-Year event
Inflow =	0.65 cfs @ 12.09 hrs, Volume=	0.053 af
Outflow =	0.65 cfs @ 12.09 hrs, Volume=	0.053 af, Atten= 0%, Lag= 0.2 min
Discarded =	0.03 cfs @ 12.09 hrs, Volume=	0.030 af
Secondary =	0.63 cfs @ 12.09 hrs, Volume=	0.023 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.02' @ 12.09 hrs Surf.Area= 500 sf Storage= 173 cf

Plug-Flow detention time= 29.2 min calculated for 0.053 af (100% of inflow) Center-of-Mass det. time= 29.1 min (783.7 - 754.6)

Volume	Invert	Ava	il.Storage	Storage Description			
#1	53.00'		290 cf	Custom Stage	Data (Prismatic)	Listed below	
Elevatio (fee		ırf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
53.0	00	500	0.0	0	0		
54.0	00	500	33.0	165	165		
54.2	25	500	100.0	125	290		
Device #1	Routing Secondary		125. Hea		0 0.60 0.80 1.0	ested Rectangular Weir 0 1.20 1.40 1.60 1.80 2.00	

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 25-Year Rainfall=7.14" Printed 1/28/2020 s LLC Page 80

 #2
 Discarded
 53.00'
 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.72 2.81 2.92 2.97 3.07 3.32

 #2
 Discarded
 53.00'
 2.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 46.00'

Discarded OutFlow Max=0.03 cfs @ 12.09 hrs HW=54.02' (Free Discharge) **2=Exfiltration** (Controls 0.03 cfs)

Secondary OutFlow Max=0.59 cfs @ 12.09 hrs HW=54.02' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.59 cfs @ 0.30 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac, 87.68% Impervious,	Inflow Depth = 6.55" for 25-Year event
Inflow =	0.41 cfs @ 12.09 hrs, Volume	= 0.033 af
Outflow =	0.41 cfs @ 12.09 hrs, Volume	= 0.033 af, Atten= 0%, Lag= 0.0 min
Primary =	0.41 cfs @ 12.09 hrs, Volume	= 0.033 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.62' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.033 af (100% of inflow) Center-of-Mass det. time= 0.1 min (759.7 - 759.6)

Volume	Invert	Avail.Storage	Storage Description
#1	53.30'	9 cf	2.00'D x 3.00'H Vertical Cone/Cylinder
Device #1	Routing Primary	53.30' 12.0 Inle	let Devices)" Round Culvert L= 72.0' Ke= 0.500 t / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.40 cfs @ 12.09 hrs HW=53.61' (Free Discharge) **1=Culvert** (Inlet Controls 0.40 cfs @ 1.90 fps)

Summary for Pond P3: CB P3

Inflow Area =	0.456 ac,	45.59% Impervious,	Inflow Depth > 5.3	37" for 25-Year event
Inflow =	2.03 cfs @	12.15 hrs, Volume	= 0.204 af	
Outflow =	2.03 cfs @	12.15 hrs, Volume	= 0.204 af,	Atten= 0%, Lag= 0.1 min
Primary =	2.03 cfs @	12.15 hrs, Volume	= 0.204 af	-

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.37' @ 12.15 hrs Surf.Area= 13 sf Storage= 11 cf

Plug-Flow detention time= 0.3 min calculated for 0.204 af (100% of inflow) Center-of-Mass det. time= 0.3 min (794.3 - 794.0)

Type III 24-hr 25-Year Rainfall=7.14" Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Printed 1/28/2020 Page 81

Volume	Invert	Avail.Storag	e Storage Description			
#1	51.50'	35 0				
Device	Routing	Invert O	utlet Devices			
#1	Primary	51.50' 1 2 In	2.0" Round Culvert L= 98.0' Ke= 0.500 llet / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 = 0.011, Flow Area= 0.79 sf			
		ax=2.02 cfs @ 1 Controls 2.02 cf	2.15 hrs HW=52.37' (Free Discharge) fs @ 3.73 fps)			
		S	ummary for Pond P4: YD P4			
Inflow Outflow	Inflow Area = 0.110 ac, 51.81% Impervious, Inflow Depth = 5.50" for 25-Year event Inflow = 0.67 cfs @ 12.09 hrs, Volume= 0.051 af Outflow = 0.67 cfs @ 12.09 hrs, Volume= 0.051 af, Atten= 0%, Lag= 0.0 min Primary = 0.67 cfs @ 12.09 hrs, Volume= 0.051 af					
			an= 1.00-30.00 hrs, dt= 0.05 hrs Area= 3 sf Storage= 1 cf			
	Plug-Flow detention time= 0.1 min calculated for 0.050 af (100% of inflow) Center-of-Mass det. time= 0.1 min (791.7 - 791.6)					
Volume	Invert	Avail.Storag				
#1 #2	48.75' 52.00'	10 c 150 c				
		160 c				
(fee 52.0	ElevationCum.Store(feet)(cubic-feet)52.00053.00150					
Device	Routing	Invert O	utlet Devices			
#1 Primary 48.75' 12.0" Round Culvert L= 25.0' Ke= 0.500 Inlet / Outlet Invert= 48.75' / 48.60' S= 0.0060 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf S						
	Primary OutFlow Max=0.66 cfs @ 12.09 hrs HW=49.21' (Free Discharge) ☐ 1=Culvert (Barrel Controls 0.66 cfs @ 2.72 fps)					
	Summary for Pond P5: YD P5					
Inflow A	roa – 0	212 10 120	/ Importations Inflow Dopth = 5.43" for 25 Year event			

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow D	Depth = 5.43" for 25-Year event
Inflow =	1.88 cfs @ 12.09 hrs, Volume=	0.141 af
Outflow =	1.88 cfs @ 12.09 hrs, Volume=	0.141 af, Atten= 0%, Lag= 0.0 min
Primary =	1.88 cfs @12.09 hrs, Volume=	0.141 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Peak Elev= 49.27' @ 12.09 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.141 af (100% of inflow) Center-of-Mass det. time= 0.1 min (793.5 - 793.4)

Volume	Inv	ert Avail.Sto	rage	e Storage Description			
#1	48.5	50'	11 cf	1 cf 2.00'D x 3.50'H Vertical Cone/Cylinder			
#2	52.0)0' 5	92 cf	Custom S	Stage Data (Pi	rismatic)Listed below (Recalc)	
		6	03 cf	Total Avai	lable Storage		
Elevatio	n	Surf.Area	Inc	.Store	Cum.Store		
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)		
52.0	00	10		0	0		
53.0	00	680		345	345		
53.3	30	970		247	592		
Device	Routing	Invert	Outl	et Devices			
#1	Primary	48.50'	12.0" Round Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 48.50' / 48.00' S= 0.0077 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf				

Primary OutFlow Max=1.84 cfs @ 12.09 hrs HW=49.26' (Free Discharge) **1=Culvert** (Barrel Controls 1.84 cfs @ 3.97 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area =	0.644 ac	, 13.54% Impervious,	Inflow Depth = 4.	49" for 25-Year event
Inflow =	2.55 cfs (① 12.21 hrs, Volume ③	e= 0.241 af	
Outflow =	2.52 cfs (① 12.23 hrs, Volume ①	e= 0.241 af,	Atten= 1%, Lag= 1.1 min
Primary =	2.52 cfs (① 12.23 hrs, Volume ①	e= 0.241 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.69' @ 12.23 hrs Surf.Area= 182 sf Storage= 201 cf

Plug-Flow detention time= 3.4 min calculated for 0.241 af (100% of inflow) Center-of-Mass det. time= 3.5 min (826.1 - 822.6)

Volume	Inv	ert Ava	il.Storage	Storage Descrip	tion	
#1	46.	75'	484 cf	Custom Stage	Data (Prismatic)List	ted below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
46.7	-	20	0.0	0	0	
49.0	00	410	100.0	484	484	
Device	Routing	Ir	vert Outl	et Devices		
#1	Primary	46	Inlet			00 .0344 '/' Cc= 0.900

Primary OutFlow Max=2.49 cfs @ 12.23 hrs HW=47.68' (Free Discharge) **1=Culvert** (Inlet Controls 2.49 cfs @ 3.28 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area =	3.207 ac, 31.33% Impervious, Inflow [Depth > 3.98" for 25-Year event
Inflow =	9.24 cfs @ 12.25 hrs, Volume=	1.064 af
Outflow =	8.21 cfs @ 12.32 hrs, Volume=	1.012 af, Atten= 11%, Lag= 4.2 min
Primary =	8.21 cfs @ 12.32 hrs, Volume=	1.012 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 42.67' @ 12.32 hrs Surf.Area= 2,235 sf Storage= 3,837 cf

Plug-Flow detention time= 57.7 min calculated for 1.010 af (95% of inflow) Center-of-Mass det. time= 19.2 min (913.1 - 893.9)

Volume	Inve	ert Ava	il.Storage	Storage Descr	iption		
#1	38.0	0'	4,413 cf	Custom Stage	e Data (Prismatic)L	_isted below	
Elevatio (fee 38.0 39.0 40.5 40.7 41.0	90 90 90 90 75	Surf.Area (sq-ft) 1,000 1,000 1,000 1,000 1,000	Voids (%) 0.0 33.0 33.0 10.0 33.0	Inc.Store (cubic-feet) 0 330 495 25 83	Cum.Store (cubic-feet) 0 330 825 850 933		
43.0	-	2,480	100.0	3,480	4,413		
Device #1 #2 #3	Routing Primary Primary Device 2	 41 38	vert Ou 1.75' 18. Lim 3.00' 6.0	tlet Devices 0" Horiz. Orifice hited to weir flow " Vert. Orifice/G	/ Grate C= 0.600 at low heads	area	

Primary OutFlow Max=8.16 cfs @ 12.32 hrs HW=42.66' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 8.11 cfs @ 4.59 fps)

-2=Orifice/Grate (Passes 0.05 cfs of 1.99 cfs potential flow)

1-3=Exfiltration (Exfiltration Controls 0.05 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area	a =	0.805 ac, 4	6.90% Impervio	us, Inflow Depth	n > 5.26"	for 25-Year event
Inflow	=	4.04 cfs @	12.10 hrs, Volu	ime= 0.3	353 af	
Outflow	=	3.95 cfs @	12.11 hrs, Volu	ıme= 0.3	326 af, Atte	en= 2%, Lag= 1.1 min
Primary	=	3.95 cfs @	12.11 hrs, Volu	ime= 0.3	326 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.90' @ 12.11 hrs Surf.Area= 1,381 sf Storage= 1,554 cf

Plug-Flow detention time= 81.3 min calculated for 0.326 af (92% of inflow)

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Volume	Inv	ert Ava	il.Storage	e Storage Descri	iption	
#1	42.	50'	1,646 c	f Custom Stage	e Data (Prismatic)Lis	sted below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
42.5	50	400	0.0	0	0	
43.5	50	400	33.0	132	132	
43.7	75	400	33.0	33	165	
45.2	25	400	10.0	60	225	
45.8	50	400	33.0	33	258	
47.0	00	1,450	100.0	1,388	1,646	
Device	Routing	In	ivert Ou	Itlet Devices		
#1	Primary	42	2.50' 6.0)" Vert. Orifice/G	rate C= 0.600	
#2	Primary	46	6.50' 18	.0" Horiz. Orifice	/Grate C= 0.600	
	•		Lir	nited to weir flow a	at low heads	
#3	Device 2	1 42	2.50' 1.0	1.000 in/hr Exfiltration over Surface area		
Primary OutFlow Max=3.84 cfs @ 12.11 hrs HW=46.89' (Free Discharge)						

Center-of-Mass det. time= 27.2 min (897.8 - 870.6)

1=Orifice/Grate (Passes 0.03 cfs of 1.92 cfs potential flow) **3=Exfiltration** (Exfiltration Controls 0.03 cfs)

-2=Orifice/Grate (Weir Controls 3.80 cfs @ 2.05 fps)

Summary for Link POA1: POA #1

Inflow Are	a =	5.529 ac, 30.69% Impervious, Inflow Depth > 4.15" for 25-Year event	t
Inflow	=	15.73 cfs @ 12.13 hrs, Volume=	
Primary	=	15.73 cfs @ 12.13 hrs, Volume= 1.913 af, Atten= 0%, Lag= 0.0 r	min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2 - Driveway Crossing

Inflow Area	a =	2.939 ac, 31.03% Impervious, Inflow Depth > 3.88" for 25-Year event	
Inflow	=	8.50 cfs @ 12.25 hrs, Volume= 0.951 af	
Primary	=	8.50 cfs @ 12.25 hrs, Volume= 0.951 af, Atten= 0%, Lag= 0.0 m	iin

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

 Type III 24-hr
 50-Year Rainfall=8.57"

 Printed
 1/28/2020

 is LLC
 Page 85

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

> Time span=1.00-30.00 hrs, dt=0.05 hrs, 581 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment1S: Roof	Runoff Area=4,180 sf 88.04% Impervious Runoff Depth>8.09" Tc=6.0 min CN=96 Runoff=0.78 cfs 0.065 af
Subcatchment9S: Roof	Runoff Area=8,320 sf 95.67% Impervious Runoff Depth>8.21" Flow Length=300' Tc=14.5 min CN=97 Runoff=1.23 cfs 0.131 af
Subcatchment S10: North Ballfield	Runoff Area=37,760 sf 1.06% Impervious Runoff Depth=5.44" Flow Length=300' Tc=14.5 min CN=74 Runoff=4.20 cfs 0.393 af
Subcatchment S10B: South Ballfield	Runoff Area=32,810 sf 8.63% Impervious Runoff Depth=5.68" Tc=6.0 min CN=76 Runoff=4.87 cfs 0.356 af
Subcatchment S11A: S11A	Runoff Area=8,777 sf 46.10% Impervious Runoff Depth=6.76" Tc=6.0 min CN=85 Runoff=1.50 cfs 0.114 af
SubcatchmentS11B: S11B	Runoff Area=4,806 sf 51.81% Impervious Runoff Depth=6.88" Tc=6.0 min CN=86 Runoff=0.83 cfs 0.063 af
Subcatchment S12: S12	Runoff Area=16,950 sf 32.45% Impervious Runoff Depth=6.40" Flow Length=125' Tc=6.0 min CN=82 Runoff=2.78 cfs 0.208 af
Subcatchment S13: 13S Pemeable Lot	Runoff Area=4,546 sf 97.12% Impervious Runoff Depth>6.72" Tc=790.0 min CN=97 Runoff=0.06 cfs 0.058 af
Subcatchment S14: 14S Pemeable Lot	Runoff Area=5,300 sf 97.42% Impervious Runoff Depth>6.72" Tc=790.0 min CN=97 Runoff=0.07 cfs 0.068 af
Subcatchment S15: S15 Flow Length=8	Runoff Area=11,655 sf 34.71% Impervious Runoff Depth=6.40" 0' Slope=0.0600 '/' Tc=6.0 min CN=82 Runoff=1.91 cfs 0.143 af
Subcatchment S16R: Banfield Road	Runoff Area=28,040 sf 13.54% Impervious Runoff Depth=5.80" Flow Length=425' Tc=15.0 min CN=77 Runoff=3.27 cfs 0.311 af
Subcatchment S17: S11	Runoff Area=12,628 sf 37.42% Impervious Runoff Depth=6.40" Flow Length=210' Tc=7.4 min CN=82 Runoff=1.99 cfs 0.155 af
Subcatchment S18: S11	Runoff Area=20,093 sf 0.00% Impervious Runoff Depth=5.32" Flow Length=150' Tc=8.6 min CN=73 Runoff=2.59 cfs 0.204 af
Subcatchment S20: Flat Roof	Runoff Area=2,890 sf 91.35% Impervious Runoff Depth>8.09" Tc=6.0 min CN=96 Runoff=0.54 cfs 0.045 af
Subcatchment S21: Entrance Side	Runoff Area=2,040 sf 0.00% Impervious Runoff Depth=6.16" Tc=6.0 min CN=80 Runoff=0.32 cfs 0.024 af
Subcatchment S22: New Parking	Runoff Area=5,020 sf 73.31% Impervious Runoff Depth>6.17" Tc=790.0 min CN=92 Runoff=0.06 cfs 0.059 af

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc. <u>HydroCAD® 10.00-22 s/n 01222 © 2018 Hydr</u>	Type III 24-hr 50-Year Rainfall=8.57" Printed 1/28/2020 roCAD Software Solutions LLC Page 86
Subcatchment S23: Raingarden B	Runoff Area=5,790 sf 8.64% Impervious Runoff Depth=5.56" Tc=6.0 min UI Adjusted CN=75 Runoff=0.84 cfs 0.062 af
SubcatchmentS7A: 4S-Northwest	Runoff Area=2,646 sf 87.68% Impervious Runoff Depth=7.97" Tc=6.0 min CN=95 Runoff=0.49 cfs 0.040 af
SubcatchmentS8: S8-Northwest	Runoff Area=15,025 sf 30.25% Impervious Runoff Depth=6.28" Flow Length=280' Tc=14.3 min CN=81 Runoff=1.91 cfs 0.181 af
SubcatchmentS8B: ROOF DRAIN	Runoff Area=2,190 sf 100.00% Impervious Runoff Depth>8.32" Tc=6.0 min CN=98 Runoff=0.41 cfs 0.035 af
Subcatchment S9: Pemeable Lot by ballfi	ield Runoff Area=9,372 sf 95.85% Impervious Runoff Depth>6.72" Tc=790.0 min CN=97 Runoff=0.12 cfs 0.121 af
	Avg. Flow Depth=0.25' Max Vel=5.10 fps Inflow=5.07 cfs 0.305 af =70.0' S=0.0500 '/' Capacity=77.07 cfs Outflow=5.06 cfs 0.305 af
	Avg. Flow Depth=0.13' Max Vel=2.01 fps Inflow=2.33 cfs 0.177 af 70.0' S=0.0143 '/' Capacity=187.45 cfs Outflow=2.28 cfs 0.177 af
	Avg. Flow Depth=0.29' Max Vel=3.25 fps Inflow=3.21 cfs 0.311 af 90.0' S=0.0500 '/' Capacity=238.60 cfs Outflow=3.15 cfs 0.311 af
Reach R9: REACH 9	Inflow=0.07 cfs 0.068 af Outflow=0.07 cfs 0.068 af
Pond 1P: PYD 1&4 12.0" Roun	Peak Elev=52.58' Storage=8 cf Inflow=4.87 cfs 0.356 af ad Culvert n=0.012 L=65.0' S=0.0054 '/' Outflow=4.87 cfs 0.356 af
Pond 2P: PYD2 12.0" Roun	Peak Elev=52.09' Storage=8 cf Inflow=5.41 cfs 0.401 af ad Culvert n=0.012 L=30.0' S=0.0050 '/' Outflow=5.41 cfs 0.401 af
Pond 3P: PCB1 12.0" Roun	Peak Elev=54.71' Storage=63 cf Inflow=7.79 cfs 0.778 af ad Culvert n=0.012 L=60.0' S=0.0067 '/' Outflow=7.84 cfs 0.777 af
Pond 4P: PDMH1 12.0" Round	Peak Elev=54.10' Storage=58 cf Inflow=7.84 cfs 0.777 af Culvert n=0.012 L=160.0' S=0.0287 '/' Outflow=7.83 cfs 0.777 af
Pond 5P: PYD3 15.0" Roun	Peak Elev=47.91' Storage=2 cf Inflow=1.08 cfs 0.056 af ad Culvert n=0.012 L=35.0' S=0.0057 '/' Outflow=1.08 cfs 0.056 af
Pond 6P: PDMH2 12.0" Round (Peak Elev=58.19' Storage=57 cf Inflow=12.07 cfs 1.240 af Culvert n=0.012 L=100.0' S=0.0210 '/' Outflow=12.02 cfs 1.240 af
Pond 7P: Roof Dripline Filter & Cleanout Discarded=0.03 cfs 0.039 af Primary=0.04 cfs	Peak Elev=56.02' Storage=294 cf Inflow=1.23 cfs 0.131 af 0.034 af Secondary=1.15 cfs 0.057 af Outflow=1.22 cfs 0.131 af
Pond 10P: Retention Pond Discarded=0.17	Peak Elev=53.53' Storage=2,877 cf Inflow=5.39 cfs 0.484 af cfs 0.179 af Primary=5.07 cfs 0.305 af Outflow=5.25 cfs 0.484 af
Pond 11P: Raingarden B -900sf	Peak Elev=48.27' Storage=2,956 cf Inflow=6.04 cfs 0.481 af Outflow=5.97 cfs 0.463 af

4801.2 POST-Ph2-Gym_012920	Type III 24-hr 50-Year Rainfall=8.57"
Prepared by Altus Engineering Inc	Printed 1/28/2020

Pond OS1: Outlet Structure 1	Peak Elev=59.91' Storage=47 cf Inflow=17.85 cfs 1.746 af 12.0" Round Culvert n=0.012 L=20.0' S=0.0750 '/' Outflow=17.76 cfs 1.746 af
Pond OS4: Outlet Structure 4	Peak Elev=44.20' Storage=24 cf Inflow=4.95 cfs 0.416 af 12.0" Round Culvert n=0.012 L=110.0' S=0.0377 '/' Outflow=4.94 cfs 0.416 af
Pond P11: Roof Drip Edge Disca	Peak Elev=54.02' Storage=174 cf Inflow=0.78 cfs 0.065 af rded=0.03 cfs 0.033 af Secondary=0.76 cfs 0.032 af Outflow=0.78 cfs 0.065 af
Pond P2: CB P3	Peak Elev=53.65' Storage=1 cf Inflow=0.49 cfs 0.040 af 12.0" Round Culvert n=0.011 L=72.0' S=0.0236 '/' Outflow=0.49 cfs 0.040 af
Pond P3: CB P3	Peak Elev=52.53' Storage=13 cf Inflow=2.53 cfs 0.256 af 12.0" Round Culvert n=0.011 L=98.0' S=0.0051 '/' Outflow=2.53 cfs 0.256 af
Pond P4: YD P4	Peak Elev=49.28' Storage=2 cf Inflow=0.83 cfs 0.063 af 12.0" Round Culvert n=0.011 L=25.0' S=0.0060 '/' Outflow=0.83 cfs 0.063 af
Pond P5: YD P5	Peak Elev=49.39' Storage=3 cf Inflow=2.33 cfs 0.177 af 12.0" Round Culvert n=0.011 L=65.0' S=0.0077 '/' Outflow=2.33 cfs 0.177 af
Pond P8: Driveway Crossing	Peak Elev=47.97' Storage=262 cf Inflow=3.27 cfs 0.311 af 12.0" Round Culvert n=0.012 L=80.0' S=0.0344 '/' Outflow=3.21 cfs 0.311 af
Pond RG1: Raingarden 1	Peak Elev=44.44' Storage=4,413 cf Inflow=13.52 cfs 1.383 af Outflow=14.04 cfs 1.330 af
Pond RG4: Raingarden 4	Peak Elev=46.97' Storage=1,615 cf Inflow=5.05 cfs 0.443 af Outflow=4.95 cfs 0.416 af
Link POA1: POA #1	Inflow=24.15 cfs 2.485 af Primary=24.15 cfs 2.485 af
Link POA2: POA #2 - Drivewa	Inflow=12.02 cfs 1.240 af Primary=12.02 cfs 1.240 af Average Runoff Volume = 2.835 af Average Runoff Depth = 6.15

Printed 1/28/2020

Page 87

Total Runoff Area = 5.529 acRunoff Volume = 2.835 afAverage Runoff Depth = 6.15"69.31% Pervious = 3.832 ac30.69% Impervious = 1.697 ac

Summary for Subcatchment 1S: Roof

Runoff = 0.78 cfs @ 12.09 hrs, Volume= 0.065 af, Depth> 8.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN I	Description					
	500	80 :	>75% Gras	s cover, Go	bod, HSG D			
	3,680	98 I	Roofs, HSG	G D				
	4,180		Weighted Average					
	500		11.96% Per	vious Area				
	3,680	8	38.04% Imp	pervious Ar	ea			
-				0				
Тс	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry,			
					-			

Summary for Subcatchment 9S: Roof

Runoff = 1.23 cfs @ 12.19 hrs, Volume= 0.131 af, Depth> 8.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN E	Description						
	360	74 >	75% Grass cover, Good, HSG C						
	6,930	98 F	pofs, HSG C						
	1,030	98 F	loofs, HSG D						
	0	98 L	Inconnected pavement, HSG C						
	8,320	97 V	Veighted A	verage					
	360	4	.33% Perv	ious Area					
	7,960	ç	5.67% Imp	pervious Ar	ea				
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
12.9	100	0.0100	0.13		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.23"				
1.6	200	0.0200	2.12		Shallow Concentrated Flow,				
					Grassed Waterway Kv= 15.0 fps				
14.5	300	Total							

Summary for Subcatchment S10: North Ballfield

Runoff = 4.20 cfs @ 12.20 hrs, Volume= 0.393 af, Depth= 5.44"

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

Type III 24-hr 50-Year Rainfall=8.57" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 89

_	A	rea (sf)	CN I	Description							
		37,360	74 :	>75% Gras	s cover, Go	ood, HSG C					
		0		Roofs, HSG	,	,					
		0			Roofs, HSG D						
		400		Unconnecte		nt, HSG C					
		37,760	74	Weighted A	verage						
		37,360		98.94% Per							
		400		1.06% Impe	ervious Area	a					
		400		100.00% Üı							
	Тс	Length	Slope	Velocity	Capacity	Description					
	(min)	(feet)	(ft/ft)		(cfs)	·					
_	12.9	100	0.0100	0.13		Sheet Flow,					
						Grass: Short n= 0.150 P2= 3.23"					
	1.6	200	0.0200	2.12		Shallow Concentrated Flow,					
						Grassed Waterway Kv= 15.0 fps					
_	14.5	300	Total								

Summary for Subcatchment S10B: South Ballfield

Runoff = 4.87 cfs @ 12.09 hrs, Volume= 0.356 af, Depth= 5.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

Ar	ea (sf)	CN	Description					
	29,980	74	>75% Gras	s cover, Go	ood, HSG C			
	2,590	98	Roofs, HSG	i C				
	240	98	Unconnecte	d pavemer	nt, HSG C			
	32,810	76	Weighted A	verage				
	29,980		91.37% Per		3			
	2,830		8.63% Impe	rvious Area	a			
	240		8.48% Unco	onnected				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
6.0					Direct Entry,			

Summary for Subcatchment S11A: S11A

Runoff 1.50 cfs @ 12.09 hrs, Volume= 0.114 af, Depth= 6.76" =

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description						
	4,731	74	>75% Grass cover, Good, HSG C						
	1,530	98	Unconnected pavement, HSG C						
	2,516	98	Paved parking, HSG C						
	8,777	85	Weighted Average						
	4,731		53.90% Pervious Area						
	4,046		46.10% Impervious Area						
	1,530		37.82% Unconnected						
Tc (min)	Length (feet)	Slop (ft/fl							

6.0

Direct Entry,

Summary for Subcatchment S11B: S11B

Runoff = 0.83 cfs @ 12.09 hrs, Volume= 0.063 af, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

Α	rea (sf)	CN	Description						
	2,316	74	>75% Gras	s cover, Go	iood, HSG C				
	530	98	Unconnecte	ed pavemer	ent, HSG C				
	1,960	98	Paved park	ing, HSG C	C				
	4,806	86	Weighted A	verage					
	2,316		48.19% Pei	vious Area	a				
	2,490		51.81% Impervious Area						
	530		21.29% Unconnected						
_				.					
Tc	Length	Slope		Capacity	•				
<u>(min)</u>	(feet)	(ft/ft	(ft/sec) (cfs)						
6.0					Direct Entry,				

Summary for Subcatchment S12: S12

Runoff = 2.78 cfs @ 12.09 hrs, Volume= 0.208 af, Depth= 6.40"

 Area (sf)	CN	Description				
11,450	74	>75% Grass cover, Good, HSG C				
 5,500	98	Paved parking, HSG C				
16,950	82	Weighted Average				
11,450		67.55% Pervious Area				
5,500		32.45% Impervious Area				

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

 Type III 24-hr
 50-Year Rainfall=8.57"

 Printed
 1/28/2020

 is LLC
 Page 91

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	4.7	75	0.0700	0.27		Sheet Flow, sheet			
						Grass: Short n= 0.150 P2= 3.23"			
	0.4	50	0.0200	2.12		Shallow Concentrated Flow,			
_						Grassed Waterway Kv= 15.0 fps			
	5.1	125	Total, li	Total, Increased to minimum Tc = 6.0 min					

Summary for Subcatchment S13: 13S Pemeable Lot

Runoff = 0.06 cfs @ 21.94 hrs, Volume= 0.058 af, Depth> 6.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN I	Description					
	1,425		Paved park					
	131	74 :	>75% Gras	s cover, Go	bod, HSG C			
*	2,990	98	Permeable Pavement, HSG C					
	4,546 131 4,415	:	Weighted Average 2.88% Pervious Area 97.12% Impervious Area					
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description			
790.0					Direct Entry,			

Summary for Subcatchment S14: 14S Pemeable Lot

Runoff = 0.07 cfs @ 21.94 hrs, Volume= 0.068 af, Depth> 6.72"

A	rea (sf)	CN	Description					
	1,723		Paved park					
	137	74	>75% Gras	>75% Grass cover, Good, HSG C				
*	3,440	98	Permeable Pavement, HSG C					
	5,300	97	Weighted Average					
	137		2.58% Perv	ious Area				
	5,163		97.42% Impervious Area					
Tc	Length	Slope		Capacity				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
790.0					Direct Entry,			
(min)	5,163 Length		97.42% Imp Velocity	pervious Ar	rea / Description)			

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Summary for Subcatchment S15: S15

Runoff = 1.91 cfs @ 12.09 hrs, Volume= 0.143 af, Depth= 6.40"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN E	Description		
	7,610	74 >	75% Gras	s cover, Go	bod, HSG C
	4,045	98 F	aved park	ing, HSG C	
	11,655	82 V	Veighted A	verage	
	7,610	6	5.29% Per	vious Area	
	4,045	3	4.71% Imp	pervious Are	ea
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	80	0.0600	0.25		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
5.3	80	Total, I	ncreased t	o minimum	1 Tc = 6.0 min

Summary for Subcatchment S16R: Banfield Road

Runoff = 3.27 cfs @ 12.20 hrs, Volume= 0.311 af, Depth= 5.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

	Area (sf)	CN E	Description		
	22,900	74 >	75% Gras	s cover, Go	bod, HSG C
	3,798	98 F	Paved road	s w/curbs &	& sewers, HSG C
	1,342	70 V	Voods, Go	od, HSG C	
	28,040	77 V	Veighted A	verage	
	24,242	8	86.46% Per	vious Area	l
	3,798	1	3.54% Imp	ervious Ar	ea
_				a <i>v</i>	
To	5	Slope	Velocity	Capacity	Description
(min)) (feet)	(ft/ft)	(ft/sec)	(cfs)	
12.9	100	0.0100	0.13		Sheet Flow, sheet
					Grass: Short n= 0.150 P2= 3.23"
2.1	325	0.0300	2.60		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
45.0	105	T ()			

15.0 425 Total

Summary for Subcatchment S17: S11

Runoff = 1.99 cfs @ 12.11 hrs, Volume= 0.155 af, Depth= 6.40"

4801.2 POST-Ph2-Gym_012920 Prepared by Altus Engineering, Inc.

Type III 24-hr 50-Year Rainfall=8.57" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 93

	6					
A	rea (sf)	<u>CN</u>	Description			
	4,048	74 >	75% Gras	s cover, Go	ood, HSG C	
	3,330	98 F	Paved road	s w/curbs &	& sewers, HSG C	
	1,395	98 F	Paved park	ing, HSG C)	
	3,855	70 V	Voods, Go	od, HSG C		
	12,628	82 V	Veighted A	verage		
	7,903	6	2.58% Pei	vious Area		
	4,725	3	87.42% Imp	pervious Ar	ea	
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
5.6	70	0.0400	0.21		Sheet Flow, sheet	
					Grass: Short n= 0.150	P2= 3.23"

140 0.0650 1.27 Shallow Concentrated Flow, 1.8 Woodland Kv= 5.0 fps 7.4 210 Total

Summary for Subcatchment S18: S11

Runoff =	2.59 cfs @	12.12 hrs, Volume=	0.204 af, Depth= 5.32"
----------	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN E	Description				
	14,716		>75% Grass cover, Good, HSG C				
	5,377	70 V	Voods, Go	od, HSG C			
	20,093	73 V	Veighted A	verage			
	20,093	1	00.00% Pe	ervious Are	a		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
3.4	60	0.1000	0.29		Sheet Flow, sheet		
					Grass: Short n= 0.150 P2= 3.23"		
5.0	40	0.1200	0.13		Sheet Flow, sheet		
					Woods: Light underbrush n= 0.400 P2= 3.23"		
0.2	50	0.0800	4.24		Shallow Concentrated Flow,		
					Grassed Waterway Kv= 15.0 fps		
8.6	150	Total					

Summary for Subcatchment S20: Flat Roof

0.54 cfs @ 12.09 hrs, Volume= 0.045 af, Depth> 8.09" Runoff =

Prepared by Altus Engineering, Inc.

HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

A	rea (sf)	CN	Description		
	250	74	>75% Gras	s cover, Go	bod, HSG C
	2,640	98	Roofs, HSG	G C	
	2,890	96	Weighted A	verage	
	250		8.65% Perv	ious Area	
	2,640		91.35% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment S21: Entrance Side

Runoff = 0.32 cfs @ 12.09 hrs, Volume= 0.024 af, Depth= 6.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN	Description		
	2,040	80	>75% Gras	s cover, Go	bod, HSG D
	0	98	Roofs, HSC	G D	
	2,040	80	Weighted A	verage	
	2,040		100.00% Pe	ervious Are	a
Тс	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment S22: New Parking

Runoff = 0.06 cfs @ 21.95 hrs, Volume= 0.059 af, Depth> 6.17"

	Area (sf)	CN	Description		
	1,340	74	>75% Gras	s cover, Go	Good, HSG C
*	2,380	98	Permeable	Pavement,	t, HSG D
	1,300	98	Unconnecte	ed pavemer	ent, HSG D
	5,020	92	Weighted A	verage	
	1,340		26.69% Pe	rvious Area	a
	3,680		73.31% Imp	pervious Ar	rea
	1,300		35.33% Un	connected	
Г	c Length	Slop		Capacity	•
(mii	n) (feet)	(ft/f	i) (ft/sec)	(cfs)	
790	.0				Direct Entry,

Summary for Subcatchment S23: Raingarden B

Runoff = 0.84 cfs @ 12.09 hrs, Volume= 0.062 af, Depth= 5.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

Α	rea (sf)	CN	Adj Des	scription	
	5,290	74	>75	% Grass co	over, Good, HSG C
	0	98	Roo	ofs, HSG C	
	500	98	Und	connected pa	avement, HSG C
	5,790	76	75 We	ighted Avera	age, UI Adjusted
	5,290		91.3	36% Perviou	us Area
	500		8.6	4% Impervic	bus Area
	500		100	.00% Uncor	nnected
_				_	
Тс	Length	Slope			Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment S7A: 4S-Northwest

Runoff = 0.49 cfs @ 12.09 hrs, Volume= 0.040 af, Depth= 7.97"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

A	rea (sf)	CN	Description		
	326	74	>75% Gras	s cover, Go	ood, HSG C
	1,420	98	Roofs, HSC	ЭC	
	900	98	Roofs, HSC	βB	
	2,646	95	Weighted A	verage	
	326		12.32% Pe	rvious Area	a
	2,320		87.68% Imp	pervious Ar	rea
Тс	Length	Slope		Capacity	
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry,

Summary for Subcatchment S8: S8-Northwest

Runoff = 1.91 cfs @ 12.19 hrs, Volume= 0.181 af, Depth= 6.28"

4801.2 POST-Ph2-Gym 012920 Prepared by Altus Engineering, Inc.

Type III 24-hr 50-Year Rainfall=8.57" Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 96

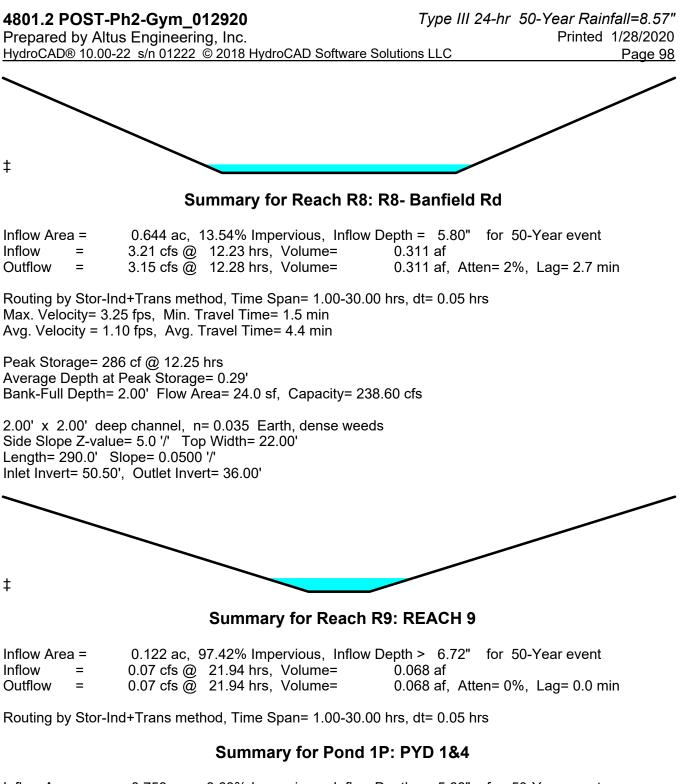
•	·····	<u></u>			
A	rea (sf)	CN I	Description		
	10,480	74 🔅	>75% Gras	s cover, Go	ood, HSG C
	2,635	98 I	Roofs, HSG	ЭC	
	1,910	98 I	Jnconnecte	ed pavemer	nt, HSG C
	15,025	81 \	Neighted A	verage	
	10,480			rvious Area	
	4,545		30.25% Imp	pervious Ar	ea
	1,910	4	42.02% Un	connected	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•
12.9	100	0.0100	0.13		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.23"
1.4	180	0.0200	2.12		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
14.3	280	Total			· · ·

Summary for Subcatchment S8B: ROOF DRAIN

0.41 cfs @ 12.09 hrs, Volume= Runoff 0.035 af, Depth> 8.32" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Type III 24-hr 50-Year Rainfall=8.57"

2,190 98 Roofs, HSG B
2,190 100.00% Impervious Area
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,


Summary for Subcatchment S9: Pemeable Lot by ballfield

Runoff = 0.12 cfs @ 21.94 hrs, Volume= 0.121 af, Depth> 6.72"

	Area (sf)	CN	Description
	778	98	Unconnected pavement, HSG C
	389	74	>75% Grass cover, Good, HSG C
*	7,655	98	Permeable Pavement, HSG C
	550	98	Unconnected pavement, HSG C
	9,372	97	Weighted Average
	389		4.15% Pervious Area
	8,983		95.85% Impervious Area
	1,328		14.78% Unconnected

4801.2 POST-Ph2-Gym 012920 Type III 24-hr 50-Year Rainfall=8.57" Prepared by Altus Engineering, Inc. Printed 1/28/2020 HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Page 97 Slope Velocity Capacity Description Tc Length (feet) (ft/ft) (ft/sec) (cfs) (min) 790.0 Direct Entry, Summary for Reach 1R: REACH 1 1.058 ac, 18.14% Impervious, Inflow Depth = 3.46" for 50-Year event Inflow Area = 5.07 cfs @ 12.23 hrs, Volume= Inflow 0.305 af = Outflow = 5.06 cfs @ 12.24 hrs, Volume= 0.305 af, Atten= 0%, Lag= 0.4 min Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 5.10 fps, Min. Travel Time= 0.2 min Avg. Velocity = 1.81 fps, Avg. Travel Time= 0.6 min Peak Storage= 70 cf @ 12.24 hrs Average Depth at Peak Storage= 0.25' Bank-Full Depth= 1.00' Flow Area= 7.0 sf, Capacity= 77.07 cfs 3.00' x 1.00' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 4.0 '/' Top Width= 11.00' Length= 70.0' Slope= 0.0500 '/' Inlet Invert= 53.00', Outlet Invert= 49.50' ‡ Summary for Reach R5: R5 - Pre-Treatment Swale 1 0.312 ac, 48.12% Impervious, Inflow Depth = 6.81" for 50-Year event Inflow Area = Inflow 2.33 cfs @ 12.09 hrs, Volume= 0.177 af = Outflow 2.28 cfs @ 12.10 hrs, Volume= 0.177 af, Atten= 2%, Lag= 0.9 min = Routing by Stor-Ind+Trans method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Max. Velocity= 2.01 fps, Min. Travel Time= 0.6 min Avg. Velocity = 0.58 fps, Avg. Travel Time= 2.0 min Peak Storage= 81 cf @ 12.10 hrs Average Depth at Peak Storage= 0.13' Bank-Full Depth= 1.50' Flow Area= 23.3 sf, Capacity= 187.45 cfs 8.00' x 1.50' deep channel, n= 0.022 Earth, clean & straight Side Slope Z-value= 5.0 '/' Top Width= 23.00' Length= 70.0' Slope= 0.0143 '/'

Inlet Invert= 48.00', Outlet Invert= 47.00'

Inflow Area =	0.753 ac,	8.63% Impervious, Inflow	w Depth = 5.68 "	for 50-Year event
Inflow =	4.87 cfs @	12.09 hrs, Volume=	0.356 af	
Outflow =	4.87 cfs @	12.09 hrs, Volume=	0.356 af, Atte	en= 0%, Lag= 0.0 min
Primary =	4.87 cfs @	12.09 hrs, Volume=	0.356 af	2

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Peak Elev= 52.58' @ 12.09 hrs Surf.Area= 3 sf Storage= 8 cf

Plug-Flow detention time= 0.0 min calculated for 0.356 af (100% of inflow) Center-of-Mass det. time= 0.1 min (809.3 - 809.2)

Volume Invert Avail.Storage Storage Description					
#1 50.00' 11 cf 2.00'D x 3.50'H Vertical Cone/Cylinder					
#2 53.50' 200 cf Custom Stage Data Listed below 211 cf Total Available Storage					
211 ci Tolai Avaliable Storage					
Elevation Cum.Store					
(feet) (cubic-feet)					
53.50 0 54.00 200					
54.00 200					
Device Routing Invert Outlet Devices					
#1 Primary 50.00' 12.0" Round Culvert L= 65.0' Ke= 0.500					
Inlet / Outlet Invert= 50.00' / 49.65' S= 0.0054 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf					
Primary OutFlow Max=4.77 cfs @ 12.09 hrs HW=52.51' (Free Discharge)					
[■] 1=Culvert (Barrel Controls 4.77 cfs @ 6.07 fps)					
Summary for Pond 2P: PYD2					
Inflow Area = 0.820 ac, 15.32% Impervious, Inflow Depth = 5.87" for 50-Year event					
Inflow = 5.41 cfs @ 12.09 hrs, Volume= 0.401 af					
Outflow = 5.41 cfs @ 12.09 hrs, Volume= 0.401 af, Atten= 0%, Lag= 0.0 min Primary = 5.41 cfs @ 12.09 hrs, Volume= 0.401 af					
Primary = 5.41 cfs @ 12.09 hrs, Volume= 0.401 af					
Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs					
Peak Elev= 52.09' @ 12.09 hrs Surf.Area= 3 sf Storage= 8 cf					
Plug-Flow detention time= 0.1 min calculated for 0.401 af (100% of inflow)					
Center-of-Mass det. time= 0.1 min (802.8 - 802.8)					
VolumeInvertAvail.StorageStorage Description#149.55'12 cf2.00'D x 3.90'H Vertical Cone/Cylinder					
#1 49.55 12 Cl 2.00 D x 5.90 H Vertical Cone/Cylinder					
Device Routing Invert Outlet Devices					
#1 Primary 49.55' 12.0" Round Culvert L= 30.0' Ke= 0.500					
Inlet / Outlet Invert= 49.55' / 49.40' S= 0.0050 '/' Cc= 0.900 n= 0.012, Flow Area= 0.79 sf					
11 - 0.012, 110W Alea - 0.79 SI					
Primary OutFlow Max=5.30 cfs @ 12.09 hrs HW=52.03' (Free Discharge)					
└── 1=Culvert (Barrel Controls 5.30 cfs @ 6.75 fps)					

Summary for Pond 3P: PCB1

Inflow Area =	1.491 ac, 36.20% Impervious, Inflow	Depth > 6.26" for 50-Year event
Inflow =	7.79 cfs @ 12.10 hrs, Volume=	0.778 af
Outflow =	7.84 cfs @ 12.10 hrs, Volume=	0.777 af, Atten= 0%, Lag= 0.2 min
Primary =	7.84 cfs $\overline{@}$ 12.10 hrs, Volume=	0.777 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.71' @ 12.10 hrs Surf.Area= 13 sf Storage= 63 cf

Plug-Flow detention time= 0.2 min calculated for 0.776 af (100% of inflow) Center-of-Mass det. time= 0.1 min (878.5 - 878.3)

Volume	Invert	Avail.Storage	Storage Description
#1	49.30'	63 cf	4.00'D x 5.00'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 60.0' Ke= 0.500 : / Outlet Invert= 49.30' / 48.90' S= 0.0067 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=7.79 cfs @ 12.10 hrs HW=54.64' (Free Discharge) -1=Culvert (Barrel Controls 7.79 cfs @ 9.92 fps)

Summary for Pond 4P: PDMH1

Inflow Area =	1.491 ac,	36.20% Impervious,	Inflow Depth > 6	.26" for 50-Year event
Inflow =	7.84 cfs @	12.10 hrs, Volume	= 0.777 af	
Outflow =	7.83 cfs @	12.11 hrs, Volume	= 0.777 af	, Atten= 0%, Lag= 0.2 min
Primary =	7.83 cfs @	12.11 hrs, Volume	= 0.777 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.10' @ 12.10 hrs Surf.Area= 13 sf Storage= 58 cf

Plug-Flow detention time= 0.2 min calculated for 0.776 af (100% of inflow) Center-of-Mass det. time= 0.1 min (878.6 - 878.5)

Volume	Invert	Avail.Storage	Storage Description
#1	48.80'	58 cf	4.00'D x 4.60'H Vertical Cone/Cylinder
Device #1	Routing Primary	48.80' 12.0 Inlet	et Devices P" Round Culvert L= 160.0' Ke= 0.500 t / Outlet Invert= 48.80' / 44.20' S= 0.0287 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=7.75 cfs @ 12.11 hrs HW=53.94' (Free Discharge) **1=Culvert** (Barrel Controls 7.75 cfs @ 9.87 fps)

Summary for Pond 5P: PYD3

Inflow Area =	0.143 ac, 59.16% Impervious, Inflow De	epth = 4.68" for 50-Year event
Inflow =	1.08 cfs @ 12.09 hrs, Volume=	0.056 af
Outflow =	1.08 cfs @_ 12.09 hrs, Volume=	0.056 af, Atten= 0%, Lag= 0.0 min
Primary =	1.08 cfs @ 12.09 hrs, Volume=	0.056 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.91' @ 12.09 hrs Surf.Area= 3 sf Storage= 2 cf

Plug-Flow detention time= 0.1 min calculated for 0.056 af (100% of inflow) Center-of-Mass det. time= 0.1 min (764.3 - 764.2)

Volume	Inv	ert Avail.Sto	orage	Storage D	escription	
#1	47.3	35'	9 cf	2.00'D x 3	.00'H Vertica	al Cone/Cylinder
#2	50.4	45'	56 cf	Custom S	tage Data (P	Prismatic)Listed below (Recalc)
			66 cf	Total Avai	lable Storage	9
Elevatio	n	Surf.Area	Inc	Store	Cum.Store	
(feet		(sq-ft)	(cubi	c-feet)	(cubic-feet)	
50.4	5	5		0	0)
51.0	0	200		56	56	6
Device	Routing	Invert	Outl	et Devices		
#1	Primary	47.35'	15.0	" Round C	ulvert L= 35	5.0' Ke= 0.500
			Inlet	/ Outlet Inv	ert= 47.35' / 4	47.15' S= 0.0057 '/' Cc= 0.900
			n= 0	.012, Flow	Area= 1.23 s	sf
Primary	Primary OutFlow Max=1.06 cfs @ 12.09 hrs HW=47.91' (Free Discharge)					

1=Culvert (Barrel Controls 1.06 cfs @ 2.94 fps)

Summary for Pond 6P: PDMH2

Inflow Area	a =	2.939 ac, 31.03% Impervious, Inflow Depth > 5.06" for 50-Year event
Inflow	=	12.07 cfs @ 12.16 hrs, Volume= 1.240 af
Outflow	=	12.02 cfs @ 12.16 hrs, Volume= 1.240 af, Atten= 0%, Lag= 0.1 min
Primary	=	12.02 cfs @ 12.16 hrs, Volume= 1.240 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 58.19' @ 12.16 hrs Surf.Area= 13 sf Storage= 57 cf

Plug-Flow detention time= 0.1 min calculated for 1.238 af (100% of inflow) Center-of-Mass det. time= 0.1 min (887.5 - 887.4)

Volume	Invert	Avail.Storage	Storage Description
#1	44.10'	57 cf	4.00'D x 4.50'H Vertical Cone/Cylinder
Device #1	Routing Primary	44.10' 12.0 Inlet	et Devices " Round Culvert L= 100.0' Ke= 0.500 / Outlet Invert= 44.10' / 42.00' S= 0.0210 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=11.92 cfs @ 12.16 hrs HW=57.94' (Free Discharge) ←1=Culvert (Barrel Controls 11.92 cfs @ 15.18 fps)

Summary for Pond 7P: Roof Dripline Filter & Cleanout

Inflow Area =	0.191 ac, 95.67% Impervious, Inflow De	epth > 8.21" for 50-Year event
Inflow =	1.23 cfs @ 12.19 hrs, Volume=	0.131 af
Outflow =	1.22 cfs @ 12.19 hrs, Volume=	0.131 af, Atten= 1%, Lag= 0.0 min
Discarded =	0.03 cfs @ 12.19 hrs, Volume=	0.039 af
Primary =	0.04 cfs @ 12.19 hrs, Volume=	0.034 af
Secondary =	1.15 cfs @ 12.19 hrs, Volume=	0.057 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 56.02' @ 12.19 hrs Surf.Area= 360 sf Storage= 294 cf

Plug-Flow detention time= 27.5 min calculated for 0.131 af (100% of inflow) Center-of-Mass det. time= 27.5 min (781.4 - 753.9)

Volume	Inver	t Avail	l.Stora	ge Storage Descri	iption	
#1	52.50	1	321	cf Custom Stage	e Data (Prismatic)	Listed below
Elevatio (fee		urf.Area (sq-ft)	Voids (%)		Cum.Store (cubic-feet)	
52.5	50	360	0.0	0	0	
54.0	00	360	33.0	178	178	
55.5	50	360	10.0	54	232	
56.2	25	360	33.0	89	321	
Device	Routing	١nv	/ert (Outlet Devices		
#1	Primary	53.		6.0" Round Culver		
				nlet / Outlet Invert= 1= 0.012, Flow Area		= 0.0400 '/' Cc= 0.900
#2	Secondary	y 56.				ested Rectangular Weir
						0 1.20 1.40 1.60 1.80 2.00
				2.50 3.00 3.50 4.0		265 264 264 269 269
				2.72 2.81 2.92 2.9		2.65 2.64 2.64 2.68 2.68
#3	Device 1	52		3.000 in/hr Exfiltrat		area
	Doneo I	02.		Conductivity to Grou		
#4	Discarded	52.		2.000 in/hr Exfiltrat		
			(Conductivity to Grou	Indwater Elevation	a = 48.00'

Discarded OutFlow Max=0.03 cfs @ 12.19 hrs HW=56.02' (Free Discharge) **4=Exfiltration** (Controls 0.03 cfs)

Primary OutFlow Max=0.04 cfs @ 12.19 hrs HW=56.02' (Free Discharge) -1=Culvert (Passes 0.04 cfs of 1.57 cfs potential flow) -3=Exfiltration (Controls 0.04 cfs)

Secondary OutFlow Max=1.11 cfs @ 12.19 hrs HW=56.02' (Free Discharge) -2=Broad-Crested Rectangular Weir (Weir Controls 1.11 cfs @ 0.38 fps)

Summary for Pond 10P: Retention Pond

Inflow Area =	1.058 ac, 18.14% Impervious, Inflow De	epth = 5.49" for 50-Year event
Inflow =	5.39 cfs @ 12.20 hrs, Volume=	0.484 af
Outflow =	5.25 cfs @ 12.23 hrs, Volume=	0.484 af, Atten= 3%, Lag= 2.1 min
Discarded =	0.17 cfs @ 12.23 hrs, Volume=	0.179 af
Primary =	5.07 cfs $\overline{@}$ 12.23 hrs, Volume=	0.305 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.53' @ 12.23 hrs Surf.Area= 2,419 sf Storage= 2,877 cf

Plug-Flow detention time= 76.7 min calculated for 0.483 af (100% of inflow) Center-of-Mass det. time= 77.1 min (887.2 - 810.1)

Volume	Invei	rt Avai	il.Storage	Storage Descri	ption	
#1	52.00)'	3,290 cf	Custom Stage	Data (Prismatic)L	isted below
Elevatic (fee 52.0 53.7	et) 00	Surf.Area (sq-ft) 1,160 2,600	Voids (%) 0.0 100.0	Inc.Store (cubic-feet) 0 3,290	Cum.Store (cubic-feet) 0 3,290	
Device	Routing	In	vert Ou	tlet Devices		
#1	Primary	53				d Rectangular Weir
				. ,	40 0.80 0.80 1.00 0 4.50 5.00 5.50	1.20 1.40 1.60 1.80 2.00
						2.68 2.66 2.65 2.65 2.65
#2	Discarded	52			8 2.70 2.74 2.79 ion over Surface a	
					ndwater Elevation =	

Discarded OutFlow Max=0.17 cfs @ 12.23 hrs HW=53.53' (Free Discharge) **2=Exfiltration** (Controls 0.17 cfs)

Primary OutFlow Max=5.02 cfs @ 12.23 hrs HW=53.53' (Free Discharge) ←1=Broad-Crested Rectangular Weir (Weir Controls 5.02 cfs @ 1.91 fps)

Summary for Pond 11P: Raingarden B -900sf

Inflow Area	=	1.449 ac, 2	5.70% Imperviou	s, Inflow Depth >	3.99"	for 50-Year event
Inflow	=	6.04 cfs @	12.22 hrs, Volur	ne= 0.48	1 af	
Outflow :	=	5.97 cfs @	12.25 hrs, Volur	ne= 0.463	3 af, Atter	n= 1%, Lag= 1.8 min
Primary	=	5.97 cfs @	12.25 hrs, Volur	ne= 0.463	3 af	-

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 48.27' @ 12.25 hrs Surf.Area= 2,246 sf Storage= 2,956 cf

Plug-Flow detention time= 86.7 min calculated for 0.463 af (96% of inflow) Center-of-Mass det. time= 55.5 min (902.1 - 846.6)

Type III 24-hr 50-Year Rainfall=8.57" Printed 1/28/2020 s LLC Page 104

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Volume	Inve	ert Ava	il.Storage	Storage Descrip	otion			
#1	44.2	25'	3,358 cf	Custom Stage	Data (Prismatic)Lis	sted below		
F lavesti			Maiala		Ourse Otherse			
Elevatio		Surf.Area	Voids	Inc.Store	Cum.Store			
(fee	et)	(sq-ft)	(%)	(cubic-feet)	(cubic-feet)			
44.2	25	1,100	0.0	0	0			
45.2	25	1,100	40.0	440	440			
45.5	50	1,100	33.0	91	531			
47.0	00	1,100	10.0	165	696			
48.5	50	2,450	100.0	2,663	3,358			
		,		,	,			
Device	Routing	In	vert Out	let Devices				
#1	Primary	44	.25' 12.	0" Round Culver	rt			
	,		L= :	5.0' RCP. square	edge headwall, K	e= 0.500		
				· · · ·	0).0200 '/' Cc= 0.900		
			n= (0.012, Flow Area	= 0.79 sf			
#2	Device 1	47		0" Horiz. Orifice/				
·· _	Derice			Limited to weir flow at low heads				
#3	Device 1	44		6.0" Vert. Orifice/Grate C= 0.600				
#4	Device 3				on over Surface ar	202		
#4	Device 3	44	r.20 2.0		on over Surface al	ca		

Primary OutFlow Max=5.96 cfs @ 12.25 hrs HW=48.27' (Free Discharge)

-**1=Culvert** (Passes 5.96 cfs of 7.10 cfs potential flow)

-2=Orifice/Grate (Weir Controls 5.83 cfs @ 2.37 fps)

-3=Orifice/Grate (Passes 0.13 cfs of 1.84 cfs potential flow)

4=Exfiltration (Exfiltration Controls 0.13 cfs)

Summary for Pond OS1: Outlet Structure 1

Inflow Area	=	4.012 ac, 34.46% Impervious, Inflow Depth > 5.22" for 50-Year ever	nt
Inflow	=	17.85 cfs @ 12.18 hrs, Volume= 1.746 af	
Outflow	=	17.76 cfs @ 12.18 hrs, Volume= 1.746 af, Atten= 1%, Lag= 0.0	min
Primary	=	17.76 cfs @ 12.18 hrs, Volume= 1.746 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 59.91' @ 12.18 hrs Surf.Area= 13 sf Storage= 47 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (892.4 - 892.4)

Volume	Invert	Avail.Storage	Storage Description
#1	38.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device #1	Routing Primary	37.50' 12.0 Inlet	et Devices " Round Culvert L= 20.0' Ke= 0.500 t / Outlet Invert= 37.50' / 36.00' S= 0.0750 '/' Cc= 0.900 0.012, Flow Area= 0.79 sf

Primary OutFlow Max=17.24 cfs @ 12.18 hrs HW=58.77' (Free Discharge) -1=Culvert (Inlet Controls 17.24 cfs @ 21.95 fps)

Summary for Pond OS4: Outlet Structure 4

Inflow Area	a =	0.805 ac, 46.90% Impervious, Inflow Depth > 6.20" for 50-Year event
Inflow	=	4.95 cfs @ 12.11 hrs, Volume= 0.416 af
Outflow	=	4.94 cfs @ 12.11 hrs, Volume= 0.416 af, Atten= 0%, Lag= 0.2 min
Primary	=	4.94 cfs @ 12.11 hrs, Volume= 0.416 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 44.20' @ 12.11 hrs Surf.Area= 13 sf Storage= 24 cf

Plug-Flow detention time= 0.0 min calculated for 0.416 af (100% of inflow) Center-of-Mass det. time= 0.0 min (885.9 - 885.9)

Volume	Invert	Avail.Storage	Storage Description
#1	42.25'	47 cf	4.00'D x 3.75'H Vertical Cone/Cylinder
Device	Routing	Invert Outl	et Devices
#1	Primary	Inlet	" Round Culvert L= 110.0' Ke= 0.500 / Outlet Invert= 42.00' / 37.85' S= 0.0377 '/' Cc= 0.900 .012, Flow Area= 0.79 sf

Primary OutFlow Max=4.81 cfs @ 12.11 hrs HW=44.12' (Free Discharge) -1=Culvert (Inlet Controls 4.81 cfs @ 6.12 fps)

Summary for Pond P11: Roof Drip Edge

Inflow Area =	0.096 ac, 88.04% Impervious, Inflow De	epth > 8.09" for 50-Year event
Inflow =	0.78 cfs @ 12.09 hrs, Volume=	0.065 af
Outflow =	0.78 cfs @ 12.09 hrs, Volume=	0.065 af, Atten= 0%, Lag= 0.1 min
Discarded =	0.03 cfs @ 12.09 hrs, Volume=	0.033 af
Secondary =	0.76 cfs @ 12.09 hrs, Volume=	0.032 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 54.02' @ 12.09 hrs Surf.Area= 500 sf Storage= 174 cf

Plug-Flow detention time= 28.2 min calculated for 0.065 af (100% of inflow) Center-of-Mass det. time= 28.2 min (779.3 - 751.1)

Volume	Invert	Ava	il.Storage	Storage Descrip		
#1	53.00'		290 cf	Custom Stage	Data (Prismatic)	Listed below
Elevatio (fee		rf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
53.0	0	500	0.0	0	0	
54.0	0	500	33.0	165	165	
54.2	25	500	100.0	125	290	
Device #1	Routing Secondary		125. Hea		0 0.60 0.80 1.00	ested Rectangular Weir 0 1.20 1.40 1.60 1.80 2.00

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 50-Year Rainfall=8.57" Printed 1/28/2020 s LLC Page 106

 #2
 Discarded
 53.00'
 Coef. (English) 2.44 2.58 2.68 2.67 2.65 2.64 2.64 2.68 2.68 2.72 2.81 2.92 2.97 3.07 3.32

 #2
 Discarded
 53.00'
 2.000 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 46.00'

Discarded OutFlow Max=0.03 cfs @ 12.09 hrs HW=54.02' (Free Discharge) **2=Exfiltration** (Controls 0.03 cfs)

Secondary OutFlow Max=0.71 cfs @ 12.09 hrs HW=54.02' (Free Discharge) —1=Broad-Crested Rectangular Weir (Weir Controls 0.71 cfs @ 0.32 fps)

Summary for Pond P2: CB P3

Inflow Area =	0.061 ac, 87	.68% Impervious, I	nflow Depth = 7.97	7" for 50-Year event
Inflow =	0.49 cfs @ ´	12.09 hrs, Volume=	0.040 af	
Outflow =	0.49 cfs @ 1	12.09 hrs, Volume=	• 0.040 af, <i>I</i>	Atten= 0%, Lag= 0.0 min
Primary =	0.49 cfs @ ´	12.09 hrs, Volume=	• 0.040 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 53.65' @ 12.09 hrs Surf.Area= 3 sf Storage= 1 cf

Plug-Flow detention time= 0.1 min calculated for 0.040 af (100% of inflow) Center-of-Mass det. time= 0.1 min (755.7 - 755.6)

Volume	Invert	Avail.Storage	Storage Description
#1	53.30'	9 cf	2.00'D x 3.00'H Vertical Cone/Cylinder
<u>Device</u> #1	Routing Primary	53.30' 12. Inle	let Devices D" Round Culvert L= 72.0' Ke= 0.500 t / Outlet Invert= 53.30' / 51.60' S= 0.0236 '/' Cc= 0.900 0.011, Flow Area= 0.79 sf

Primary OutFlow Max=0.48 cfs @ 12.09 hrs HW=53.64' (Free Discharge)

Summary for Pond P3: CB P3

Inflow Area =	0.456 ac,	45.59% Impervious,	Inflow Depth > 6.7	'3" for 50-Year event
Inflow =	2.53 cfs @) 12.15 hrs, Volume	= 0.256 af	
Outflow =	2.53 cfs @) 12.15 hrs, Volume	= 0.256 af,	Atten= 0%, Lag= 0.1 min
Primary =	2.53 cfs @) 12.15 hrs, Volume	= 0.256 af	

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 52.53' @ 12.15 hrs Surf.Area= 13 sf Storage= 13 cf

Plug-Flow detention time= 0.3 min calculated for 0.255 af (100% of inflow) Center-of-Mass det. time= 0.2 min (789.2 - 789.0)

Type III 24-hr 50-Year Rainfall=8.57" Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC Printed 1/28/2020 Page 107

Volume	Invert	Avail Stor	prage Storage Description					
#1	51.50'		35 cf 4.00'D x 2.75'H Vertical Cone/Cylinder					
Device	Routing	Invert	Outlet Devices					
<u></u> #1	Primary	51.50'	12.0" Round Culvert L= 98.0' Ke= 0.500 Inlet / Outlet Invert= 51.50' / 51.00' S= 0.0051 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf					
			@ 12.15 hrs HW=52.52' (Free Discharge) 2 cfs @ 3.90 fps)					
			Summary for Pond P4: YD P4					
Inflow Outflow	Inflow Area = 0.110 ac, 51.81% Impervious, Inflow Depth = 6.88" for 50-Year event Inflow = 0.83 cfs @ 12.09 hrs, Volume= 0.063 af Outflow = 0.83 cfs @ 12.09 hrs, Volume= 0.063 af, Atten= 0%, Lag= 0.0 min Primary = 0.83 cfs @ 12.09 hrs, Volume= 0.063 af							
			e Span= 1.00-30.00 hrs, dt= 0.05 hrs Surf.Area= 3 sf Storage= 2 cf					
Center-o	Plug-Flow detention time= 0.1 min calculated for 0.063 af (100% of inflow) Center-of-Mass det. time= 0.1 min (785.6 - 785.5)							
Volume #1	<u>Invert</u> 48.75'		orage Storage Description 10 cf 2.00'D x 3.25'H Vertical Cone/Cylinder					
#2	52.00'		50 cf Custom Stage Data Listed below					
		16	60 cf Total Available Storage					
Elevatio (fee		m.Store pic-feet)						
52.0		0						
53.0	00	150						
Device	Routing	Invert	Outlet Devices					
#1								
	Primary OutFlow Max=0.81 cfs @ 12.09 hrs HW=49.27' (Free Discharge) ↓ 1=Culvert (Barrel Controls 0.81 cfs @ 2.86 fps)							
	Summary for Pond P5: YD P5							
Inflow A	rea =	0.312 ac, 48.	12% Impervious, Inflow Depth = 6.81" for 50-Year event					

Inflow Area =	0.312 ac, 48.12% Impervious, Inflow E	Depth = 6.81" for 50-Year event
Inflow =	2.33 cfs @ 12.09 hrs, Volume=	0.177 af
Outflow =	2.33 cfs @_ 12.09 hrs, Volume=	0.177 af, Atten= 0%, Lag= 0.0 min
Primary =	2.33 cfs @ 12.09 hrs, Volume=	0.177 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Peak Elev= 49.39' @ 12.09 hrs Surf.Area= 3 sf Storage= 3 cf

Plug-Flow detention time= 0.1 min calculated for 0.177 af (100% of inflow) Center-of-Mass det. time= 0.1 min (787.3 - 787.3)

Volume	Inve	ert Avail.Sto	rage	Storage D	escription			
#1 #2	48.5 52.0							
<u>#</u> 2	52.0		92 cf					
		6	03 cf	Total Avai	lable Storage			
					•			
Elevatio	n	Surf.Area	Inc	.Store	Cum.Store			
(fee	et)	(sq-ft)	(cubi	c-feet)	(cubic-feet)			
52.0	0	10		0	0			
53.0	00	680		345	345			
53.3	80	970		247	592			
Device	Routing	Invert	Outl	et Devices				
#1	Primary	48.50'	Inlet	12.0" Round Culvert L= 65.0' Ke= 0.500 Inlet / Outlet Invert= 48.50' / 48.00' S= 0.0077 '/' Cc= 0.900 n= 0.011, Flow Area= 0.79 sf				

Primary OutFlow Max=2.27 cfs @ 12.09 hrs HW=49.38' (Free Discharge) **1=Culvert** (Barrel Controls 2.27 cfs @ 4.14 fps)

Summary for Pond P8: Driveway Crossing

Inflow Area =	0.644 ac, 13.54% Impervious,	Inflow Depth = 5.80" for 50-Year event
Inflow =	3.27 cfs @ 12.20 hrs, Volume	= 0.311 af
Outflow =	3.21 cfs @ 12.23 hrs, Volume	= 0.311 af, Atten= 2%, Lag= 1.6 min
Primary =	3.21 cfs @ 12.23 hrs, Volume	= 0.311 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 47.97' @ 12.23 hrs Surf.Area= 232 sf Storage= 262 cf

Plug-Flow detention time= 3.4 min calculated for 0.311 af (100% of inflow) Center-of-Mass det. time= 3.2 min (818.6 - 815.4)

Volume	Inv	ert Ava	il.Storage	Storage Descrip	otion	
#1	46.7	75'	484 cf	Custom Stage	Data (Prismatic)Li	sted below
Elevatio (fee		Surf.Area (sq-ft)	Voids (%)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
46.7 49.0	-	20 410	0.0 100.0	0 484	0 484	
Device	Routing			et Devices		
#1	Primary	46	Inle			500 0.0344 '/' Cc= 0.900

Primary OutFlow Max=3.18 cfs @ 12.23 hrs HW=47.96' (Free Discharge) **1=Culvert** (Inlet Controls 3.18 cfs @ 4.05 fps)

Summary for Pond RG1: Raingarden 1

Inflow Area	a =	3.207 ac, 31.33% Impervious, Inflow Depth > 5.17" for 50-Year event
Inflow	=	13.52 cfs @ 12.15 hrs, Volume= 1.383 af
Outflow	=	14.04 cfs @ 12.19 hrs, Volume= 1.330 af, Atten= 0%, Lag= 2.8 min
Primary	=	14.04 cfs @ 12.19 hrs, Volume= 1.330 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 44.44' @ 12.19 hrs Surf.Area= 2,480 sf Storage= 4,413 cf

Plug-Flow detention time= 47.0 min calculated for 1.328 af (96% of inflow) Center-of-Mass det. time= 16.4 min (894.4 - 878.0)

Volume	Inve	ert Ava	il.Storage	Storage Descri	ption		
#1	38.0)0'	4,413 cf	Custom Stage	e Data (Prismatic)Li	isted below	
Elevatio (fee 38.0 39.0 40.5 40.7 41.0 43.0	et) 20 20 50 75 20	Surf.Area (sq-ft) 1,000 1,000 1,000 1,000 1,000 2,480	Voids (%) 0.0 33.0 33.0 10.0 33.0 100.0	Inc.Store (cubic-feet) 0 330 495 25 83 3,480	Cum.Store (cubic-feet) 0 330 825 850 933 4,413		
Device	Routing	,		let Devices	4,413		
#1	Primary		.75' 18.0)" Horiz. Orifice	/Grate C= 0.600		
#2 #3	Primary Device 2		3.00' 6.0'	mited to weir flow at low heads 0" Vert. Orifice/Grate C= 0.600 000 in/hr Exfiltration over Surface area			

Primary OutFlow Max=13.69 cfs @ 12.19 hrs HW=44.32' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 13.64 cfs @ 7.72 fps)

-2=Orifice/Grate (Passes 0.06 cfs of 2.33 cfs potential flow)

1-3=Exfiltration (Exfiltration Controls 0.06 cfs)

Summary for Pond RG4: Raingarden 4

Inflow Area =	0.805 ac, 46.90% Im	pervious, Inflow Depth >	6.60" for 50-Year event
Inflow =	5.05 cfs @ 12.10 hrs	s, Volume= 0.443	3 af
Outflow =	4.95 cfs @ 12.11 hrs	s, Volume= 0.416	S af, Atten= 2%, Lag= 1.0 min
Primary =	4.95 cfs @ 12.11 hrs	s, Volume= 0.416	6 af

Routing by Stor-Ind method, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs Peak Elev= 46.97' @ 12.11 hrs Surf.Area= 1,427 sf Storage= 1,615 cf

Plug-Flow detention time= 68.2 min calculated for 0.415 af (94% of inflow)

Prepared by Altus Engineering, Inc. HydroCAD® 10.00-22 s/n 01222 © 2018 HydroCAD Software Solutions LLC

Volume	Inv	ert Ava	il.Stor	age	Storage Descrip	otion		
#1	42.	50'	1,64	6 cf	Custom Stage	Data (Prismatic)	Listed below	
Elevatio (fee		Surf.Area (sq-ft)	Void (%		Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
42.5	50	400	0.	0	0	0		
43.5	50	400	33.	0	132	132		
43.7	75	400	33.	0	33	165		
45.2	25	400	10.	0	60	225		
45.5	50	400	33.	0	33	258		
47.0	00	1,450	100.	0	1,388	1,646		
Device	Routing	Ir	vert	Outl	et Devices			
#1	Primary	42	2.50'	6.0"	Vert. Orifice/Gra	ate C= 0.600		
#2	Primary		6.50'	18.0	" Horiz. Orifice/	Grate C= 0.600		
	,			Limi	ted to weir flow a	t low heads		
#3	Device 1	1 42	2.50'	1.00	0 in/hr Exfiltration	on over Surface	area	
Primary OutFlow Max=4.83 cfs @ 12.11 hrs HW=46.96' (Free Discharge)								

Center-of-Mass det. time= 23.7 min (885.9 - 862.2)

1=Orifice/Grate (Passes 0.03 cfs of 1.94 cfs potential flow) **3=Exfiltration** (Exfiltration Controls 0.03 cfs) **2=Orifice/Grate** (Weir Controls 4.79 cfs @ 2.22 fps)

Summary for Link POA1: POA #1

Inflow Are	a =	5.529 ac, 30	.69% Impervious	, Inflow Depth > 3	5.39" for 50-Year event
Inflow	=	24.15 cfs @ 1	12.17 hrs, Volum	e= 2.485 a	f
Primary	=	24.15 cfs @ 1	12.17 hrs, Volum	e= 2.485 a	f, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

Summary for Link POA2: POA #2 - Driveway Crossing

Inflow Area	a =	2.939 ac, 31.03% Impervious, Inflow	/ Depth > 5.06"	for 50-Year event
Inflow	=	12.02 cfs @ 12.16 hrs, Volume=	1.240 af	
Primary	=	12.02 cfs @ 12.16 hrs, Volume=	1.240 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 1.00-30.00 hrs, dt= 0.05 hrs

SITE-SPECIFIC

SOIL MAP REPORT

FOR

SAINT PATRICK SCHOOL FACILITY BANFIELD ROAD PORTSMOUTH, NEW HAMPSHIRE

PREPARED FOR:

ALTUS ENGINEERING, INC. 133 COURT STREET PORTSMOUTH, NEW HAMPSHIRE 03801

PREPARED BY:

JOSEPH W. NOEL P.O. BOX 174 SOUTH BERWICK, MAINE 03908

> DECEMBER 21, 2016 JWN #16-92

JOSEPH W. NOEL P.O. BOX 174 SOUTH BERWICK, MAINE 03908 (207) 384-5587

 CERTIFIED SOIL SCIENTIST
 *
 WETLAND SCIENTIST
 *
 LICENSED SITE EVALUATOR

INTRODUCTION

In November and December of 2016, a 10+/- acre parcel located off of Banfield Road in Portsmouth, New Hampshire (proposed parcel 266-5) was soil mapped following *Site-Specific Soil Mapping Standards for New Hampshire and Vermont* (Society of Soil Scientists of Northern New England, Version 4.0, February 2011). This type of soil map uses soil series names and is within the technical standards of the National Cooperative Soil Survey. The purpose of the soil map is to comply with the soil mapping requirements of RSA 485-A:17 and NH DES Env-Wq 1500, Alteration of Terrain for the proposed Saint Patrick School Facility. The estimated maximum size of limiting inclusions (i.e., soils that are appreciable more limiting for use) is 2,000 square feet. The soil mapping legend conforms to the New Hampshire State-Wide Numerical Soils Legend.

Fifteen backhoe-excavated test pits were conducted by the undersigned on November 11, 2016. These test pits were solely for mapping purposes and no detailed test pit logs were completed. A wetland investigation was also conducted in September of 2016 using the methodology described in the *Corps of Engineers Wetlands Delineation Manual* (1987). A base map was provided by Altus Engineering, Inc. that contained: 1-foot contours, existing conditions, and the wetland flagging. This map was used for ground control and to assist in generating the Site-Specific Soil Survey.

A portion of the soil survey area has been developed for a playing field. The balance of the property contains forested uplands and wetlands. The site is a nearly level to gently sloping knoll of glacial till, with finer textures soils in the wetlands. There are also some small areas that have been excavated/regraded. The hydrologic soil groups for the soil map were taken from the NRCS Web Soil Survey on December 5, 2016.

SOIL MAP UNITS

Map Symbol:40Soil Series:Chatfield (well drained)-Hollis (well drained) complex

This mapping unit represents a complex of two soil series that are similar in nature that could not be mapped separately (i.e., Chatfield and Hollis soils).

The Chatfield and Hollis series in this mapping complex consist of well drained soils. These soils formed in a thin mantle of glacial till overlying bedrock. It occurs on some of the knolls and sideslopes but is of limited extent. Bedrock ranges from 10 to 40 inches. Textures typically range from fine sandy loam to sandy loam. It is gently to moderately sloped with some limited areas that are steeper. Slopes range from 3-25%. The hydrologic soil group is B due to the Chatfield being the higher component percentage of the complex. These map units may contain up to 5% of the Scituate soil series.

Map Symbol: 299 Soil Series: Udorthents, smoothed

This represents areas that contain the existing playing field, adjacent lawned locations, and rock/metal debris area. Textures typically range from a fine sandy loam to loamy sand regraded topsoil material over a dense substratum. Bedrock is typically greater than 60 inches on these soils. It is found in three mapping units within the mapping area and was most likely the Scituate soil series prior to disturbance. The drainage class is moderately well drained. The hydrologic soil group is C. Slope ranges are 0-15%. These map units may contain up to 15% inclusions of Scituate soils. This mapping unit is further separated into using the five components of the Disturbed Soil Mapping Unit Supplement:

299A/dccdc

Symbol 1: Drainage Class (current)	Moderately Well Drained
Symbol 2: Parent Material (of naturally formed soil only, if present)	Glacial Till
Symbol 3: Restrictive/Impervious Layers	Mineral restrictive horizon within 40"
Symbol 4: Estimated Ksat (most restrictive layer excluding 3h)	Not determined
Symbol 5: Hydrologic Soil Group	С

Map Symbol: 448 Soil Series: Scituate

This series consists of moderately well drained soils that formed in dense sandy loam to loamy sand glacial till. This is the predominant soil type found in the mapping area. It is located on high to mid-slope positions on the landscape. The textures range from fine sandy loam to sandy loam to loamy fine sand. Scituate soils have a compact densipan and may have a perched watertable at between 16 and 30 inches below the surface in the spring. The hydrologic soil group is C. The slope ranges are 0-25%. These map units may contain up to 10% inclusions of somewhat poorly drained Raynham and somewhat poorly drained Ridgebury soils.

Map Symbol:533Soil Series:Raynham (poorly drained)

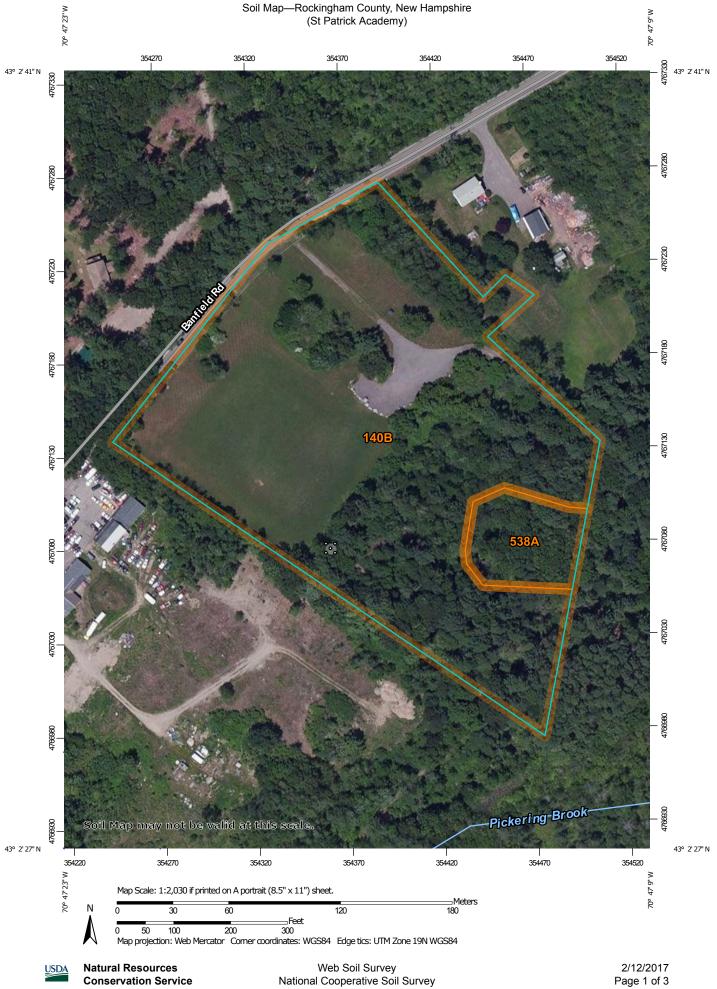
This mapping unit consists of very deep, poorly drained soils that formed in fine textured estuarine/marine deposits. It is found in one area and is of limited extent. It is nearly level to gently sloping with textures ranging from very fine sandy loam to silt loam. It usually classifies as a hydric soil. The slopes range from 0-3%. The hydrologic soil group is D. This map unit may contain 10% inclusions of the somewhat poorly drained Raynham (non-hydric).

Map Symbol:926Soil Series:Ridgebury (somewhat poorly drained)

This mapping unit consists of somewhat poorly drained soils that formed in dense glacial till. It is found along the western side of the mapping limits adjacent to the poorly drained Raynham and the moderately well drained Scituate soils. It is nearly level to gently sloping with textures ranging from fine sandy loam to very fine sandy loam to sandy loam. The slopes range from 0-8%. The hydrologic soil group is D. This map unit may contain 10% inclusions of the somewhat poorly drained Raynham and moderately well drained Scituate soils.

Map Symbol: 931 Soil Series: Raynham (somewhat poorly drained)

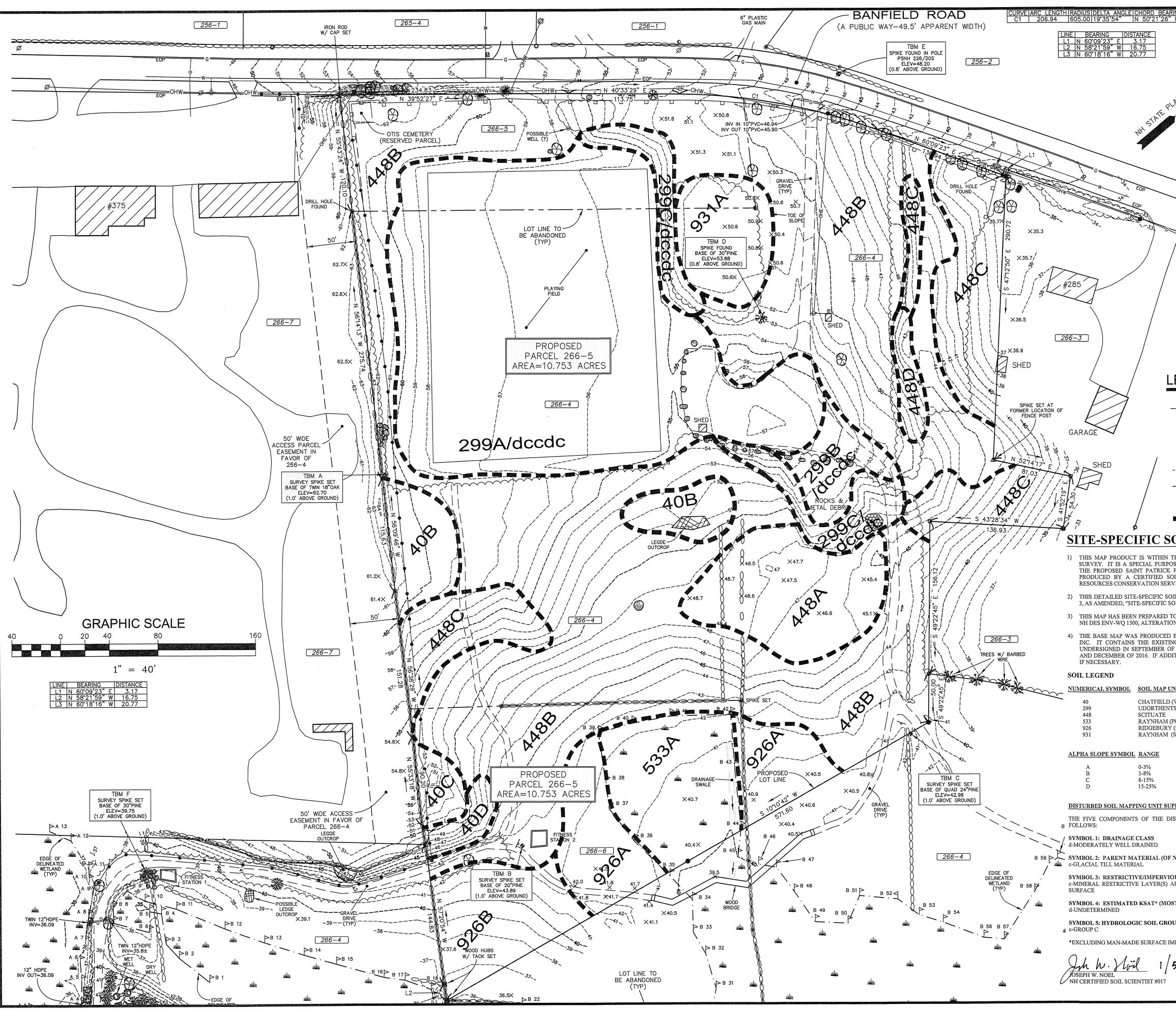
This mapping unit consists of somewhat poorly drained soils that formed in fine textured estuarine/marine deposits. It is found in one area near Banfield Road. It is nearly level to gently sloping. The slopes range from 0-3%. The surface horizon to 8 inches is a dark grayish brown (2.5Y 4/2) very fine sandy loam with a subsoil that is 3 inches thick of a light olive brown (2.5Y 5/3) with a substratum of light olive brown (2.5Y 5/4) silt loam. The vegetation in this map unit is mixed with both upland and wetland vegetation but the representative soil description above (backhoe excavated test pit conducted on November 11, 2016) does not classify as a hydric soil and therefore this map unit is located in an upland area. The hydrologic soil group is D. This map unit may contain 5% inclusions of the somewhat poorly drained Ridgebury soils.


CLOSING

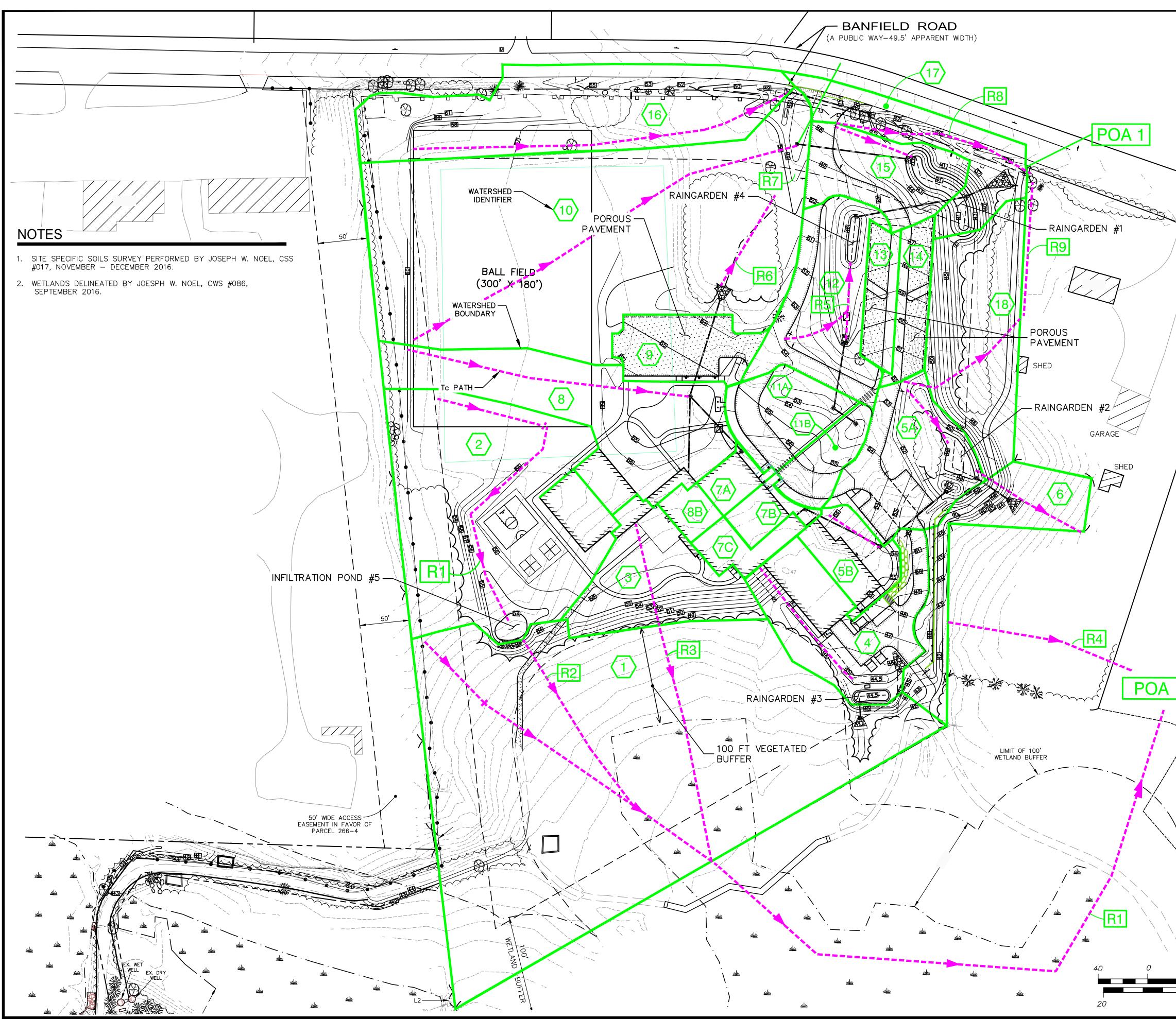
Inaccuracies or deficiencies in the base map may be unknowingly reflected in the soil survey, particularly in the boundary line placement between soil map units. This map was designed to provide soil information for the proposed St. Patrick School facility and to meet Alteration of Terrain requirements and may not be adequate for other purposes.

nh h.)

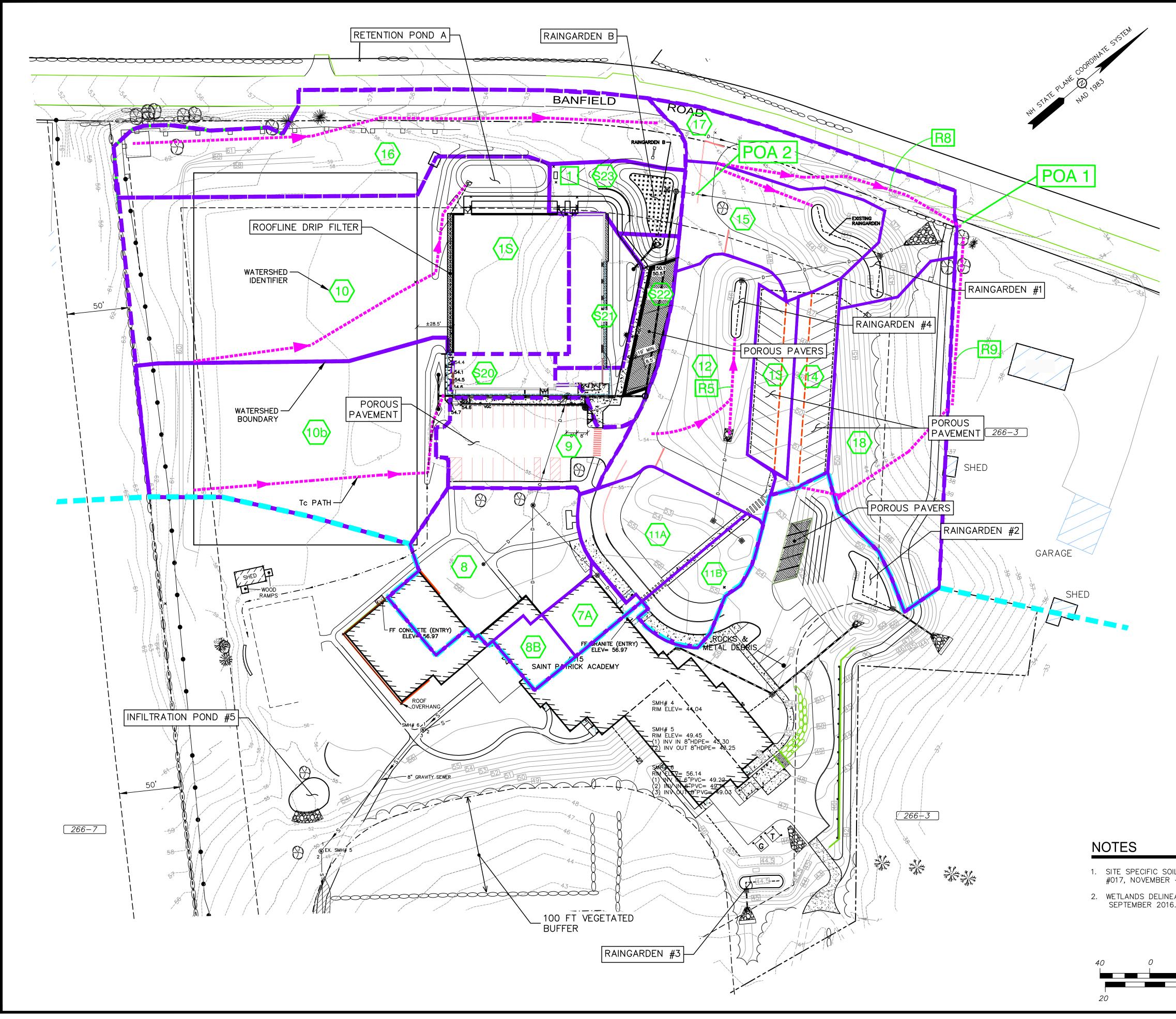
Joseph W. Noel, CPSS/SC New Hampshire Certified Soil Scientist #017 New Hampshire Certified Wetland Scientist #086


Conservation Service

MAP	LEGEND	MAP INFORMATION	
Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons ✓ Soil Map Unit Polygons ✓ Soil Map Unit Lines ■ Soil Map Unit Points Special Point Features Borrow Pit ✓ Borrow Pit ✓ Clay Spot ✓ Closed Depression ✓ Gravel Pit ∴ Gravelly Spot ✓ Landfill ▲ Marsh or swamp ✓ Mine or Quarry ⑥ Perennial Water ✓ Rock Outcrop ↓ Saline Spot ∴ Saline Spot	 Spoil Area Stony Spot Very Stony Spot 	 The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data are of the version date(s) listed below. Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 18, Sep 15, 2016 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jun 20, 2010—Jul 18, 2010 The orthophoto or other base map on which the soil lines were 	
Sandy Spot Severely Eroded Spot Sinkhole Slide or Slip Sodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	


Map Unit Legend

Rockingham County, New Hampshire (NH015)			
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
140B	Chatfield-Hollis-Canton complex, 0 to 8 percent slopes, rocky	9.4	93.1%
538A	Squamscott fine sandy loam, 0 to 5 percent slopes	0.7	6.9%
Totals for Area of Interest		10.1	100.0%



	പ്പെട്ടിയത്തെ കടഞ്ഞും പാന് അത് പോള് അന്ദര് പങ്കില് കോടം പോന്നും പോന്നും പോന്നും പുറം പില്ലാന് പറ്റിന്നും നോണ്ടെ പെട്
RING CHORD LENGTH 'E 205.94	ENGINEER:
TEM	
	ALTUS
LANE COORDINATE SYSTEM	
coole	ENGINEERING, INC.
1. M. Q. 1.983	
NADIS	133 COURT STREETPORTSMOUTH, NH 03801(603) 433-2335www.ALTUS-ENG.com
	ISSUED FOR:
	APPROVAL
VOGEPH V	ISSUE DATE:
NOËL VIJE 117	DECEMBER 28, 2016
	REVISIONS
No. 086	NO. DESCRIPTIONBYDATE0INITIAL SUBMISSIONEDW12/28/16
METLAND SCIU	
EGEND	
90.20 PROPERTY LINE	DRAWN BY:RLH
N 55'33'18" W	APPROVED BY:EDW
	DRAWING FILE: 4801EC.DWG
WETLAND/SOILS BOUNDARY	SCALE:
50 EXISTING CONTOUR	$22" \times 34" - 1" = 40'$
00	$11" \times 17" - 1" = 80'$
	OWNER:
TREELINE	HOPE FOR
SSS SOIL BOUNDARY (2016)	TOMORROW FOUNDATION
OIL MAP NOTES	COVE SPACE
THE TECHNICAL STANDARDS OF THE NATIONAL COOPERATIVE SOIL	36 MAPLEWOOD AVENUE
OSE PRODUCT, INTENDED FOR USE BY ALTUS ENGINEERING, INC. FOR FACILITY AND ALTERATION OF TERRAIN REQUIREMENTS. IT WAS	PORTSMOUTH, N.H. 03801
OIL SCIENTIST, AND IS NOT A PRODUCT OF THE USDA NATURAL RVICE. THERE IS A NARRATIVE REPORT THAT ACCOMPANIES THIS MAP.	ASSESSOR'S PARCEL
DIL MAP CONFORMS TO THE STANDARDS OF SSSNNE PUBLICATION NO.	266-5
SOIL MAPPING STANDARDS FOR NH AND VT". TO COMPLY WITH SOIL MAPPING REQUIREMENTS OF RSA 485-A:17 AND	
ON OF TERRAIN.	
) BY JAMES VERRA AND ASSOCIATES, INC. AND ALTUS ENGINEERING, NG CONDITIONS AND WETLAND DELINEATION CONDUCTED BY THE	APPLICANT:
OF 2016. SOIL MAPPING FIELDWORK WAS CONDUCTED IN NOVEMBER DITIONAL TEST PITS ARE CONDUCTED, THE SOIL MAP MAY BE REVISED,	SAINT PATRICK
	ACADEMY
UNIT NAME HSG	AUSTIN STREET
WELL DRAINED)-HOLLIS (WELL DRAINED) COMPLEX B	PORTSMOUTH, N.H. 03801
TS, SMOOTHED C C	
(POORLY DRAINED)DY (SOMEWHAT POORLY DRAINED)D(SOMEWHAT POORLY DRAINED)D	
	PROJECT:
	SAINT PATRICK
	ACADEMY
JPPLEMENT	335 BANFIELD ROAD
DISTURBED SOIL MAPPING UNIT SUPPLEMENT ON THIS MAP ARE AS	PORTSMOUTH, N.H.
	ASSESSOR'S PARCEL
	266-5
F NATURALLY FORMED SOIL ONLY, IF PRESENT)	
OUS LAYERS ARE PRESENT IN THE SOIL PROFILE LESS THAN 40" BELOW THE SOIL	<u>TITLE:</u>
DST LIMITING LAYER EXCLUDING SYMBOL 3h ABOVE)	SITE SPECIFIC
DUP*	SOILS PLAN
MPERVIOUS/RESTRICTIVE LAYERS	
MPERVIOUS/RESTRICTIVE LAYERS	SHEET NUMBER:
	1 0F 1

	ENGINEER:
NH STATE PLANE QUARTE SYSTEM NH STATE PLANE QUARTE SYSTEM	ACTUS ACTUS ENGINEERING, INC. 133 COURT STREET (603) 433–2335 PORTSMOUTH, NH 03801 www.ALTUS–ENG.com
	ISSUED FOR: DRAINAGE STUDY ISSUE DATE: DECEMBER 23, 2019 REVISIONS NO. DESCRIPTION BY DATE 0 INITIAL SUBMISSION CDB 12/23/19
UEGEND 90.20 90.20 N 55'33'18" W PROPERTY LINE	DRAWN BY: CDB APPROVED BY: EDW DRAWING FILE: $4801EC.DWG$ SCALE: $22" \times 34" - 1" = 40'$ $11" \times 17" - 1" = 80'$ <u>OWNER:</u> FOUNDATION FOR SEACOAST HEALTH
WETLAND/SOILS BOUNDARY WATERSHED BOUNDARY Tc PATH	100 CAMPUS DRIVE-SUITE 1
POA POINT OF ANALYSIS R1 REACH	HOPE FOR TOMORROW FOUNDATION 36 MAPLEWOOD AVENUE PORTSMOUTH, N.H. 03801
	PROJECT: SAINT PATRICK ACADEMY BANFIELD ROAD PORTSMOUTH, N.H. ASSESSOR'S PARCELS 266-4, 266-5 & 266-6 <u>IITLE:</u> PRE-DEVELOPMENT WATERSHED
40 80 120 160 FEET 40 20 40 METERS	SHEET NUMBER: W-1

			_			
				ENGINEER:		
LEGEND					TT TO	
90.20 N 55°33'18" W	PROPERTY LIN	E			US ERING, INC.	
B 33 B 32	WETLAND/SOIL	S BOUNDARY		133 COURT STREET (603) 433–2335	PORTSMOUTH, NH 03801 www.ALTUS-ENG.com	-
B 33	WATERSHED B	OUNDARY	ŀ			=
	Tc PATH					
$\langle 1 \rangle$	SUBCATCHMEN	IT				
$\underline{\wedge}$	POND					
1	REACH					
	WATERSHED D	IVISION LINE		ISSUED FOR: D	RAINAGE STUDY	r
				ISSUE DATE: JAN	NUARY 29, 2019	9
				REVISIONS NO. DESCRIPTION 0 INITIAL SUBMISSION 1 TAC REVISIONS	BY DATE	9
			ł	DRAWN BY:	CDB	
				APPROVED BY: _	EDW	
				DRAWING FILE: SCALE:	+001LC.DWG	
				 22" × 34	" - 1" = 40' " - 1" = 80'	
			ł	OWNER:		
				SEACOAS 100 CAMPUS PORTSMOUT ASSESSOF	ATION FOR ST HEALTH DRIVE—SUITE 1 TH, N.H. 03801 R'S PARCELS 6—5 & 266—6	I
				APPLICANT:		
				TOMORROW 36 MAPLEV	PE FOR FOUNDATION WOOD AVENUE TH, N.H. 03801	
			┢	PROJECT:		
					ADEMY ELD ROAD	
				PORTSM ASSESSO	IOUTH, N.H. R'S PARCELS 6-5 & 266-6	
DILS SURVEY PERFORMED B' – DECEMBER 2016.	Y JOSEPH W. N	OEL, CSS	┠			
EATED BY JOESPH W. NOEL 6.	, CWS #086,			POST-DE WATE	VELOPMENT ERSHED PLAN	Г
40 80	120	160 FEET		SHEET NUMBER:		
0 20		40 METERS	P4801	١	N-2	

INSPECTION AND MAINTENANCE MANUAL FOR

STORMWATER MANAGEMENT / BMP FACILITIES

Saint Patrick Academy

315 Banfield Road Portsmouth, NH Assessor's Parcel 266-5

Proper inspection, maintenance, and repair are key elements in maintaining a successful stormwater management program on a developed property. Routine inspections ensure permit compliance and reduce the potential for deterioration of infrastructure or reduced water quality. The following responsible parties shall be in charge of managing the stormwater facilities:

RESPONSIBLE PARTIES:

Dwner: Name	Company	Phone
nspection:		
Name	Company	Phone
laintenance:		
Name	Company	Phone

Included in this Inspection and Maintenance Manual are the following components:

- Drainage Features and Site BMP Functions and Maintenance Descriptions
- Inspection and Maintenance Checklist
- Stormwater System Operations and Maintenance Report Form
- Smart Salting Practices Form
- Site De-Icing Log
- Site Watershed Map

RAINGARDENS, STORMWATER PONDS, AND INFILTRATION BASINS

Function – Raingardens and infiltration ponds provide treatment to runoff prior to directing it to stormwater systems by filtering sediment and suspended solids, trapping them in the bottom of the garden and in the filter media itself. Additional treatment is provided by the native water-tolerant vegetation which removes nutrients and other pollutants through bio-uptake. Stormwater detention and infiltration can also be provided as the filtering process slows runoff, decreases the peak rate of discharge and promotes groundwater recharge.

Detention ponds temporarily store runoff and allow for its controlled release during and after a storm event, decreasing peak rates of runoff and minimizing flooding.

Raingardens, infiltration ponds, and detention ponds shall be managed (Per AGR 3800 and RSA 430:53) to: prevent and control the spread of invasive plant, insect, and fungal species; minimize the adverse environmental and economic effects invasive species cause to agriculture, forests, wetlands, wildlife, and other natural resources of the state; and protect the public from potential health problems attributed to certain invasive species.

Maintenance

• Inspect annually and after significant rainfall event.

• If a raingarden does not completely drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore its filtration and/or infiltration function(s), including but not limited to removal of accumulated sediments and/or replacement or reconstruction of the filter media.

• Replace any riprap dislodged from spillways, inlets and outlets.

• Remove any obstructions, litter and accumulated sediment or debris as warranted but no less than once a year.

• Mowing of any grassed area in or adjacent to a raingarden shall be performed on a monthly basis (when areas are not inundated) to keep the vegetation in vigorous condition. The cut grass shall be removed to prevent the decaying organic litter from clogging the filter media or choking other vegetation.

• Select vegetation should be maintained in healthy condition. This may include pruning, removal and replacement of dead or diseased vegetation.

• Remove any invasive species, Per AGR 3800 and RSA 430:53.

CULVERTS AND DRAINAGE PIPES

Function – Culverts and drainage pipes convey stormwater away from buildings, walkways, and parking areas and to surface waters or closed drainage systems.

Maintenance

• Culverts and drainage pipes shall be inspected semi-annually, or more often as needed, for accumulation of debris and structural integrity. Leaves and other debris shall be removed from the inlet and outlet to insure the functionality of drainage structures. Debris shall be disposed of on site where it will not concentrate back at the drainage structures or at a solid waste disposal facility.

• Riprap Areas - Culvert outlets and inlets shall be inspected during annual maintenance and operations for erosion and scour. If scour or creek erosion is identified, the outlet owner shall take appropriate means to prevent further erosion. Increased lengths of riprap may require a NHDES Wetlands Permit modification.

CATCH BASINS

Function – Catch basins collect stormwater, primarily from paved surfaces and roofs. Stormwater from paved areas often contains sediment and contaminants. Catch basin sumps serve to trap sediment, trace metals, nutrients and debris. Hooded catch basins trap hydrocarbons and floating debris.

Maintenance

- Remove leaves and debris from structure grates on an as-needed basis.
- Sumps shall be inspected and cleaned (as needed) on an annual basis to protect water quality and infiltration capacity. Catch basin debris shall be disposed of at a solid waste disposal facility.

VEGETATIVE SWALES

Function – Vegetative swales filter sediment from stormwater, promote infiltration, and the uptake of contaminates. They are designed to treat runoff and dispose of it safely into the natural drainage system.

Maintenance

- Timely maintenance is important to keep a swale in good working condition. Mowing of grassed swales shall be monthly to keep the vegetation in vigorous condition. The cut vegetation shall be removed to prevent the decaying organic litter from adding pollutants to the discharge from the swale.
- Fertilizing shall be bi-annual or as recommended from soil testing.

- Inspect swales following significant rainfall events.
- Woody vegetation shall not be allowed to become established in the swales or rock riprap outlet protection and if present shall be removed.
- Accumulated debris disrupts flow and leads to clogging and erosion. Remove debris and litter as necessary.
- Inspect for eroded areas. Determine cause of erosion and correct deficiency as required. Monitor repaired areas.

LEVEL SPREADERS AND VEGETATED BUFFERS

Function – Level spreaders covert concentrated stormwater flows into less-erosive sheet flow, minimizing erosion and maximizing the treatment capabilities of associated buffers. Vegetated buffers, either forested or meadow, slow runoff which promotes and reduced peak rates of runoff. The reduced velocities and the presence of vegetation encourage the filtration of sediment and the limited bio-uptake of nutrients.

Maintenance

- Inspect level spreaders and buffers at least annually for signs of erosion, sediment buildup, or vegetation loss.
- If a meadow buffer, provide periodic mowing as needed to maintain a healthy stand of herbaceous vegetation.
- If a forested buffer, then the buffer should be maintained in an undisturbed condition, unless erosion occurs.
- If erosion of the buffer (forested or meadow) occurs, eroded areas should be repaired and replanted with vegetation similar to the remaining buffer. Corrective action should include eliminating the source of the erosion problem and may require retrofit or reconstruction of the level spreader.
- Remove debris and accumulated sediment and dispose of properly.

POROUS PAVEMENT

Function – Porous pavement is designed to capture rainwater runoff containing suspended solids, nutrients and pollutants. Proper maintenance of porous pavement is crucial for ensuring its longevity and functionality to infiltrate runoff.

Maintenance

- Signs shall be installed indicating the location of porous pavement and the special maintenance required.
- New porous pavement shall be inspected several times in the first month after construction and at least annually thereafter. Inspections shall be conducted after major storms to check for surface ponding that might indicate possible clogging.
- Inspect annually for pavement deterioration or spalling.
- Vacuum sweeping shall be performed 2-4 times a year. Power washing may be required prior to vacuum sweeping to dislodge trapped particles.
- Sand and abrasives shall not be used for winter maintenance, as they will clog the pores; deicing materials shall be used instead.
- Never reseal or repave with impermeable materials. If the porous pavement is damaged, it can be repaired using conventional, non-porous patching mixes as long as the cumulative area repaired does not exceed 10 percent of the paved area.

ROOF DRIP EDGE FILTERS

Function – Drip edge filters provide treatment to runoff prior to directing it to stormwater systems by filtering sediment and suspended solids, trapping them and filter media itself. Stormwater detention and infiltration can also be provided as the filtering process slows runoff, decreases the peak rate of discharge and promotes groundwater recharge

Maintenance

- Inspect annually and after significant rainfall event.
- Remove any obstructions, litter and accumulated sediment or debris as warranted but no less than once a year.
- Inspect for eroded areas. Determine cause of erosion and correct deficiency as required. Monitor repaired areas.

LANDSCAPED AREAS - FERTILIZER MANAGEMENT

Function – Fertilizer management involves controlling the rate, timing and method of fertilizer application so that the nutrients are taken up by the plants thereby reducing the chance of polluting the surface and ground waters. Fertilizer management can be effective in reducing the amounts of phosphorus and nitrogen in runoff from landscaped areas, particularly lawns.

Maintenance

- Have the soil tested by your landscaper or local Soil Conservation Service for nutrient requirements and follow the recommendations.
- Do not apply fertilizer to frozen ground.
- Clean up any fertilizer spills.
- Do not allow fertilizer to be broadcast into water bodies.
- When fertilizing a lawn, water thoroughly, but do not create a situation where water runs off the surface of the lawn.

LANDSCAPED AREAS - LITTER CONTROL

Function – Landscaped areas tend to filter debris and contaminates that may block drainage systems and pollute the surface and ground waters.

Maintenance

- Litter Control and lawn maintenance involves removing litter such as trash, leaves, lawn clippings, pet wastes, oil and chemicals from streets, parking lots, and lawns before materials are transported into surface waters.
- Litter control shall be implemented as part of the grounds maintenance program.

DE-ICING CHEMICAL USE AND STORAGE

Function – Sand and salt are used for de-icing of drives.

<u>The project is located within a watershed of a chloride-impaired waterbody. Therefore,</u> <u>Salt use shall be minimized for de-icing activities.</u>

The responsible party shall employ a <u>New Hampshire Certified Salt Applicator</u> for winter snow and ice management activities.

Maintenance

• Salt use shall be minimized. Sand shall be used for de-icing activities when possible. Salt is highly water-soluble. Contamination of fresh water wetlands and other sensitive areas can occur when salt is stored in open areas. Owner shall not store salt piles on site.

- **Smart Salting Practices.** Owner's representative shall review and complete the Smart Salting Practices form included in the appendix annually prior to de-icing activities.
- Salt is highly water-soluble. Contamination of fresh water wetlands and other sensitive areas can occur when salt is stored in open areas. Salt piles shall be covered at all times if not stored in a shed. Runoff from stockpiles shall be contained to keep the runoff from entering the drainage system.

CONTROL OF INVASIVE PLANTS

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

GENERAL CLEAN UP

Upon completion of the project, the contractor shall remove all temporary stormwater structures (i.e., temporary stone check dams, silt fence, temporary diversion swales, catch basin inlet basket, etc.). Any sediment deposits remaining in place after the silt fence or filter barrier is no longer required shall be dressed to conform to the existing grade, prepared, and seeded. Remove any sediment in catch basins and clean drain pipes that may have accumulated during construction.

Once in operation, all paved areas of the site should be swept at least once annually, preferably at the end of winter prior to significant spring rains.

Inspection & Maintenance Checklist

BMP / System	Minimum Inspection Frequency	Minimum Inspection Requirements	Maintenance/ Cleanout Threshold		
Paved surfaces:					
Pavement Sweeping	Routinely	N/A	N/A		
Litter & Trash Removal	Routinely	N/A	Parcel will be free of litter/trash.		
Deicing Agents	N/A	Keep De-Icing Log	Low Salt		
Closed Drainage System:					
Drainage Pipes	1 time per 2 years	Check for sediment accumulation & clogging.	Less than 2" sediment depth		
Catch Basins Annually		Check for sediment accumulation (Less than 24" sediment), blocked hood, and floating debris.	Clean Sumps. Remove all floating debris.		
Drain Manhole	Annually	Check for sediment, debris, and obstructions.	Remove all Obstructions.		

BMP / System	Minimum Inspection Frequency	Minimum Inspection Requirements	Maintenance / Cleanout Threshold
RMDc:			
BMPs: Raingardens or Infiltration Pond	Annually	 Check infiltration rates and filter media. Check for trash & debris. Check for sediment buildup. Check for vegetation stability. Check for excess woody vegetation growth. Check for invasive species. 	Remove trash & debris, sediment, woody vegetation, and invasive species. Side slopes and berm are to be mowed. Replant vegetation if required.
Vegetated Swale	Annually	Check for sediment buildup, vegetation loss and invasive species, debris, and damage.	Remove sediment, debris and invasive species, repair damage, and mow grass monthly to a depth of 4 inches.
Riprap Outlet Protection	Annually	Check for sediment buildup and structure damage.	Remove excess sediment and repair damage.
Stone Berm Level Spreader	Annually	Check for sediment buildup, debris and signs of erosion.	Remove sediment and debris. Immediately repair.

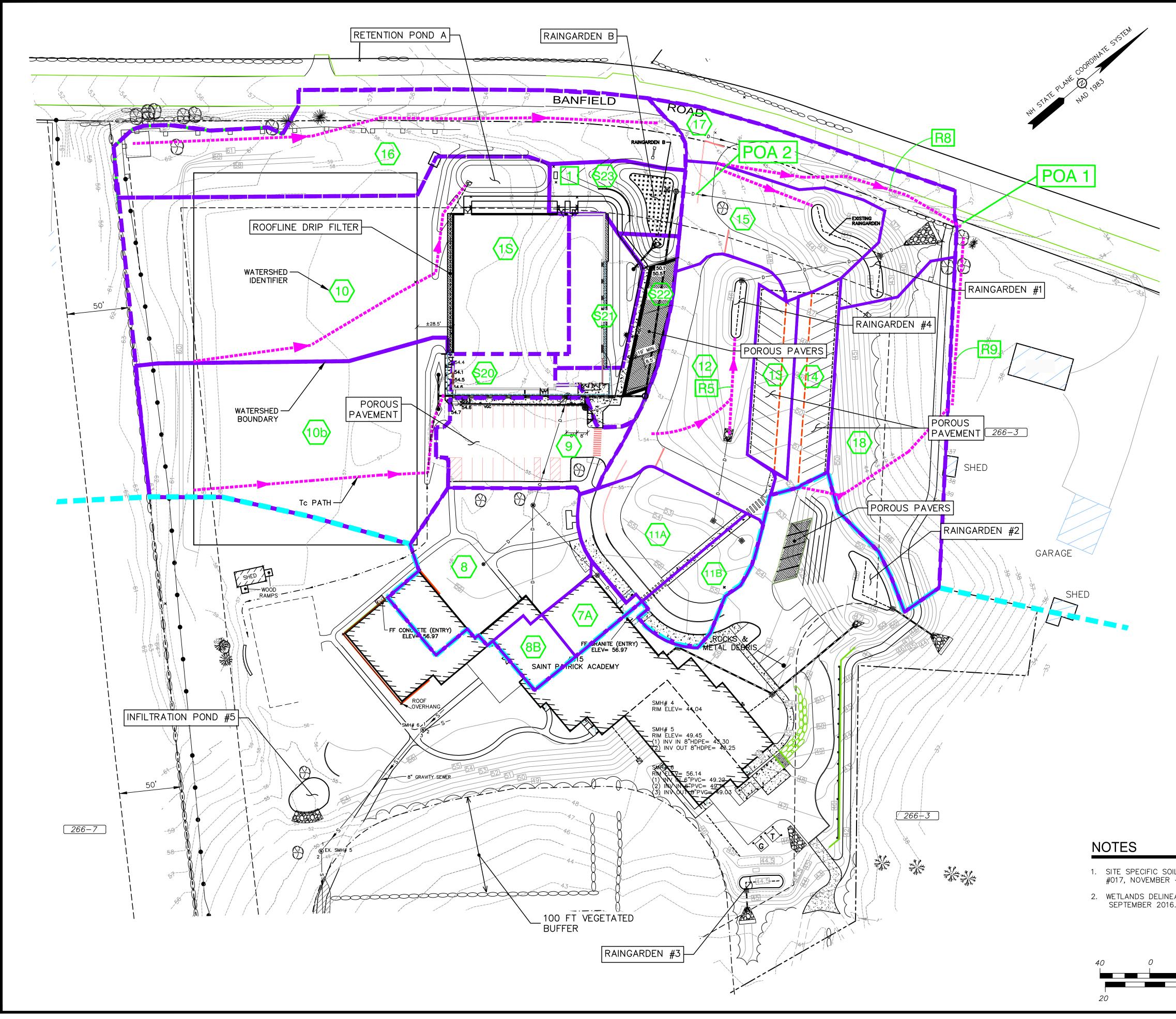
STORM WATER SYSTEM OPERATION AND MAINTENANCE REPORT

General Information								
Project Name								
Owner								
Inspector's Name(s)								
Inspector's Contact Information								
Date of Inspection	Start Time:	End Time:						
Type of Inspection: Annual Report Post-storm event Due to a discharge of significant amounts of sediment								
Notes:								

	General Site Questions and Discharges of Significant Amounts of Sediment							
Sut	oject	Status	Notes					
	ischarge of significant amounts of sedime e whether any are observed during this in		ndicated by (but is not limited to) observations of the following.					
			Notes/ Action taken:					
1	Do the current site conditions reflect the attached site plan?	□Yes □No						
2	Is the site permanently stabilized, temporary erosion and sediment controls are removed, and stormwater discharges from construction activity are eliminated?	□Yes □No						
3	Is there evidence of the discharge of significant amounts of sediment to surface waters, or conveyance systems leading to surface waters?	□Yes □No						
4	Is there evidence of concentrated flows of stormwater such as rills or channels that cause erosion when such flows are not filtered, settled or otherwise treated to remove sediment?	□Yes □No						
5	Is there evidence of deposits of sediment from the site on any adjacent property or stormwater system.	□Yes □No						
6	Is there evidence of discharges from the site to streams running through or along the site where visual observations indicate significant amounts of sediment present in them.	□Yes □No						
7	Is there evidence of invasive species within the stormwater treatment areas?	□Yes □No						

	Permit Coverage and Plans								
#	BMP/Facility	Inspected	Corrective Action Needed and Notes	Date Corrected					
		QYes							
		□No □Yes							
		\square No							
		□No □Yes							
		□No □Yes							
		□No □Yes							
		□Yes							
		□No							
		□Yes							
		□No							
		□Yes □No							
		□Yes □No							
		□Yes							
		□No							
		□Yes □No							
		□Yes □No							
		□Yes □No							
		□No							
		□Yes □No							
		□Yes □No							
		□Yes □No							
		□Yes □No							
		□Yes □No							
		□Yes □No							
		□Yes □No							

ATTACHMENT B – SMART SALTING PRACTICES


A checklist for snow and ice maintenance contractors.

	Check which response applies to current practices and anticipated site maintenance activities for job site.								
	Already	•	Might	Will not	If "will not do"why				
Recommended practice	do	Will do	do	do	not?				
Use an application rate chart.									
Calibrate equipment each year.									
Learn about the deicer ingredients and use the appropriate one for the condition.									
Look for reasons if and why materials are leaking or spilling from vehicles and fix them (e.g. gaps, overfilling, etc).									
Develop a comprehensive winter maintenance policy.									
Measure and use pavement temperatures.									
Use anti-icing appropriately prior to the storm.									
Plow before applying deicers.									
Use wet materials (pre-wet or pre- treated).									
Don't apply sodium chloride (road salt) for pavement temperatures below 15ºF.									
Don't apply deicers for pavement temps under -10º F. It's too cold.									
Separate salt and sand. Use salt for melting. Use sand for traction.									
Apply deicers in the center of the road or on the high side of the curve.									
Store the salt in a building or under secure cover.									
Store salt away from water flow and direct the water away from storage area.									
Store snow away from lakes, ponds and wetlands.									
Sweep up sand, dispose of properly. For each event, document what you did and how well it worked. Use this									
information to make improvements.									

Checklist is adapted from worksheet created by Fortin Consulting as a part of the Minnesota Pollution Control Agency Smart Salting Voluntary Certification Program.

SITE DE-ICING LOG

Permit Coverage and Plans										
The owner of the site.										
Date	De-Icing Material Used	Amount Used	Notes:							

			_			
				ENGINEER:		
LEGEND					TT TO	
90.20 N 55°33'18" W	PROPERTY LIN	E			US ERING, INC.	
B 33 B 32	WETLAND/SOIL	S BOUNDARY		133 COURT STREET (603) 433–2335	PORTSMOUTH, NH 03801 www.ALTUS-ENG.com	-
B 33	WATERSHED B	OUNDARY	ŀ			=
	Tc PATH					
$\langle 1 \rangle$	SUBCATCHMEN	IT				
$\underline{\wedge}$	POND					
1	REACH					
	WATERSHED D	IVISION LINE		ISSUED FOR: D	RAINAGE STUDY	r
				ISSUE DATE: JAN	NUARY 29, 2019	9
				REVISIONS NO. DESCRIPTION 0 INITIAL SUBMISSION 1 TAC REVISIONS	BY DATE	9
			ł	DRAWN BY:	CDB	
				APPROVED BY: _	EDW	
				DRAWING FILE: SCALE:	+001LC.DWG	
				 22" × 34	" - 1" = 40' " - 1" = 80'	
			ŀ	OWNER:		
				SEACOAS 100 CAMPUS PORTSMOUT ASSESSOF	ATION FOR ST HEALTH DRIVE—SUITE 1 TH, N.H. 03801 R'S PARCELS 6—5 & 266—6	I
				APPLICANT:		
				TOMORROW 36 MAPLEV	PE FOR V FOUNDATION WOOD AVENUE TH, N.H. 03801	
			┢	PROJECT:		
					ADEMY ELD ROAD	
				PORTSM ASSESSO	IOUTH, N.H. R'S PARCELS 6-5 & 266-6	
DILS SURVEY PERFORMED B' – DECEMBER 2016.	Y JOSEPH W. N	OEL, CSS	┠			
EATED BY JOESPH W. NOEL 6.	, CWS #086,			POST-DE WATE	VELOPMENT ERSHED PLAN	Г
40 80	120	160 FEET		SHEET NUMBER:		
0 20		40 METERS	P4801	١	N-2	

TRAFFIC IMPACT ASSESSMENT UPDATE

ST. PATRICK ACADEMY – PROPOSED GYMNASIUM

Portsmouth, New Hampshire

December 2019

Prepared for

Hope for Tomorrow Foundation

Transportation: Engineering • Planning • Design

TRAFFIC IMPACT ASSESSMENT UPDATE ST. PATRICK ACADEMY PROPOSED GYMNASIUM PORTSMOUTH, NEW HAMPSHIRE December 19, 2019

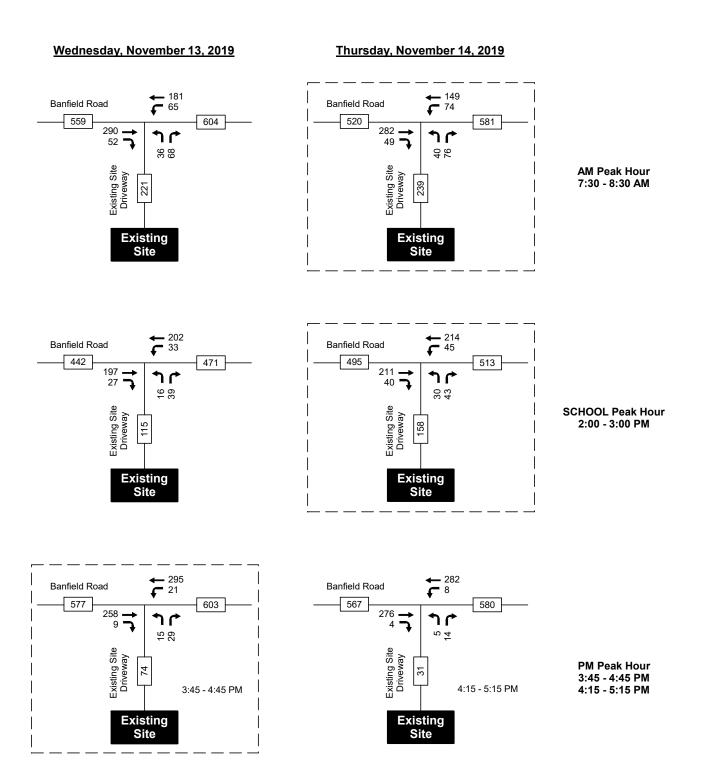
BACKGROUND

On January 31, 2017 this office published the report entitled "*Traffic Impact Assessment -Proposed St. Patrick Academy*" on behalf of the Hope for Tomorrow Foundation. Now that the Academy is in full operation, the Foundation desires to construct a standalone gymnasium building on their property for physical education classes and athletic events. The purpose of this update is to quantify the current trip generating characteristics of the existing school, the anticipated changes in traffic demand due to the proposed gymnasium, and to evaluate the Banfield Road / Existing Site Driveway intersection in terms of traffic operations, capacity, and safety.

CURRENT PROPOSAL

The current development proposal calls for the construction of a 17,000 square-foot gymnasium building on the south side of the subject site. This building will be used primarily for after-school practices (typically from 3-6 PM) and athletic events (typically from 6-8 PM). The building will also be used for occasional concerts, science fairs, dances, and pep rallies.

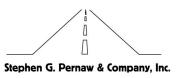
On typical "practice" days, fewer parents will retrieve their children during the normal pick-up time (2-3 PM) since practices generally end at 6 PM, well after the peak traffic hour of the adjacent street system. It is reasonable to expect that parent arrivals will occur between 3-6 PM, as some will arrive early to watch the practice.


On typical "event" days traffic will be affected in several different ways: 1) traveling visitors and referees will arrive before 6 PM and depart after 8 PM, 2) Academy staff will remain on site and depart after 8 PM rather than during the late afternoon, and 3) parents will arrive later in the day in either one or two vehicles to watch the event and then depart after 8 PM.

Additional on-site parking is proposed adjacent to the new gymnasium building. Vehicular access to the gymnasium site will be provided via the existing two-way driveway that currently intersects the south side of Banfield Road. Attachment 1 shows the location of the proposed building with respect to the site and the adjacent street system.

EXISTING TRAFFIC VOLUMES

To quantify the traffic demand and the travel patterns at the Banfield Road / Existing Site Driveway intersection, Pernaw & Company, Inc. conducted turning movement and vehicle classification counts at the intersection on two typical weekdays: Wednesday, November 13, 2019 and Thursday, November 14, 2019. These counts were conducted from 7:00 to 9:00 AM and from 2:00 to 6:00 PM, similar to the original traffic study. Figure 1 summarizes this data for the three analysis periods: the weekday AM Street Peak Hour, the School Peak Hour, and the PM Street Peak Hour.



2019 Existing Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

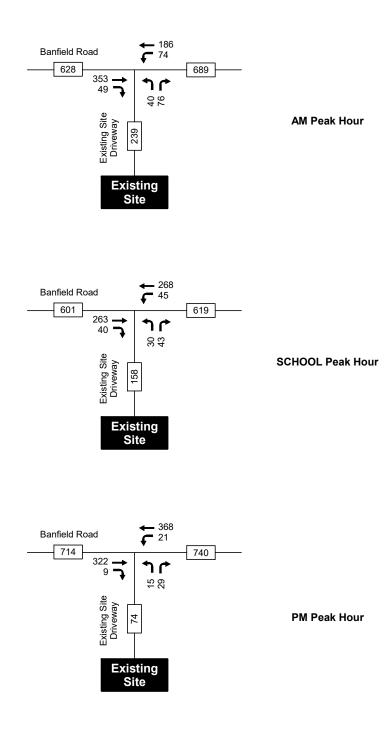
1978A

Several facts and conclusions are evident from this data:

- The Thursday traffic volumes were generally higher than the Wednesday volumes, except for the weekday PM peak hour period. Data from the higher of the two count days were selected for traffic projection and analysis purposes.
- The two-way traffic volume on Banfield Road (east of the subject site) totaled 581 (AM), 513 (School), and 603 (PM) vehicles during the three peak hour periods. The predominant travel direction was eastbound during the AM peak hour; the directional flows were relatively balanced during the school and PM peak hour periods.
- On the higher count days the existing school generated 239 (AM), 158 (School) and 74 (PM) vehicle-trips during the three peak hour periods. The majority of school traffic (56-68%) traveled to/from points east on Banfield Road, depending upon the specific hour.
- During the School peak hour period from 2:00 to 3:00 PM the traffic volumes on Banfield Road are typically lower than during the typical AM and PM commuter peak hour periods.

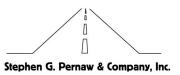
The detail sheets summarizing the raw turning movement count data are found on Attachments 2-11.

CRASH HISTORY


According to the Portsmouth Police Department there have been no reported crashes at the Banfield Road/Existing Site Driveway intersection since the Academy began operations (see, Attachment 12). The closest crashes on Banfield Road occurred at #470 (approximately 1,400 feet west of the Academy site) and #225 (approximately 1,325 feet east of the Academy site).

NO-BUILD TRAFFIC PROJECTIONS

The No-Build traffic volumes for the 2030 horizon year are summarized schematically on Figure 2. These projections are based on the November 2019 traffic volumes, a one-percent annual background traffic growth rate (compounded annually) to account for normal growth in through traffic in the area, and a peak-month seasonal adjustment factor of 1.12 (see Attachment 13).



1978A

2030 No-Build Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

SITE GENERATED TRAFFIC

To estimate the quantity of vehicle-trips that will be produced by the proposed gymnasium, Pernaw & Company, Inc. typically utilizes the trip generation rates published by the Institute of Transportation Engineers (ITE)¹. Unfortunately, there is no applicable ITE land use category. Consequently, the trip estimates contained herein are based upon the manual derivation that reflects the unique circumstances that will occur on a typical "practice" day and "event" day.

Table 1 summarizes the results of this analysis and it shows that on "practice" days there will be a <u>decrease</u> in site traffic during the weekday School peak hour, and a slight <u>increase</u> during the PM peak hour period. On "event" days there will be <u>decreases</u> during both peak hour periods, as most traffic will be exiting from the site after 8 PM, when the traffic volumes on Banfield Road are well below peak levels.

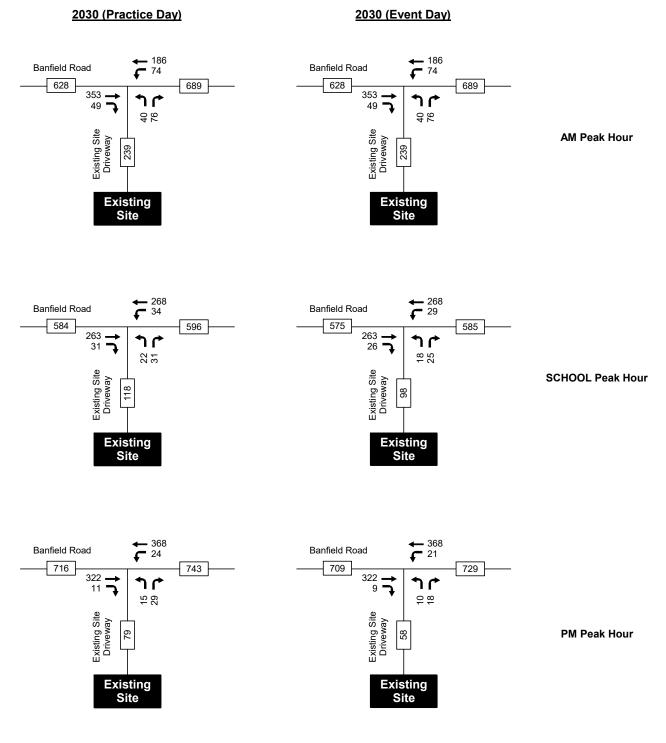
The proposed gymnasium will not alter the traffic flow during the AM Street Peak Hour period.

The additional traffic associated with the gymnasium is expected to mirror the traffic patterns observed at the existing intersection. Attachment 14 shows the distribution of site traffic at this intersection on a typical practice day and event day. The derivation of the trip generation estimates is found on Attachment 15.

BUILD TRAFFIC PROJECTIONS

The Build traffic volumes for the horizon year 2030 are summarized schematically on Figure 3. These projections are based on the No-Build projections, the trip generation estimates contained in Table 1, and the expectation that the additional trips will mirror the travel patterns observed at the existing intersection.

 ¹ Institute of Transportation Engineers, *Trip Generation*, ninth edition (Washington, D.C., 2012).
 1978A 5


Table 1		Propo	Trip Generation S osed Gymnasium at St				
			Proposed (Gymnasium	Post-Development Volumes		
		Existing School ¹	Typical Practice Day ²	Typical Event Day ³	Typical Practice Day	Typical Event Day	
Weekday AM Stree	t Peak Hour (7:30 - 8:30 AM)						
	Entering	123 veh	0 veh	0 veh	123 veh	123 veh	
	Exiting	<u>116 veh</u>	<u>0 veh</u>	<u>0 veh</u>	<u>116</u> veh	<u>116 veh</u>	
	Total	239 trips	0 trips	0 trips	239 trips	239 trips	
Weekday School Pe	eak Hour (2:00 - 3:00 PM)						
	Entering	85 veh	-20 veh	-30 veh	65 veh	55 veh	
	Exiting	<u>73 veh</u>	<u>-20</u> veh	<u>-30 veh</u>	<u>53</u> veh	<u>43 veh</u>	
	Total	158 trips	-40 trips	-60 trips	118 trips	98 trips	
Weekday PM Stree	t Peak Hour (4:00 - 5:00 PM +/-)						
	Entering	30 veh	5 veh	0 veh	35 veh	30 veh	
	Exiting	<u>44 veh</u>	<u>0</u> veh	<u>-16 veh</u>	<u>44</u> veh	<u>28 veh</u>	
	Total	74 trips	5 trips	-16 trips	79 trips	58 trips	
Weekday Total							
	Entering	NA	NA	NA	NA	NA	
	Exiting	NA	NA	NA	NA	NA	
	Total	NA	NA	NA	NA	NA	

Trip Generation Summary

¹ Driveway counts conducted on 11/13/19 and 11/14/19. ² Typical practices run from 3-6 PM. Approximately 20 fewer parents take students at normal time (2-3 PM), and arrive between 3-6 PM to watch and take their children home after 6 PM. ³ Typical events run from 6-8 PM. Approximately 24 staff remain on-site and depart after 8 PM, approximately 30 fewer parents take students at normal time (2-3 PM) and arrive in 1 or 2 vehicles before/after 6 PM to watch and retrieve, approximately 40 travelling visitors & referees arrive before 6 PM and depart after 8 PM.

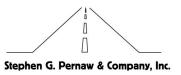

1978A

Figure 3

2030 Build Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

TRAFFIC OPERATIONS AND SAFETY

INTERSECTION CAPACITY – UNSIGNALIZED INTERSECTIONS

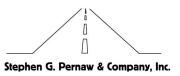
The long-range traffic projections were utilized to assess traffic operations at the existing site driveway intersection on Banfield Road. This intersection was analyzed according to the methodologies of the *Highway Capacity Manual*² as replicated by the latest edition of the *Synchro Traffic Signal Timing Software (Version 9)*, which also performs unsignalized intersection capacity analyses.

Capacity and Level of Service (LOS) calculations pertaining to unsignalized intersections address the quality of service for those vehicles turning into and out of intersecting side streets. The availability of adequate gaps in the traffic stream on the major street actually controls the potential capacity for vehicle movements to and from the minor approach. Levels of Service are simply letter grades (A-F), which categorize the vehicle delays associated with specific turning maneuvers. Table 2 describes the criteria used in this analysis. Calculations pertaining to these analyses are included as Attachments 16-27.

Table 2	Level-of-Service Criteria for Unsignalized Intersections									
Level of Service	Control Delay (seconds/vehicle)									
А	<u><</u> 10.0									
В	> 10.0 and <u><</u> 15.0									
С	> 15.0 and <u><</u> 25.0									
D	> 25.0 and <u><</u> 35.0									
E	> 35.0 and <u><</u> 50.0									
F	> 50.0									

Source: Transportation Research Board, Highway Capacity Manual 2010.

The results of the analysis for the **Banfield Road/Existing Site Driveway** intersection are summarized in Table 3 and confirm that vehicle departures from the Existing Site Driveway will continue to operate <u>below</u> capacity through 2030 with the proposed gymnasium in use on typical "practice" and "event" days. By 2030 long delays (LOS F) should be expected during the morning peak hour period as much of the school traffic is concentrated during the peak 15-minute interval prior to the start of the school day. Favorably, the proposed gymnasium does not affect the driveway volumes during the morning peak hour period.


The analysis also confirms that shorter delays will be encountered during the school peak hour and evening peak hour periods in 2030. The westbound left-turn arrival movement from Banfield Road on to the site driveway will operate at LOS A and with minimal delay during all hours of the day through 2030, with the school gymnasium in full operation.

² Transportation Research Board, *Highway Capacity Manual* (Washington, D.C., 2010).

Table 3	STOP-Controlled Intersection Capacity Analysis Banfield Road / Existing Site Driveway												
		We	ekday Al	M Peak I	Hour		School F	Peak Hou	ır	We	eekday P	M Peak I	Hour
		Delay ¹	V/C ²	LOS ³	Queue ⁴	Delay ¹	V/C ²	LOS ³	Queue ⁴	Delay ¹	V/C ²	LOS ³	Queue ⁴
Typical Practice Day													
Existing Site Driveway -	L & R-Turn Departures												
	2030 No-Build	54.2	0.86	F	8	15.9	0.36	С	2	13.9	0.15	в	1
	2030 Build	54.2	0.86	F	8	14.1	0.26	В	1	14.0	0.15	В	1
Banfield Road - WB Lef	ft Turns												
	2030 No-Build	9.2	0.11	А	<1	8.1	0.04	А	<1	8.2	0.02	А	<1
	2030 Build	9.2	0.11	А	<1	8.1	0.03	А	<1	8.2	0.02	А	<1
Typical Event Day													
Existing Site Driveway -	L & R-Turn Departures												
	2030 No-Build	54.2	0.86	F	8	15.9	0.36	С	2	13.9	0.15	В	1
	2030 Build	54.2	0.86	F	8	13.4	0.20	В	1	13.5	0.10	В	<1
Banfield Road - WB Lef	ft Turns												
	2030 No-Build	9.2	0.11	А	<1	8.1	0.04	А	<1	8.2	0.02	А	<1
	2030 Build	9.2	0.11	А	<1	8.0	0.03	А	<1	8.2	0.02	А	<1

¹ HCM Control Delay (seconds per vehicle), ² HCM Volume to Capacity Ratio, ³ HCM Level of Service, ⁴ HCM 95th Percentile Queue (vehicles)

AUXILIARY TURN LANE WARRANTS ANALYSIS

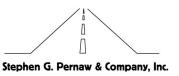
Left-Turn Treatment - The type of treatment needed to accommodate left-turning vehicles from any street or highway to an intersecting side street (or driveway) can range from no treatment, where turning volumes are low; to the provision of a bypass lane for through traffic to travel around left-turning vehicles; to the addition of a formal center turn lane used exclusively by leftturning vehicles for deceleration and storage while waiting to complete their maneuvers.

Analysis of the 2030 Build traffic volumes at the Banfield Road/Existing Site Driveway intersection using NCHRP 457 guidelines confirmed that left-turn treatment is <u>not</u> warranted on Banfield Road for westbound vehicles entering the site driveway. This means that the existing westbound travel lane on Banfield Road will continue to function adequately as a shared left-through lane. Table 4 summarizes the findings of this analysis (see Attachments 28-33).

Table 4		ane Warrants Ana / Existing Site D	-
	2030 AM Build Volumes	2030 School Build Volumes	2030 PM Build Volumes
Typical Practice Day			
Peak Hour Inputs			
Left-Turn Volume (WB)	74	34	24
Advancing Volume (WB)	260	302	392
Opposing Volume (EB)	402	294	333
Percent Lefts	28.5%	11.3%	6.1%
Speed (mph)	30	30	30
Limiting Advancing Volume (veh/h)	273	437	553
Conclusion			
Left-Turn Treatment Warranted	NO	NO	NO
Typical Event Day			
Peak Hour Inputs			
Left-Turn Volume (WB)	74	29	21
Advancing Volume (WB)	260	297	389
Opposing Volume (EB)	402	289	331
Percent Lefts	28.5%	9.8%	5.4%
Speed (mph)	30	30	30
Limiting Advancing Volume (veh/h)	273	468	588
Conclusion			
Left-Turn Treatment Warranted	NO	NO	NO

Right-Turn Treatment - The type of treatment needed to accommodate right-turning vehicles from any street or highway to any intersecting side street (or driveway) can range from a radius only, where turning volumes are low; to the provision of a short 10:1 right-turn taper; to the addition of an exclusive right-turn lane, where turning volumes and through traffic volumes are significant.

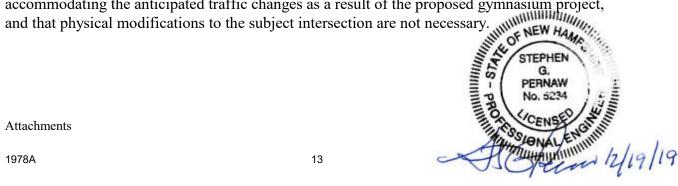
Analysis of the 2030 Build traffic volumes at the Banfield Road/Existing Site Driveway intersection using NCHRP 457 guidelines confirmed that right-turn treatment is <u>not</u> warranted on Banfield Road for eastbound vehicles entering the existing site driveway. This means that the existing eastbound travel lane on Banfield Road will continue to function adequately as a shared through-right lane. The results of these analyses are summarized on Table 5 (see Attachments 34-39).


Table 5	Right-Turn Lane Warrants Analysis Banfield Road / Existing Site Driveway									
	2030 AM Build Volumes	2030 School Build Volumes	2030 PM Build Volumes							
Typical Practice Day										
Peak Hour Inputs										
Right-Turn Volume (EB)	49	31	11							
Total Approach Volume (EB)	402	294	333							
Speed (mph)	30	30	30							
Limiting Right-Turn Volume (veh/h)	>1000	>1000	>1000							
Conclusion										
Add Right-Turn Bay	NO	NO	NO							
Typical Event Day										
Peak Hour Inputs										
Right-Turn Volume (EB)	49	26	9							
Total Approach Volume (EB)	402	289	331							
Speed (mph)	30	30	30							
Limiting Right-Turn Volume (veh/h)	>1000	>1000	>1000							
Conclusion										
Add Right-Turn Bay	NO	NO	NO							

Minor-Road Approach Treatment – The type of treatment needed to accommodate exiting vehicles from the minor-road approach at a stop-controlled intersection can range from a single lane (shared left-right lane) in low-volume conditions, to two exit lanes (exclusive left-turn lane and exclusive right-turn lane) where turning volumes and through traffic volumes are significant, to multiple exit lanes in extreme cases.

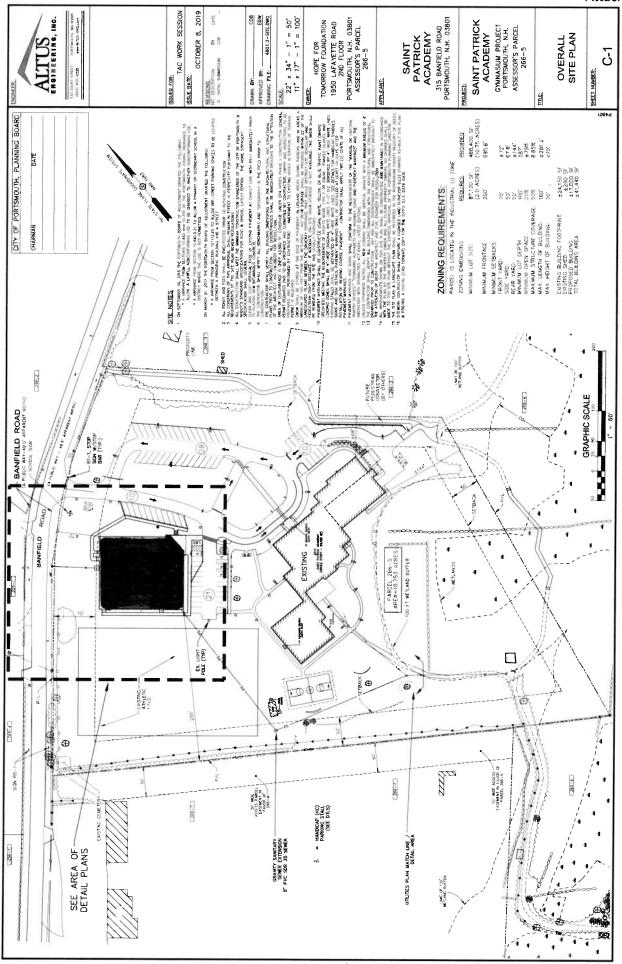
Analysis of the 2030 Build traffic volumes using NCHRP 457 guidelines confirmed that a shared left-right lane on the existing site driveway approach to Banfield Road is sufficient for the anticipated traffic volumes. The results of these analyses are summarized on Table 6 (see Attachments 40-45).

Table 6	Minor-Road Approach Geometry Banfield Road / Existing Site Driveway									
	2030 AM Build Volumes	2030 School Build Volumes	2030 PM Build Volumes							
Typical Practice Day										
Peak Hour Inputs										
Major-Road Volume (⊞-WB)	662	596	725							
% Right-Turns on Minor (NB)	66	59	66							
Minor-Road Approach Volume	116	53	44							
Limiting Minor-Road Volume (veh/h)	344	346	324							
Conclusion										
Consider TWO Approach Lanes	NO	NO	NO							
Typical Event Day										
Peak Hour Inputs										
Major-Road Volume (EB-WB)	662	586	720							
% Right-Turns on Minor (NB)	66	58	64							
Minor-Road Approach Volume	116	43	28							
Limiting Minor-Road Volume (veh/h)	344	349	320							
Conclusion										
Consider TWO Approach Lane:	NO	NO	NO							

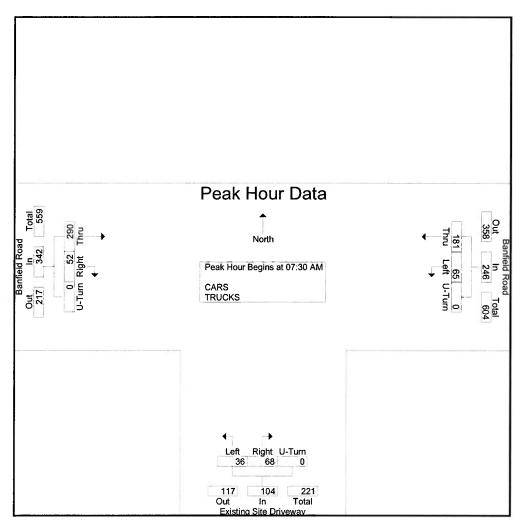


STUDY UPDATE FINDINGS AND RECOMMENDATIONS

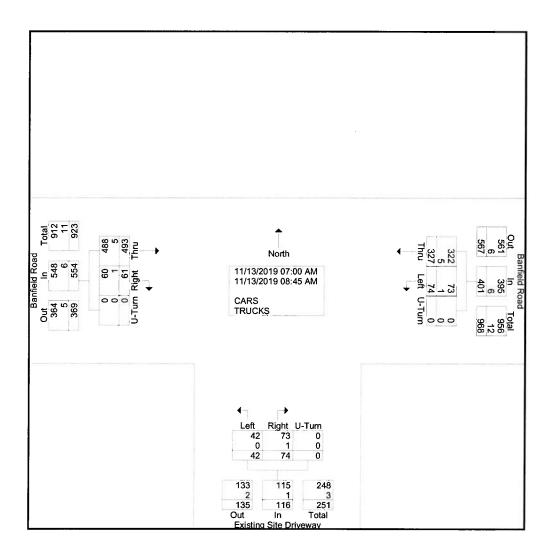
Based on the existing conditions data collected at the Banfield Road/Existing Site Driveway, the anticipated traffic increases from the proposed gymnasium, and the analysis of the 2030 horizon year traffic volumes, Pernaw & Company, Inc. concludes that:


- 1. During the morning peak hour, traffic levels were highest from 7:30 to 9:30 AM on both count days. The higher driveway volume occurred on Thursday, November 14, 2019 when a total of 239 vehicles was observed arriving/departing from the site driveway. The majority of school vehicles traveled to/from points east on Banfield Road.
- 2. During the school peak hour (2:00 to 3:00 PM), the higher driveway volume occurred on Thursday, November 14, 2019 when a total of 158 vehicles was observed arriving/departing from the site driveway. Similarly, the majority of school vehicles traveled to/from points east on Banfield Road.
- 3. During the evening peak hour, traffic levels were highest from 3:45 to 4:45 PM on Wednesday, November 13, 2019 when a total of 74 vehicles was observed arriving/departing from the site driveway. Again, the majority of school vehicles traveled to/from points east on Banfield Road.
- 4. The trip generation analysis indicates that on "practice" days the proposed gymnasium will result in traffic decreases during the weekday School peak hour, and a slight increase during the PM peak hour period. This is primarily due to fewer student "pick-ups" immediately after school; with more site departures occurring after 6:00 PM when practices have ended. On "event" days there will be decreases during both the school and evening peak hour periods, as most traffic will be arriving prior to 6:00 PM and departing after 8:00 PM, when most events typically end.
- 5. The intersection capacity and Level of Service analyses indicate that all applicable traffic movements will operate below capacity through 2030 on both practice days and event days. Long delays will continue to be encountered during the morning peak hour as most traffic is concentrated during the 15-minute interval prior to the start of the school day. Favorably, the proposed gymnasium will not alter the traffic demand during the AM peak hour period.
- 6. The 2030 horizon year auxiliary turn lane warrants analyses confirmed that this intersection will continue to operate safely and efficiently with one shared generalpurpose travel lane on each approach to this intersection.

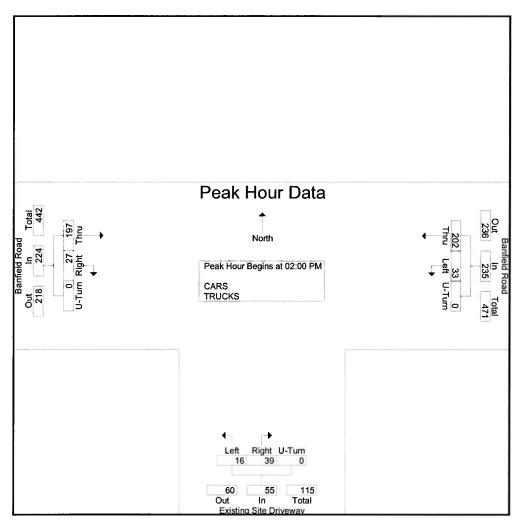
To conclude, the recent traffic counts, future projections and technical analyses contained herein demonstrate that the Banfield Road/Existing Site Driveway intersection is capable of accommodating the anticipated traffic changes as a result of the proposed gymnasium project,


ATTACHMENTS

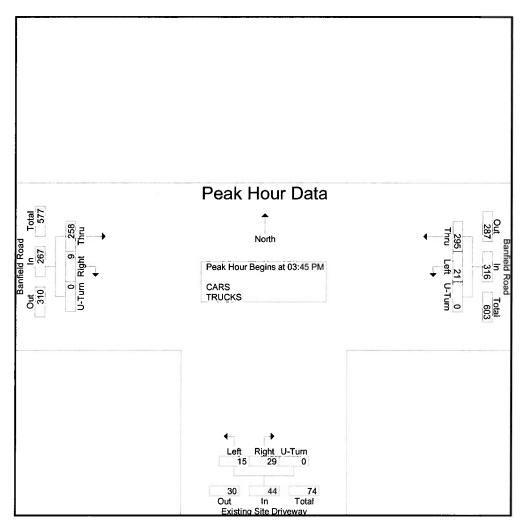
Attachment 1


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		Ē	Ŷ	ite Drivev South	vay					
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis F	rom 07:00	AM to (08:45 AM	- Peak 1 of 1	-			• • • •					
Peak Hour for Entire	Intersectio	on Begins	s at 07:30	AM .									
07:30 AM	38	15	0	53	6	2	0	8	7	64	0	71	132
07:45 AM	50	37	0	87	38	24	0	62	38	90	0	128	277
08:00 AM	44	11	0	55	22	8	0	30	5	80	0	85	170
08:15 AM	49	2	0	51	2	2	0	4	2	56	0	58	113
Total Volume	181	65	0	246	68	36	0	104	52	290	0	342	692
% App. Total	73.6	26.4	0		65.4	34.6	0		15.2	84.8	0		
PHF	.905	.439	.000	.707	.447	.375	.000	.419	.342	.806	.000	.668	.625


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

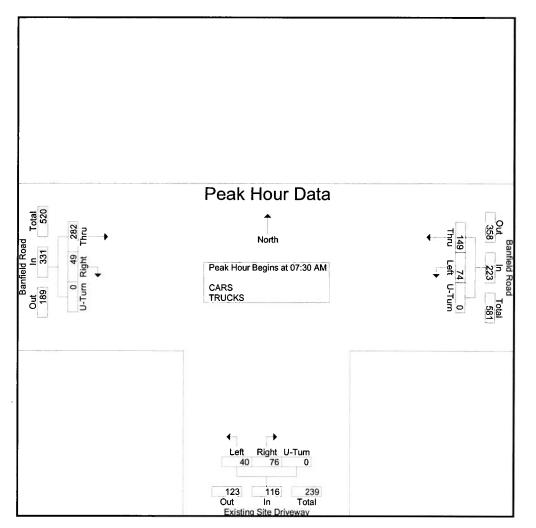
					Groups Pri	nted- CA	RS - TRU	JCKS					
			eld Road n East				ite Drivew 1 South						
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
07:00 AM	21	5	0	26	1	1	0	2	3	28	0	31	59
07:15 AM	38	3	0	41	3	2	0	5	4	53	0	57	103
07:30 AM	38	15	0	53	6	2	0	8	7	64	0	71	132
07:45 AM	50	37	0	87	38	24	0	62	38	90	0	128	277
Total	147	60	0	207	48	29	0	77	52	235	0	287	571
08:00 AM	44	11	0	55	22	8	0	30	5	80	0	85	170
08:15 AM	49	2	0	51	2	2	0	4	2	56	0	58	113
08:30 AM	49	0	0	49	2	1	0	3	0	50	0	50	102
08:45 AM	38	1	0	39	0	2	0	2	2	72	0	74	115
Total	180	14	0	194	26	13	0	39	9	258	0	267	500
Grand Total	327	74	0	401	74	42	0	116	61	493	0	554	1071
Apprch %	81.5	18.5	0		63.8	36.2	0		11	89	0		
Total %	30.5	6.9	0	37.4	6.9	3.9	0	10.8	5.7	46	0	51.7	
CARS	322	73	0	395	73	42	0	115	60	488	0	548	1058
% CARS	98.5	98.6	0	98.5	98.6	100	0	99.1	98.4	99	0	98.9	98.8
TRUCKS	5	1	0	6	1	Ö	0	1	1	5	0	6	13
% TRUCKS	1.5	1.4	0	1.5	1.4	0	0	0.9	1.6	1	0	1.1	1.2


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E	•	ite Drivev South	/ay					
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis I	From 02:00	PM to (2:45 PM	- Peak 1 of 1				•••					
Peak Hour for Entire	Intersectio	on Begins	s at 02:00	PM									
02:00 PM	56	1	0	57	1	0	0	1	0	45	0	45	103
02:15 PM	45	4	0	49	0	0	0	0	3	59	0	62	111
02:30 PM	54	15	0	69	16	8	0	24	13	50	0	63	156
02:45 PM	47	13	0	60	22	8	0	30	11	43	0	54	144
Total Volume	202	33	0	235	39	16	0	55	27	197	0	224	514
% App. Total	86	14	0		70.9	29.1	0		12.1	87.9	0		
PHF	.902	.550	.000	.851	.443	.500	.000	.458	.519	.835	.000	.889	.824

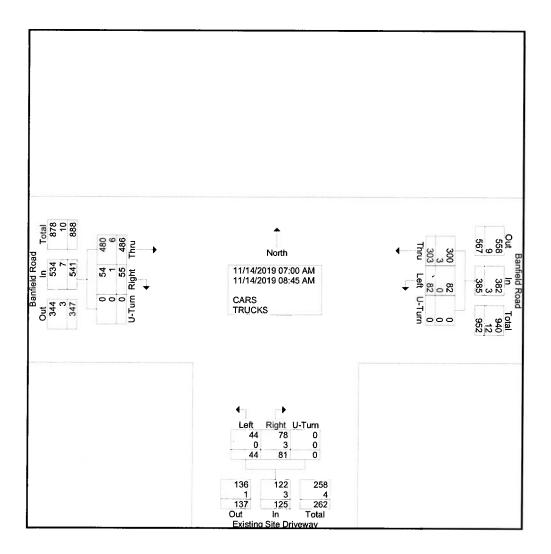
Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E		ite Drivev South	vay					
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis I	From 03:00	PM to C	5:45 PM	- Peak 1 of 1					-				
Peak Hour for Entire	Intersectio	on Begins	at 03:45	PM									
03:45 PM	71	11	0	82	7	3	0	10	6	54	0	60	152
04:00 PM	81	7	0	88	15	3	0	18	2	57	0	59	165
04:15 PM	75	1	0	76	6	6	0	12	0	63	0	63	151
04:30 PM	68	2	0	70	1	3	0	4	1	84	0	85	159
Total Volume	295	21	0	316	29	15	0	44	9	258	0	267	627
% App. Total	93.4	6.6	0		65.9	34.1	0		3.4	96.6	0		
PHF	.910	.477	.000	.898	.483	.625	.000	.611	.375	.768	.000	.785	.950

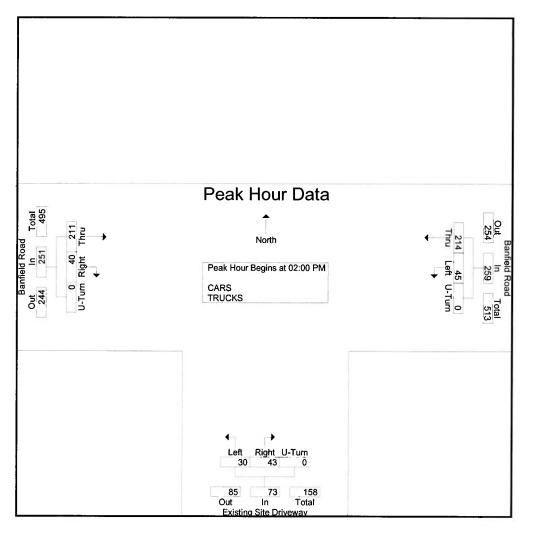


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

	- Ca.				Groups Pri	nted- CA	RS - TRU	JCKS					
		Fror	eld Road n East				ite Drivew South				eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
03:00 PM	54	5	0	59	9	3	0	12	0	45	0	45	116
03:15 PM	67	3	0	70	1	2	0	3	2	68	0	70	143
03:30 PM	88	4	0	92	5	0	0	5	0	56	0	56	153
03:45 PM	71	11	0	82	7	3	0	10	6	54	0	60	152
Total	280	23	0	303	22	8	0	30	8	223	0	231	564
04:00 PM	81	7	0	88	15	3	0	18	2	57	0	59	165
04:15 PM	75	1	0	76	6	6	0	12	0	63	0	63	151
04:30 PM	68	2	0	70	1	3	0	4	1	84	0	85	159
04:45 PM	73	0	0	73	4	1	0	5	1	59	0	60	138
Total	297	10	0	307	26	13	0	39	4	263	0	267	613
05:00 PM	81	2	0	83	1	2	0	3	0	81	0	81	167
05:15 PM	93	0	0	93	2	3	0	5	2	60	0	62	160
05:30 PM	62	0	0	62	1	0	0	1	1	47	0	48	111
05:45 PM	47	0	0	47	2	1	0	3	1	62	0	63	113
Total	283	2	0	285	6	6	0	12	4	250	0	254	551
Grand Total	860	35	0	895	54	27	0	81	16	736	0	752	1728
Apprch %	96.1	3.9	0		66.7	33.3	0		2.1	97.9	0		
Total %	49.8	2	0	51.8	3.1	1.6	0	4.7	0.9	42.6	0	43.5	
CARS	846	35	0	881	54	27	0	81	15	731	0	746	1708
% CARS	98.4	100	0	98.4	100	100	0	100	93.8	99.3	0	99.2	98.8
TRUCKS	14	0	0	14	0	0	0	0	1	5	0	6	20
% TRUCKS	1.6	0	0	1.6	0	0	0	0	6.2	0.7	0	0.8	1.2

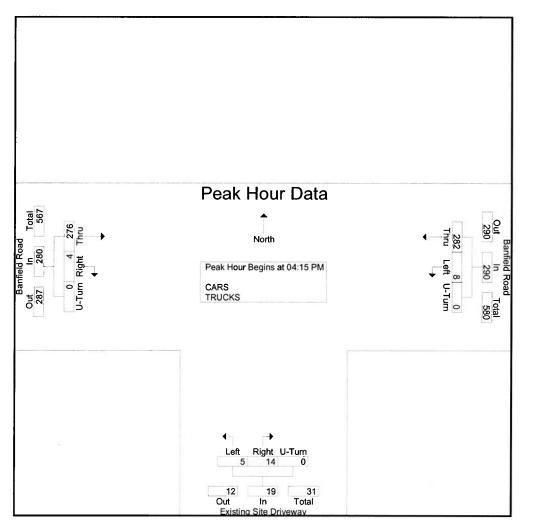

Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

			ld Road n East		E	•	ite Drivev South	vay					
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis I	From 07:00	O AM to (08:45 AM	- Peak 1 of 1									
Peak Hour for Entire	Intersectio	on Begins	s at 07:30	AM									
07:30 AM	34	13	0	47	4	6	0	10	11	56	0	67	124
07:45 AM	32	45	0	77	53	22	0	75	29	103	0	132	284
08:00 AM	40	14	0	54	18	9	0	27	7	68	0	75	156
08:15 AM	43	2	0	45	1	3	0	4	2	55	0	57	106
Total Volume	149	74	0	223	76	40	0	116	49	282	0	331	670
% App. Total	66.8	33.2	0		65.5	34.5	0		14.8	85.2	0		
PHF	.866	.411	.000	.724	.358	.455	.000	.387	.422	.684	.000	.627	.590


Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH

								Groups Pri					
		ld Road West			ıy	te Drivew South				ld Road n East	From		
Int. Tota	App. Total	U-Turn	Thru	Right	App. Total	U-Turn	Left	Right	App. Total	U-Turn	Left	Thru	Start Time
57	27	0	25	2	1	0	1	0	29	0	2	27	07:00 AM
98	59	0	56	3	2	0	1	1	37	0	4	33	07:15 AM
124	67	0	56	11	10	0	6	4	47	0	13	34	07:30 AM
284	132	Ō	103	29	75	0	22	53	77	0	45	32	07:45 AM
563	285	0	240	45	88	0	30	58	190	Ó	64	126	Total
156	75	0	68	7	27	0	9	18	54	0	14	40	08:00 AM
106	57	0	55	2	4	0	3	1	45	0	2	43	08:15 AM
117	66	0	65	1	2	0	1	1	49	0	1	48	08:30 AM
109	58	0	58	0	4	0	1	3	47	0	1	46	08:45 AM
488	256	0	246	10	37	0	14	23	195	0	18	177	Total
1051	541	0	486	55	125	0	44	81	385	0	82	303	Grand Total
		0	89.8	10.2		0	35.2	64.8		0	21.3	78.7	Apprch %
	51.5	0	46.2	5.2	11.9	0	4.2	7.7	36.6	0	7.8	28.8	Total %
1038	534	0	480	54	122	0	44	78	382	0	82	300	CARS
98.8	98.7	0	98.8	98.2	97.6	0	100	96.3	99.2	0	100	99	% CARS
13	7	0	6	1	3	0	0	3	3	0	0	3	TRUCKS
1.2	1.3	0	1.2	1.8	2.4	0	0	3.7	0.8	0	0	1	% TRUCKS

Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH


			eld Road n East		E	•	ite Drivev 1 South	vay					
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis I	From 02:00	0 PM to	02:45 PM	- Peak 1 of 1					_				
Peak Hour for Entire	Intersectio	on Begin	s at 02:00	PM									
02:00 PM	50	<u>1</u>	0	51	1	0	0	1	0	57	0	57	109
02:15 PM	65	9	0	74	2	0	0	2	3	50	Ō	53	129
02:30 PM	51	16	0	67	15	8	0	23	10	58	0	68	158
02:45 PM	48	19	0	67	25	22	0	47	27	46	0	73	187
Total Volume	214	45	0	259	43	30	0	73	40	211	0	251	583
% App. Total	82.6	17.4	0		58.9	41.1	0		15.9	84.1	0		
PHF	.823	.592	.000	.875	.430	.341	.000	.388	.370	.909	.000	.860	.779

Stephen G. Pernaw & Co., Inc. P.O. Box 1721 Concord, New Hampshire 03302

Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH File Name : 1978A_INT_A_Thurs_AM_&_PM_723792_11-14-2019 Site Code : 1978A Start Date : 11/14/2019 Page No : 3

			ld Road n East		E		ite Drivev n South	vay			eld Road n West		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Tota
Peak Hour Analysis F	From 03:00	PM to (05:45 PM	- Peak 1 of 1									
Peak Hour for Entire	Intersectio	n Begins	s at 04:15	PM									
04:15 PM	72	2	0	74	7	2	0	9	2	61	0	63	146
04:30 PM	66	4	0	70	5	1	0	6	1	70	0	71	147
04:45 PM	67	2	0	69	2	0	0	2	0	68	0	68	139
05:00 PM	77	0	0	77	0	2	0	2	1	77	0	78	157
Total Volume	282	8	0	290	14	5	0	19	4	276	0	280	589
% App. Total	97.2	2.8	0		73.7	26.3	0		1.4	98.6	0		
PHF	.916	.500	.000	.942	.500	.625	.000	.528	.500	.896	.000	.897	.938

Stephen G. Pernaw & Co., Inc. P.O. Box 1721 Concord, New Hampshire 03302

Weather: Clear Collected By: MV Job Number: 1978A Town/State: Portsmouth, NH File Name : 1978A_INT_A_Thurs_AM_&_PM_723792_11-14-2019 Site Code : 1978A Start Date : 11/14/2019 Page No : 1

					Groups Pri	inted- CA	RS - TRI	JCKS					
		From	eld Road n East				ite Drivew South	-			ld Road		
Start Time	Thru	Left	U-Turn	App. Total	Right	Left	U-Turn	App. Total	Right	Thru	U-Turn	App. Total	Int. Total
03:00 PM	67	4	0	71	10	4	0	14	0	54	1	55	140
03:15 PM	74	1	0	75	1	0	0	1	0	67	0	67	143
03:30 PM	98	2	0	100	8	2	0	10	1	54	0	55	165
03:45 PM	68	1	0	69	5	1	0	6	1	56	0	57	132
Total	307	8	0	315	24	7	0	31	2	231	1	234	580
04:00 PM	71	5	0	76	3	4	0	7	2	58	0	60	143
04:15 PM	72	2	0	74	7	2	0	9	2	61	0	63	146
04:30 PM	66	4	0	70	5	1	0	6	1	70	0	71	147
04:45 PM	67	2	0	69	2	0	0	2	0	68	0	68	139
Total	276	13	0	289	17	7	0	24	5	257	0	262	575
05:00 PM	77	0	0	77	0	2	0	2	1	77	0	78	157
05:15 PM	67	3	0	70	4	3	0	7	0	63	0	63	140
05:30 PM	56	0	0	56	0	0	0	0	0	55	0	55	111
05:45 PM	41	0	0	41	0	0	0	0	0	54	0	54	95
Total	241	3	0	244	4	5	0	9	1	249	0	250	503
Grand Total	824	24	0	848	45	19	0	64	8	737	1	746	1658
Apprch %	97.2	2.8	0		70.3	29.7	0		1.1	98.8	0.1		
Total %	49.7	1.4	0	51.1	2.7	1.1	0	3.9	0.5	44.5	0.1	45	
CARS	809	24	0	833	45	19	0	64	8	730	1	739	1636
% CARS	98.2	100	0	98.2	100	100	0	100	100	99.1	100	99.1	98.7
TRUCKS	15	0	0	15	0	0	0	0	0	7	0	7	22
% TRUCKS	1.8	0	0	1.8	0	0	0	0	0	0.9	0	0.9	1.3

Stephen G. Pernaw

From:	eric weinrieb <eric@altusengineering2.onmicrosoft.com></eric@altusengineering2.onmicrosoft.com>
Sent:	Wednesday, December 4, 2019 8:41 AM
То:	sgp@pernaw.com
Subject:	FW: St Patricks Academy crash data

Eric

Altus Engineering, Inc. 133 Court Street Portsmouth, NH 03801

From: Nicole Pappaioanou <<u>NPappaioanou@cityofportsmouth.com</u>> Sent: Thursday, November 14, 2019 1:58 PM To: eric weinrieb <<u>eric@altusengineering2.onmicrosoft.com</u>> Subject: RE: St Patricks Academy crash data

I ran a query for accidents on Banfield Rd from 4/1/2018 to today. I have no idea where 300 feet from the St Pat's driveway is on the road so I guessed. I had 2 accidents. One was located at 225 Banfield and the other was located at 470 Banfield.

Nicole Pappaioanou Portsmouth Police Department Office Manager Records Unit Phone (603)610-7446 Fax (603)610-7670

From: eric weinrieb [mailto:eric@altusengineering2.onmicrosoft.com] Sent: Wednesday, November 13, 2019 4:21 PM To: Nicole Pappaioanou <<u>NPappaioanou@cityofportsmouth.com</u>> Cc: James Broom <<u>ipatrickbroom@gmail.com</u>> Subject: St Patricks Academy crash data

Nichole,

Thank you for taking the time to talk to me earlier today.

As suggested attached is a request on letterhead asking for crash data for the Banfield Road area near the new St Patricks Academy.

Thank you for your time.

Stephen G. Pernaw & Company, Inc.

		Adjustn	nent to
<u>Month</u>	ADT	Average	Peak
Jan	11,282	1.13	1.24
Feb	11,848	1.08	1.18
Mar	11,828	1.08	1.18
Apr	12,491	1.02	1.12
Мау	13,587	0.94	1.03
Jun	13,911	0.92	1.00
Jul	13,765	0.93	1.01
Aug	13,945	0.92	1.00
Sep	13,168	0.97	1.06
Oct	13,367	0.96	1.04
Nov	12,215	1.05	1.14
Dec	11,963	1.07	1.17

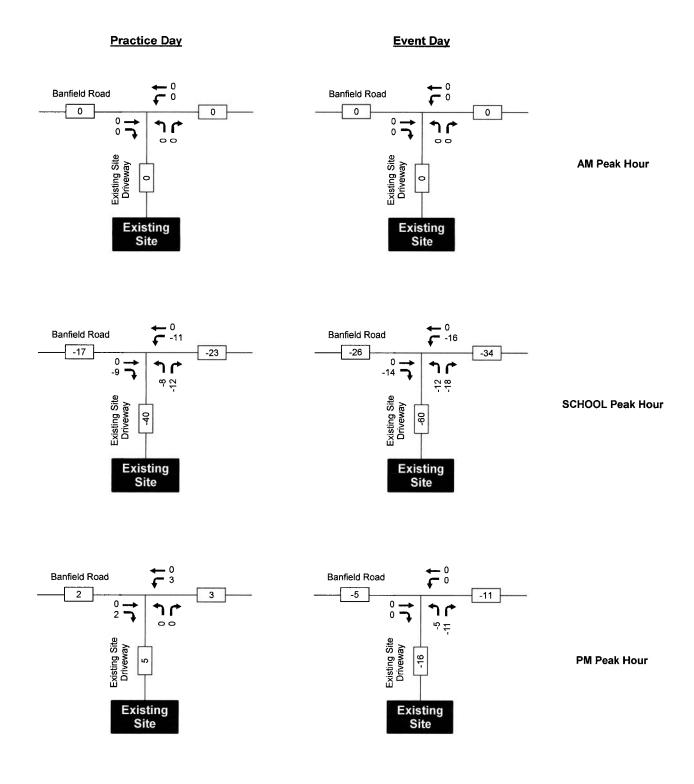
Year 2018 Monthly Data - Urban

Year 2017 Monthly Data - Urban

		Adjust	ment to
<u>Month</u>	ADT	Average	Peak
Jan	12254	1.21	1.33
Feb	13494	1.10	1.21
Mar	14335	1.03	1.14
Apr	15004	0.99	1.09
Мау	15547	0.95	1.05
Jun	16310	0.91	1.00
Jul	15523	0.95	1.05
Aug	15974	0.93	1.02
Sep	15546	0.95	1.05
Oct	15104	0.98	1.08
Nov	14544	1.02	1.12
Dec	14151	1.05	1.15

Year 2016 Monthly Data - Urban

		Adjustr	nent to
<u>Month</u>	ADT	Average	Peak
Jan	13573	1.16	1.25
Feb	14038	1.12	1.21
Mar	15731	1.00	1.08
Apr	16139	0.97	1.05
Мау	15705	1.00	1.08
Jun	16766	0.94	1.01
Jul	15752	1.00	1.08
Aug	16529	0.95	1.03
Sep	17007	0.92	1.00
Oct	16598	0.94	1.02
Nov	15649	1.00	1.09
Dec	14638	1.07	1.16


Average Peak-Month Factor 1.12

Å

NORTH

Attachment

Site Generated Traffic Volumes

Traffic Impact Assessment Update, St. Patrick Academy - Proposed Gymnasium, Portsmouth, NH

Stephen G. Pernaw & Company, Inc.

0

	Parent P	ick-Ups ¹	Visitors	/Refs ²	Sta	ff ³	т	OTAL TRIF	vs
	Enter	Exit	Enter	Exit	Enter	Exit	Enter	Exit	Total
Typical Event Days						··			
2-3 PM	-30	-30					-30	-30	-60
3-4 PM						-8	0	-8	-8
4-5 PM						-16	0	-16	-16
5-6 PM	40		40				80	0	80
6-7 PM	5						5	0	5
7-8 PM							0	0	0
8-9 PM		45		40		24	0	109	109
Total:	15	15	40	40		0	55	55	110
Typical Practice Day	ys								
2-3 PM	-20	-20					-20	-20	-40
3-4 PM	5						5	0	5
4-5 PM	5						5	0	5
5-6 PM	5						5	0	5
6-7 PM	5	20					5	20	25
7-8 PM							0	0	0
8-9 PM							0	0	0
Total:	0	0	0	0	0	0	0	0	0

Trip Generation Derivation - Proposed Gymnasium

¹ Event Days: Approximately 30 fewer parents take students at normal time (2-3 PM) and arrive in 1 or 2 vehicles before/after 6 PM to watch and retrieve.

Practice Days: Approximately 20 fewer parents take student at normal time (2-3 PM) and arrive between 3-6 PM to watch and retreive.

² Event Days: Approximately 40 travelling visitors & referees arrive before 6 PM and depart after 8 PM.

* Event Days: Approximatley 24 staff from St. Patrick remain on-site and depart after 8 PM.

Intersection	1987 CA	A PARA	237			0.225-37
Int Delay, s/veh	13.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ			र्भ	Y	
Traffic Vol, veh/h	353	/ 49.	/ 74	/186		/ 76/
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None		None		None
Storage Length	-	-	_	-	0	-
Veh in Median Storage	,# 0		-	0	0	-
Grade, %	0	-	- Call	0	0	_
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mvmt Flow	560	78	103	258	103	195
WWITEFIOW	000	10	103	200	105	195
Major/Minor N	Major1	N	Aajor2	N	Ainor1	
Conflicting Flow All	0	0	638	0	1063	599
Stage 1	9.22	1	-	-	599	-
Stage 2	_	_	_	-	464	_
Critical Hdwy		-	4.1	-	6.4	6.21
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2		13000			5.4	
Follow-up Hdwy	-	-	2.2	-	3.5	
Pot Cap-1 Maneuver		1.5.2542.5	956	ALC: NO.	249	503
Stage 1	_	-	300	_	553	505
	102.9590					
Stage 2		1	-		637	51 4 - - 1
Platoon blocked, %	•	-		-		-
Mov Cap-1 Maneuver	5	-	956		218	503
Mov Cap-2 Maneuver	-	-	-	-	218	-
Stage 1	-	-	-	-	553	1000-00
Stage 2	-	-	-	-	557	-
Approach	EB		WB	ALC: NO	NB	1500
HCM Control Delay, s	0	13153	2.6	-	54.2	1.5 7 10.
HCM LOS		10000	2.0		F	
					302253	
	100-5190					
Minor Lane/Major Mvm	t M	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	a de no
HCM Lane V/C Ratio		0.857	-	-	0.108	-
HCM Control Delay (s)		54.2	-	-	9.2	0
HCM Lane LOS		F	-	-	А	А
HCM 95th %tile Q(veh)		7.9	-	-	0.4	-
ioni oour muio a(ven)		1.0		10 STR 500 ST	0.4	

Intersection

Intersection	N. S. W.	S. S. Walt	-2. 45	11/22	24.4.21	Start Start
Int Delay, s/veh	13.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			र्स	Y	
Traffic Vol, veh/h	353	/ 49	/ 74	/186.		76
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	_	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mymt Flow	560	78	103	258	103	195
	000	10	105	200	105	190
Major/Minor N	/lajor1	Stand	Major2	3. States	Minor1	S. Strand
Conflicting Flow All	0	0	638	0	1063	599
Stage 1	-	-	-	-	599	-
Stage 2	-	-	-	-	464	-
Critical Hdwy	-	-	4.1	-	6.4	6.21
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	- 1
Follow-up Hdwy	-	-	2.2	-	3.5	3.309
Pot Cap-1 Maneuver	-		956	- 11	249	503
Stage 1	-	-	-	-	553	-
Stage 2	-	100		12/22	637	
Platoon blocked, %	-	_		_	007	
Mov Cap-1 Maneuver			956	10000	218	503
	-	•		1. S. S.		
Mov Cap-2 Maneuver	-	-	-	-	218	-
Stage 1	-	580 B .	-	Children .	553	-
Stage 2	-	-	-	-	557	-
Approach	EB		WB	5.22	NB	
HCM Control Delay, s	0	2323022	2.6	001575	54.2	1.1.1.1.1.1.
HCM LOS					F	
					SPANDS	
	-	101 4			14151	14/57
Minor Lane/Major Mvmt	a share	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	State 1
HCM Lane V/C Ratio		0.857	-	-	0.108	-
HCM Control Delay (s)		54.2	-	- 10	9.2	0
HCM Lane LOS		F	-	-	А	А
HCM 95th %tile Q(veh)		7.9	-	-	0.4	25 A

Intersection	all constants	C. Marile	1.000	The same	and the second	a to a to a
Int Delay, s/veh	3.8	and shall	2.550 m	710 30 3	C. C. Control	THE YOR .
-		-	10.001	10/00 00		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4		1	र्भ	۲	
Traffic Vol, veh/h	263	/ 40		268		
Future Vol, veh/h	263	40	45	268	30	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized		None	-	None		None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	47	51	305	77	110
Majan/Minas	Interio	THE THE P	1-1-0	100000	1	C. E. S. Verra
	1ajor1		Major2		Minor1	
Conflicting Flow All	0	0	353	0	737	330
Stage 1	-	-		-	330	-
Stage 2	-	-	-	-	407	-
Critical Hdwy	-	-	4.12	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	100-	4	-	5.4	- 1°
Follow-up Hdwy	-	-	2.218	-	3.5	3.3
Pot Cap-1 Maneuver	-		1206		389	716
Stage 1	-	-		-	733	- 10
Stage 2	1997			_	676	5726.9
Platoon blocked, %	-			-	0/0	
Mov Cap-1 Maneuver		Superior.	1206		200	716
	-	1.50		-	369	
Mov Cap-2 Maneuver	-	-	-	-	369	-
Stage 1	23 5	-	1	-	733	-
Stage 2	-	-	-	-	642	-
Approach	EB	and the	WB	08 007	NB	1. 1. 2. 18
HCM Control Delay, s	0	12,10,55	12	122210	15.9	1757 IV
HCM LOS	V		1.2		10.0 C	
					U	
	6924	State -				04192.6
Minor Lane/Major Mvmt	1.00	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	a sale	516	-		1206	-
HCM Lane V/C Ratio		0.363	_		0.042	-
HCM Control Delay (s)		15.9	-		8.1	0
HCM Lane LOS		С	-	-	A	A
HCM 95th %tile Q(veh)		1.6	-	-	0.1	
			and the second second			

Intersection	2. Are	23.8	1.00	S. S. R.	1	15216
Int Delay, s/veh	2.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	LUIN	WDL	÷,	Y	TADIX
Traffic Vol, veh/h	263	/ 31.	1 31	/268,		31_
Future Vol, veh/h	263	31	34	268	22	31
and the second sec	203	0	0	200	0	0
Conflicting Peds, #/hr		Free		Free		
Sign Control RT Channelized	Free -	None	Free		Stop	Stop None
	5		-		-	
Storage Length	щ о -	-	beach Lives	-	0	-
Veh in Median Storage,		- 10	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	36	39	305	56	79
Major/Minor M	lajor1	-54.0	Major2	12863	Minor1	Sector Sector
Conflicting Flow All	0	0	342	0	707	324
		U			324	
Stage 1	-	-	-			-
Stage 2	-	-	-	-	383	-
Critical Hdwy	-	-	4.12	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	•
Follow-up Hdwy	-	-	2.218	-	3.5	3.3
Pot Cap-1 Maneuver	-		1217	-	405	722
Stage 1	-	-	-	-	738	-
Stage 2	-	-	-	-	694	100-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1217	-	389	722
Mov Cap-2 Maneuver	-	-	_	-	389	-
Stage 1	-				738	
Stage 2		13 6 5 2	NORS TO S	2002.00D	667	_
olaye 2	0,000,0	-	5234	L.H. M. O	007	-
		1.000 A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A				1000000
Approach	EB	and all a	WB		NB	10 min Par
HCM Control Delay, s	0		0.9		14.1	
HCM LOS					В	
Minor Lane/Major Mvmt	1000	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		533			1217	-
HCM Lane V/C Ratio		0.255	-		0.032	_
		14.1	erson v	-	8.1	0
HCM Control Delay (s)			1000	10000		
HCM Lane LOS		B	-	-	A	Α
HCM 95th %tile Q(veh)		1	1000	-	0.1	-

Intersection	1	99921	10.10	199	The states	12-213
Int Delay, s/veh	1.3					
		EDD	MDI	WDT	MIDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1+	10	101	4	¥ 15	/ 00
Traffic Vol, veh/h	322	9.	Constant and the second		15.	
Future Vol, veh/h	322	9	21	368	15	29
Conflicting Peds, #/hr	0	0	0	0	0	0
0	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mvmt Flow	408	11	23	409	25	48
Major/Minor Ma	nior1	11110	Anior?	1.000	Minor1	
	ajor1		Major2			44.4
Conflicting Flow All	0	0	419	0	869	414
Stage 1	1	-	10. CA	-	414	213 - 8
Stage 2	-	-	-	-	455	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-		5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1151	-	325	643
Stage 1	-	-	-	-	671	-
Stage 2	-	-		-	643	-
Platoon blocked, %	_	-		-		and the second second
Mov Cap-1 Maneuver	-	102.0	1151	-	317	643
Mov Cap-2 Maneuver	_		1101	-	317	040
			19.244		671	1 : <u>.</u>
Stage 1	-			-		
Stage 2	-	-			626	-
Approach	EB		WB	- S. C. S.	NB	an series
HCM Control Delay, s	0		0.4		13.9	-
HCM LOS					В	
					(2) (2) (2)	
	12.1111111	10.000.000				
Minor Lane/Major Mvmt	and the second	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		476	-	-	1151	-
HCM Lane V/C Ratio		0.152	-	-	0.02	-
HCM Control Delay (s)		13.9	-		8.2	0
HCM Lane LOS		В	-	-	А	А
HCM 95th %tile Q(veh)	1	0.5	-	Sil-	0.1	
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

Intersection	ALC: T		N. S. S.			14 197
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LUIN	TIDE	म	Y	NDIN
Traffic Vol, veh/h	322	/11.	/ 24	368		29
Future Vol, veh/h	322	11	24	368	15	29
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0		-	0	0	1000
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mymt Flow	408	14	27	409	25	48
WWIIILTIOW	400	17	L 1	100	20	40
	Najor1		Major2		Minor1	
Conflicting Flow All	0	0	422	0	878	415
Stage 1	-	-	-	1	415	-
Stage 2	-	-	-	-	463	-
Critical Hdwy	-	-	4.1	-	6,4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	- 15	- 19	1148	-	321	642
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	638	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1148	-	311	642
Mov Cap-2 Maneuver	-	-	-	-	311	-
Stage 1		200			671	1999-19
Stage 2	-	-	-	-	619	_
Olugo 2					010	
		and the second second	10.17			
Approach	EB	Sec.	WB	THE PARTY	NB	S. NOIL
HCM Control Delay, s	0		0.5		14	
HCM LOS					В	
Minor Lane/Major Mvm		VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	S. S. P.P.	471	_	1	1148	-
HCM Lane V/C Ratio		0.153	-		0.023	-
HCM Control Delay (s)		14	100		8.2	0
HCM Lane LOS		В	-	-	A	A
HCM 95th %tile Q(veh)		0.5			0.1	~
now sour whe d(ven)		0.0			0.1	

Intersection		12 23 11	(Land	Streel P		15.46.75
Int Delay, s/veh	13.2			And and a second		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	101 101	LUIN	TIDE	4	NDL	NUN
Traffic Vol, veh/h	353	49	74	186.		76
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	+5	0	0	40	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	Fiee		Stop -	14.1
Storage Length		None -		NONG	0	None -
Veh in Median Storage,	# 0			0	0	2)
		-				
Grade, %	0	<u>-</u>	- 70	0	0	-
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mvmt Flow	560	78	103	258	103	195
Major/Minor N	lajor1	A	/lajor2		Minor1	A STATISTICS
Conflicting Flow All	0	0	638	0	1063	599
Stage 1	-	-	- 000	V	599	-
Stage 2	-			all a second	464	- -
Critical Hdwy		1000	4.1	CUT YORK	6.4	6.21
		1000			0.4 5.4	
Critical Hdwy Stg 1			-	-		-
Critical Hdwy Stg 2	-	1. 2.	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	
Pot Cap-1 Maneuver	-	-	956	-	249	503
Stage 1	-	-	-	-	553	-
Stage 2		-		-	637	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	956	-	218	503
Mov Cap-2 Maneuver	-	-	-	-	218	-
Stage 1	-	-	-	-	553	-
Stage 2	-	-	-	-	557	-
					5 62.51	
Approach	ED	STR. COLUMN		CETECKEEN	ND	1000000000
Approach	EB	No. Star	WB	STOCKED D	NB	Stranges
HCM Control Delay, s	0		2.6		54.2	
HCM LOS					F	
Minor Lane/Major Mvmt	N	IBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	-
HCM Lane V/C Ratio		0.857	-		0.108	-
HCM Control Delay (s)		54.2	-	-	9.2	0
HCM Lane LOS		F	-	-	A	A
HCM 95th %tile Q(veh)		7.9			0.4	-
i ola obili valle alvell)	A STATE	1.5	116-	149.00	0.4	

· · · · · · · · · · · · · · · · · · ·						
Intersection	1000	The T	SPEN I	STATE!	S. Aller	14.2
Int Delay, s/veh	13.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1	LDIN	VVDL	f)	Y	NDIX
Traffic Vol, veh/h	353	49.	/7/	186		76
Future Vol, veh/h	353	49	74	186	40	76
Conflicting Peds, #/hr	0	49	0	0	40	10
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		Stop -	None
	-		-			NONE
Storage Length	# 0	-	Constantion of the	-	0	
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	63	63	72	72	39	39
Heavy Vehicles, %	1	2	0	1	0	1
Mvmt Flow	560	78	103	258	103	195
Major/Minor M	ajor1	10.5	Major2	19-21-2-1	Minor1	ALL DAY
Conflicting Flow All	0	0	638	0	1063	599
Stage 1		Ū.	-	Ū.	599	-
Stage 2					464	_
	-	-		-		
Critical Hdwy	175	10.14	4.1	-	6.4	6.21
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-		-	5.4	-
Follow-up Hdwy	-	-	2.2	-		3.309
Pot Cap-1 Maneuver	-	-	956	-	249	503
Stage 1	-	-	-	-	553	-
Stage 2	-	-	-	-	637	-
Platoon blocked, %	-	-		_		
Mov Cap-1 Maneuver	_	-	956	1999	218	503
Mov Cap-2 Maneuver	-	-	-	_	218	-
Stage 1		1000		-	553	_
		-			557	
Stage 2	-		-	-	557	-
Approach	EB	Ser P	WB	STAR	NB	No.
HCM Control Delay, s	0	23.02	2.6		54.2	6.32
HCM LOS					F	
					REAL	
			COT		14/51	MOT
Minor Lane/Major Mvmt	1921	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		347	-	-	956	-
HCM Lane V/C Ratio		0.857	-	-	0.108	-
HCM Control Delay (s)		54.2	-	-	9.2	0
HCM Lane LOS		F	-	-	А	А
HCM 95th %tile Q(veh)		7.9	-	25/2-1	0.4	100.0
HCM 95th %tile Q(veh)		7.9		112-	0.4	

Intersection		1000	1998	1000		22.50
Int Delay, s/veh	3.8			AL PRIME	and the first	
-	~	-	14 IDI	14/07	MIDI	NAM
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,	1.	1.	र्भ	Y	1
Traffic Vol, veh/h	263					
Future Vol, veh/h	263	40	45	268	30	43
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	503	None
Storage Length	-	-	-	-	0	1.
Veh in Median Storage,	# 0	-	-	0	0	3.31-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	47	51	305	77	110
100-38 LC 100221-280-178						
Major/Minor	Iniand	and a second	Maina	C. Bright	dianal	
	lajor1		Major2		Minor1	000
Conflicting Flow All	0	0	353	0	737	330
Stage 1	-	-	-		330	-
Stage 2	-	-	-	-	407	-
Critical Hdwy	-	-	4.12	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	- 17	5.4	-
Follow-up Hdwy	-	-	2.218	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1206	-	389	716
Stage 1	-	-	-	-	733	-
Stage 2		-	-		676	198-9
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1206	1	369	716
Mov Cap-2 Maneuver	-	_	-	-	369	-
Stage 1		100 - C	9/35/92	1	733	100
Stage 2	-	-		active (a)	642	_
Oldyc 2	1325	1.000	1.2.4.1	-	042	000350
A		Ancesson	1	Children and		
Approach	EB	State Sh	WB	12/2	NB	552382
HCM Control Delay, s	0		1.2		15.9	
HCM LOS					С	
Minor Lane/Major Mvmt	1	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		516	-		1206	-
HCM Lane V/C Ratio		0.363	_		0.042	-
HCM Control Delay (s)		15.9	-	-	8.1	0
HCM Lane LOS		10.0 C	-	-	A	A
HCM 95th %tile Q(veh)		1.6		and the second se	0.1	A -
now sour wile Q(ven)		1.0	-	1994 A.T.A	0.1	24 (1990) - 64

			1012			
Intersection	No.		Carlos .	NUDE		
Int Delay, s/veh	2.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4	LDIK	TIDL	स स	Y	NDI
Traffic Vol, veh/h	263	/ 26.	29	268	/18	/ 25
Future Vol, veh/h	263	26	29	268	18	25
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	
Storage Length	_	-	-	-	0	-
Veh in Median Storage, #		3122	1000	0	0	
Grade, %	0	-	-	0	0	-
Peak Hour Factor	86	86	88	88	39	39
Heavy Vehicles, %	1	3	2	2	0	0
Mvmt Flow	306	30	33	305	46	64
WWITH FIOW	300	30	55	305	40	04
Major/Minor Ma	ajor1		Major2		Minor1	The state
Conflicting Flow All	0	0	336	0	692	321
Stage 1	-	10-1-1	-	1	321	-
Stage 2	-	-	-	-	371	-
Critical Hdwy	-	- 30	4.12	-	6.4	6.2
Critical Hdwy Stg 1	_	-	-	-	5.4	-
Critical Hdwy Stg 2	1	83.2		-	5.4	1. St. 1
Follow-up Hdwy	_	-	2.218	_	3.5	3.3
Pot Cap-1 Maneuver	-	-	1223	1. V. P. P.	413	724
Stage 1	-	-		_	740	-
Stage 2	-	17 18 M		1.1.4.5.2	702	1915-22
Platoon blocked, %	-		117.1	-	102	
-			1223		100	724
Mov Cap-1 Maneuver		-	1223	1.451	400	
Mov Cap-2 Maneuver	-	-	-	-	400	-
Stage 1	100	1.1.1.1	-	•	740	•
Stage 2	-	-	-	-	680	-
Approach	EB		WB	6266	NB	S. S. S. S.
HCM Control Delay, s	0	2.215	0.8		13.4	12.19
HCM LOS					В	
Constraint a state of the state						
NE			COT		14/51	MOT
Minor Lane/Major Mvmt	Concest.	VBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		541			1223	-
HCM Lane V/C Ratio		0.204	-	-	0.027	-
HCM Control Delay (s)		13.4	-	-	8	0
HCM Lane LOS		В	-	-	A	A
HCM 95th %tile Q(veh)		0.8	12.1	-	0.1	111

Intersection	1801-	191	a Carlo	15 33	13550	120202
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		TIDE	4	Y	THUIL
Traffic Vol, veh/h	322	9.	/21.	368		29
Future Vol, veh/h	322	9	21	368	15	29
Conflicting Peds, #/hr	0	0	0	0	0	29
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		Stop -	-
Storage Length	-	None	-	None	0	None -
		-				
Veh in Median Storage,			()	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mvmt Flow	408	11	23	409	25	48
Major/Minor M	lajor1	10000	Major2	1	Minor1	With the second
Conflicting Flow All	0	0	419	0	869	414
Stage 1	-	-	419	U	414	414
Stage 2	-	-	-	-	455	-
Critical Hdwy		42013	4.1	2. S	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver			1151	-	325	643
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	643	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	1151	-	317	643
Mov Cap-2 Maneuver	-	-	-	_	317	-
Stage 1	_	101-1	1992 B	_	671	_
Stage 2	-		-	-	626	-
Oldyo Z					020	
Approach	EB	and the second	WB		NB	S. al
HCM Control Delay, s	0		0.4		13.9	
HCM LOS					В	
Minor Lane/Major Mvmt	100 P. T.	NBLn1	EBT	EBR	WBL	WBT
			ALC: NO DESCRIPTION			A CONTRACTOR
Capacity (veh/h)		476	-		1151	-
HCM Lane V/C Ratio		0.152	-	-	0.02	-
HCM Control Delay (s)		13.9		-24 C	8.2	0
HCM Lane LOS		В	-	-	Α	А
HCM 95th %tile Q(veh)		0.5			0.1	-

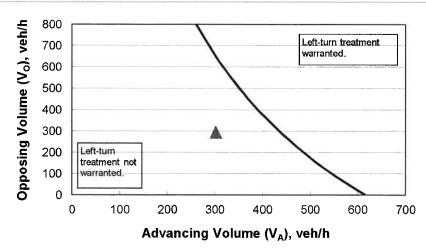
Intersection	Series a	2626	1	1200		S. S. S.
Int Delay, s/veh	0.9					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,		/	÷	Y	
Traffic Vol, veh/h	322			/368	/ 10	18
Future Vol, veh/h	322	9	21	368	10	18
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		- 1	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	79	79	90	90	61	61
Heavy Vehicles, %	1	0	0	2	0	0
Mvmt Flow	408	11	23	409	16	30
Major/Minor N	Aajor1	14- 22	Major2	S. C. L	Minor1	S San
Conflicting Flow All	0	0	419	0	869	414
Stage 1	-	-	-	-	414	-
Stage 2	-	-	-	-	455	-
Critical Hdwy	-	-	4.1	-	6.4	6.2
Critical Hdwy Stg 1	-	-	-	-	5.4	-
Critical Hdwy Stg 2	-	5-1-	-	-	5.4	-
Follow-up Hdwy	-	-	2.2	-	3.5	3.3
Pot Cap-1 Maneuver	-	-	1151	-	325	643
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	643	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver		-	1151	-	317	643
Mov Cap-2 Maneuver	-	-	-	-	317	-
Stage 1	-	-	-	-	671	-
Stage 2	-	-	-	-	626	-
Approach	EB	1.1.520	WB	1.18 m	NB	1
HCM Control Delay, s	0		0.4		13.5	2
HCM LOS					B	
					1237	
Minor Lane/Major Mumt		NBLn1	EBT	EBR	WBL	WBT
Minor Lane/Major Mvmt	the labour	470	EDI		1151	No. 2 Character
Capacity (veh/h) HCM Lane V/C Ratio		470 0.098			0.02	-
HCM Control Delay (s)		13.5	-	-	8.2	0
HCM Lane LOS		13.5 B	-		0.2 A	A
HCM 95th %tile Q(veh)		0.3		-	0.1	A -
		0.3	•	-	0.1	

2-lane roadway (English)

INPUT

Value	1								
30	1 5	800	[<u> </u>					
5 th percentile speed, mph: 30 ercent of left-turns in advancing volume (V _A), %: 28%									
Advancing volume (V _A), veh/h: 260								ted.	
402	<u>></u> ິ	000			8				And the Andrew State
		500					50.050		
	5	400				·····			
Value	। হ	300							
273	-								
turn bay:	<u>,</u>	200			``	\			
	1 ğ	100	warranted.						
	ਕ	0	L		-				
	Ŭ	•	0 100	200	300	400	500	600	700
				Advand	ing Vol	ume (V₄), veh/h		
	30 28% 260 402 Value 273	30 28% 260 402 Value 273	30 800 28% 700 260 600 402 500 400 500 273 300 273 200 100 0	30 800 28% 700 260 600 402 500 402 500 400 500 273 200 100 0 0 100	30 800 28% 700 260 600 402 500 400 500 273 200 Urin bay: 100 0 100 0 100 0 100	30 800 28% 700 260 600 402 500 400 500 273 200 Left-turn treatment not warranted. 0 0 100 200 100 0 100	30 28% 28% 700 260 600 402 500 400 500 400 500 273 200 Left-turm treatment not warranted. 0 100 200 0 100 200	30 800 28% 700 260 600 402 500 402 500 Value 300 273 200 Left-turn treatment not warranted. 0 0 100 200 0 100 200	30 800 28% 700 260 600 402 500 400 500 273 300 273 100 Urrn bay: 100 0 0

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9


2-lane roadway (English)

INPUT

Variable	Value	
85 th percentile speed, mph:	30	्म ⁸⁰⁰
Percent of left-turns in advancing volume (V _A), %:	11%	2 700
Advancing volume (V _A), veh/h:	302	600
Opposing volume (V ₀), veh/h:	294	> 600

OUTPUT

Variable	Value
Limiting advancing volume (V _A), veh/h:	437
Guidance for determining the need for a major-road	left-turn bay:
Left-turn treatment NOT warrant	ted.

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

INPUT

Variable	Value	1								
5 th percentile speed, mph:	30	1 5	800				<u> </u>			
Percent of left-turns in advancing volume (V _A), %:	6%	veh/h	700				1		n treatment	
Advancing volume (V _A), veh/h:	392		600					warrant	ed.	
Dpposing volume (V _o), veh/h:	333	So),	600							
		me (500							
DUTPUT		3	400					~		
Variable	Value] \$	300							
imiting advancing volume (V _A), veh/h:	553				1					
Buidance for determining the need for a major-road left-tu	ırn bay:	<u>1</u>	200	Left-turn treatment not						
Left-turn treatment NOT warranted.		1 ä	100	warranted.					s alars aller a	
		Opposing	0]		1	1		
		-	•	0 100	200	300	400	500	600	700
					Advand	ing Vol	ume (V). veh/h		

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

INPUT

Value									
30	۲ ۲	800		<u> </u>					
28%	/eh	700							
260		600		_ \			warran	ted.	
402	Š				2				
	-	500							
	Lin	400			\mathbf{A}				
Value	ৃ	300							
273				1					
rn bay:	Si-	200)				
	ä	100	warranted.	· · · · · · · · · · · · · · · · · · ·					
	d d	0	L	1	1		1	ſ	
	Ŭ	Ű	0 100	200	300	400	500	600	700
				Advanc	ina Vol	ume (V.)). veh/h		
	30 28% 260 402 Value 273	30 28% 260 402 Value 273	30 400 28% 700 260 600 402 500 wino 500 400 300 273 200 in bay: 100 0 0	30 28% 260 700 402 500 402 500 Value 300 273 200 In bay: 100 0 100	30 800 28% 700 260 600 402 500 400 500 273 200 In bay: 100 0 100 0 100	30 28% 28% 700 260 600 402 500 400 500 273 300 273 100 0 100 0 100 0 100	30 28% 28% 700 260 600 402 500 400 500 273 200 100 100 0 100 200 300 0 100	30 800 28% 700 260 600 402 500 402 500 Value 300 273 200 In bay: 100 0 100 0 100 0 100 0 300 400 300 0 100 0 300 400 500	30 30 28% 700 260 600 402 500 400 500 400 300 273 200 In bay: 100 0 0

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

INPUT

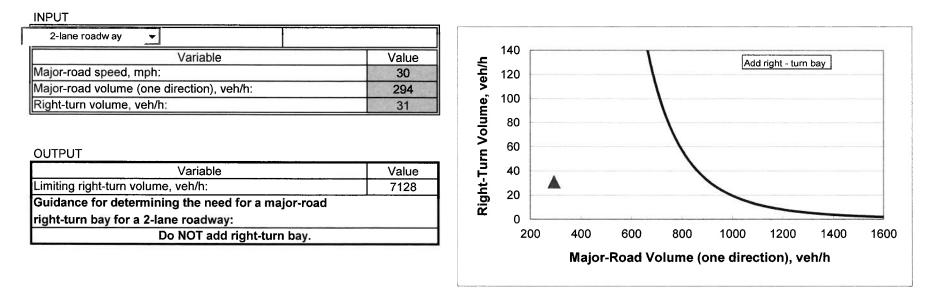
Left-turn treatment NOT warranted.] öddo	100 0	warranted.				/	
Guidance for determining the need for a major-road left		osing	200	treatment not					
Limiting advancing volume (V _A), veh/h:	468			Left-turn					
Variable	Value] <u></u>	300			``			
OUTPUT		<u>E</u>	400						
Opposing volume (V_{\odot}), veh/h:	289	و ع	500						-
Advancing volume (V _A), veh/h:	297	()	600						
Percent of left-turns in advancing volume (V _A), %:	10%	vel 🛛	700				Left-tur warrant	n treatment	
85 th percentile speed, mph:	30	veh/h	800						
Variable	Value								

Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

2-lane roadway (English)

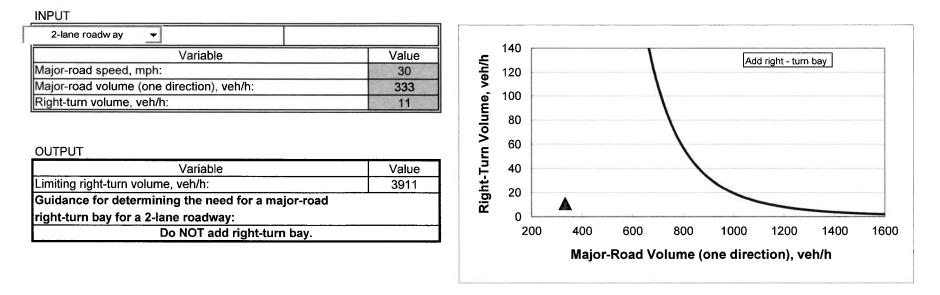
INPUT

					F	Advanc	ing Vol	ume (V _A). veh/h		
		Ū	-	0 1	00	200	300	400	500	600	700
Left-turn treatment NOT warranted.		oddo	100 0	warrante	d.						
Guidance for determining the need for a major-road left	-turn bay:	sing	200	Left-turn treatmen							
Limiting advancing volume (V _A), veh/h:	588	5									
Variable	Value	। इ	300								
OUTPUT		<u>m</u>	400							<u> </u>	
	331		500						\mathbf{i}		
Opposing volume (V_0) , veh/h:		(°)	600	-							
Advancing volume (V_A), veh/h:	389	>	700						warran		
Percent of left-turns in advancing volume (V _A), %:	5%	eh/h	700						l eft-tu	n treatment	
85 th percentile speed, mph:	30	् ह	800								
Variable	Value										


Variable	Value
Average time for making left-turn, s:	3.0
Critical headway, s:	5.0
Average time for left-turn vehicle to clear the advancing lane, s:	1.9

INPUT 2-lane roadw ay Ŧ 140 Variable Value Right-Turn Volume, veh/h Add right - turn bay Major-road speed, mph: 30 120 Major-road volume (one direction), veh/h: 402 100 Right-turn volume, veh/h: 49 80 60 OUTPUT 40 Variable Value Limiting right-turn volume, veh/h: 1578 20 Guidance for determining the need for a major-road right-turn bay for a 2-lane roadway: 0 200 400 600 800 1000 1200 1400 Do NOT add right-turn bay. 1600 Major-Road Volume (one direction), veh/h

Attachment 34



Attachment 35

1

Attachment 36

2-lane roadw ay										
Variable	Value		140		1		Ad	d right - turn	bay	
Major-road speed, mph:	30	veh/h	120				[Au	a fight - tan	Day	
Major-road volume (one direction), veh/h:	402									
Right-turn volume, veh/h:	49	l e	100			1				
		Volume,	80			1				
OUTPUT		Ē	60							
Variable	Value	1 ^u	40	-						
Limiting right-turn volume, veh/h:	1578	t t								
Guidance for determining the need for a major-road		Right-T	20					-		
right-turn bay for a 2-lane roadway:			0 🖵							
Do NOT add right-turn bay.			200	400	600	800	1000	1200	1400	1600

Attachment 37

INPUT

Variable	Value		140			1					
Major-road speed, mph:	30	eh/h	100			1		Ad	d right - turn	bay	
			120								
Major-road volume (one direction), veh/h:	289	Ő	100								
Right-turn volume, veh/h:	26	nme					1				
		olu	80				1				
		Š	60								
OUTPUT		E	00								
Variable	Value	1 P	40								
Limiting right-turn volume, veh/h:	7742	L.									
Guidance for determining the need for a major-road		Right-	20	_					-		
right-turn bay for a 2-lane roadway:		<u>r</u>	0		the second se						
Do NOT add right-turn bay.			20	00	400	600	800	1000	1200	1400	1600
								one direc			

INPUT

here			140							
Variable	Value	ع ا					Ad	d right - turn	bay	
Major-road speed, mph:	30	eh/h	120				<u></u>	- ignit ien		
Major-road volume (one direction), veh/h:	331	>	400		0	۱				
Right-turn volume, veh/h:	9	ue,	100			1				
		j mno	80			1				
OUTPUT		nr Ke	60			\setminus				
Variable	Value		40							
Limiting right-turn volume, veh/h:	4026	L L	00							
Guidance for determining the need for a major-road		Right-	20				~	_		
right-turn bay for a 2-lane roadway:			0 🖵							
Do NOT add right-turn bay.			200	400	600	800	1000	1200	1400	1600
				Maior	-Road V	olume (one direc	tion) ve	h/h	

4.0

6.5

INPUT					
Variable		Value			
Major-road volume (total of both directions), v	eh/h:	662	ź	500	
Percentage of right-turns on minor road, %:		66%	io i		Consider two approach lanes
Minor-road volume (one direction), veh/h: 116		irection)	400		
OUTPUT			ie (one di /h	300	
Variable Value			Volume veh/h		
Limiting minor-road volume (one direction), veh/h: 344			0	200	
Guidance for determining minor-road appr	oach geometry:		Road V		
ONE approach la	ONE approach lane is o.k.			100	
			Minor-F		One approach lane is o.k.
			Min	0	
				2	00 400 600 800 1000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS					Major-Road Volume (total of both directions), veh/h
Minor Road	Critical gap, s:	Follow-up gap, s:	L		
Right-turn capacity, veh/h:	6.2	3.3			

Left-turn and through capacity, veh/h: * according to Table 17 - 5 of the HCM

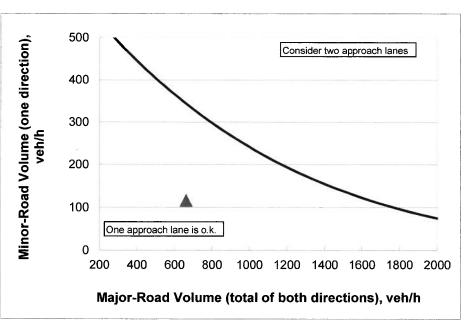
6.5

INPUT				
Variable		Value		
Major-road volume (total of both directions), v	/eh/h:	596	i i i	500
Percentage of right-turns on minor road, %:		59%	ction),	Consider two approach lanes
Minor-road volume (one direction), veh/h:		53	rect	400
OUTPUT			le (one di /h	300
Variable		Value	olume veh/h	
Limiting minor-road volume (one direction), veh/h: 346		lo 1	200	
Guidance for determining minor-road appr	oach geometry:	-	ad V	
ONE approach la	ne is o.k.		Roa	100
			1 2	One approach ne is o.k.
			Mino	
			Ξ	0 200 400 600 800 1000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS				Major-Road Volume (total of both directions), veh/h
Minor Road	Critical gap, s:	Follow-up gap, s:	L	
Right-turn capacity, veh/h:	6.2	3.3		

4.0

Left-turn and through capacity, veh/h: * according to Table 17 - 5 of the HCM INPUT

Figure 2 - 4. Guideline for determining minor-road approach geometry at two-way stop-controlled intersections.


Variable	Value]	
Major-road volume (total of both directions), veh/h:	725		500
Percentage of right-turns on minor road, %:	66%	ction),	Consider two approach lanes
Minor-road volume (one direction), veh/h:	44	ect	400
		he dir	+00
		(or	300
OUTPUT		lume veh/h	
Variable	Value	lume veh/h	200
Limiting minor-road volume (one direction), veh/h:	324	<u>े</u>	200
Guidance for determining minor-road approach geometry:		g l	
ONE approach lane is o.k.		soa [100
			One approach lane in o.k.
		Mino	
		Σ	0 200 400 600 800 1000 1200 1400 1600 1800 2000
			200 400 000 000 1000 1200 1400 1000 1800 2000
			Major-Road Volume (total of both directions), veh/h
CALIBRATION CONSTANTS		-	

Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

Variable	Value
Major-road volume (total of both directions), veh/h:	662
Percentage of right-turns on minor road, %:	66%
Minor-road volume (one direction), veh/h:	116

ОИТРИТ	
Variable	Value
Limiting minor-road volume (one direction), veh/h:	344
Guidance for determining minor-road approach geomet	ry:
ONE approach lane is o.k.	

CALIBRATION CONSTANTS		
Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

INPUT				
Variable	Value]		
Major-road volume (total of both directions), veh/h:	586	l ź	500	
Percentage of right-turns on minor road, %:	58%	ion)		Consider two approach lanes
Minor-road volume (one direction), veh/h:	43	lect	400	
OUTPUT		e (one di /h	300	
Variable	Value	olume (veh/h		
Limiting minor-road volume (one direction), veh/h:	349	1 5	200	
Guidance for determining minor-road approach geometry:	• •			
ONE approach lane is o.k.			100	
		Minor-F	One approach ane is o.k. 0 200 400 600 800	1000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS			Major-Road Volume (te	otal of both directions), veh/h

Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0

INPUT Variable	Value	1		
Major-road volume (total of both directions), veh/h:	720	-	500	
Percentage of right-turns on minor road, %:	64%	ction)	\mathbf{X}	Consider two approach lanes
Minor-road volume (one direction), veh/h:	28	ect	400	
OUTPUT		e (one di /h	300	
Variable	Value	lume veh/h		
Limiting minor-road volume (one direction), veh/h:	320	5	200	
Guidance for determining minor-road approach geometry:				
ONE approach lane is o.k.		koa 🛛	100	
		Minor-F	One approach lane is o.k.	000 1200 1400 1600 1800 2000
CALIBRATION CONSTANTS	Follow-up cap s:	1	Major-Road Volume (tot	al of both directions), veh/h

Minor Road	Critical gap, s:	Follow-up gap, s:
Right-turn capacity, veh/h:	6.2	3.3
Left-turn and through capacity, veh/h:	6.5	4.0