

85 Devonshire Street, 3rd Floor, Boston, MA 02109 Tel: 617.412.4480

LETTER OF TRANSMITTAL

		7	DATE		JOB NO.	
ТО				January 23, 202	23	Eng22-0627
				ATTENTION	Mr. Peter	Stith, Principal Planner
City of Portsmouth New Hampshire Planning Department				RE City of Portsmouth Rt 33 Skate Park		
1Junkins Av	1Junkins Avenue, 3 rd Floor City of Portsmouth			Technical Advis	ory Comm	ittee – Site Plan Review Submission
WE ARE SENDING YOU: ☐ Shop Drawing ☐ Attached ☐ Change Order ☑ Prints ☐ Other			✓ Plans☐ Copy of Letter☐ Specifications☐ Under Separate Cover Via:			
COPIES	DATE	NO.	DESCRIPTION		CRIPTION	
1	01.23.2023	1	Site Plan Application Checklist			
1	01.23.2023	1	Letter of Authorization			
1	01.23.2023	1	Stormwater Management Report			
1	01.23.2023	1	Traffic	Memorandum		
1	01.23.2023	1	Site Plans			
THESE ARE TRANSMITTED AS CHE For Approval			s Subm s Noted ed	nitted d	□ S □ R	esubmit Copies for Approval ubmit Copies for Distribution eturn Corrected Prints eturned for Corrections
COPY TO:				SIGNED: B	randon Ku	nkel

City of Portsmouth, New Hampshire Site Plan Application Checklist

This site plan application checklist is a tool designed to assist the applicant in the planning process and for preparing the application for Planning Board review. The checklist is required to be completed and uploaded to the Site Plan application in the City's online permitting system. A preapplication conference with a member of the planning department is strongly encouraged as additional project information may be required depending on the size and scope. The applicant is cautioned that this checklist is only a guide and is not intended to be a complete list of all site plan review requirements. Please refer to the Site Plan review regulations for full details.

Applicant Responsibilities (Section 2.5.2): Applicable fees are due upon application submittal along with required attachments. The application shall be complete as submitted and provide adequate information for evaluation of the proposed site development. Waiver requests must be submitted in writing with appropriate justification.

Name of Applicant: Brandon Kunkel	Date Submitted: January 23, 2023
Application # (in City's online permitting): TBD	
Site Address: January 23, 2023	Map: _241 _ Lot:18

	Application Requirements			
Ø	Required Items for Submittal	Item Location (e.g. Page or Plan Sheet/Note #)	Waiver Requested	
	Complete <u>application</u> form submitted via the City's web-based permitting program (2.5.2.1 (2.5.2.3A)		N/A	
	All application documents, plans, supporting documentation and other materials uploaded to the application form in viewpoint in digital Portable Document Format (PDF). One hard copy of all plans and materials shall be submitted to the Planning Department by the published deadline. (2.5.2.8)		N/A	

	Site Plan Review Application Required Information			
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
	Statement that lists and describes "green" building components and systems. (2.5.3.1B)	N/A		
	Existing and proposed gross floor area and dimensions of all buildings and statement of uses and floor area for each floor. (2.5.3.1C)	N/A	N/A	
X	Tax map and lot number, and current zoning of all parcels under Site Plan Review. (2.5.3.1D)	Sheet Sheet L000- Cover Page	N/A	

	Site Plan Review Application Required Info	ormation	
V	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	Owner's name, address, telephone number, and signature. Name, address, and telephone number of applicant if different from owner. (2.5.3.1E)	Sheet L000- Cover Page	N/A
X	Names and addresses (including Tax Map and Lot number and zoning districts) of all direct abutting property owners (including properties located across abutting streets) and holders of existing conservation, preservation or agricultural preservation restrictions affecting the subject property. (2.5.3.1F)	Sheet L000- Cover Page	N/A
X	Names, addresses and telephone numbers of all professionals involved in the site plan design. (2.5.3.1G)	Sheet L001- General Notes Page	N/A
X	List of reference plans. (2.5.3.1H)	Sheet L000- Cover Page	N/A
X	List of names and contact information of all public or private utilities servicing the site. (2.5.3.1I)	Sheet L001 - General Notes Page; Grading, utility and Drainage Note #14	N/A

	Site Plan Specifications			
V	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested	
X	Full size plans shall not be larger than 22 inches by 34 inches with match lines as required, unless approved by the Planning Director (2.5.4.1A)	Required on all plan sheets	N/A	
X	Scale: Not less than 1 inch = 60 feet and a graphic bar scale shall be included on all plans. (2.5.4.1B)	Required on all plan sheets	N/A	
X	GIS data should be referenced to the coordinate system New Hampshire State Plane, NAD83 (1996), with units in feet. (2.5.4.1C)	Sheet L100 - Existing Conditions Plan, Notes #6 and #7	N/A	
X	Plans shall be drawn to scale and stamped by a NH licensed civil engineer. (2.5.4.1D)	Required on all plan sheets	N/A	
X	Wetlands shall be delineated by a NH certified wetlands scientist and so stamped. (2.5.4.1E)	Wetland Delineation Memo	N/A	
X	Title (name of development project), north point, scale, legend. (2.5.4.2A)	All applicable plan sheets	N/A	
X	Date plans first submitted, date and explanation of revisions. (2.5.4.2B)	Today's date, first submission in the title block on all sheets.	N/A	
X	Individual plan sheet title that clearly describes the information that is displayed. (2.5.4.2C)	Required on all plan sheets	N/A	
X	Source and date of data displayed on the plan. (2.5.4.2D)	All applicable plan sheets	N/A	

	Site Plan Specifications – Required Exhibit	s and Data	
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	 Existing Conditions: (2.5.4.3A) Surveyed plan of site showing existing natural and built features; Existing building footprints and gross floor area; Existing parking areas and number of parking spaces provided; Zoning district boundaries; Existing, required, and proposed dimensional zoning requirements including building and open space coverage, yards and/or setbacks, and dwelling units per acre; Existing impervious and disturbed areas; Limits and type of existing vegetation; Wetland delineation, wetland function and value assessment (including vernal pools); SFHA, 100-year flood elevation line and BFE data, as required. 	Sheet L100 - Existing Conditions Plan	
X	 2. Buildings and Structures: (2.5.4.3B) Plan view: Use, size, dimensions, footings, overhangs, 1st fl. elevation; Elevations: Height, massing, placement, materials, lighting, façade treatments; Total Floor Area; Number of Usable Floors; Gross floor area by floor and use. 	Add Alternate: Pre Engineered Steel 800 s.f., 20' x 40' open air barrel vault shade pavilion. Sheet L120 - Materials Plan	
X	 3. Access and Circulation: (2.5.4.3C) Location/width of access ways within site; Location of curbing, right of ways, edge of pavement and sidewalks; Location, type, size and design of traffic signing (pavement markings); Names/layout of existing abutting streets; Driveway curb cuts for abutting prop. and public roads; If subdivision; Names of all roads, right of way lines and easements noted; AASHTO truck turning templates, description of minimum vehicle allowed being a WB-50 (unless otherwise approved by TAC). 	Sheet L130 - Layout Plan	
X	 4. Parking and Loading: (2.5.4.3D) Location of off street parking/loading areas, landscaped areas/buffers; Parking Calculations (# required and the # provided). 	Sheet L130 - Layout Plan	
	 5. Water Infrastructure: (2.5.4.3E) Size, type and location of water mains, shut-offs, hydrants & Engineering data; Location of wells and monitoring wells (include protective radii). 	N/A	
	 Sewer Infrastructure: (2.5.4.3F) Size, type and location of sanitary sewage facilities & Engineering data, including any onsite temporary facilities during construction period. 	N/A	

	 7. Utilities: (2.5.4.3G) The size, type and location of all above & below ground utilities; Size type and location of generator pads, transformers and other fixtures. 8. Solid Waste Facilities: (2.5.4.3H) The size, type and location of solid waste facilities. 	Sheet L140 - Grading, Drainage, and Utility Plan
	 9. Storm water Management: (2.5.4.31) The location, elevation and layout of all storm-water drainage. The location of onsite snow storage areas and/or proposed off-site snow removal provisions. Location and containment measures for any salt storage facilities Location of proposed temporary and permanent material storage locations and distance from wetlands, water bodies, and stormwater structures. 	Sheet L140 - Grading, Drainage, and Utility Plan
	 10. Outdoor Lighting: (2.5.4.3J) Type and placement of all lighting (exterior of building, parking lot and any other areas of the site) and photometric plan. 	N/A
	11. Indicate where dark sky friendly lighting measures have been implemented. (10.1)	N/A
X	 12. Landscaping: (2.5.4.3K) Identify all undisturbed area, existing vegetation and that which is to be retained; Location of any irrigation system and water source. 	Sheet L120 - Materials Plan
X	 13. Contours and Elevation: (2.5.4.3L) Existing/Proposed contours (2 foot minimum) and finished grade elevations. 	Sheet L140 - Grading, Drainage, and Utility Plan
X	 14. Open Space: (2.5.4.3M) Type, extent and location of all existing/proposed open space. 	Sheet L120 - Materials Plan
	15. All easements, deed restrictions and non-public rights of ways. (2.5.4.3N)	N/A
	 16. Character/Civic District (All following information shall be included): (2.5.4.3P) Applicable Building Height (10.5A21.20 & 10.5A43.30); Applicable Special Requirements (10.5A21.30); Proposed building form/type (10.5A43); Proposed community space (10.5A46). 	N/A
	 17. Special Flood Hazard Areas (2.5.4.3Q) The proposed development is consistent with the need to minimize flood damage; All public utilities and facilities are located and construction to minimize or eliminate flood damage; Adequate drainage is provided so as to reduce exposure to flood hazards. 	N/A

	Other Required Information				
Ø	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested		
X	Traffic Impact Study or Trip Generation Report, as required. (3.2.1-2)	Traffic Memorandum			
	Indicate where Low Impact Development Design practices have been incorporated. (7.1)	N/A			
X	Indicate whether the proposed development is located in a wellhead protection or aquifer protection area. Such determination shall be approved by the Director of the Dept. of Public Works. (7.3.1)	Stormwater Report			
X	Stormwater Management and Erosion Control Plan. (7.4)	Sheet L110 - Site Preparation and Demolition Plan			
X	Inspection and Maintenance Plan (7.6.5)	Stormwater Report			

	Final Site Plan Approval Required Infor	mation	
V	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
	All local approvals, permits, easements and licenses required, including but not limited to: • Waivers; • Driveway permits; • Special exceptions; • Variances granted; • Easements; • Licenses. (2.5.3.2A)	N/A	
X	 Exhibits, data, reports or studies that may have been required as part of the approval process, including but not limited to: Calculations relating to stormwater runoff; Information on composition and quantity of water demand and wastewater generated; Information on air, water or land pollutants to be discharged, including standards, quantity, treatment and/or controls; Estimates of traffic generation and counts pre- and post-construction; Estimates of noise generation; A Stormwater Management and Erosion Control Plan; Endangered species and archaeological / historical studies; Wetland and water body (coastal and inland) delineations; Environmental impact studies. (2.5.3.2B) 	Stormwater Report	
	A document from each of the required private utility service providers indicating approval of the proposed site plan and indicating an ability to provide all required private utilities to the site. (2.5.3.2D)	N/A	

	Final Site Plan Approval Required Info	rmation	
\square	Required Items for Submittal	Item Location (e.g. Page/line or Plan Sheet/Note #)	Waiver Requested
X	A list of any required state and federal permit applications required for the project and the status of same. (2.5.3.2E)	State of NHDES Alternaton of Terrain Permit	
X	A note shall be provided on the Site Plan stating: "All conditions on this Plan shall remain in effect in perpetuity pursuant to the requirements of the Site Plan Review Regulations." (2.5.4.2E)	Sheet L001- General Notes Page, Special Notes #1	N/A
	For site plans that involve land designated as "Special Flood Hazard Areas" (SFHA) by the National Flood Insurance Program (NFIP) confirmation that all necessary permits have been received from those governmental agencies from which approval is required by Federal or State law, including Section 404 of the Federal Water Pollution Control Act Amendments of 1972, 33 U.S.C. 1334. (2.5.4.2F)	N/A	
	Plan sheets submitted for recording shall include the following notes: a. "This Site Plan shall be recorded in the Rockingham County Registry of Deeds." b. "All improvements shown on this Site Plan shall be constructed and maintained in accordance with the Plan by the property owner and all future property owners. No changes shall be made to this Site Plan without the express approval of the Portsmouth Planning Director."	Sheet L001- General Notes Page Special Notes #2 and #3	N/A
	(2.13.3)		

	Z.01.00			
Applicant's Signature: _	July Mills	Date:	January 23, 2023	

PUBLIC WORKS DEPARTMENT

CITY OF PORTSMOUTH

680 Peverly Hill Road Portsmouth N.H. 03801 (603) 427-1530 FAX (603) 427-1539

Letter of Authorization

I, Peter Rice, do herby authorize Weston & Sampson Engineers to act on the City of Portsmouth's behalf concerning the Portsmouth New Hampshire Skate Park Project submission to the Technical Advisory Committee. The property is located at 305 Greenland Road Portsmouth, NH and is owned by the city of Portsmouth.

Peter Rice

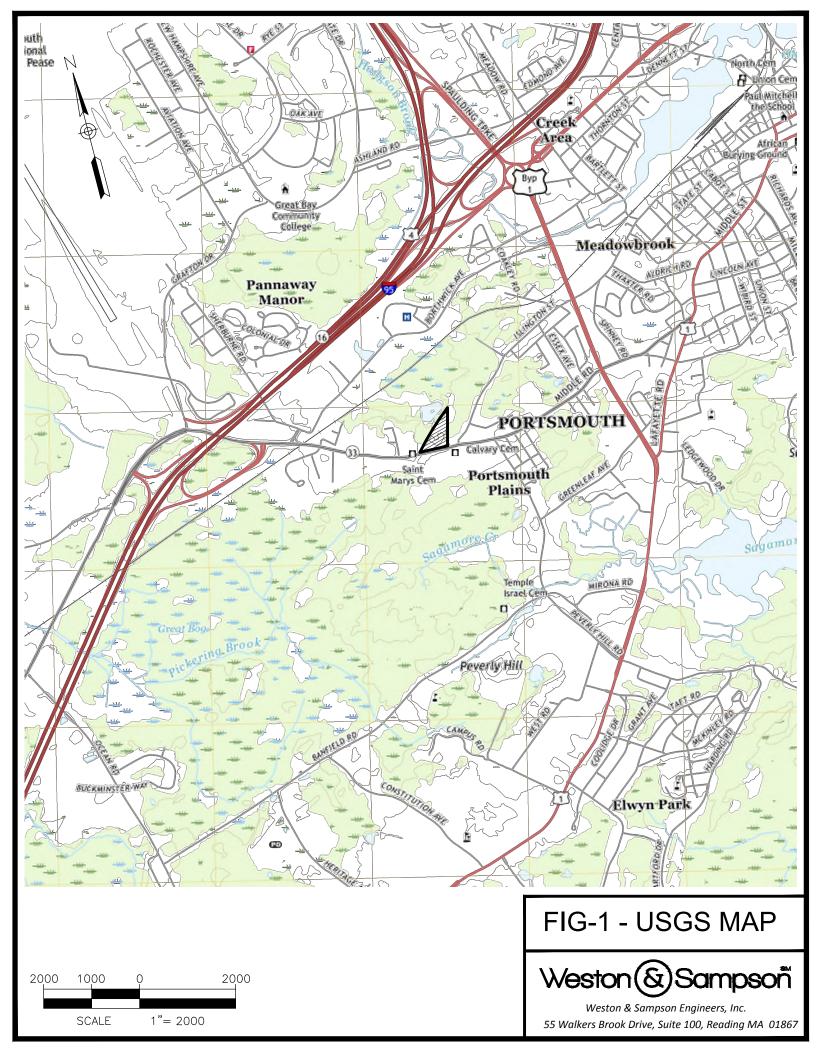
Director of Public Works

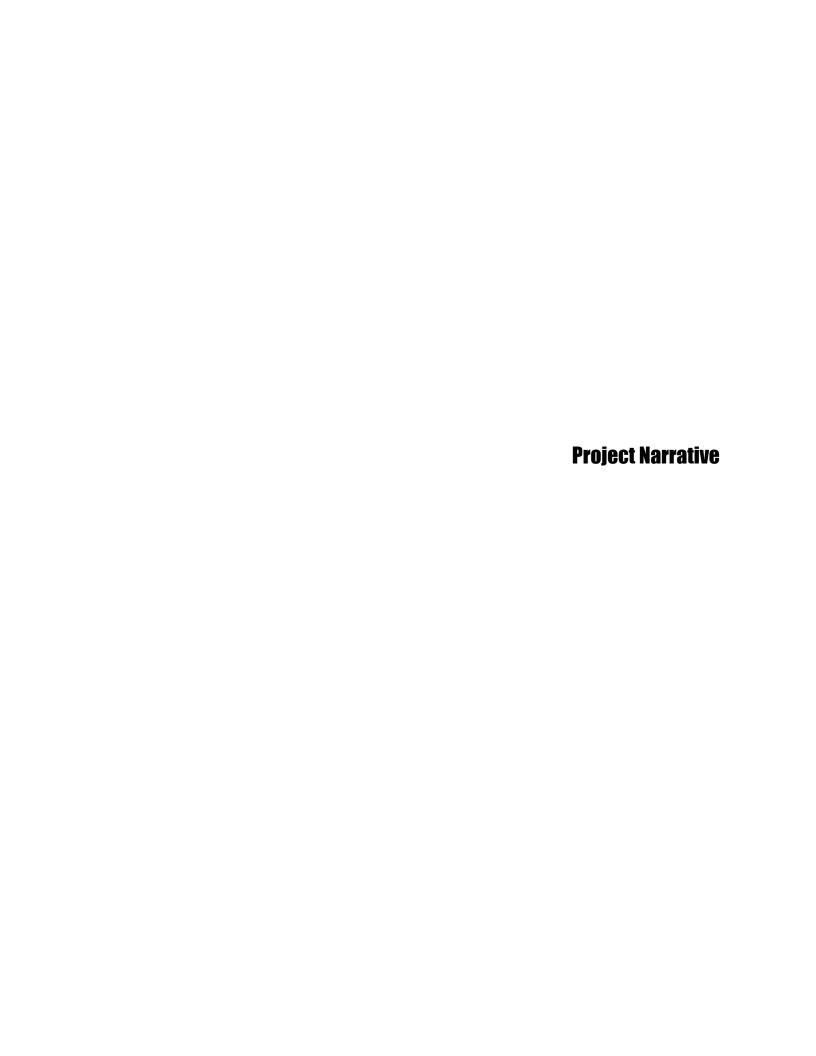
Stormwater Management Report

Portsmouth, New Hampshire

Route 33 Skate Park Project

December 22, 2022


JOB NO: ENG22-0627



Index

Attachment A - Boring Logs
Attachment B - Summary of Soil Analytical Data
Project Narrative
Site Photographs
BMP Worksheets
Drainage Analysis
Outlet Protection Calculations
Operations and Maintenance Plan

Appendix A – Soil Lab Testing Reports

Stormwater Report

December 22, 2022

Applicant/Project Name: City of Portsmouth

Route 33 Skate Park

Project Address: 305 Greenland Road, Portsmouth, NH

Application Prepared by:

Firm: Weston & Sampson, Inc.

Registered PE: James Pearson

Project Description and General Site History:

The project applicant, the City of Portsmouth, proposes to develop a parcel of land located at 305 Greenland Road (Map 24 / Lot 18) into a recreational facility consisting of a skateboarding park with a gravel parking lot, and sidewalks providing access through the site. Total site disturbance associated with this project is 90,618-SF, although the total proposed site disturbance is below 100,000-SF, the project applicant would like the ability to further develop the site in the future if they choose.

The site had historically been used as a gravel pit followed by a disposal location for stumps and excess soil generated from municipal construction projects. The site is known locally as "the stump dump". The site at one time was also previously owned by the Portsmouth Gun Club and functioned as a shooting range. More recently, the site has been used as a construction staging/stockpile area for municipal infrastructure projects. In 2013, the City was approved for an Alteration of Terrain permit to develop the parcel into a soccer field and recreational facility. Work began in 2014, and the site was partially completed. Improvements to drainage infrastructure were made, and the site was roughly graded. Construction was not completed however, and afterwards, the site once again became used as a construction staging/stockpile area for municipal projects.

Existing Site Conditions

The subject parcel is 216,556-SF (4.97-AC) in size. It is located at 305 Greenland Road near the intersection of Islington Street and adjacent to the NH Seacoast Greenway Rail Trail. Grading of the site is generally very flat, with elevations predominantly ranging from 55 to 56-FT±, and a low point of 46-FT± at the bottom of a drainage swale in the southwestern most corner of the site. The ground cover of the site is in relatively poor condition, with 3.96-AC± of the site consisting of a gravel/bare earth surface in poor shape. Several large stockpiles of soil and construction debris are located throughout the site with areas of brush and woods surrounding the outer boundary of the parcel.

No environmental resource areas are present on site, and the site is not located within the 100-year floodplain. According to the Onestop data mapper, the parcel is listed as a remediation site related to previous use as a landfill and a shooting range. Soil borings were conducted by Weston & Sampson in September of 2016 and show varying amounts of sandy fill containing debris throughout the site. The debris generally consists of concrete, brick, asphalt, ash, wood, and leaves. Soil samples were collected while performing the geotechnical borings and subsequently analyzed. Results of the soil samples indicated elevated levels of compounds exceeding soil standards set forth in ENV-OR 606.19, Table 600-2.

According to NRCS soil mapping, the site is comprised of a mix of Udorthents and Hoosic gravelly fine sandy loam (HSG-A), which is supported by the boring data collected. Underlying native soil beneath the fill is consistently composed of sand and gravel with trace amounts of silt. Due to the predominant soil classification of Udorthents, the historic site use as a gravel pit and landfill, and data obtained from geotechnical borings, a site specific soil survey (SSS) was not completed and Natural Resources Conservation Service (NRCS) soil classifications were used to analyze the site. Boring logs and soil testing summary tables can be found in Attachments A & B following this narrative. Full lab testing results can be found in Appendix A following this report.

Drainage Analysis

Pre-Development

Pre-development conditions consist of four sub-catchments contributing to one point of analysis (POI-A), located at City Pond, a small surface water (<3-AC) that receives municipal stormwater run-off. Sub-catchment A1 consists of run-off captured in a series of catch basins in Greenland Road which is routed onto the site via a manhole and several pipe runs, it discharges to a stormwater conveyance swale located on the southwestern corner of the site where it enters into another series of conveyance pipes before discharging out of an existing flared end structure with a rip-rap apron and entering City Pond. Sub-catchment A2 is comprised of an area which flows overland into the stormwater conveyance swale. Sub-catchment A3 is comprised of an area which is captured by the stormwater management system on site. Run-off from this sub-catchment is captured via an underdrain system or from one of five catch basins installed in 2014 and then enters the stormwater conveyance system via the same manhole on-site as sub-catchment A1. Sub-catchment A4 is an area which drains overland in a westerly direction, across the NH Seacoast Greenway Rail Trail and eventually to City Pond.

Post-Development

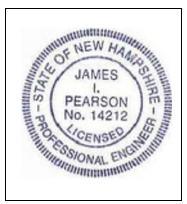
The proposed project will include the construction of a gravel parking lot, pedestrian walkways, and a skateboarding park. Existing stormwater infrastructure installed in 2014 will be utilized for this project with additional treatment features added to improve water quality. Due to the levels of contaminants shown in lab testing which exceed allowable concentrations set forth in ENV-OR 606.19, our interpretation of ENV-WQ 1507.02(c)(1)b leads us to believe that stormwater infiltration is not allowed on this site. In lieu of an infiltration practice, we have proposed the use of a Contech CDS hydrodynamic separator to treat stormwater run-off from the proposed gravel and asphalt parking lot. Additionally, we propose to retrofit two existing catch basins which will receive parking lot run-off with hooded outlets to minimize the transport of hydrocarbons and trash into the stormwater management system.

The proposed design results in five sub-catchments contributing to POI-A. Sub-catchments A1, A2, and A4 remain largely unchanged in their land cover and drainage patterns. Sub-catchment A3 has now been broken up into two sub-catchments, creating a smaller A3 and area A5. The proposed site improvements to these two sub-catchments result in substantially lower CN values even with the addition of 23,550-SF of impervious area. Significant areas of gravel and bare soil (47,362-SF) will be loamed and seeded, resulting in much better hydrologic conditions on this portion of the site. These improvements in ground cover alone, produce a decrease in peak discharge values during the 2-year, 10-year, and 50-year storm events as shown on the following table.

		Peak Discharge (CFS)						
Analysis Point	24-Hr Storm Event	Pre-Development	Post-Development					
	2-YR	5.17	5.15					
Α	10-YR	10.87	9.68					
	50-YR	20.40	17.23					

Methodology

Drainage calculations were performed using HydroCAD computer software, version 10.20-2d, which is based upon Technical Release 20 (TR-20), developed by NRCS. Calculations were prepared for the 2-year, 10-year, and 50-year Type III 24-hour storm events and rainfall data was obtained from the Northeast Regional Climate Center.


Additional Information Regarding Nutrients

Stormwater discharges from this project will indirectly enter City Pond. No fertilizers will be utilized and this project will not cause an increase in phosphorus levels to any receiving water body.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including any relevant soil evaluations, computations, Operations and Maintenance Plan, and plans showing erosion control and the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the New Hampshire Department of Environmental Services. I have also determined that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

12/21/2022

Signature and Date

<u>PROJECT</u>	REPOR	RT OF BORING	Nο	D 4		
Weston Sampson Rt. 33 Recreation Field		SHEET	1 OF1			
Portsmouth, NH		Project No.		2160648.A nomas J. Strike, PE		
	CHKD BY Thomas c					
BORING Co. New England Boring Contractors BORING LOCATION	BORING LOCATION See attached pla					
FOREMAN Sam Shaw GROUND SURFA	ACE ELĒ	55 ft.	+/- DATUM NAVD88			
WSE ENGINEER: Julie A. Eaton, EIT DATE START		9/27/16	DATE	END 9/27/16		
SAMPLER: 2 IN, OD SPLIT SPOON SAMPLER (SPT) DRIVEN 24 INCHES			D DEAD	NNCC		
		GROUNDWATE	_			
USING A 140 lb. CATHEAD OPERATED HAMMER. DATE CASING: HOLLOW STEM AUGER DRILLING METHODS	TIME	WATER AT Groundwater n	CASIN of obser			
CASING: HOLLOW STEM AUGER DRILLING METHODS TRUCK RIG	1 1	Groundwater ii	T	veu.		
CASING SIZE: 2 1/4 IN. INSIDE DIAMETER. OTHER:	+ +		+			
			+			
DEPTH CASING SAMPLE PID SAMPLI	E DESCRI	PTION	NOTES	STRATUM DESCRIPTION		
(feet) (blows/ft) No. REC/PEN (in) DEPTH (ft) BLOWS/6" (ppm)	III	t 0AND	+ +			
0 S-1 18/24 0-2 5-21-30-35 0.2 Very dense, brown, gra			1,2			
Bottom 12" grades to I		in, dopridity, motori				
				SAND FILL WITH		
				DEBRIS		
5 S-2 8/24 5-7 5-6-9-6 0.1 Medium dense, dark b	rown fine	to medium SAND		DEDKIS		
S-2 8/24 5-7 5-0-9-0 0.1 Median dense, dank b						
	,					
			1 F			
10 S-3 14/24 10-12 17-27-21-22 0.1 Dense, brown, fine to a	medium S/					
trace to little silt; moist						
15 S-4 15/24 15-17 13-27-36-59 0.1 Very dense, brown, fin	ne to mediu					
gravel, trace silt; moist	t.					
				SAND		
20						
S-5 10/10 20-20.8 88-100/4" Very dense, brown, fin		ım SAND, some				
gravel, trace silt; moist	t.					
25						
S-6 13/24 25-27 38-15-18-19 Dense, brown, fine to a	medium S/	AND, trace silt;				
moist.			4 1			
Boring terminated at 2	27 ft.					
30						
			1 1			
GRANULAR SOILS COHESIVE SOILS NOTES:						
BLOWS/FT DENSITY BLOWS/FT DENSITY 1. Grab sample submitted for	environme	ental analysis				
0-4 V. LOOSE 0-2 V. SOFT 2. Periodic auger grinding from		-	bbles. box	ulders, and/or debris).		
4-10 LOOSE 2-4 SOFT		4, 222,2,3	,	,		
10-30 M. DENSE 4-8 M. STIFF						
> 50 V. DENSE 15-30 V. STIFF						
> 30 HARD						
GENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN S	OIL TYPES	TRANSITIONS MAY	BE GRADL	JAL.		

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

BORING No. B-1

							PRO	DJECT	RFPO	RT OF BORING I	No.		B-2		
	116	oto	000	anna		Rt. 33 Recreation Field			0				1 OF 1		
	we	SIO	n(&)S	ampa	son			nouth, NH		Project No.			60648.A		
								,		CHKD BY		noma	s J. Strike, PE		
BORIN			New Engla	and Boring				ING LOCATION			ee attac				
FOREN				Sam Shaw									DATUM NAVD88		
WSE ENGINEER: Julie A. Eaton, EIT DATE START							9/28/16	DATE	END	9/28/16					
SAMPL	.ER:	2 IN. OD S	PLIT SPOON SAME	PLER (SPT) DRIVE	N 24 INCHES					GROUNDWATE			1		
CASIN	o.		140 lb. CATHEAD O		R.		<u>-</u>	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME		
CASIN	J.	TRUCK RI	STEM AUGER DRIL	LING METHODS			_			Groundwater no	lobsei	veu.			
CASING	SIZE:		ISIDE DIAMETER.		OTHER:										
DEPTH	CASING			SAMPLE		PID		CAMBLE	DECOR	IDTION	area	0.7.5	A TURA DEGODIDATION		
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)		SAMPLE	DESCR	IPTION	NOTES	511	RATUM DESCRIPTION		
0		S-1	15/24	0-2	10-19-10-9	0.2				to medium SILTY	1				
							moist.		, iittie de	bris (wood, brick);					
5 —															
5-		S-2	9/19	5-6.6	4-3-7-50/1"	2.4				to medium SILTY	2				
							SAND	FILL, IIIIe gravei	, trace d	ebris (wood); moist.	3				
											4	s	AND FILL WITH		
40												·	DEBRIS		
10 —		S-3	0/24	10-12	7-8-9-8	N/A	No red	covery.							
			0/0.4	10.11	50.47.40.44	0.0				OAND FILL					
		S-4	8/24	12-14	56-17-19-14	3.3		e, dark brown, fine debris (wood, cor		um SAND FILL, rick, paper), little silt,					
								ravel; moist.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
15 —		S-5	7/24	15-17	9-7-9-5	5.4				to medium SAND					
								some wood fragm ; moist.	ents, littl	e to some silt, trace					
							graver	, 1110131.							
20 —		S-6	18/24	20-22	12-17-19-16	2.6	Dense	e, brown, fine to c	oarse SA	ND, trace gravel,					
							trace s	silt; moist.							
25 —		S-7	18/24	25-27	17-18-11-14	0.1	Mediu	m dense, brown,	fine to co	parse SAND, some			SAND		
							gravel	, trace to little silt;	moist.						
30 —		S-8	18/24	30-32	16-19-19-20		Dense	e, dark gray, fine t	o coarse	SAND, some silt,					
								gravel; moist.		· ·					
							Boring	terminated at 32	ft.						
	GRANU	AR SC	IL DILS	COHES	I IVE SOILS	NOTI	S·				ш				
	WS/FT		DENSITY	BLOWS/FT	DENSITY			ger grinding from	about 0	to 5 ft.					
)-4	l	LOOSE	0-2	V. SOFT	2. Gra	b samp	le submitted for e	environm	ental analysis.					
	-10		OOSE.	2-4	SOFT								8 ft. Auger grinding 0		
)-30)-50		DENSE DENSE	4-8 8-15	M. STIFF	 M. STIFF STIFF 4. Periodic auger grinding from about 7 to 12.5 ft. with wood fragments observed in cuttings. 						rved in cuttings			
	50 50		DENSE	15-30	V. STIFF (possible cobbles, boulders, and/or debris)						i voa iii outuiiga.				
		<u> </u>		> 30	HARD										
GENERA	L NOTES:	i) THE S	TRATIFICATION	LINES REPRES	SENT THE APPROX	IMATE I	BOUND	ARY BETWEEN SC	IL TYPES	6. TRANSITIONS MAY E	BE GRADU	JAL.			
		ii) WATE	R LEVEL READI	NGS HAVE BEE	N MADE IN THE DE	RILL HO	LES AT	TIMES AND UNDE	R CONDI	TIONS STATED ON THI	S BORING	G LOG.			

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME

MEASUREMENTS ARE MADE.

BORING No.

	We	sto	n&S	amps	soñ		33 Rec	OJECT creation Field nouth, NH	REPC	RT OF BORING I SHEET Project No. CHKD BY	1	21	B-3 OF 1 60648.A s J. Strike, PE
BORIN FOREN	ΛΑN			Sam Shaw			GRO	ING LOCATION SURFA		EV.		. +/-	DATUM NAVD88
	NGINEE	K:		Julie A. Ea	ton, Eli		- DATI	E START		9/27/16	DATE	FND	9/27/16
SAMPL	ER:		SPLIT SPOON SAMP				_			GROUNDWATER			
CASIN	~ .		140 lb. CATHEAD O		ĒR.		_	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME
CASIN	G.	TRUCK RI	STEM AUGER DRIL	LING METHODS			_			Groundwater no	l obser	vea.	
CASING	SIZE.		NSIDE DIAMETER.		OTHER:		-						
DEPTH	CASING			SAMPLE	01112111	PID	<u> </u>				 		
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)		SAMPLE	DESCR	RIPTION	NOTES	STR	ATUM DESCRIPTION
0	(blowd/it)	S-1	15/24	0-2	5-5-4-4	0.0		rown, CLAYEY S	ILT FILL	, little fine sand, little	\vdash		
9			10/21	0.2		0.0		, trace debris (asp					
5 —		S-2	9/24	5-7	5-8-5-5	0.1	FILL, s	m dense, brown, some gravel; very It debris.	SAI	ND/CLAYEY SILT			
10 —												FIL	L WITH DEBRIS
		S-3	5/24	10-12	4-6-8-11	0.2	Stiff, b	,	ILT FILL	., little fine sand, little			
15 —		S-4	13/24	15-17	55-25-29-30	0.4				coarse SAND FILL,	2		
							Botton	n 4": brown, fine t , trace silt; moist.					
20 —		S-5	13/24	20-22	28-31-28-25	0.2		lense, brown, fine lt; moist.	to coar	se SAND, little gravel,			
25 —		S-6	13/24	25-27	27-32-26-31		Very c	lense, brown, gra	velly, fin	e to coarse SAND,			SAND
							trace s	siit; moist.					
30 —		S-7	14/24	30-32	35-29-18-10			e, brown, fine to co silt; moist.	oarse S/	AND, little gravel,			
							Boring	terminated at 32	ft.				
	GRANU	AR SO	OILS	COHES	IVE SOILS	NOT	ES:						
BLOWS/FT DENSITY BLOWS/FT DENSITY					-		ding from about 1	3.5 to 15	5.5 ft. (possible cobble	s, boulde	rs, and	/or debris)	
					2. Gra	b samp	le submitted for e	nvironm	nental analysis.				
	-10		OOSE	2-4	SOFT	3. Per	iodic au	iger grinding from	about 1	8 to 30 ft. (possible co	obbles)		
)-30		DENSE	4-8	M. STIFF								
)-50		DENSE	8-15	STIFF								
> 50 V. DENSE				15-30 > 30	V. STIFF HARD								

GENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

							PRO	DJECT	REPC	RT OF BORING					
	11/0	oto	n(&)S	amn	200	Rt 3	3 Rec	reation Field		SHEET	1 OF1				
	we	SIO		ampa	SOLI			outh, NH		Project No.		2160648.A			
			_			'	Orton	iodui, ivii		CHKD BY	Tł	nomas J. Strike, PE			
BORIN	G Co.		New Engla	and Boring	Contractors	BORING LOCATION Se						hed plan			
FORE	ИAN			Sam Shav			GRO	UND SURFA	CE EL	EV.	56 ft.	. +/- DATUM NAVD88			
WSE E	NGINEE	 R:		Julie A. Ea	iton. EIT		_	E START		9/27/16	DATE				
					,			1			•				
SAMPL	LER:	2 IN. OD 8	SPLIT SPOON SAMP	LER (SPT) DRIVE	N 24 INCHES		_			GROUNDWATER					
	_	USING A	140 lb. CATHEAD O	PERATED HAMM	ER.		_	DATE	TIME	WATER AT	CASIN				
CASIN	ASING: HOLLOW STEM AUGER DRILLING METHODS						_			Groundwater no	t obser	ved.			
		TRUCK R	G				_								
CASING	3 SIZE:	2 1/4 IN. II	NSIDE DIAMETER.		OTHER:		_								
DEPTH	CASING		,	SAMPLE		PID									
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPLE	DESCR	RIPTION	NOTES	STRATUM DESCRIPTION			
0	(3.3.1.4)	S-1	15/24	0-2	17-24-20-11		_	e, brown, fine to c	oarse S	AND FILL, some	1				
ľ		<u> </u>	10/2-1	0 2	17 24 20 11	10.1				orick, asphalt); moist.	I ' I				
İ						<u> </u>	ł				l I				
		-	-			 	1				l I				
							-				l I				
5 —		0.0	40/04		0.0.0.40	0.5	Madiu	damaa dawl bu		TV CAND FILL IIII	l I				
		S-2	12/24	5-7	6-8-9-10	0.5		m dense, dark br ; very moist.	own, Sil	TY SAND FILL, little	l I				
							graver	, very moist.			l I				
							1				l I	SAND FILL WITH			
							1				l I	DEBRIS			
10 —											l I				
10 -		S-3	13/24	10-12	5-6-4-7	0.8				e to medium SAND	2				
										halt), trace gravel,	l I				
							trace	organics (roots); r	moist.		l I				
							1				l I				
							1				l I				
15 —		S-4	17/24	15-17	25-31-78-71	2.4	Very c	lense, dark browr	n, fine to	medium SAND FILL,	l I				
		<u> </u>	17727	10 17	20 01 70 71	2.7				phalt), trace gravel;	l I				
						 				coase SAND, some	l I				
							gravel	, trace silt; moist.			l I				
			1				┨				l I				
20 —		S-5	3/9	20-20.8	68-100/3"	1 5	Very c	lense brown ara	velly fin	e to coarse SAND,	l I				
		S-5	3/9	20-20.8	68-100/3	1.5		o little silt; moist.	velly, IIII	e to coarse SAND,	l I	CAND			
						<u> </u>	-	o maio om, moioa			l I	SAND			
						<u> </u>	4				l I				
1			1			<u> </u>	1								
25 —					<u> </u>	<u> </u>	1.			,					
l		S-6	12/24	25-27	73-43-27-37	<u> </u>			velly, fin	e to coarse SAND,					
I					ļ	<u> </u>		silt; moist.			Į L				
							Boring	terminated at 27	ft.		l I				
I							1								
30 —															
] 50 _															
I															
I															
I															
							1								
	GRANU	LAR SO	OILS	COHES	SIVE SOILS	NOT	ĒS:								
BLOWS/FT DENSITY BLOWS/FT DENSITY						-		iger grinding from	n about 1	to 25 ft. (possible coh	bles hou	ulders, and/or debris). Wood			
0-4 V. LOOSE 0-2 V. SOFT							served in cuttings			, 500	undroi dobiioj. Wood				
1 01 112002 02 110011							le submitted for e								
					2. Gia	io samp	no submitted for t	ZI IVII UI III	ioniai anaiysis.						
I I					STIFF										
		l	_	8-15 15 20	-										
l	50	\	DENSE	15-30	V. STIFF										

GENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

BORING No. B-4

							PRO	<u>DJECT</u>		RT OF BORING SHEET	S No. <u>B-5</u> 1 OF 1			
	We	sto	n(&)S	amp	son			reation Field		Project No.		2160648.A		
						F	ortsm	outh, NH		CHKD BY	TI		s J. Strike, PE	
BORIN	G Co.		New Engla	and Boring	Contractors		BOR	ING LOCATION	ON	Se	ee attac	hed r	lan	
FORE				Sam Shav	/		GRO	UND SURFA	CE ELĒ	V.	57 ft		DATUM NAVD88	
WSE E	NGINEE	R:		Julie A. Ea	ton, EIT		DATE START 9/28/16 DATE END 9/28						9/28/16	
SAMPL	.ER:	2 IN. OD S	PLIT SPOON SAMP	LER (SPT) DRIVE	N 24 INCHES				(GROUNDWATE	R READ	DINGS	3	
	_	USING A 1	40 lb. CATHEAD O	PERATED HAMMI	ĒR.		-	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME	
CASIN	G:		STEM AUGER DRIL	LING METHODS			-			Groundwater no	ot obser T	ved.		
CASINO	SIZE:	2 1/4 IN. IN	ISIDE DIAMETER.		OTHER:		-							
DEPTH	CASING		(SAMPLE		PID	-	0.1151.5						
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)		SAMPLE	DESCRI	PTION	NOTES	SIR	ATUM DESCRIPTION	
0		S-1	12/23	0-1.9	7-8-40-100/5"	0.0		e, brown, gravelly, It, trace debris (w		oarse SAND FILL,	1			
							iillie si	it, trace debris (w	00u), 1110	ist.				
							1							
5 —							1							
]]		S-2	18/24	5-7	10-79-60-38	0.2	,	lense, dark brown gravel, little silt; m		coarse SAND FILL,				
							Some	gravei, iittie siit, ii	ioist.					
							1					S	AND FILL WITH	
10 —							1						DEBRIS	
10 -		S-3	5/24	10-12	6-7-6-8	0.1		m dense, brown, ravel, trace silt; m		arse SAND FILL,				
							iittie gi	avei, irace siit, iri	oist.					
							1							
15 –							1							
15		S-4	14/24	15-17	10-28-33-13	0.6		lense, brown, gra some silt, trace de		2				
						-		terminated at 17		maily, moist.	. I			
							Domig	terrimated at 17	π.					
20 —														
							•							
							1							
25 —														
							1							
30 —														
							1							
							1							
	00.44	1 1 5 0 0		001150	1) (5 0011 0	NOT								
BI ∩	GRANU ws/ft		DILS	BLOWS/FT	DENSITY	NOT 1 Peri		iger arinding from	about 0	to 13 ft. (possible col	obles boi	ulders	and/or debris)	
)-4		LOOSE	0-2	V. SOFT	-		le submitted for e		**	, 500			
	-10		OOSE.	2-4	SOFT					•				
)-30		DENSE	4-8 9.1 <i>5</i>	M. STIFF									
)-50 50		DENSE DENSE	8-15 15-30	STIFF V. STIFF									
L ĺ				> 30	HARD	L								
GENERA	L NOTES:	i) THE S	TRATIFICATION	LINES REPRES	SENT THE APPROX	(IMATE I	BOUND	ARY BETWEEN SO	IL TYPES	. TRANSITIONS MAY I	BE GRADI	JAL.		
		,								TIONS STATED ON THE				

BORING No.

							PRO	<u>DJECT</u>	_	RT OF BORING		B-6		
	11/0	etor	1(&)5	amn	con	Rt. 3	3 Rec	reation Field		SHEET	1 OF 1			
	VVC	3101		dilipo	SOLI	F	ortsm	nouth, NH		Project No. CHKD BY			60648.A s J. Strike, PE	
BORIN			New Engla		Contractors		BORING LOCATION See attached plan GROUND SURFACE ELEV. 56 ft. +/- DATUM							
FOREN	MAN NGINEE			Sam Shaw Julie A. Ea			-	OND SURFA E START	CE ELE	:v. 9/28/16	DATE		DATUM NAVD88 9/28/16	
		Ν.		Julie A. La	ton, En		- DAT	LOTARI						
SAMPL	.ER:		PLIT SPOON SAME				_			GROUNDWATE				
CASIN	٥.	USING A 140 lb. CATHEAD OPERATED HAMMER. HOLLOW STEM AUGER DRILLING METHODS						DATE	TIME	WATER AT Groundwater no	CASIN		STABILIZATION TIME	
CASIN	J.	TRUCK RI		LING METHODS			-			Groundwater no	l obser	veu.		
CASING	SIZE:		ISIDE DIAMETER.		OTHER:		-							
DEPTH	CASING			SAMPLE		PID	<u> </u>							
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPLE	DESCRI	PTION	NOTES	STR	RATUM DESCRIPTION	
0		S-1	15/24	0-2	10-19-26-20	0.0		e, brown, fine to c			1			
							some moist.	•	ace debr	is (brick, asphalt);				
							ł							
5 —		S-2	4/8	5-5.6	14-100/2"	0.5	Very o	dense, dark browr	n, gravelly	fine to coarse				
								FILL, little to soments); moist.	ne silt, litt	le debris (wood				
							iragiii	enis), moisi.				s	AND FILL WITH	
							l						DEBRIS	
10 —		S-3	13/24	10-12	18-15-12-12	0.0	Mediu	m dense, dark br	own fine	to coarse SAND	2			
		0-0	13/24	10-12	10-13-12-12	0.0	FILL,	some silt, little del	bris (brick	k, ash, asphalt),				
							trace (gravel; moist. Bot	tom 4": g	rades to brown, silty.				
							1							
15 —			2/2/							to medium SAND				
		S-4	6/24	15-17	17-15-13-14	0.3	FILL, some silt, little debris (wood fragments, asphalt), little gravel; moist.							
							Borino	terminated at 17	' ft		- H			
								,						
20 —]							
20							Į.							
							ł							
							1							
0.5							1							
25 —							1							
							l							
							ł							
30 —							1							
							1							
]							
	GRANU	AR SC	DILS	COHES	I IVE SOILS	NOT	ES:				ш			
	WS/FT		ENSITY	BLOWS/FT	DENSITY			ger grinding from	about 3	to 6 ft. (possible cobb	oles, boul	ders, a	ind/or debris).	
)-4		LOOSE	0-2	V. SOFT	4		le submitted for e						
	-10		OOSE	2-4	SOFT									
)-30		DENSE	4-8	M. STIFF									
)-50 50		DENSE DENSE	8-15 15-30	STIFF V. STIFF									
	50	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	DEINSE	> 30	V. STIFF HARD									
GENERA	L NOTES:	i) THE S	TRATIFICATION			IMATE I	BOUND	ARY BETWEEN SC	IL TYPES	. TRANSITIONS MAY E	BE GRADU	JAL.		
										TIONS STATED ON THI				

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME

MEASUREMENTS ARE MADE.

BORING No.

			_				PRO	<u>DJECT</u>	_	RT OF BORING I			
	We	stor	n(&)S	amps	son	Rt. 3	3 Rec	creation Field		SHEET Project No.	1		OF <u>1</u> 60648.A
	***	0.0.		Cirip	3011	P	ortsm	nouth, NH		CHKD BY	Thomas J. Strike, PE		
DODIN.	2.02		Name Coole	Doring	O sertemento mo		200	THE LOCATIO					
BORIN FOREN			New Engla	and Boring (Sam Shaw	Contractors		-	ING LOCATIC OUND SURFAC	_		ee attad 56 ft		DATUM NAVD88
_	NGINEE	 R:		Julie A. Ea				E START			DATE		9/28/16
								<u> </u>					
SAMPL	EK:		PLIT SPOON SAMP				-			GROUNDWATER WATER AT	CASIN		
CASIN	G :								Groundwater no			STABILIZATION TIME	
		TRUCK RI					-						
CASING	SIZE:	2 1/4 IN. IN	ISIDE DIAMETER.		OTHER:								
DEPTH	CASING			SAMPLE		PID		SAMPLE	DESCRI	IDTION	NOTES	QTE	RATUM DESCRIPTION
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)		SAMFLE	DESCRI	FION	NOTES	516	ATOM DESCRIPTION
0		S-1	19/24	0-2	9-14-29-23	0.0		e, dark brown, fine I, little debris (cond		se SAND FILL, some	1		
					<u> </u>	<u> </u>	moist.		Jiele, as	oriait), little slit,	1		
						 '	ł				1		
_			\vdash		 	 	ł						
5 –		S-2	8/24	5-7	25-61-16-13	0.3	-			coarse SAND FILL,			
							some moist.	gravel, some silt,	little deb	ris (brick, wood);	1		
						<u> </u>	illoist.				1	S	AND FILL WITH
			-		ļ	<u> </u>	ļ						DEBRIS
10 —		S-3	3/24	10-12	10-1/12"-1	1.0	Verv k	oose dark brown.	fine to n	nedium SAND FILL,			
		<u> </u>	3/27	10-12	10-1/12 - 1	1.0	some	silt, some debris (
						\vdash	moist.						
]						
15 —							Mediu	ım dense, dark bro	own, fine	to medium SAND			
10		S-4	12/24	15-17	11-14-13-26		FILL w	vith debris (wood,		sh), some silt, little	1		
					<u> </u>	 '	_	l; moist.				——	
			-		-	 '	Boring	g terminated at 17	ft.				
					 	$\vdash \vdash$	ł						
20 —							1						
]						
]						
					ļ	<u> </u> '							
25 —					<u> </u>	<u> </u> '	ļ						
			-			 '	ł						
						├──'	ł						
						\vdash	1				1		
30 —											1		
30 –											1		
						<u> </u>					1 1		
					<u> </u>	<u> </u>	ŀ				1		
							ł				1		
	GRANU	LAR SO	DILS	COHES	SIVE SOILS	NOTE	ES:						
	WS/FT		ENSITY	BLOWS/FT	DENSITY	-1		ole submitted for e	environme	ental analysis.			
)-4		LOOSE	0-2	V. SOFT								
	-10		.OOSE	2-4	SOFT								
)-30 . 50		DENSE	4-8	M. STIFF								
	-50 50		DENSE DENSE	8-15 15-30	STIFF V. STIFF								
	50	V.	DENSE	> 30	V. STIFF HARD								
GENERA	L NOTES:	i) THE S	TRATIFICATION			(IMATE	BOUND	ARY BETWEEN SO	IL TYPES	. TRANSITIONS MAY B	BE GRADI	JAL.	
										TIONS STATED ON THIS			
		FLUC	TUATIONS IN TH	HE LEVEL OF G	ROUNDWATER M/	AY OCCI	JR DUE	TO OTHER FACTO	ORS THAN	N THOSE PRESENT AT	THE TIME	E	

BORING No.

			_									B-8		
	VA/e	stor	n(&)S	amns	son	Rt. 3	3 Rec	reation Field		SHEET Project No.	1 OF 1 2160648.A			
	***	OIOI	100	Ciripo	3011	P	ortsm	outh, NH		Project No. CHKD BY	— Th		J. Strike, PE	
DODIN	0.0-		Na Faala	and Davis a	0		DOD	ING LOCATIO	N.I	0				
BORIN FOREN			new Engla	Sam Shaw	Contractors			UND SURFA			ee attac 56 ft.		DATUM NAVD88	
	NGINEE	 R:		Julie A. Ea				E START		9/28/16	DATE		9/28/16	
SAMPL	ED:					GROUNDWATEI					- D DE A F	JINICS		
SAIVIPL	EK.		PLIT SPOON SAMP				-	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME	
CASIN	G:		STEM AUGER DRIL				-	BATTE	1 IIIVIL	Groundwater no			OTABLEZATION TIME	
	TRUCK RIG						-							
CASING	SIZE:	2 1/4 IN. IN	ISIDE DIAMETER.		OTHER:									
DEPTH	CASING			SAMPLE	I	PID		SAMPLE	DESCR	IPTION	NOTES	STR	ATUM DESCRIPTION	
(feet)	(blows/ft)	No. S-1	REC/PEN (in)	DEPTH (ft) 0-2	BLOWS/6"	(ppm)	Modiu	m doneo brown	candy G	RAVEL FILL, little	\vdash			
U		3-1	12/24	0-2	5-8-18-42	0.2	silt; m		Salluy G	RAVEL FILL, IIIIle	1			
							1				1 1			
											1 1			
5 —			2/2/				l							
		S-2	6/24	5-7	13-14-12-10	9.5		,		to coarse SAND silt. trace debris	2			
							FILL, trace gravel, trace to little silt, trace debris (wood fragments, brick, asphalt); moist.							
							1					S	AND FILL WITH DEBRIS	
10 —													DEDKIS	
		S-3	6/24	10-12	6-7-4-29	1.6		m dense, dark bro FILL with debris		to medium SILTY				
								lt), trace gravel; n		agmento, don,				
15 —							1							
15 –		S-4	5/24	15-17	14-25-15-12	2.6		, dark brown, fine ith wood fragmer						
										moist.	- I			
							DOTTING	terminated at 17	IL.					
20 —							•							
20 –														
							•				1 1			
0.5							1							
25 —							1							
											1 1			
											1 1			
00							•				1 1			
30 —											1 1			
											1 1			
	GRANU	LAR SC	DILS	COHES	IVE SOILS	NOTI	ĒS:							
BLO	WS/FT	D	ENSITY	BLOWS/FT	DENSITY					to 14 ft. (possible col	obles, bou	ılders,	and/or debris).	
-)-4		LOOSE	0-2	V. SOFT	2. Gra	b samp	le submitted for e	environm	ental analysis.				
4-10														
)-30)-50		DENSE ENSE	4-6 8-15	STIFF									
	50		DENSE	15-30	V. STIFF									
				> 30	HARD									
GENERA	L NOTES:									S. TRANSITIONS MAY I				

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME

MEASUREMENTS ARE MADE.

BORING No.

							DD) IFOT	DEDO	DT OF BODING	\1_	D 0			
						PROJECT REPORT OF BORING					NO. 1	B-9 OF 1			
	\\/e	Stor	n(&)S	amne	son	Rt. 3	3 Red	reation Field		SHEET Project No.	2160648.A				
	***	0.0		Car i po		Portsmouth, NH CHKD BY					Thomas J. Strike, PE				
										OLIND DI		Homas J. Stike, FE			
BORIN			New Engla		Contractors			ING LOCATION				hed plan			
FORE				Sam Shav		GROUND SURFACE ELEV.						<u>+/-</u> DATUM <u>NAVD88</u>			
WSE E	NGINEE	R:		Julie A. Ea	ton, EIT	DATE START9/27/16					DATE	END <u>9/27/16</u>			
SAMPL	ER:	2 IN. OD S	PLIT SPOON SAME	PLER (SPT) DRIVE	N 24 INCHES					GROUNDWATER	R READ	DINGS			
USING A 140 lb. CATHEAD OPERATED HAMMER.							-	DATE	TIME	WATER AT	CASIN	G AT STABILIZATION TIME			
CASIN	G:	HOLLOW	STEM AUGER DRIL	LING METHODS						Groundwater no	t obser	ved.			
TRUCK RIG							_								
CASING	CASING SIZE: 2 1/4 IN. INSIDE DIAMETER. OTHER:						-								
DEPTH	CASING		;	SAMPLE		PID		SAMPLE	DESCR	IPTION	NOTES	STRATUM DESCRIPTION			
(feet)	(blows/ft)	No.	REC/PEN (in)	DEPTH (ft)	BLOWS/6"	(ppm)		OAWII EE	DLOOK	11014	NOTEO	OTTO TO MEDICON TO TO			
0		S-1	13/24	0-2	12-22-27-14	0.0		lense, dark browr FILL, little to som			1				
							SAND	FILL, IIIIIE IO SOII	ie siit; m	OISt.					
							ŀ								
5 —		S-2	15/24	5-7	3-32-27-6	0.0	Hard	grav CLAYEY SI	I T FILL	little gravel, little fine					
		J-2	13/24	3-7	3-32-27-0	0.0		moist.	_ , , ,,,	indio gravei, indio inio					
							1								
							1					SAND/CLAYEY SILT			
10							1					FILL WITH DEBRIS			
10 —		S-3	7/24	10-12	3-2-3-6	0.7	Medium stiff, gray-brown, ORGANIC CLAYEY SILT FILL, little to some fine sand, trace gravel, trace debris (asphalt); moist.								
							uebns	(aspirait), moist.							
15 —			4.15	45.45.4	400/5"	0.0		WOOD DEDDIO	E41 - C-	- 4di					
		S-4	4/5	15-15.4	100/5"	3.2		i WOOD DEBRIS silt, trace gravel; r							
								, g, .							
							•				I ⊦				
							•								
20 —		S-5	12/24	20-22	27-36-30-29	9.6	Very c	lense, brown, gra	velly, fin	e to coarse SAND,	3				
							little si	ilt; moist.							
]								
25 —			4475	05.55	110155	1.						SAND			
		S-6	11/24	25-27	14-21-28-41	1.2				e to coarse SAND, es to fine to medium					
		-						, trace silt; moist.		3.2					
							ł								
							1								
30 —		S-7	9/24	30-32	37-41-45-40	2.7	Very c	lense, brown, gra	velly, fine	e to coarse SAND,					
							traces	silt; moist.							
							Boring	terminated at 32	ft.		[
	054	AD 0.1		00::==	<u> </u>	NOT	<u></u>				Ш				
GRANULAR SOILS COHESIVE SOILS NOTES:															
	WS/FT)-4		LOOSE	BLOWS/FT 0-2	V. SOFT					to 30 ft. with heavy a		ding from about 15 to 16.5 ft.			
)- 4 -10		OOSE	0-2 2-4	V. SOFT	,		ites to advance). ble submitted for e		· ·	auger cut	ungs.			
	-10)-30		DENSE	4-8	M. STIFF			advancement from		· ·					
)-50)-50		ENSE	8-15	STIFF										
	50		DENSE	15-30	V. STIFF										
	-			> 30	HARD										
GENERA	SENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.														

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

BORING No. B-9

							55	0 IEOT					
									REPU	RT OF BORING I SHEET	No.		B-10 OF 1
	We	sto	n(&)S	amps	son	1		creation Field		Project No.		21	60648.A
						-	ortsm	nouth, NH		CHKD BY	TI		s J. Strike, PE
BORIN	G Co.		New Engla	and Boring	Contractors		BORING LOCATION See attached plan						
FOREN	//AN			Sam Shaw	V		GRC	OUND SURFA			56 ft	. +/-	DATUM NAVD88
WSE E	NGINEE	R:		Julie A. Ea	ton, EIT		DATE START 9/29/16 DATE						9/29/16
SAMPL	ER:	2 IN. OD S	PLIT SPOON SAMP	LER (SPT) DRIVE	N 24 INCHES					GROUNDWATER	REAL	DING	S
			40 lb. CATHEAD O				-	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME
CASIN	G:		STEM AUGER DRIL	LING METHODS			-	<u> </u>		Groundwater no	<u>it obser</u>	ved.	I
CASING	SIZE:	2 1/4 IN. IN	ISIDE DIAMETER.		OTHER:		-						
DEPTH	CASING	NG SAMPLE PID											
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPLE	DESCR	RIPTION	NOTES	STF	RATUM DESCRIPTION
0		S-1	16/24	0-2	8-12-12-12	0.1				nedium SAND FILL,	1		
							little g	ravel, little silt, tra	ce debris	s (fabric); moist.			
						-							
_							-						
5 —		S-2	12/24	5-7	4-4-3-4	0.2				EY SILT FILL, some			
							fine sa moist.		race deb	oris (wood, ash); very			
												SA	ND/CLAYEY SILT
4.0							-					FII	L WITH DEBRIS
10 —		S-3	12/24	10-12	4-3-8-8	0.5				, little fine sand, little	2		
							grave	l, trace debris (bri	ck, wood	d); very moist.			
						<u> </u>	ŀ						
		<u> </u>				 				"			
15 —		S-4	10/24	15-17	15-8-4-3	0.1				nedium SAND FILL, ace debris (asphalt,			
							ash, w	vood); moist.					
							Boring	g terminated at 17	ft.				
00													
20 —													
05													
25 —													
00													
30 —													
							1						
	GRANU	LAR SO	DILS	COHES	SIVE SOILS	NOT							
	WS/FT		ENSITY	BLOWS/FT	DENSITY	4				2 to 13ft. (possible cob	bles, bou	ılders,	and/or debris).
)-4 -10		LOOSE .OOSE	0-2 2-4	V. SOFT SOFT	2. Gra	b samp	ole submitted for e	environm	ental analysis.			
)-30	l	DENSE	4-8	M. STIFF								
30	-50		ENSE	8-15	STIFF								
>	50	V.	DENSE	15-30	V. STIFF								
CENEDA	L NOTES:), TUE 0:	TDATIFICATION	> 30	HARD	(1) (1)		ADV DETIMEEN OO	W T/DE	O TRANSITIONS MAY		141	
GENERA	ENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL. ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG.												
		,								N THOSE PRESENT AT			

BORING No.

						PROJECT REPORT OF BORING								
	W/e	stor	n(&)S	amps	son	Rt. 3	3 Red	reation Field		SHEET Project No.	1 OF 1 2160648.A			
	VVC	SIOI	100	Ciripo	5011	F	ortsm	nouth, NH		Project No. CHKD BY	TI		s J. Strike, PE	
BORIN			New Engla	and Boring				ING LOCATION	_		ee attac		DIAN DATUM NAVD88	
FOREM				Sam Shaw			_							
WSEE	NGINEE	K:		Julie A. Ea	ton, EII		DAT	ESTART		9/29/16	DATE	FND	9/29/16	
SAMPL	ER:	2 IN. OD S	PLIT SPOON SAME	PLER (SPT) DRIVE	N 24 INCHES		_		(GROUNDWATE	R READ	DING	S	
	_	USING A 1	40 lb. CATHEAD O	PERATED HAMME	R.		_	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME	
CASIN	G:		STEM AUGER DRIL	LING METHODS			-			Groundwater no	ot obser	ved.	1	
CASING	CIZE:	TRUCK RIC			OTHER.		-							
											<u> </u>			
DEPTH	CASING	NI-		SAMPLE	DI OVACO (OII	PID		SAMPLE	DESCRI	PTION	NOTES	STF	RATUM DESCRIPTION	
(feet)	(blows/ft)	No. S-1	REC/PEN (in) 14/24	0-2	BLOWS/6" 17-46-33-24	(ppm) 0.0	Very c	lense, brown, gra	velly fine	to coarse SAND	1			
		3-1	14/24	0-2	17-40-33-24	0.0		some silt; moist.	veny, mie	to coarse oand	I ' I			
							1							
							1							
5-							1							
S-2 11/24 5-7 8-8-6-7								prown, CLAYEY S			2	SA	ND/CLAYEY SILT	
							some moist.		brick, as	phalt), little gravel;		_	L WITH DEBRIS	
							ŀ							
10 —		S-3	12/24	10-12	22-8-9-9	0.5	Stiff. b	orown. sandv SILT	Γ FILL. litt	le gravel, little clay,	3			
		<u> </u>	12/27	10-12	22-0-3-3	0.5				tom 6": grades to	ľi			
							little o	rganics (fine roots	s).					
							1				l i			
15 —]						SAND	
'0		S-4	13/24	15-17	8-15-17-19		Dense	e, light brown, fine	to mediu	ım SAND, trace			OAND	
							_	, trace silt; moist.			1 1			
							Boring	terminated at 17	tt.					
							ł							
20 –							1							
							1							
							1							
25 –														
							1							
							ł							
							1							
20							1							
30 —							1							
]							
							ł							
	GRANU	AR SC	NI S	COHES	I IVE SOILS	NOT	ES:				ш			
	WS/FT		ENSITY	BLOWS/FT	DENSITY			ger grinding from	about 0	to 10 ft. (possible col	obles, boo	ulders.	and/or debris).	
)-4		LOOSE	0-2	V. SOFT	-		le submitted for e		**			,	
4-	-10	L	OOSE	2-4	SOFT			uried topsoil layer						
-	-30		DENSE	4-8	M. STIFF									
	-50		ENSE	8-15	STIFF									
>	50	V.	DENSE	15-30	V. STIFF									
CENEDA	I NOTES:	1) THE C	TDATIFICATION	> 30	HARD	1111	חיווים	ADV DETWEEN CO	W TVDE?	TDANICITIONS MANY	DE CDAR	101		
GENERA	L NOTES:									. TRANSITIONS MAY I				

FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME

MEASUREMENTS ARE MADE.

BORING No.

							DD/	O IEOT	DED 0	DT OF BODING			D. 10
								<u>OJECT</u>	REPU	RT OF BORING I SHEET	No.		B-12 OF 1
	We	sto	n(&)S	amp	son			creation Field		Project No.		2	 160648.A
						F	ortsm	nouth, NH		CHKD BY	Tr		s J. Strike, PE
BORIN	G Co		New Engla	and Boring	Contractors		BOR	ING LOCATION	N	Se	ee attac	hed i	olan
FORE			Trow Engle	Sam Shav			GROUND SURFACE ELEV. 57 ft. +/- DAT						
WSE E	NGINEE	R:		Julie A. Ea	ton, EIT		DAT	9/29/16					
SAMPL	ER:	2 IN. OD S	PLIT SPOON SAMP	LER (SPT) DRIVE	N 24 INCHES					GROUNDWATER	R REAL	DING	 S
			140 lb. CATHEAD O				-	DATE	TIME	WATER AT	CASIN		STABILIZATION TIME
CASIN	G:	HOLLOW	STEM AUGER DRIL	LING METHODS			_			Groundwater no	t obser	ved.	
CACINIC	0.0175.	TRUCK RI			OTUED:		-				 		
CASINO		2 1/4 IN. IN	ISIDE DIAMETER.	244515	OTHER:	L DID	_				├──		
DEPTH (feet)	CASING (blows/ft)	No.	REC/PEN (in)	SAMPLE DEPTH (ff)	BLOWS/6"	PID (ppm)		SAMPLE	DESCR	IPTION	NOTES	STF	RATUM DESCRIPTION
0	(5.6116/10)	S-1	11/24	0-2	14-35-32-69			dense, brown, gra	velly, fin	e to coarse SAND	1, 2		
							FILL,	trace silt; moist.					
							4						
							-						
5 —		S-2	11/24	5-7	8-9-8-2	0.0	Mediu	ım dense, dark br	own, SIL	TY SAND FILL, little		s	AND FILL WITH
				-			gravel	I, trace debris (wo	od, asph	nalt); moist.			DEBRIS
							-						
10 —		S-3	7/24	10-12	5-14-15-33	0.2	Verv o	dense, brown, gra	velly, fin	e to coarse SAND			
		-0-0	1/24	10-12	3-14-10-00	0.2	FILĹ, 1	trace silt; moist. B	ottom 3'				
							gravel	lly, fine to coarse	SAND, ti	race silt; moist.			
							4						CAND
15 —		S-4	13/24	15-17	18-22-35-24		1.						SAND
		3-4	13/24	10-17	16-22-33-24	-		dense, brown, gra ilt; moist.	velly, fin	e to coarse SAND,			
							1	g terminated at 17	ft.		1 1		
20 —							-						
							-						
							1						
]						
25 —							4						
							1						
							1						
]						
30 —							4						
							1						
							1						
	ODANIII	L A D O	211.0	001150) 	NOT					oxdot		
BI O	GRANU WS/FT		DENSITY	BLOWS/FT	DENSITY	NOT 1. Per		uaer arindina from	about 0	to 15 ft. (possible col	obles, bor	ılders.	and/or debris).
)-4		LOOSE	0-2	V. SOFT	-		ole submitted for e		**	, 200		
4	-10	L	.OOSE	2-4	SOFT		·			•			
)-30	M. DENSE 4-8 M. STIFF											
)-50 50		DENSE 8-15 STIFF V. DENSE 15-30 V. STIFF										
	50	٧.	PLINGE	> 30	V. STIFF HARD								
GENERA	L NOTES:	i) THE S	TRATIFICATION			IMATE	BOUND	ARY BETWEEN SC	IL TYPES	S. TRANSITIONS MAY E	3E GRADI	JAL.	
		ii) WATE	R LEVEL READI	NGS HAVE BEE	EN MADE IN THE D	RILL HO	LES AT	TIMES AND UNDE	R CONDI	TIONS STATED ON THI	S BORING	3 LOG.	
		FLUC	TUATIONS IN TH	HE LEVEL OF G	ROUNDWATER MA	AY OCC	UR DUE	TO OTHER FACTO	ORS THA	N THOSE PRESENT AT	THE TIME	=	

BORING No.

			_										B-13
	We	stor	n(&)S	amps	son	Rt. 3	3 Red	creation Field		SHEET Project No.	1		OF 1 60648.A
	***	OIOI		Ciripo	0011	F	ortsm	nouth, NH		CHKD BY			s J. Strike, PE
DODIN.	0.00		Now Engle	and Daring	Camtraatara		DOD	UNIC LOCATIO					
BORIN FOREN			new Engla	Sam Shaw	Contractors			ING LOCATION SURFA			ee attad 56 ft		DATUM NAVD88
_	NGINEE	 R:		Julie A. Ea				E START		9/28/16	DATE		9/28/16
CAMPI	ED.					 _							
SAMPL	.ER:		PLIT SPOON SAMP				•	DATE	TIME	GROUNDWATEI WATER AT	CASIN		STABILIZATION TIME
CASIN	G:		40 lb. CATHEAD O		:K.		•	DATE	TIIVIL	Groundwater no			STABILIZATION TIME
		TRUCK RI					•						
CASING	SIZE:	2 1/4 IN. IN	ISIDE DIAMETER.		OTHER:								
DEPTH	CASING	G SAMPLE PID SAMPLE DESCRIPTION							PTION	NOTES	STE	ATUM DESCRIPTION	
(feet)	(blows/ft)	No.	REC/PEN (in)	. ,	BLOWS/6"	(ppm)						011	WITOM BEGGIAN FIGHT
0		S-1	14/24	0-2	12-21-22-17	0.1		e, brown, gravelly, ilt, trace debris (a:		oarse SAND FILL, ick): moist.	1		
								in, trace debrie (at	opridit, bi	ioky, moiot.			
							ł						
5 —							1						
5-		S-2	9/24	5-7	8-11-7-6	0.7		ım dense, dark bro				s	AND FILL WITH
	FILL, some silt, trace debris (asphalt), trace grave moist.											0.	DEBRIS
							ł						
10 —		S-3	11/24	10-12	7-15-9-12	2.2	Mediu	ım dense, dark bro	own, fine	to coarse SAND	2		
								some gravel, little lt); moist.	silt, trace	e debris (brick,			
							аѕрпа	iit), moist.					
15 —		S-4	14/24	15-17	14-23-43-49								SAND
		J-4	17/27	15-17	14-23-43-49			dense, brown, fine I, trace silt; moist.	to coars	e SAND, some			
							_	terminated at 17	ft.				
]						
20 —							l						
							ł						
							ł						
							1						
25 —													
							ł						
							ł						
30 —							1						
30 –													
							ł						
							ł						
	GRANU	LAR SC	DILS	COHES	IVE SOILS	NOT	ES:						
	WS/FT		ENSITY	BLOWS/FT	DENSITY	1. Peri	odic au	uger grinding from	about 0	to 10 ft. (possible col	obles, bo	ulders,	and/or debris).
)-4		LOOSE	0-2	V. SOFT	2. Gra	b samp	ole submitted for e	environme	ental analysis.			
	-10)-30	l	OOSE DENSE	2-4 4-8	SOFT M. STIFF								
)-50)-50	l	DENSE DENSE	8-15	STIFF								
	50		DENSE	15-30	V. STIFF								
				> 30	HARD								
GENERA	L NOTES:									. TRANSITIONS MAY			
		,								FIONS STATED ON THE THOSE PRESENT AT			
i		1 200	J, TI ON O IN IF	v Oi G	IVI	000	DUE		ZIVO ITIMI	OOL I NEOLINI AI	THE THAT	-	

BORING No.

Rt. 38 Pecretion Field SHEET Froject No. SHEET SHEET Froject No. SHEET F								200	· · · · · · ·		== <u>0= 50BINIO</u>	- ,			
R1. 35 Recreation Field Project No. CHKD BY Thomas 15 life, PE T															
Common		11/0	eto	n(KT)S	amn	COS	Rt. 33 Recreation Field								
SORING Co. New England Boring Contractors Sam Shaw GROUND SURFACE ELEV. See attached plan Sam Shaw GROUND SURFACE ELEV. Soft +7: DATUM NAVD88 Most Endower Most Endowe		VVC	310		unpo	SOLI	F	ortsm	outh, NH						
SAMPLER: Julie A Eato, EIT DATE START 9/29/16 DATE DA															
ASSENCE SAMPLE 2.0.0 GRUST PROPOS SAMPLE REPTI PROVED SENGES SAMPLE 2.0.0 GRUST PROPOS SAMPLE REPTI PROVED SENGES SAMPLE SAM	BORIN	G Co.		New Engla	and Boring	Contractors		BOR	ING LOCATION	N	Se	ee attac			
SAMPLER 28	FORE	ΛAN			Sam Shav	/									
ASING	WSE E	NGINEE	R:		Julie A. Ea	ton, EIT		DATE START 9/29/16 DATE END							
ASING	SVMDI	ED.	0.11.00.0	IDLIT ODGON GAME	N ED (ODT) DDI\(N 04 INOLIEO			1		CDOLINDWATER	D DEAF	NNCS		
CASING								-	DATE						
TRUCKING CRAING	0.40110					EK.		-	DATE	IIIVIE					
ASAING SIZE: 14 N. N. RECPEN (in) DEPTH (ASING (Ret) Discovery) No. RECPEN (in) DEPTH (in) BLOWSE** PID (ppm)	OAOII							-			Orounawater ne	TODGCI	vcu.		
DEPTH CASING SAMPLE SAMPLE PID SAMPLE DESCRIPTION NoTES STRATUM DESCRIPTION	CASINO						-								
Close Clos			<u> </u>		OAMBLE	0 <u></u>	DID					 			
S-1		1	Na			DI OMOGE!	-		SAMPLE	DESCR	IPTION	NOTES	STRATUM DESCRIPTION		
S-2 13/24 5-7 30-31-23-18 0.5 S-2 13/24 5-7 30-31-23-18 0.5 Some debris (asphalt, brick), little gravel, little silt; moist. SAND FILL some debris (asphalt, brick), little gravel, little silt; moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL wood, asphalt), some silt, filte gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very moist. SAND FILL with the debris (brick, wood), some silt, frace gravel; very mois		(blows/It)							longo brown find	to coar	SO SAND EILL little	╀			
S-2 13/24 5-7 30-31-23-18 0.5 Very dense, dark brown, fine to coarse SAND FILL, some debris (asphalt, brick), little gravel, little silt; molst. S-3 4/14 10-11.1 3-7-100/2* 1.8 Very dense, dark brown, fine to medium SAND FILL with debris (brick, wood), some silt, trace gravel; very molst. S-4 6/24 15-17 11-10-12-10 32.8 Definition dense, dark brown, fine to medium SANDY DEBRIS FILL (wood, asphalt), some silt, little gravel; very molst. Boring terminated at 17 ft. GRANULAR SOILS COHESIVE SOILS Boring terminated at 17 ft. BLOWSFT DENSITY BLOWSFT DENSITY SLOWSFT DEN	U		5-1	11/12	U-1	23-100/6	0.0					1 1			
S-2 13/24 5-7 30-31-23-18 0.5 Very dense, dark brown, fine to cearse SAND FILL moist. SAND FILL WITH DEBRIS								-	,,		3 ,				
S-2 13/24 5-7 30-31-23-18 0.5 Very dense, dark brown, fine to cearse SAND FILL moist. SAND FILL WITH DEBRIS								ł							
S-2 13/24 5-7 30-31-23-18 0.5 Very dense, dark brown, fine to cearse SAND FILL moist. SAND FILL WITH DEBRIS				-				1							
SAND FILL WITH DEBRIS SAND FILL WITH DEBRIS SAND FILL WITH DEBRIS	5 —		S-2	13/24	5-7	30-31-23-18 0.5 Very dense, dark brown, fine to coarse SAND FILL.									
S-3 4/14 10-11.1 3-7-100/2" 1.8 with debris (brick, wood), some silt, trace gravet; very moist. S-3 4/14 10-11.1 3-7-100/2" 1.8 with debris (brick, wood), some silt, trace gravet; very moist. S-4 6/24 15-17 11-10-12-10 32.8 Medium dense, dark brown, fine to medium SANDY personal provided by the pro			U 2	10/24	- 0 /	00 01 20 10	0.0								
DEBRIS 10		moist.													
S-3 4/14 10-11.1 3-7-100/2" 1.8								1				1 1	-		
S-3								1					DEBRIS		
S-4 6/24 15-17 11-10-12-10 32.8 Medium dense, dark brown, fine to medium SANDY	10 —		S-3	4/14	10-11.1	3-7-100/2"	1.8	Very d	lense, dark browr	, fine to	medium SAND FILL	2			
S-4 6/24 15-17 11-10-12-10 32.6 DERIS FILL (wood, asphalt), some slit, little gravet, very moist.										I), some	silt, trace gravel; very				
S-4 6/24 15-17 11-10-12-10 32.8 DEBRIS FILL (wood, asphalt), some silt, little gravel; very moist.								moist.							
S-4 6/24 15-17 11-10-12-10 32.8 DEBRIS FILL (wood, asphalt), some silt, little gravel; very moist.								1				1 1			
S-4 6/24 15-17 11-10-12-10 32.8 DEBRIS FILL (wood, asphalt), some silt, little gravel; very moist.	15							Modiu	m doneo dark br	own find	to modium SANDV				
Company Comp	15 —		S-4	6/24	15-17	11-10-12-10	32.8	DEBR	IS FILL (wood, as	own, nne sphalt), s	ome silt. little gravel:				
20 GRANULAR SOILS COHESIVE SOILS BLOWS/FT DENSITY BLOWS/FT DENSITY 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 V. DENSE 15-30 V. STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD								very m	noist.	,,	J,	3			
25 GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 8-15 STIFF > 30 HARD NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.								Boring	terminated at 17	ft.		l			
25 GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 8-15 STIFF > 30 HARD NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.												1 1			
25 GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 8-15 STIFF > 30 HARD NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.	20 —											1 1			
GRANULAR SOILS COHESIVE SOILS															
GRANULAR SOILS COHESIVE SOILS															
GRANULAR SOILS COHESIVE SOILS												1 1			
GRANULAR SOILS COHESIVE SOILS												1 1			
GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 30-50 V. DENSE 15-30 V. STIFF > 30 HARD GRANULAR SOILS COHESIVE SOILS NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris) 3. Grab sample submitted for environmental analysis.	25 —											1 1			
GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 30-50 V. DENSE 15-30 V. STIFF > 30 HARD GRANULAR SOILS COHESIVE SOILS NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris) 3. Grab sample submitted for environmental analysis.								ł							
GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 30-50 V. DENSE 15-30 V. STIFF > 30 HARD GRANULAR SOILS COHESIVE SOILS NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris) 3. Grab sample submitted for environmental analysis.								ł							
GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 30-50 V. DENSE 15-30 V. STIFF > 30 HARD GRANULAR SOILS COHESIVE SOILS NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris) 3. Grab sample submitted for environmental analysis.								-				1 1			
GRANULAR SOILS BLOWS/FT DENSITY 0-4 V. LOOSE 4-10 LOOSE 10-30 M. DENSE 30-50 DENSE 30-50 V. DENSE 15-30 V. STIFF > 30 HARD GRANULAR SOILS COHESIVE SOILS NOTES: 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris) 3. Grab sample submitted for environmental analysis.								ł							
BLOWS/FT DENSITY BLOWS/FT DENSITY 0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.	30 —						-	-							
BLOWS/FT DENSITY BLOWS/FT DENSITY 0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.								1				1 1			
BLOWS/FT DENSITY BLOWS/FT DENSITY 0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.								1							
BLOWS/FT DENSITY BLOWS/FT DENSITY 0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.				 				1							
BLOWS/FT DENSITY BLOWS/FT DENSITY 0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.								1							
BLOWS/FT DENSITY BLOWS/FT DENSITY 0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD 1. Periodic auger grinding from about 1 to 9 ft. (possible cobbles, boulders, and/or debris). 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris). 3. Grab sample submitted for environmental analysis.		GRANU	LAR SO	DILS	COHES	IVE SOILS	NOT	ES:							
0-4 V. LOOSE 0-2 V. SOFT 4-10 LOOSE 2-4 SOFT and/or debris) 10-30 M. DENSE 4-8 M. STIFF 30-50 > 50 DENSE 8-15 STIFF > 30 V. DENSE 15-30 V. STIFF > 30 HARD HARD 2. Heavy auger grinding from about 9 to 9.5 ft. and 11.5 to 15 ft. (possible cobbles, boulders, and/or debris) 3. Grab sample submitted for environmental analysis.	BLO						-		ger grinding from	about 1	to 9 ft. (possible cobb	oles, bould	ders, and/or debris).		
4-10 LOOSE 2-4 SOFT and/or debris) 10-30 M. DENSE 4-8 M. STIFF and/or debris) 3. Grab sample submitted for environmental analysis. 30-50 DENSE 8-15 STIFF and/or debris) 3. Grab sample submitted for environmental analysis. > 50 V. DENSE 15-30 V. STIFF and/or debris) 3. Grab sample submitted for environmental analysis.		0-4 V. LOOSE 0-2 V. SOFT							0 0 0		.,	,	,		
10-30 M. DENSE 4-8 M. STIFF 3. Grab sample submitted for environmental analysis. 30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD	4-10 LOOSE 2-4 SOFT											\F-000	, ,		
30-50 DENSE 8-15 STIFF > 50 V. DENSE 15-30 V. STIFF > 30 HARD							'								
> 30 HARD															
> 30 HARD	> 50 V. DENSE 15-30 V. STIFF					_									
GENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.	İ				> 30										
	GENERA	AL NOTES:	i) THE S	TRATIFICATION	LINES REPRES	SENT THE APPROX	IMATE	BOUND	ARY BETWEEN SC	IL TYPES	S. TRANSITIONS MAY E	BE GRADU	JAL.		

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

BORING No. B-14

			_			PROJECT REPORT OF BORING								
	11/0	etor	n(&)S	amna	con	Rt. 3	3 Rec	reation Field		SHEET		1 OF 1		
	VVC	3101	100	unpe	SOLI	Portsmouth, NH			Project No. CHKD BY		2160648.A Thomas J. Strike, PE			
										CUKD BI		iomas	S J. SIIIKE, PE	
BORIN			New Engla	and Boring (ING LOCATION			ee attached plan			
FOREN				Sam Shaw			GROUND SURFACE ELEV. 56 ft. +/- DATUM							
WSE E	NGINEE	R:		Julie A. Ea	ton, EIT		DATI	E START		9/29/16	DATE	END	9/29/16	
SAMPL	.ER:	2 IN. OD SI	PLIT SPOON SAME	PLER (SPT) DRIVE	N 24 INCHES				(GROUNDWATER	READ	INGS	3	
		USING A 1	USING A 140 lb. CATHEAD OPERATED HAMMER.					DATE	TIME	WATER AT	CASIN		STABILIZATION TIME	
CASING: HOLLOW STEM AUGER DRILLING METH										Groundwater no	t obser	ved.		
CACINIC	CASING SIZE: 2 1/4 IN. INSIDE DIAMETER. OTHER:					•								
		2 1/4 IN. IN	ISIDE DIAMETER.		OTHER:						<u> </u>			
DEPTH	CASING			SAMPLE	DI OVACO (OII	PID		SAMPLE	DESCR	PTION	NOTES	STR	ATUM DESCRIPTION	
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)	Donco	, brown, fine to co	oareo SA	ND EILL little	\vdash			
0		S-1	16/24	0-2	6-14-20-21	0.1				': grades to some	1			
								(asphalt).		9				
							1							
_							1							
5 –		S-2	17/24	5-7	15-15-6-8	0.4	Top 7": Medium dense, brown fine to medium SAND							
							,	some silt, litlte gra lt); moist.	ivel, trace	e debris (brick,				
								tiff, dark gray, CL	AYEY SI		SAN	ND/CLAYEY SILT		
							sand,	trace debris (aspl	halt, brick		FIL	L WITH DEBRIS		
10 —		S-3	17/24	10-12	8-7-5-4	14.0	Mediu	m dense, dark bro	own SII.					
		3-3	17/24	10-12	0-7-0-4	14.0				, trace gravel; very	2			
							moist.							
							1							
15 –							1							
15 –		S-4	2/24	15-17	5-5-2/12"	0.5	Dark b	rown, WOOD DE	BRIS, so	ome fine sand, some				
							silt; ve	ry moist.			3			
							Boring	terminated at 17	ft.					
							ł							
20 —														
							1							
							1							
25 —							1							
25														
							1							
						-	ł							
30 —														
							1							
	GRANU				IVE SOILS	NOT								
BLOWS/FT DENSITY BLOWS/FT DENSITY					-				to 5 ft. (possible cobb	oies, bould	ders, ar	nd/or debris).		
0-4 V. LOOSE 0-2 V. SOFT						le submitted for e		ental analysis.						
4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF					Ja. Org	anic od	or emitting from b	ou enoie.						
)-50)-50		ENSE	8-15	STIFF									
	50	l	DENSE	15-30	V. STIFF									
				> 30 HARD										
GENERA	I NOTES:	30 HARD ii) THE STRATIFICATION LINES REPRESENT THE APPR					ROLINDA	ARV BETWEEN SO	II TYPES	TRANSITIONS MAY F	RE GRADI	ΙΔΙ		

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

	We	stor	n@S	amps	soñ	I .	3 Rec	OJECT creation Field nouth, NH	REPO	RT OF BORING I SHEET Project No. CHKD BY	1	21	B-16 OF 1 60648.A s J. Strike, PE
BORIN FOREN WSE E		 R:		and Boring Sam Shav Julie A. Ea			GRO	ING LOCATION SURFA			ee attad 56 ft DATE	. +/-	olan DATUM <u>NAVD88</u> 9/29/16
SAMPI CASIN	G:	USING A 1 HOLLOW S		PERATED HAMMI	ER.		- - -	DATE 9/29/2016	TIME	GROUNDWATEF WATER AT 25 ft. +/-	CASIN	IG AT	STABILIZATION TIME on wet sample.
CASING DEPTH		2 1/4 IN. IN	ISIDE DIAMETER.	SAMPLE	OTHER:	PID	_						
(feet)	(blows/ft)	No.	REC/PEN (in)		BLOWS/6"	(ppm)		SAMPLE	DESCR	IPTION	NOTES	STR	ATUM DESCRIPTION
5 –		S-1	8/24	5-7	12-32-50/0"	0.0	Dense to son moist. Dense to son	ne silt, trace grave	el, trace	um SAND FILL, little debris (asphalt); se SAND FILL, little debris (asphalt, ash,	2		
10 —		S-3	12/24	10-12	17-49-13-17	2.2		orown, WOOD FR Bottom 6": grade		TS, trace fine sand; ww foam debris.		AND FILL WITH	
15 —		S-4	11/24	15-17	11-7-5-6	0.2		m dense, dark br wood fragments,					DEBRIS
20 –		S-5	9/24	20-22	29-10-9-7	1.2	Same	as above.			4		
25 —		S-6	11/24	25-27	16-51-4-2	0.8		orown, SILTY SAN MENTS; wet.	ND FILL	with WOOD			
30 –		S-7 S-8	18/24	30-32	8-7-7-6 10-15-47-48	0.6	gravel Very o	, trace silt; wet. lense, brown, fine		parse SAND, trace			SAND
							_	, trace silt; wet. y terminated at 34	ft.				

GRANULAR SOILS COHESIVE SOILS NOTES: BLOWS/FT DENSITY BLOWS/FT DENSITY 1. Spoon was bouncing and tilting. Auger refusal at 1 ft. Moved ~5 ft. south, auger refusal at 1 ft., 0-4 V. LOOSE 0-2 V. SOFT moved ~8 ft. south, auger grinding from about 0 to 4 ft. and heavy auger grinding from about 4 to 5 ft. (possible boulders and/or debris) 4-10 LOOSE 2-4 SOFT 10-30 M. DENSE 4-8 M. STIFF 2. Grab sample submitted for environmental analysis. 30-50 DENSE 8-15 STIFF 3. Heavy auger grinding 7 to 7.5 ft. (possible cobbles and/or debris).

GENERAL NOTES: i) THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY BETWEEN SOIL TYPES. TRANSITIONS MAY BE GRADUAL.

V. STIFF

HARD

> 50

V. DENSE

15-30

> 30

ii) WATER LEVEL READINGS HAVE BEEN MADE IN THE DRILL HOLES AT TIMES AND UNDER CONDITIONS STATED ON THIS BORING LOG. FLUCTUATIONS IN THE LEVEL OF GROUNDWATER MAY OCCUR DUE TO OTHER FACTORS THAN THOSE PRESENT AT THE TIME MEASUREMENTS ARE MADE.

BORING No. B-16

4. Periodic auger grinding from about 20 to 27.5 ft. (possible cobbles, boulders, and/or debris).

LENGTH OF CURVE
NOW OR FORMERLY
PUBLIC SERVICE COMPANY OF NEW
HAMPSHRE

AMPROPHIE RADIUS
POCKINGHAM COUNTY REGISTRY O
DEEDS
RENFORCED CONCRETE PIPE
SQUARE FEET
TEST PIT

::3TAG ҰрРROVED ВУ:: REVIEWED BY::

2. PRIGHT OF WAY EASEMENT PLAN FOR THE CITY OF PORTSMOUTH, GREENLAND RZACHARDES. ROAG, PORTSMOUTH, NEW HAMPSHIRE" PREPARED BY VANASSE HANGEN BRUSFLIA: IR.". DATED SEPTEMBER 28, 2007, REVISED AFRIL 28, 2008, RCRD PLAN #D-55481.

90% CONSTRUCTION DOCUMENTS
BORING KEY SHEET
PORTSMOUTH, NEW HAMPSHIRE
SHEET STILLES
BORING KEY SHEET
SHEET STILLES
BORNESTRUCTION DOCUMENTS

3. "AS BUILT PLAN OF A PORTION OF NH ROUTE 33, PORTSMOUTH, NEW HAMPSHIRF: BY AREXT ENGINEERING, INC. DATED AUGUST 2010, REVISED 9/2/1/10. PLAN NOT RECORDED.

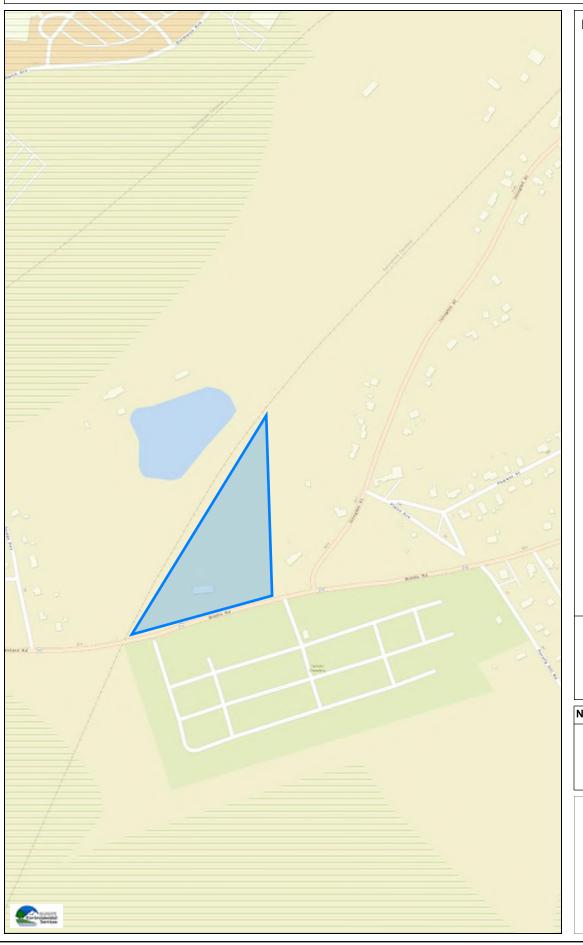
	B-7 S-4	9/28/2016 9/28/2016 9/28/2016	-0.0038 -0.0038 0.0312 0.176	40,0031 40,0038 40,0035 40,003	0.0038 0.0038 0.0038 0.0038 0.038 0.038 0.038 0.038 0.138 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.17 1.18 1.28 2.88 0.397 0.792	0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.238 0.337 0.348 0.387	40,0038 40,003
	9/28/2016		60 0031 60 0031 60 0031 60 0031 60 0031 60 0031 60 0031	40.0053 40.0053 0.102	6.0031 6.0033 6.0033 6.042 6.0	0.0031 0.003 0.003 0.042	40,0033 6,0003 6,042 6,042 6,042 6,042 6,042 6,042 6,044
					0.416		
			0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004 0.0038 c0.004		40.358		
		9/28/2016 9/27/	6.0038 6.				
B-1 S-1		9/27/2016	0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	<0.0313	-0.0316 -0.356 -	(-0.031) (-0.1369) (-0.136	C0.0313 C0.358
	Standards	(Table-000-2)	130 96 96 330 77 77 77 70 70 10 10 10 10 10 10 10 10 10 10 10 10 10	0 N	3. 46. 1.000	N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NS NS NS NS NS NS NS NS NS NS NS NS NS N
	Units		199/kg 199/kg 199/kg 199/kg 199/kg 199/kg 199/kg	D			
	Parameter		VOCs 1.2.4-Timethylbenzene 1.5.5-Timethylbenzene 4.sopropyllene 4.sopropyllenzene Ehylbenzene Ehylbenzene Naphthalene n-Buylbenzene n-Propylbenzene ro-Propylbenzene sec-Buylbenzene Tolene Xylenes (Total) Total VOCs	;	Acenaphthene Acenaphthene Berzo(a)amhracene Berzo(a)apvene Berzo(a)pyrene Berzo(c)filuoranthene Berzo(c)filuoranthene Chysene Diberzo(an h)Anthracene Diberzo(an h)Anthracene Diberzo(an h)Anthracene Pluoranthene Indeno(1,2,3-colPyrene Phenol Pyrene Pyrene Pyridine Tidal SVOCs	Anthracene Berzodaphthene Berzodaphthene Berzodaphthene Berzodaphthene Berzodaphthene Berzodaphthene Berzodaphthene Carbazole Chysene Chysene Chysene Diberzodaphydnene Diberzodaphydnene Prenamhrene	SVOCs Acenaphthene Acenaphthene Benzo(a) anthracene Benzo(a) anthracene Benzo(a) programe Benzo(b) Moranthene Benzo(b) Moranthene Chabazole Chyssene Dibenzo(a) h) Anthracene Dipenzo(a) h) Penanthrene Phenanthrene Phenanthrene Phenanthrene Phenanthrene Pyridine Total SVOCs TOTAL MACAIS A Seein Cadmunn Chromium Chromium Chromium Chromium Clead Mercury Selenium Silver

Abbreviations:
The I = Total Petroleum Hydrocarbons
PCBs = Polychlorinated Biphenyls
VOC = Volatile Organic Compound
SVOCS = Semivodatile Organic Compounds
ETPH = Excretable Total Petroleum Hydrocarbons
NS = No Sandard
NS = No Sandard
ND = No Indiagrams per kilogram
NT = Nat Tested

Notes:
< = parameter not detected above laboratory
method reporting limit

Total Concentrations represent the sum of detected analytes

BOLD:
Parameter detected above laboratory detection limit
Ilmit
BOLD:
Represents an exceedence of the Soil
Standards


		Soil Remediation				Sampling	Sampling Location			
Parameter	Units	Standards	B-9 S-3	B-10 S-3	B-11 S-2	B-12 S-1	B-13 S-3	B-14 S-4	B-15 S-3	B-16 S-2
		(Table-600-2)	9/27/2016	9/29/2016	9/29/2016	9/29/2016	9/28/2016	9/29/2016	9/29/2016	9/29/2016
VOCs										
_	mg/kg	130	<0.0045	<0.0036	<0.0034	<0.0037	<0.0034	<0.0045	0.146	<0.0047
1,3,5-Trimethylbenzene	mg/kg	96	<0.0045	<0.0036	<0.0034	<0.0037	<0.0034	<0.0045	0.0534	<0.0047
4-Isopropyitoluene	mg/kg mg/kg	330	0.044	<0.0036 <0.0036	<0.0034 <0.0339	<0.0037	<0.0034 <0.0034	0.138	0.0074	<0.004/ 0.0867
Fftvlhenzene	mg/kg	120	0.0045	-0.035 -0.0036	40.0039	-0 0037	V0:0330	0.00	0.200	-0.0047
Isopropylbenzene	mg/kg	330	<0.0045	>0.0000	V0.0034	<0.0037	<0.0034	0.000	0.0065	<0.0047
Naphthalene	mg/kg	2	<0.0045	<0.0036	<0.0034	<0.0037	<0.0034	<0.0045	0.0097	<0.0047
n-Butylbenzene	mg/kg	110	<0.0045	<0.0036	<0.0034	<0.0037	<0.0034	<0.0045	0.0097	<0.0047
n-Propylbenzene	mg/kg	85	<0.0045	<0.0036	<0.0034	<0.0037	<0.0034	<0.0045	0.009	<0.0047
sec-Butylbenzene	mg/kg	130	<0.0045	<0.0036	<0.0034	<0.0037	<0.0034	<0.0045	0.005	<0.0047
Toluene	mg/kg	100	0.0105	<0.0036	<0.0034	<0.0037	<0.0034	<0.0045	<0.0042	<0.0047
Xylenes (Total) Total VOCs	mg/kg mg/kg	200	<0.0075 0.294	<0.0062	<0.006	<0.0068 0.0525	<0.0062	<0.0075 0.138	0.0441	<0.0083
	n	?						}		
SVOCS	,			1	,		4	:		
Acenaphthene	mg/kg	340	<0.389	<0.395	41.58	<0.35	<0.388 0.388	1.44	<0.423	<0.376
Anthracene	mg/kg	000,1	0.526	<0.395		<0.35	<0.388	0.427	<0.423	<0.376
Benzo(a)nyrene	mg/kg	20	0.803	1.06	70.793	961.0	0.123	70.21	0.423	0.373
Benzo(b)fluoranthene	ma/ka		1.19	1.67	2.58	×0.35	1.36	<0.421	<0.423	0.483
Benzo(a,h.i)pervlene	ma/ka	. 02	<0.389	0.49	<1.58	<0.35	0.552	<0.421	<0.423	<0.376
Benzo(k)fluoranthene	mg/kg	12	0.395	0.523	<1.58	<0.35	0.531	<0.421	<0.423	<0.376
Carbazole	mg/kg	SZ	<0.389	<0.395	<1.58	<0.35	<0.388	<0.421	<0.423	<0.376
Chrysene	mg/kg	120	68.0	0.953	0.853	<0.176	0.922	<0.211	<0.212	0.34
Dibenzo(a,h)Anthracene	mg/kg	0.7	<0.195	0.205	<0.793	<0.176	<0.195	<0.211	<0.212	<0.189
Dibenzoturan	mg/kg	S	<0.389	<0.395	21.58	<0.35	<0.388	1.1	<0.423	<0.376
Fluorantnene	mg/kg	360	2.08	0.428	, , , , , , , , , , , , , , , , , , ,	<0.35 \0.35	7.7	0.423	84.0 84.0	0.737
Phenanthrane	ma/ka	- <u>@</u>	2.26	1.26	25.50	<0.35	0.871	1.4	<0.423	0.456
Phenol	ma/ka	55	×0.389	<0.395	×1.58	<0.35	<0.388	<0.421	<0.423	<0.376
Pyrene	mg/kg	720	3.17	1.86	<1.58	<0.35	2.21	<0.421	0.478	0.72
Pyridine	mg/kg	S 2	<1.95	<1.98	7.93	<1.76	<1.95	<2.11	<2.12	<1.89
	5v/6	2	10.504	500	2000	66.00	10.01	10/-1	0.300	640.0
TPH-ETPH		-			-			-	•	
Total Petroleum Hydrocarbons	mg/kg	10,000	136	64.2	509	48.3	222	163	319	136
Total Metals	-									
Arsenic	mg/kg	11	13.7	12.4	6.57	13.9	15.8	11.8	9.64	10.5
Barium	mg/kg	1,000	58.4	50.4	6	50.5	30.1	4:17	95.7	110
Chromina	mg/kg	130	32.7	34.3	24.8	53	27.3	57.2	31	34.4
Lead	mg/kg	400	30.9	34.1	35.3	12.5	277	318	221	416
Mercury	mg/kg		0.046	0.053	0.098	0.032	0.094	0.043	0.441	0.971
Selenium	mg/kg	180	<0.55	<0.47	<0.48	<0.38	13.0	<0.46	<0.55	0.49
Oliver	fillig/kg	80	60:05	74.00	0.75	×0.30	10.05	04:00	cc.05	20.42
PCBs	-	,		0		6	0			
I otal PCBs	mg/kg	_	<0.0593	<0.0586	<0.055	950.0>	<0.0536	<0.0601	<0.0654	<0.0551
	_							-		

Notes: = parameter not detected above laboratory method reporting limit Abbreviations:
The H cincal Petroleum Hydrocarbons
PCBs = Polychlorinated Biphrenyis
VOC = Votatile Organic Compounds
SVOCS = Semivotatile Organic Compounds
SVOCS = Semivotatile Organic Compounds
FTPH = Extractable Total Petroleum Hydrocarbons
PAC = Physiologically Available Cyanid
NS = No Standard
NS = No Standard
MS = No Standard
mgk/g = milligrams per kilogram
NT = Not Tested

Total Concentrations represent the sum of detected analytes

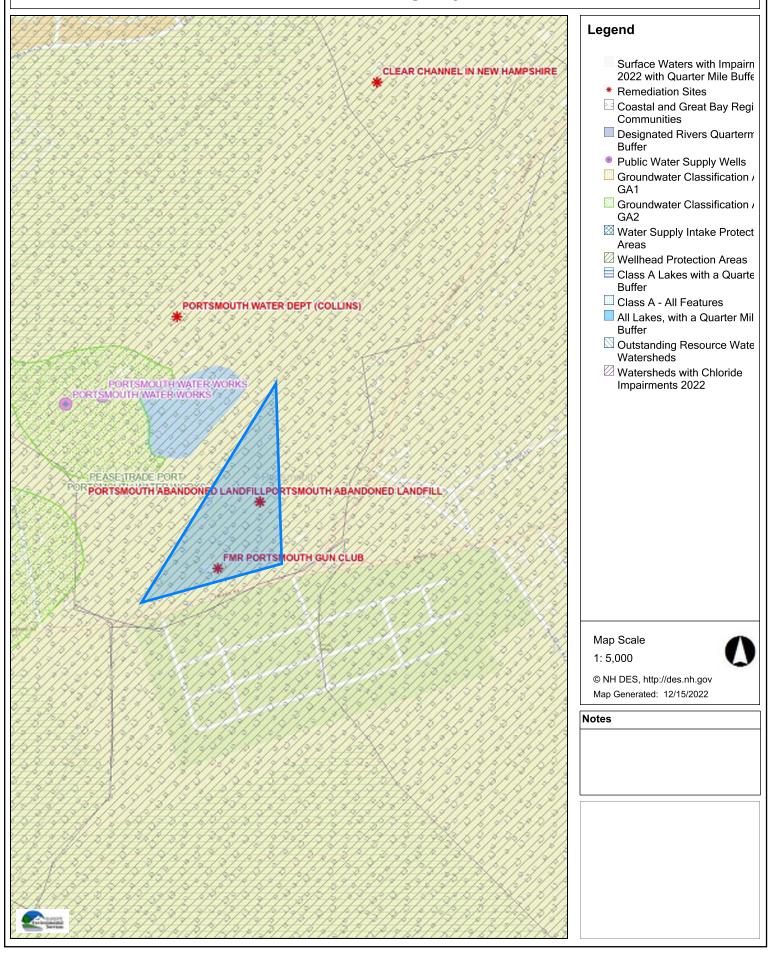
BOLD:
Parameter detected above laboratory detection limit
Ilmit
BOLD:
Represents an exceedence of the Soil
Standards

Surface Water Impairments

Legend

Surface Waters with Impairn 2022 with Quarter Mile Buffe

Map Scale


1: 5,000

© NH DES, http://des.nh.gov Map Generated: 12/15/2022

N	۸t	Δ.
14	υı	C:

AOT Screening Layers

Memo

NH Natural Heritage Bureau NHB DataCheck Results Letter

Please note: portions of this document are confidential.

Maps and NHB record pages are confidential and should be redacted from public documents.

To: Devin Batchelder, Weston & Sampson Engineering

55 Walkers Brook Drive

Reading, MA 01857

From: NHB Review, NH Natural Heritage Bureau

Date: 9/14/2022 (valid until 09/14/2023)

Re: Review by NH Natural Heritage Bureau

Permits: NHDES - Alteration of Terrain Permit

Location: 305 GREENLAND RD Portsmouth Town: NHB22-2841 NHB ID: The City is proposing to create a skate park on a previously disturbed property which is currently used for construction storage. Description:

cc: NHFG Review

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

Comments NHB: No comments at this time.

F&G: Please refer to NHFG consultation requirements below.

Vertebrate species

State¹ Federal Notes

Blanding's Turtle (Emydoidea blandingii) E --

-- Contact the NH Fish & Game Dept (see below).

'I'= Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.

For all animal reviews, refer to 'IMPORTANT: NHFG Consultation' section below.

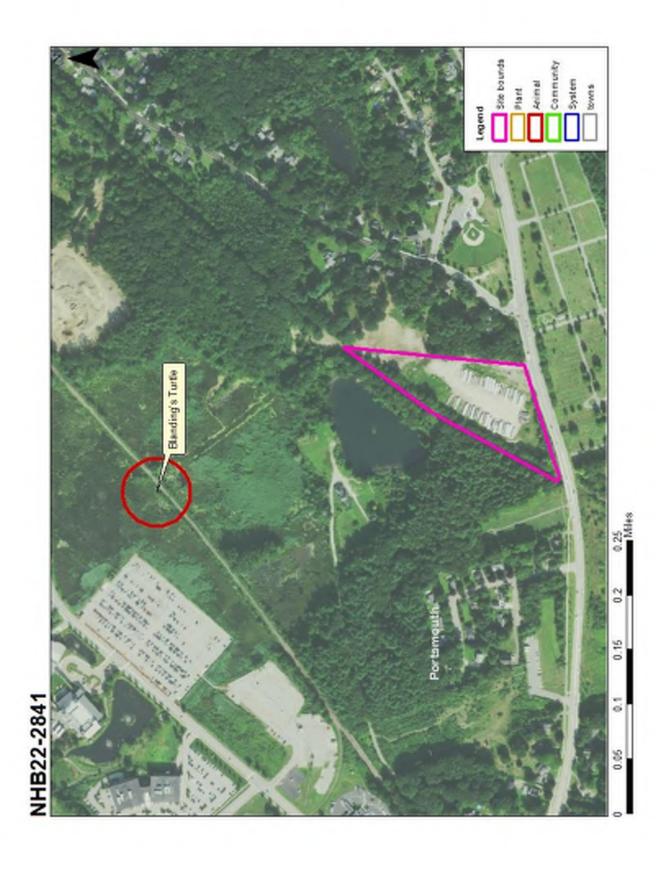
Disclaimer: A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

IMPORTANT: NHFG Consultation

NH Natural Heritage Bureau NHB DataCheck Results Letter

Please note: portions of this document are confidential.

Memo


Maps and NHB record pages are confidential and should be redacted from public documents.

If this NHB Datacheck letter DOES NOT include ANY wildlife species records, then, based on the information submitted, no further consultation with the NH Fish and Game Department pursuant to Fis 1004 is required.

NHFGreview@wildlife.nh.gov or can be sent by mail, and must include the NHB Datacheck results letter number and "Fis 1004 consultation request" in If this NHB Datacheck letter includes a record for a threatened (T) or endangered (E) wildlife species, consultation with the New Hampshire Fish and Game https://wildlife.state.nh.us/wildlife/environmental-review.html. All requests for consultation and submittals should be sent via email to Department under Fis 1004 may be required. To review the Fis 1000 rules (effective February 3, 2022), please go to the subject line.

Fish and Game is requested, please email: Kim Tuttle kim. tuttle kim. tuttle @wildlife.nh. gov with a copy to NHFGreview@wildlife.nh. gov, and include the NHB Datacheck recommended you contact the applicable permitting agency. For projects not requiring consultation under Fis 1004, but where additional coordination with NH If the NHB DataCheck response letter does not include a threatened or endangered wildlife species but includes other wildlife species (e.g., Species of Special Game is highly recommended or may be required for certain permits. While some permitting processes are exempt from required consultation under Fis 1004 Concern), consultation under Fis 1004 is not required; however, some species are protected under other state laws or rules, so coordination with NH Fish & (e.g., statutory permit by notification, permit by rule, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule), coordination with NH Fish & Game may still be required under the rules governing those specific permitting processes, and it is results letter number and "review request" in the email subject line.

Contact NH Fish & Game at (603) 271-0467 with questions.

NHB22-2841 EOCODE: ARAAD04010*632*NH

New Hampshire Natural Heritage Bureau - Animal Record

Blanding's Turtle (Emydoidea blandingii)

Legal Status Conservation Status

Federal: Not listed Global: Apparently secure but with cause for concern State: Listed Endangered State: Critically imperiled due to rarity or vulnerability

Description at this Location

Conservation Rank: Not ranked

Comments on Rank: --

Detailed Description: 2011: Area 12906: 1 adult observed.

General Area: 2011: Area 12906: Marsh along railroad tracks.

General Comments: --Management --

Comments:

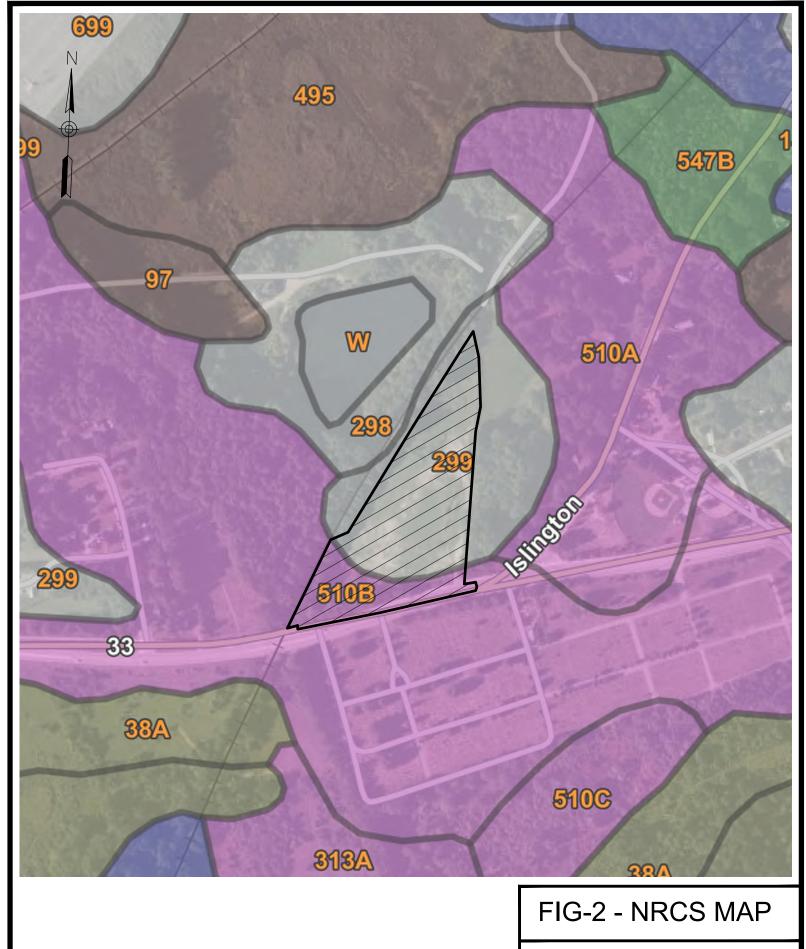
Location

Survey Site Name: Meadowbrook

Managed By: Hospital Corporation of America

County: Rockingham Town(s): Portsmouth

Size: 1.9 acres Elevation:


Precision: Within (but not necessarily restricted to) the area indicated on the map.

Directions: 2011: Area 12906: Marsh adjacent to 333 Borthwick Avenue, behind Portsmouth Regional Hospital.

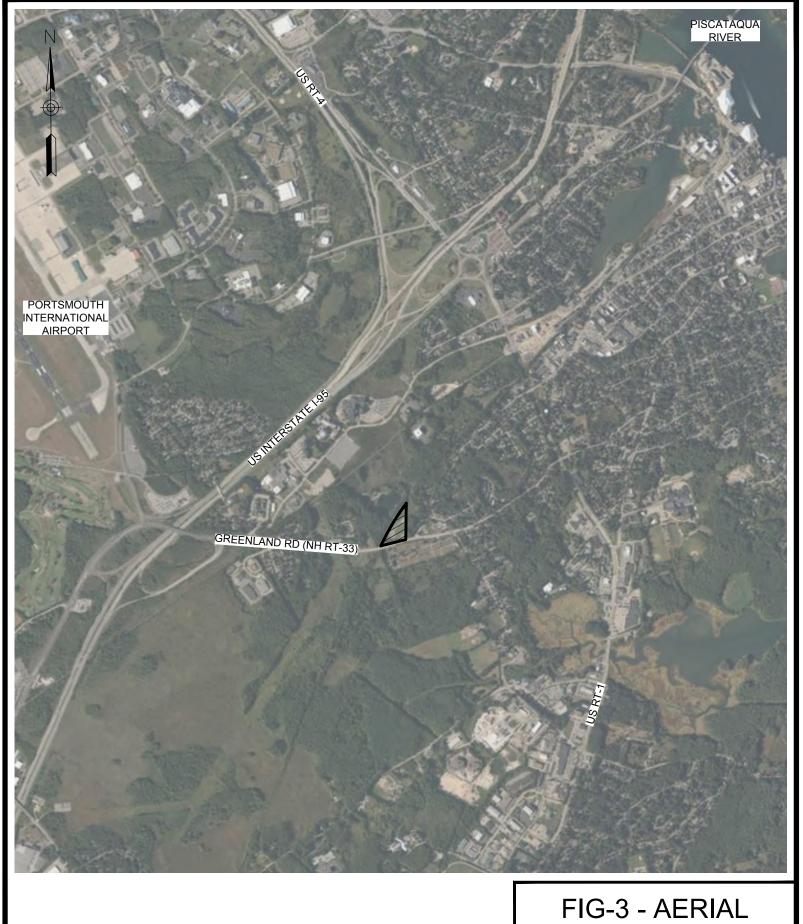
Dates documented

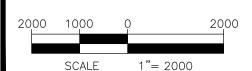
First reported: 2011-05-07 Last reported: 2011-05-07

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

300 150 0 300

Westo


Westo


SCALE 1"= 300

STATE 1"= 300

Weston & Sampson Engineers, Inc. 55 Walkers Brook Drive, Suite 100, Reading MA 01867

Weston & Sampson Engineers, Inc. 55 Walkers Brook Drive, Suite 100, Reading MA 01867

Route 33 Skate Park, Portsmouth NH December 22, 2022

Site Photos

December 15, 2022

Photo 1: Looking north at the existing site entrance on Greenland Road

Route 33 Skate Park, Portsmouth NH December 22, 2022

Photo 2: Looking west along the frontage of the property at Greenland Road

Photo 3: Looking north from southern edge of property near Greenland Road

Route 33 Skate Park, Portsmouth NH December 22, 2022

Photo 4: Looking southwest into the swale near Greenland Road

Photo 5: Looking southeast towards Greenland Road

Route 33 Skate Park, Portsmouth NH December 22, 2022

Photo 6: Looking northeast towards northern corner of property

Photo 7: Looking southeast towards eastern boundary of property

Route 33 Skate Park, Portsmouth NH December 22, 2022

Photo 8: Looking southwest towards Greenland Road


Photo 9: Looking north towards rail trail along western boundary of property

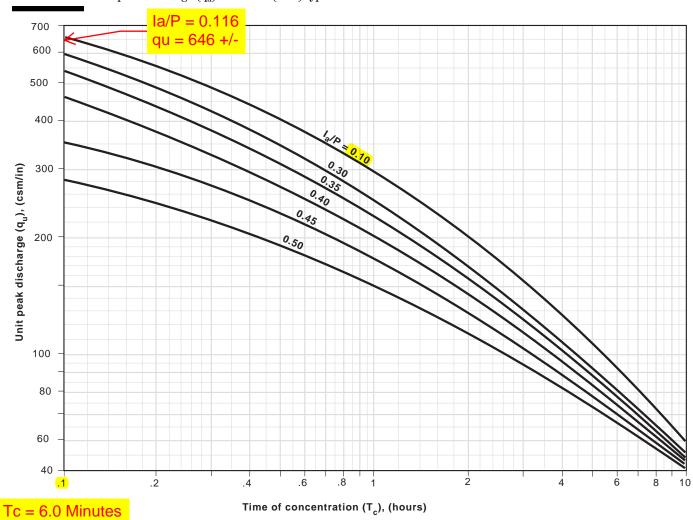
Route 33 Skate Park, Portsmouth NH December 22, 2022

Photo 10: Looking southwest towards Greenland Road

GENERAL CALCULATIONS - WQV and WQF (optional worksheet)

This worksheet may be useful when designing a BMP that does not fit into one of the specific worksheets already provided (i.e. for a technology which is not a stormwater wetland, infiltration practice, etc.)

Water Quality Volume (WQV)


0.54 ac	A = Area draining to the practice
0.29 ac	A _I = Impervious area draining to the practice
0.54 decimal	I = Percent impervious area draining to the practice, in decimal form
0.53 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)
0.29 ac-in	WQV= 1" x Rv x A
1,045 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")

Water Quality Flow (WQF)

1	inches	P = Amount of rainfall. For WQF in NH, P = 1".
0.53	inches	Q = Water quality depth. Q = WQV/A
95	unitless	CN = Unit peak discharge curve number. CN = $1000/(10+5P+10Q-10*[Q^2+1.25*Q*P]^{0.5})$
0.6	inches	S = Potential maximum retention. S = (1000/CN) - 10
0.116	inches	Ia = Initial abstraction. Ia = 0.2S
6.0	minutes	T _c = Time of Concentration
646.0	cfs/mi²/in	$\boldsymbol{q}_{\boldsymbol{u}}$ is the unit peak discharge. Obtain this value from TR-55 exhibits 4-II and 4-III.
0.291	cfs	WQF = $q_u \times WQV$. Conversion: to convert "cfs/mi ² /in * ac-in" to "cfs" multiply by 1mi ² /640ac.

Designer's Notes:
These calculations are included to support the design of a Contech CDS water quality treatment unit

Exhibit 4-III Unit peal discharge (qu) for NRCS (SCS) type III rainfall distribution

CDS ESTIMATED NET ANNUAL SOLIDS LOAD REDUCTION BASED ON THE RATIONAL RAINFALL METHOD

ROUTE 33 SKATE PARK PORTSMOUTH, NH

Area 0.54 ac Unit Site Designation CDS
Weighted C 0.63 Rainfall Station # 104

t_c 6 min

CDS Model 2015-4 CDS Treatment Capacity 0.7 cfs

Rainfall Intensity ¹ (in/hr)	Percent Rainfall Volume ¹	<u>Cumulative</u> <u>Rainfall Volume</u>	Total Flowrate (cfs)	Treated Flowrate (cfs)	Incremental Removal (%)
0.02	13.0%	13.0%	0.01	0.01	12.6
0.04	12.2%	25.2%	0.01	0.01	11.8
0.06	11.2%	36.4%	0.02	0.02	10.8
0.08	10.0%	46.4%	0.03	0.03	9.6
0.10	8.2%	54.6%	0.03	0.03	7.9
0.12	5.8%	60.4%	0.04	0.04	5.5
0.14	6.5%	66.9%	0.05	0.05	6.2
0.16	4.6%	71.5%	0.05	0.05	4.4
0.18	3.7%	75.2%	0.06	0.06	3.5
0.20	3.3%	78.5%	0.07	0.07	3.1
0.25	6.7%	85.2%	0.09	0.09	6.2
0.30	3.7%	88.9%	0.10	0.10	3.4
0.35	2.4%	91.3%	0.12	0.12	2.2
0.40	1.8%	93.1%	0.14	0.14	1.7
0.45	1.9%	95.0%	0.15	0.15	1.7
0.50	1.1%	96.1%	0.17	0.17	0.9
0.75	2.6%	98.7%	0.26	0.26	2.2
1.00	0.9%	99.6%	0.34	0.34	0.7
1.50	0.4%	100.0%	0.51	0.51	0.3
2.00	0.0%	100.0%	0.68	0.68	0.0
0.00	0.0%	100.0%	0.00	0.00	0.0
· · · · · · · · · · · · · · · · · · ·					94.6

Removal Efficiency Adjustment² =

6.5% 93.5%

Predicted % Annual Rainfall Treated =

93.570

Predicted Net Annual Load Removal Efficiency =

88.1%

2 - Reduction due to use of 60-minute data for a site that has a time of concentration less than 30-minutes.

^{1 -} Based on 10 years of hourly precipitation data from NCDC 1683, Concord WSO Airport, Merrimack County, NH

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing Yes

State New Hampshire

Location

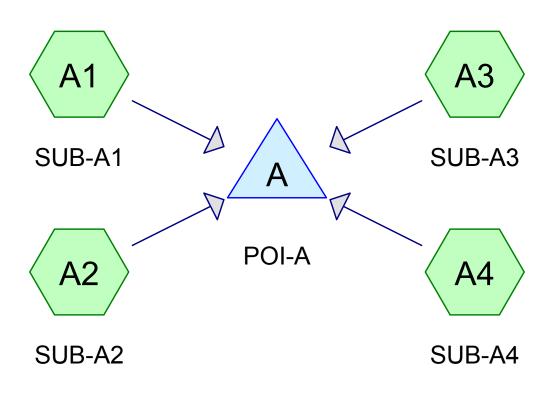
Longitude 70.787 degrees West **Latitude** 43.058 degrees North

Elevation 0 feet

Date/Time Mon, 19 Dec 2022 12:41:39 -0500

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.82	1.04	1yr	0.70	0.98	1.21	1.56	2.04	2.67	2.93	1yr	2.36	2.82	3.23	3.95	4.57	1yr
2yr	0.32	0.50	0.62	0.81	1.02	1.30	2yr	0.88	1.18	1.52	1.94	2.49	3.22	3.58	2yr	2.85	3.45	3.95	4.70	5.34	2yr
5yr	0.37	0.58	0.73	0.98	1.25	1.61	5yr	1.08	1.47	1.89	2.43	3.15	4.08	4.60	5yr	3.62	4.42	5.06	5.96	6.73	5yr
10yr	0.41	0.65	0.82	1.11	1.45	1.89	10yr	1.25	1.73	2.23	2.90	3.76	4.89	5.55	10yr	4.33	5.34	6.11	7.14	8.01	10yr
25yr	0.48	0.76	0.97	1.34	1.77	2.34	25yr	1.53	2.14	2.78	3.64	4.75	6.20	7.13	25yr	5.49	6.86	7.84	9.07	10.10	25yr
50yr	0.54	0.86	1.10	1.54	2.07	2.76	50yr	1.79	2.53	3.29	4.33	5.68	7.43	8.62	50yr	6.57	8.29	9.47	10.87	12.04	50yr
100yr	0.59	0.96	1.24	1.77	2.42	3.26	100yr	2.08	2.98	3.91	5.17	6.79	8.90	10.43	100yr	7.88	10.03	11.45	13.04	14.36	100yr
200yr	0.67	1.10	1.42	2.04	2.82	3.83	200yr	2.44	3.51	4.62	6.14	8.11	10.67	12.62	200yr	9.44	12.13	13.84	15.64	17.12	200yr
500yr	0.80	1.31	1.71	2.48	3.47	4.76	500yr	3.00	4.38	5.77	7.72	10.26	13.56	16.23	500yr	12.00	15.61	17.79	19.91	21.63	500yr


Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.73	0.89	1yr	0.63	0.87	0.92	1.32	1.67	2.24	2.54	1yr	1.98	2.44	2.87	3.16	3.90	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.82	2.34	3.07	3.47	2yr	2.72	3.34	3.84	4.57	5.09	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.12	2.73	3.81	4.23	5yr	3.37	4.06	4.74	5.57	6.29	5yr
10yr	0.39	0.59	0.74	1.03	1.33	1.60	10yr	1.15	1.57	1.81	2.39	3.06	4.40	4.91	10yr	3.90	4.73	5.50	6.47	7.26	10yr
25yr	0.44	0.67	0.83	1.19	1.57	1.90	25yr	1.35	1.86	2.10	2.76	3.54	4.73	5.97	25yr	4.18	5.74	6.74	7.89	8.77	25yr
50yr	0.48	0.74	0.92	1.32	1.78	2.17	50yr	1.53	2.12	2.35	3.08	3.94	5.34	6.91	50yr	4.73	6.65	7.86	9.17	10.13	50yr
100yr	0.54	0.82	1.02	1.48	2.03	2.48	100yr	1.75	2.42	2.63	3.42	4.37	6.01	8.00	100yr	5.32	7.69	9.17	10.68	11.71	100yr
200yr	0.60	0.90	1.14	1.65	2.30	2.82	200yr	1.98	2.76	2.94	3.79	4.82	6.73	9.26	200yr	5.96	8.90	10.70	12.45	13.55	200yr
500yr	0.69	1.03	1.33	1.93	2.75	3.38	500yr	2.37	3.30	3.42	4.33	5.49	7.83	11.22	500yr	6.93	10.79	13.13	15.27	16.41	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.54	0.72	0.89	1.08	1yr	0.77	1.06	1.26	1.74	2.21	3.00	3.16	1yr	2.66	3.04	3.60	4.39	5.07	1yr
2yr	0.34	0.52	0.64	0.86	1.06	1.27	2yr	0.92	1.24	1.48	1.96	2.51	3.44	3.71	2yr	3.05	3.56	4.09	4.85	5.66	2yr
5yr	0.40	0.62	0.76	1.05	1.34	1.62	5yr	1.15	1.58	1.88	2.53	3.24	4.35	4.96	5yr	3.85	4.77	5.39	6.37	7.16	5yr
10yr	0.47	0.72	0.89	1.24	1.61	1.97	10yr	1.39	1.93	2.28	3.10	3.94	5.36	6.19	10yr	4.74	5.95	6.79	7.84	8.75	10yr
25yr	0.57	0.87	1.09	1.55	2.04	2.57	25yr	1.76	2.51	2.95	4.06	5.12	7.83	8.31	25yr	6.93	7.99	9.09	10.32	11.40	25yr
50yr	0.67	1.02	1.27	1.82	2.45	3.12	50yr	2.12	3.05	3.59	4.98	6.28	9.81	10.39	50yr	8.68	10.00	11.33	12.70	13.94	50yr
100yr	0.79	1.19	1.49	2.15	2.95	3.80	100yr	2.55	3.72	4.36	6.13	7.70	12.28	13.01	100yr	10.87	12.51	14.13	15.65	17.05	100yr
200yr	0.92	1.38	1.75	2.54	3.54	4.64	200yr	3.06	4.53	5.32	7.55	9.45	15.41	16.29	200yr	13.64	15.67	17.64	19.27	20.87	200yr
500yr	1.14	1.70	2.18	3.17	4.51	6.02	500yr	3.89	5.88	6.90	9.97	12.42	20.83	21.95	500yr	18.44	21.10	23.67	25.38	27.26	500yr

Routing Diagram for HydroCAD-EX
Prepared by Weston & Sampson Engineers, Inc, Printed 12/20/2022
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 2

Rainfall Events Listing

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2 YR	Type III 24-hr		Default	24.00	1	2.85	2
2	10 YR	Type III 24-hr		Default	24.00	1	4.33	2
3	50 YR	Type III 24-hr		Default	24.00	1	6.57	2

Printed 12/20/2022 Page 3

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
28,589	30	Brush, Good, HSG A (A2, A3, A4)
30,623	77	Fallow, bare soil, HSG A (A3, A4)
141,895	76	Gravel, HSG A (A2, A3, A4)
1,384	98	Impervious, HSG A (A3)
18,606	98	Paved roads w/curbs & sewers, HSG A (A1)
38,124	30	Woods, Good, HSG A (A2, A3, A4)
259,221	66	TOTAL AREA

HydroCAD-EX
Prepared by Weston & Sampson Engineers, Inc
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
259,221	HSG A	A1, A2, A3, A4
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
259,221		TOTAL AREA

Printed 12/20/2022 Page 5

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground
(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover
28,589	0	0	0	0	28,589	Brush, Good
30,623	0	0	0	0	30,623	Fallow, bare soil
141,895	0	0	0	0	141,895	Gravel
1,384	0	0	0	0	1,384	Impervious
18,606	0	0	0	0	18,606	Paved roads
						w/curbs &
						sewers
38,124	0	0	0	0	38,124	Woods, Good
259,221	0	0	0	0	259,221	TOTAL AREA

HydroCAD-EX
Prepared by Weston & Sampson Engineers, Inc
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 6

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	A2	0.00	0.00	539.0	0.0200	0.013	0.0	30.0	0.0

Type III 24-hr 2 YR Rainfall=2.85"

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022

Page 7

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: SUB-A1 Runoff Area=18,606 sf 100.00% Impervious Runoff Depth=2.62"

Tc=6.0 min CN=98 Runoff=1.18 cfs 4,061 cf

SubcatchmentA2: SUB-A2 Runoff Area=57,852 sf 0.00% Impervious Runoff Depth=0.23"

Flow Length=854' Tc=13.6 min CN=WQ Runoff=0.26 cfs 1,088 cf

SubcatchmentA3: SUB-A3 Runoff Area=132,727 sf 1.04% Impervious Runoff Depth=0.86"

Tc=6.0 min CN=WQ Runoff=2.92 cfs 9,548 cf

SubcatchmentA4: SUB-A4 Runoff Area=50,036 sf 0.00% Impervious Runoff Depth=0.71"

Tc=6.0 min CN=WQ Runoff=0.91 cfs 2,961 cf

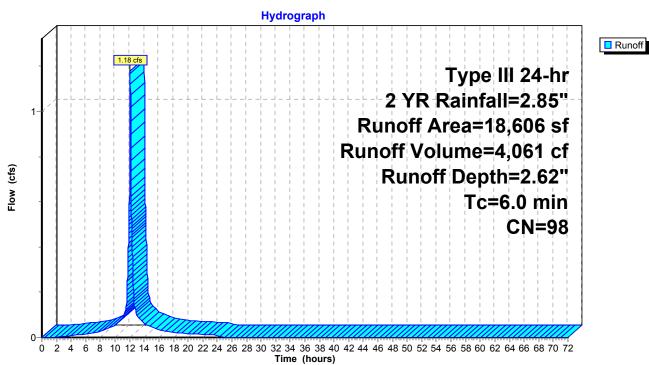
Pond A: POI-A Inflow=5.17 cfs 17,658 cf

Primary=5.17 cfs 17,658 cf

Total Runoff Area = 259,221 sf Runoff Volume = 17,658 cf Average Runoff Depth = 0.82" 92.29% Pervious = 239,231 sf 7.71% Impervious = 19,990 sf

Page 8

Summary for Subcatchment A1: SUB-A1


Runoff = 1.18 cfs @ 12.08 hrs, Volume= 4,061 cf, Depth= 2.62"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

_	Α	rea (sf)	CN [Description							
_		18,606	98 F	98 Paved roads w/curbs & sewers, HSG A							
_		18,606 100.00% Impervious Area									
	To	Longth	Slope	Volocity	Canacity	Description					
	(min)	Length (feet)	(ft/ft)	(ft/sec)	(cfs)	Description					
-	6.0	, ,	, ,	,	,	Direct Entry					

Subcatchment A1: SUB-A1

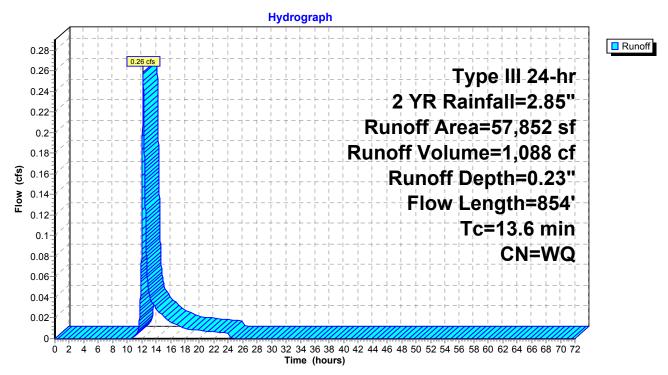
Printed 12/20/2022

Page 9

Summary for Subcatchment A2: SUB-A2

Runoff = 0.26 cfs @ 12.20 hrs, Volume= 1,088 cf, Depth= 0.23"

Routed to Pond A: POI-A


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

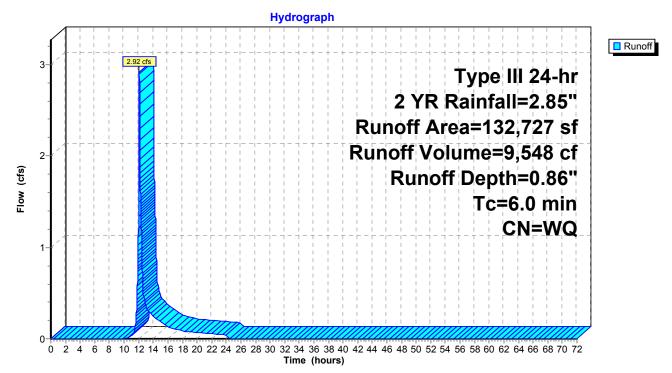
	Α	rea (sf)	CN D	escription		
		28,219		,	od, HSG A	
		15,368		rush, Goo		
*		14,265	76 G	ravel, HS	G A	
		57,852	V	eighted A	verage	
		57,852	1	00.00% Pe	ervious Are	a
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	7.0	25	0.0200	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.24"
	1.5	25	0.0150	0.28		Sheet Flow,
						Fallow n= 0.050 P2= 3.24"
	0.6	83	0.1050	2.27		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	3.7	182	0.0030	0.82		Shallow Concentrated Flow,
						Grassed Waterway Kv= 15.0 fps
	0.8	539	0.0200	11.82	58.01	Pipe Channel,
	-					30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
						n= 0.013 Corrugated PE, smooth interior
	13.6	854	Total			· · ·

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 10

Subcatchment A2: SUB-A2

Summary for Subcatchment A3: SUB-A3


Runoff = 2.92 cfs @ 12.10 hrs, Volume= 9,548 cf, Depth= 0.86"

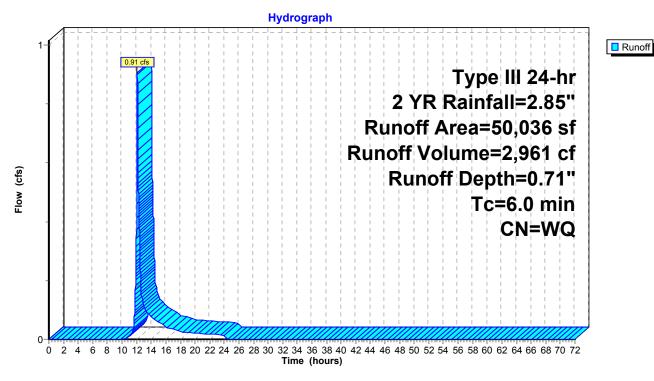
Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

	Area	(sf)	CN [Description						
*	97,	147	76 C	Gravel, HSG A						
	22,	748	77 F	allow, bare	soil, HSG	Α				
	5,	871	30 V	Woods, Good, HSG A						
	5,	577	30 E	Brush, Goo	d, HSG A					
*	1,	384	98 l	mpervious,	HSG A					
132,727 Weighted Average										
	131,	343	g	8.96% Per	vious Area					
	1,	384	1	.04% Impe	rvious Area	a				
	Tc Le	ngth	Slope	Velocity	Capacity	Description				
_	(min) (feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment A3: SUB-A3

Summary for Subcatchment A4: SUB-A4


Runoff = 0.91 cfs @ 12.10 hrs, Volume= 2,961 cf, Depth= 0.71"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

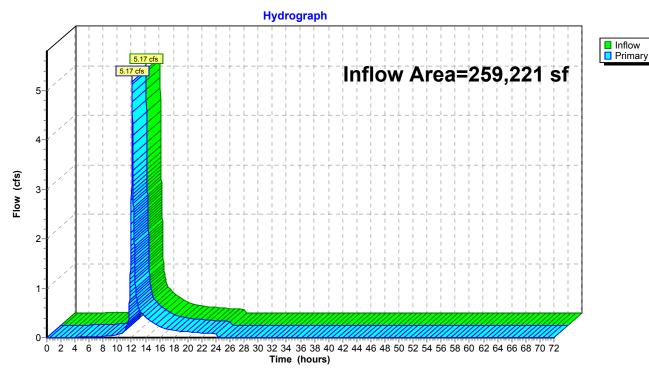
	Area (sf)	CN	N Description						
*	30,483	76	Gravel, HSG A						
	7,875	77	Fallow, bare	e soil, HSG	G A				
	7,644	30	Brush, Goo	d, HSG A					
	4,034	30	Woods, Go	od, HSG A	4				
	50,036		Weighted A	verage					
	50,036		100.00% P	ervious Are	ea				
	Tc Length		•	Capacity	·				
(min) (feet)) (ft/1	ft) (ft/sec)	(cfs)					
	6.0				Direct Entry,				

Subcatchment A4: SUB-A4

Prepared by Weston & Sampson Engineers, Inc. HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Page 13

Summary for Pond A: POI-A


259,221 sf, 7.71% Impervious, Inflow Depth = 0.82" for 2 YR event Inflow Area =

Inflow 5.17 cfs @ 12.09 hrs, Volume= 17,658 cf

5.17 cfs @ 12.09 hrs, Volume= Primary 17,658 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Pond A: POI-A

HydroCAD-EX

Type III 24-hr 10 YR Rainfall=4.33"

Prepared by Weston & Sampson Engineers, Inc
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022

Page 14

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: SUB-A1 Runoff Area=18,606 sf 100.00% Impervious Runoff Depth=4.09"

Tc=6.0 min CN=98 Runoff=1.81 cfs 6,348 cf

SubcatchmentA2: SUB-A2 Runoff Area=57,852 sf 0.00% Impervious Runoff Depth=0.49"

Flow Length=854' Tc=13.6 min CN=WQ Runoff=0.60 cfs 2,372 cf

SubcatchmentA3: SUB-A3 Runoff Area=132,727 sf 1.04% Impervious Runoff Depth=1.86"

Tc=6.0 min CN=WQ Runoff=6.58 cfs 20,553 cf

SubcatchmentA4: SUB-A4 Runoff Area=50,036 sf 0.00% Impervious Runoff Depth=1.54"

Tc=6.0 min CN=WQ Runoff=2.06 cfs 6,428 cf

Pond A: POI-A Inflow=10.87 cfs 35,702 cf

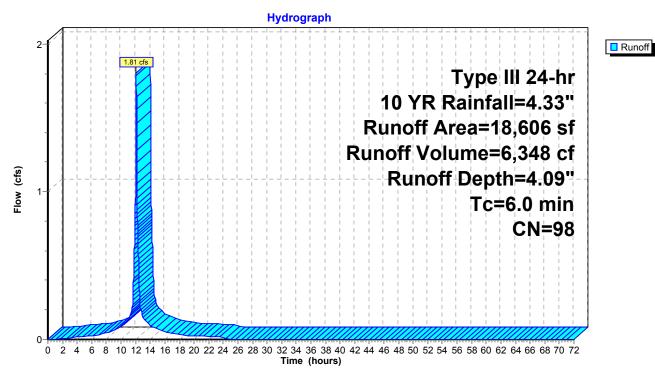
Primary=10.87 cfs 35,702 cf

Total Runoff Area = 259,221 sf Runoff Volume = 35,702 cf Average Runoff Depth = 1.65" 92.29% Pervious = 239,231 sf 7.71% Impervious = 19,990 sf

Printed 12/20/2022

Page 15

Summary for Subcatchment A1: SUB-A1


Runoff = 1.81 cfs @ 12.08 hrs, Volume= 6,348 cf, Depth= 4.09"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

_	Α	rea (sf)	CN [Description							
_		18,606	98 F	98 Paved roads w/curbs & sewers, HSG A							
_		18,606 100.00% Impervious Area									
	To	Longth	Slope	Volocity	Canacity	Description					
	(min)	Length (feet)	(ft/ft)	(ft/sec)	(cfs)	Description					
-	6.0	, ,	, ,	,	,	Direct Entry					

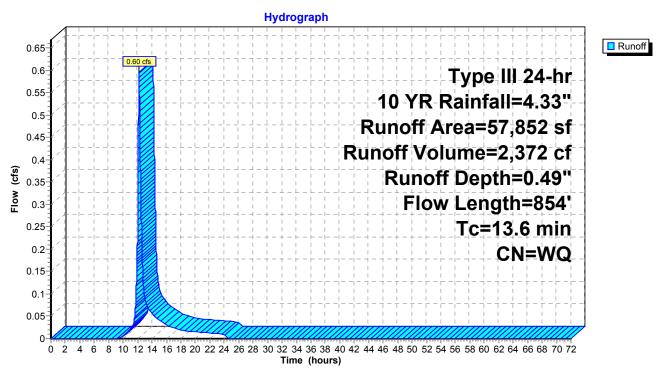
Subcatchment A1: SUB-A1

Printed 12/20/2022

Page 16

Summary for Subcatchment A2: SUB-A2

Runoff = 0.60 cfs @ 12.19 hrs, Volume= 2,372 cf, Depth= 0.49"


Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

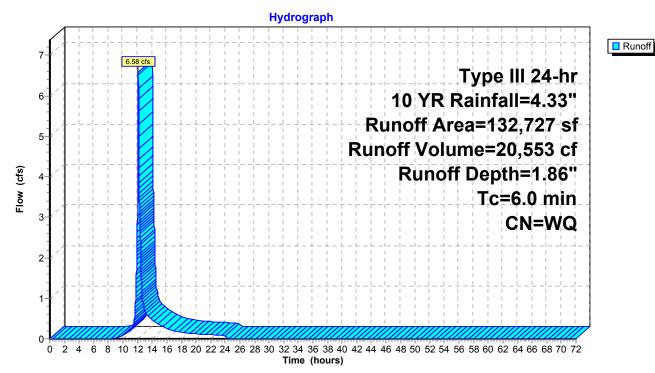
	Α	rea (sf)	CN E	escription		
		28,219		•	od, HSG A	
		15,368		rush, Goo	•	
*		14,265	76 G	<u> Bravel, HS</u>	G A	
		57,852	V	Veighted A	verage	
		57,852	1	00.00% P	ervious Are	a
		•				
	Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
	7.0	25	0.0200	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.24"
	1.5	25	0.0150	0.28		Sheet Flow,
				0.20		Fallow n= 0.050 P2= 3.24"
	0.6	83	0.1050	2.27		Shallow Concentrated Flow,
	0.0	00	0.1000	,		Short Grass Pasture Kv= 7.0 fps
	3.7	182	0.0030	0.82		Shallow Concentrated Flow,
	0.7	102	0.0000	0.02		Grassed Waterway Kv= 15.0 fps
	0.8	539	0.0200	11.82	58.01	Pipe Channel,
	0.0	559	0.0200	11.02	30.01	30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
						n= 0.013 Corrugated PE, smooth interior
	13.6	854	Total			

Printed 12/20/2022 Page 17

Subcatchment A2: SUB-A2

Printed 12/20/2022 Page 18

Summary for Subcatchment A3: SUB-A3


Runoff = 6.58 cfs @ 12.09 hrs, Volume= 20,553 cf, Depth= 1.86"

Routed to Pond A: POI-A

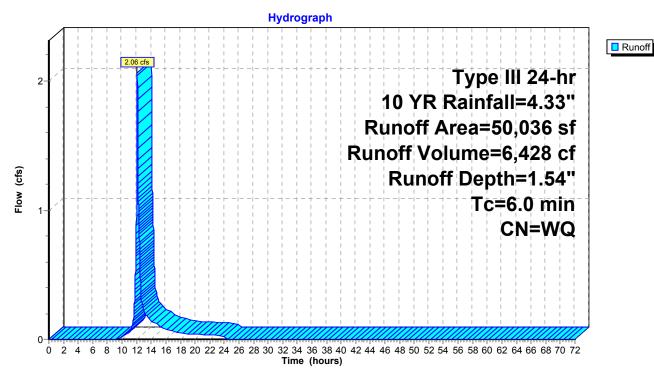
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

	Area (sf)	CN	Description							
*	97,147	76	Gravel, HS	Gravel, HSG A						
	22,748	77	Fallow, bare	e soil, HSG	SA					
	5,871	30	Woods, Go	Woods, Good, HSG A						
	5,577	30	Brush, Goo	d, HSG A						
*	1,384	98	Impervious,	HSG A						
132,727 Weighted Average										
	131,343		98.96% Pei	vious Area	a e e e e e e e e e e e e e e e e e e e					
	1,384		1.04% Impe	ervious Area	ea					
	Tc Lengtl		•	Capacity	Description					
((min) (feet	:) (ft/	ft) (ft/sec)	(cfs)						
	6.0				Direct Entry,					

Subcatchment A3: SUB-A3

Page 19

Summary for Subcatchment A4: SUB-A4


Runoff = 2.06 cfs @ 12.09 hrs, Volume= 6,428 cf, Depth= 1.54"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

	Α	rea (sf)	CN	Description						
*		30,483	76	Gravel, HSG A						
		7,875	77	Fallow, bare	e soil, HSG	G A				
		7,644	30	Brush, Goo	d, HSG A					
		4,034	30	Woods, Good, HSG A						
		50,036		Weighted A	verage					
		50,036		100.00% P	ervious Are	ea				
	Тс	Length	Slope	•	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

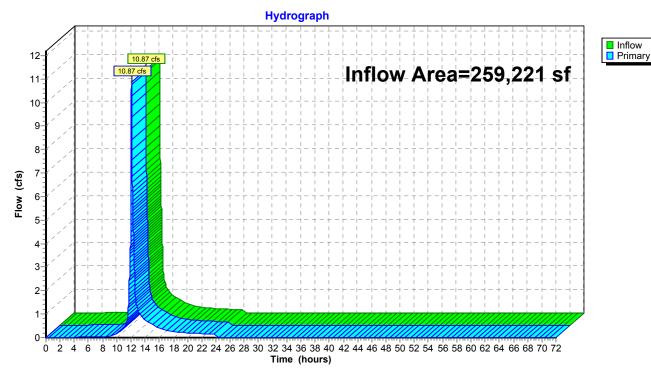
Subcatchment A4: SUB-A4

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Page 20

Printed 12/20/2022

Summary for Pond A: POI-A


Inflow Area = 259,221 sf, 7.71% Impervious, Inflow Depth = 1.65" for 10 YR event

Inflow = 10.87 cfs @ 12.09 hrs, Volume= 35,702 cf

Primary = 10.87 cfs @ 12.09 hrs, Volume= 35,702 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Pond A: POI-A

HydroCAD-EX

Type III 24-hr 50 YR Rainfall=6.57"

Prepared by Weston & Sampson Engineers, Inc
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 21

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: SUB-A1 Runoff Area=18,606 sf 100.00% Impervious Runoff Depth=6.33"

Tc=6.0 min CN=98 Runoff=2.75 cfs 9,817 cf

SubcatchmentA2: SUB-A2 Runoff Area=57,852 sf 0.00% Impervious Runoff Depth=1.06"

Flow Length=854' Tc=13.6 min CN=WQ Runoff=1.17 cfs 5,130 cf

SubcatchmentA3: SUB-A3 Runoff Area=132,727 sf 1.04% Impervious Runoff Depth=3.60"

Tc=6.0 min CN=WQ Runoff=12.77 cfs 39,800 cf

SubcatchmentA4: SUB-A4 Runoff Area=50,036 sf 0.00% Impervious Runoff Depth=3.02"

Tc=6.0 min CN=WQ Runoff=4.02 cfs 12,601 cf

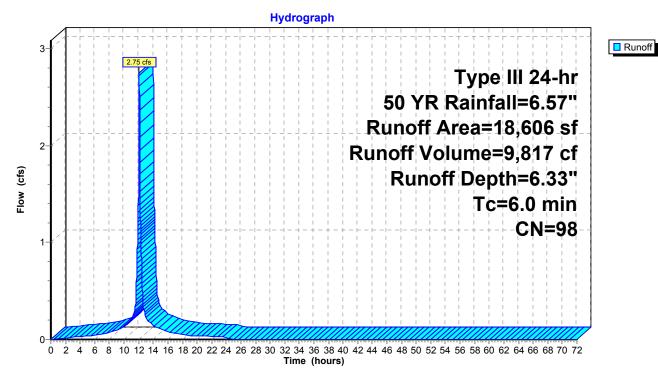
Pond A: POI-A Inflow=20.40 cfs 67,347 cf

Primary=20.40 cfs 67,347 cf

Total Runoff Area = 259,221 sf Runoff Volume = 67,347 cf Average Runoff Depth = 3.12" 92.29% Pervious = 239,231 sf 7.71% Impervious = 19,990 sf

Printed 12/20/2022 Page 22

Summary for Subcatchment A1: SUB-A1


Runoff = 2.75 cfs @ 12.08 hrs, Volume= 9,817 cf, Depth= 6.33"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

A	rea (sf)	CN D	CN Description							
	18,606	98 F	98 Paved roads w/curbs & sewers, HSG A							
•	18,606	1	00.00% Im	pervious A	Area					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

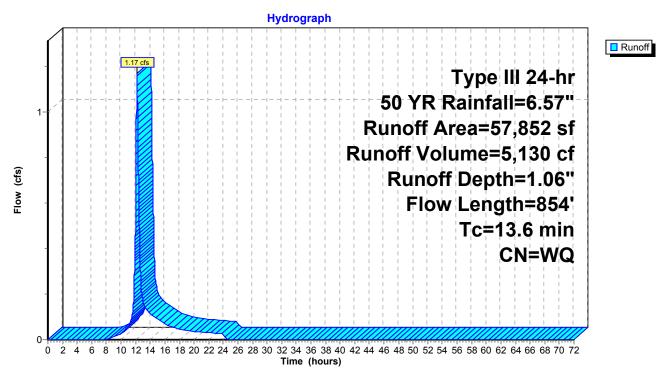
Subcatchment A1: SUB-A1

Page 23

Summary for Subcatchment A2: SUB-A2

Runoff = 1.17 cfs @ 12.19 hrs, Volume= 5,130 cf, Depth= 1.06"

Routed to Pond A: POI-A


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

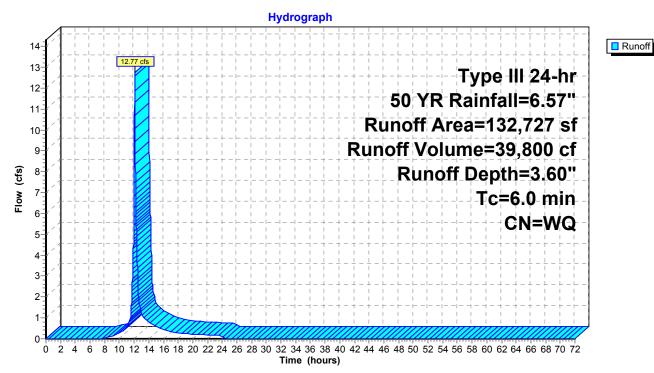
	Α	rea (sf)	CN E	escription		
		28,219		•	od, HSG A	
		15,368		rush, Goo	•	
*		14,265	76 G	<u> Bravel, HS</u>	G A	
		57,852	V	Veighted A	verage	
		57,852	1	00.00% P	ervious Are	a
		•				
	Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
	7.0	25	0.0200	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.24"
	1.5	25	0.0150	0.28		Sheet Flow,
				0.20		Fallow n= 0.050 P2= 3.24"
	0.6	83	0.1050	2.27		Shallow Concentrated Flow,
	0.0	00	0.1000	,		Short Grass Pasture Kv= 7.0 fps
	3.7	182	0.0030	0.82		Shallow Concentrated Flow,
	0.7	102	0.0000	0.02		Grassed Waterway Kv= 15.0 fps
	0.8	539	0.0200	11.82	58.01	Pipe Channel,
	0.0	559	0.0200	11.02	30.01	30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
						n= 0.013 Corrugated PE, smooth interior
	13.6	854	Total			

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022 Page 24

octobment A2, CLID A2

Subcatchment A2: SUB-A2

Summary for Subcatchment A3: SUB-A3


Runoff = 12.77 cfs @ 12.09 hrs, Volume= 39,800 cf, Depth= 3.60"

Routed to Pond A: POI-A

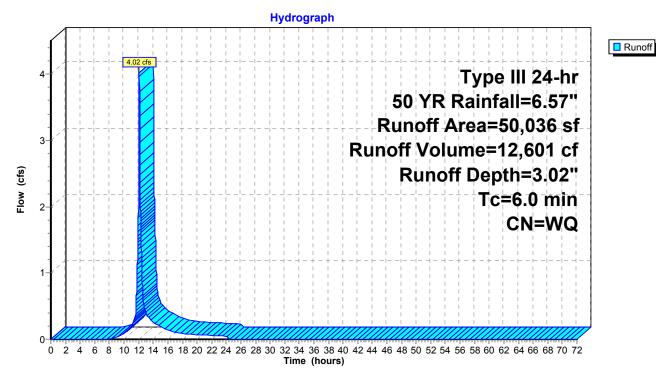
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

	Aı	rea (sf)	CN	Description						
*		97,147	76	Gravel, HSG A						
		22,748	77	Fallow, bare	e soil, HSG	S A				
		5,871	30	Woods, Go	od, HSG A	1				
		5,577	30	Brush, Goo	rush, Good, HSG A					
*		1,384	98	Impervious,	, HSG A					
132,727 Weighted Average										
	1	31,343	9	98.96% Pei	rvious Area	a				
		1,384		1.04% Impe	ervious Area	ea				
	Тс	Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment A3: SUB-A3

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022 Page 26

Summary for Subcatchment A4: SUB-A4


Runoff = 4.02 cfs @ 12.09 hrs, Volume= 12,601 cf, Depth= 3.02"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

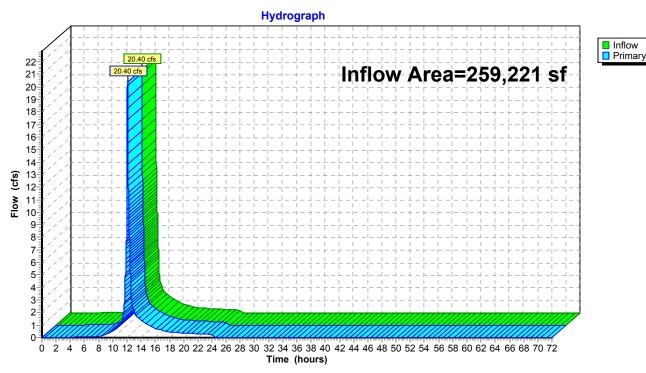
	Area (sf)	CN	Description		
*	30,483	76	Gravel, HS	G A	
	7,875	77	Fallow, bare	e soil, HSG	G A
	7,644	30	Brush, Goo	d, HSG A	
	4,034	30	Woods, Go	od, HSG A	4
	50,036		Weighted A	verage	
	50,036		100.00% Pe	ervious Are	ea
T	c Length	Slop	e Velocity	Capacity	Description
(min) (feet)	(ft/ft	(ft/sec)	(cfs)	
6.0	0				Direct Entry,

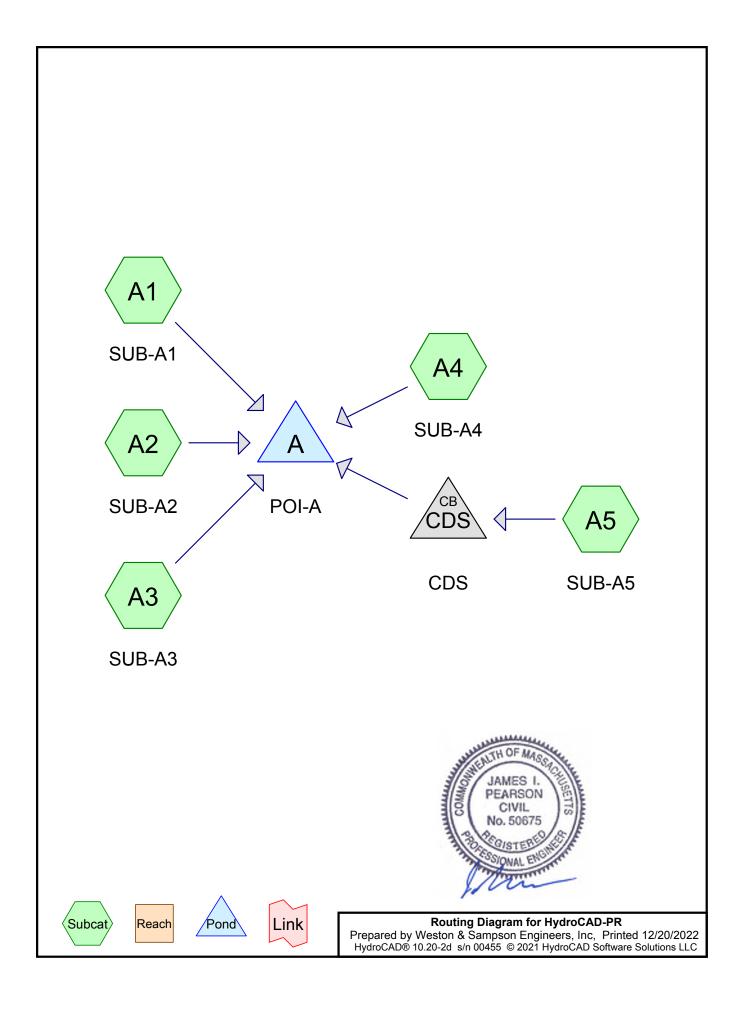
Subcatchment A4: SUB-A4

Prepared by Weston & Sampson Engineers, Inc. HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Page 27

Summary for Pond A: POI-A


259,221 sf, 7.71% Impervious, Inflow Depth = 3.12" for 50 YR event Inflow Area =


Inflow 20.40 cfs @ 12.09 hrs, Volume= 67,347 cf

20.40 cfs @ 12.09 hrs, Volume= Primary 67,347 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Pond A: POI-A

HydroCAD-PR
Prepared by Weston & Sampson Engineers, Inc
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 2

Rainfall Events Listing

Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
	Name				(hours)		(inches)	
1	2 YR	Type III 24-hr		Default	24.00	1	2.85	2
2	10 YR	Type III 24-hr		Default	24.00	1	4.33	2
3	50 YR	Type III 24-hr		Default	24.00	1	6.57	2

Printed 12/20/2022 Page 3

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
57,503	39	>75% Grass cover, Good, HSG A (A2, A3, A5)
23,197	30	Brush, Good, HSG A (A2, A3, A4)
30,074	77	Fallow, bare soil, HSG A (A3, A4)
70,983	76	Gravel, HSG A (A3, A4, A5)
24,934	98	Impervious, HSG A (A3, A5)
18,606	98	Paved roads w/curbs & sewers, HSG A (A1)
33,924	30	Woods, Good, HSG A (A2, A3, A4, A5)
259,221	61	TOTAL AREA

HydroCAD-PR
Prepared by Weston & Sampson Engineers, Inc
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 4

Soil Listing (all nodes)

Area	Soil	Subcatchment
(sq-ft)	Group	Numbers
259,221	HSG A	A1, A2, A3, A4, A5
0	HSG B	
0	HSG C	
0	HSG D	
0	Other	
259,221		TOTAL AREA

Printed 12/20/2022 Page 5

Ground Covers (all nodes)

HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover
57,503	0	0	0	0	57,503	>75% Grass cover, Good
23,197	0	0	0	0	23,197	Brush, Good
30,074	0	0	0	0	30,074	Fallow, bare soil
70,983	0	0	0	0	70,983	Gravel
24,934	0	0	0	0	24,934	Impervious
18,606	0	0	0	0	18,606	Paved roads w/curbs & sewers
33,924	0	0	0	0	33,924	Woods, Good
259,221	0	0	0	0	259,221	TOTAL AREA

HydroCAD-PR
Prepared by Weston & Sampson Engineers, Inc
HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/20/2022 Page 6

Pipe Listing (all nodes)

Lin	e#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill
		Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
	1	A2	0.00	0.00	539.0	0.0200	0.013	0.0	30.0	0.0
	2	CDS	52.27	51.19	151.5	0.0071	0.013	0.0	12.0	0.0

Type III 24-hr 2 YR Rainfall=2.85"

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022

Page 7

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-Q Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: SUB-A1 Runoff Area=18,606 sf 100.00% Impervious Runoff Depth=2.62"

Tc=6.0 min CN=98 Runoff=1.18 cfs 4,061 cf

SubcatchmentA2: SUB-A2 Runoff Area=49,161 sf 0.00% Impervious Runoff Depth=0.00"

Flow Length=858' Tc=11.3 min CN=WQ Runoff=0.00 cfs 0 cf

SubcatchmentA3: SUB-A3 Runoff Area=117,921 sf 18.47% Impervious Runoff Depth=0.91"

Tc=6.0 min CN=WQ Runoff=2.65 cfs 8,916 cf

SubcatchmentA4: SUB-A4 Runoff Area=50,036 sf 0.00% Impervious Runoff Depth=0.71"

Tc=6.0 min CN=WQ Runoff=0.91 cfs 2,961 cf

SubcatchmentA5: SUB-A5 Runoff Area=23,497 sf 13.44% Impervious Runoff Depth=0.72"

Tc=6.0 min CN=WQ Runoff=0.42 cfs 1,406 cf

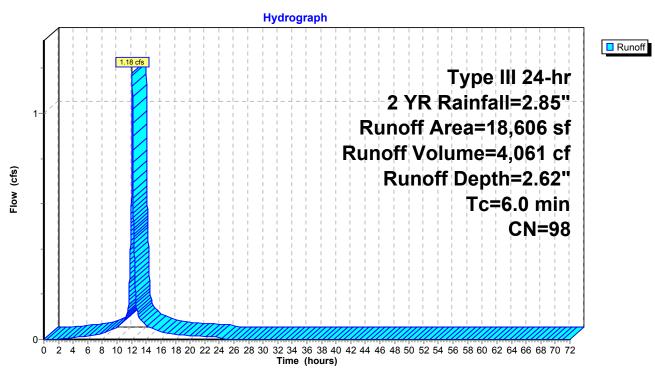
Pond A: POI-A Inflow=5.15 cfs 17,344 cf

Primary=5.15 cfs 17,344 cf

Pond CDS: CDS Peak Elev=52.63' Inflow=0.42 cfs 1,406 cf 12.0" Round Culvert n=0.013 L=151.5' S=0.0071 '/' Outflow=0.42 cfs 1,406 cf

Total Runoff Area = 259,221 sf Runoff Volume = 17,344 cf Average Runoff Depth = 0.80" 83.20% Pervious = 215,681 sf 16.80% Impervious = 43,540 sf

Summary for Subcatchment A1: SUB-A1


Runoff = 1.18 cfs @ 12.08 hrs, Volume= 4,061 cf, Depth= 2.62"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

	Ar	ea (sf)	CN	Description							
		18,606	98	98 Paved roads w/curbs & sewers, HSG A							
	18,606 100.00% Impervious Area										
(mi	Гс n)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6	.0	•	•			Direct Entry,					

Subcatchment A1: SUB-A1

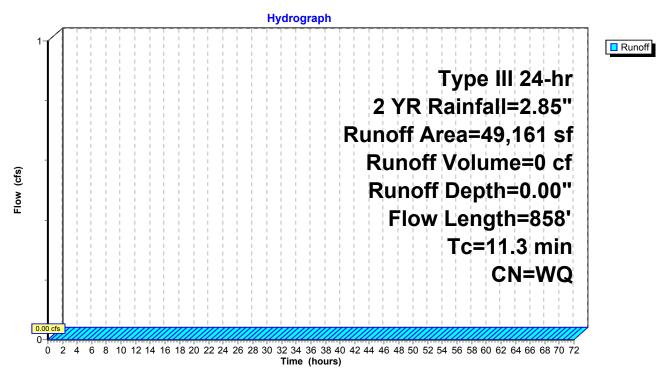
HydroCAD-PR

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022 Page 9

Summary for Subcatchment A2: SUB-A2

Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0 cf, Depth= 0.00"

Routed to Pond A: POI-A


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

A	rea (sf)	CN D	escription		
	25,149	30 V	Voods, Go	od, HSG A	
	13,489	30 B	rush, Goo	d, HSG A	
	10,523	39 >	75% Gras	ood, HSG A	
	49,161	V	Veighted A	verage	
	49,161	1	00.00% Pe	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.2	50	0.0400	0.13		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.24"
0.6	87	0.1050	2.27		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
3.7	182	0.0030	0.82		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
8.0	539	0.0200	11.82	58.01	Pipe Channel,
					30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
					n= 0.013 Corrugated PE, smooth interior
11.3	858	Total			

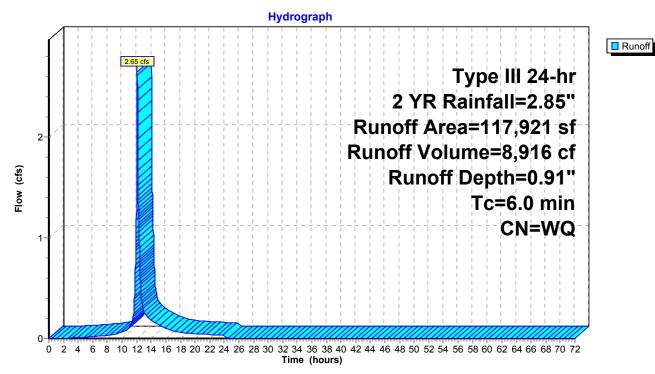
Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022

Page 10

Subcatchment A2: SUB-A2

Printed 12/20/2022 Page 11

Summary for Subcatchment A3: SUB-A3


Runoff = 2.65 cfs @ 12.09 hrs, Volume= 8,916 cf, Depth= 0.91"

Routed to Pond A: POI-A

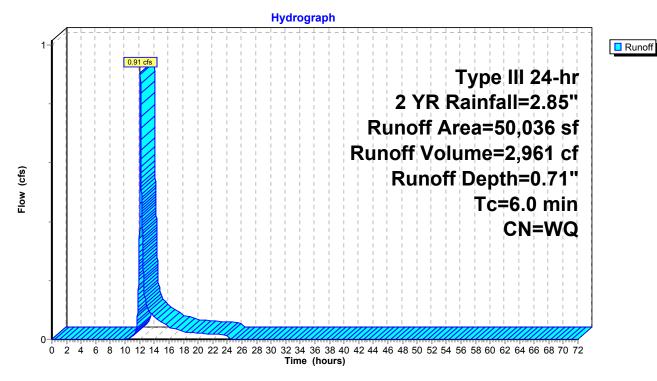
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

	Area (sf)	CN	Description						
	38,646	39	39 >75% Grass cover, Good, HSG A						
*	31,098	76	'6 Gravel, HSG A						
	22,199	77	Fallow, bare	soil, HSG	G A				
*	21,776	98	Impervious,	HSG A					
	2,138	30	Woods, Go	od, HSG A	1				
	2,064	30	30 Brush, Good, HSG A						
	117,921		Weighted Average						
	96,145		81.53% Per	vious Area	a				
	21,776		18.47% Imp	ervious Ar	rea				
	Tc Length	Slop		Capacity	Description				
	(min) (feet)	(ft/	ft) (ft/sec)	(cfs)					
	6.0				Direct Entry,				

Subcatchment A3: SUB-A3

Page 12

Summary for Subcatchment A4: SUB-A4


Runoff = 0.91 cfs @ 12.10 hrs, Volume= 2,961 cf, Depth= 0.71"

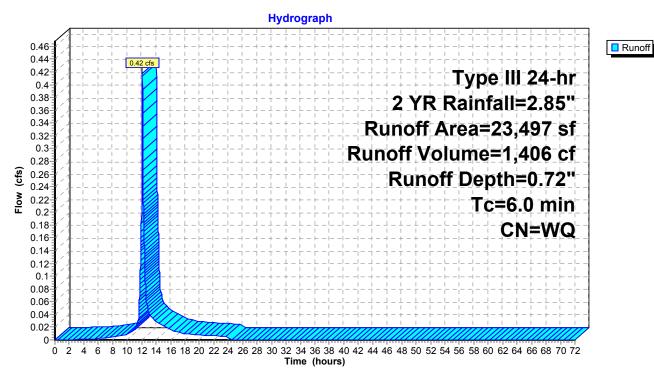
Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

	Area (sf)	CN	Description		
*	30,483	76	Gravel, HS	G A	
	7,875	77	Fallow, bare	e soil, HSG	G A
	7,644	30	Brush, Goo	d, HSG A	
	4,034	30	Woods, Go	od, HSG A	4
	50,036		Weighted A	verage	
	50,036		100.00% P	ervious Are	ea
	Tc Length		•	Capacity	·
(min) (feet)) (ft/1	ft) (ft/sec)	(cfs)	
	6.0				Direct Entry,

Subcatchment A4: SUB-A4

Page 13


Summary for Subcatchment A5: SUB-A5

Runoff = 0.42 cfs @ 12.09 hrs, Volume= 1,406 cf, Depth= 0.72" Routed to Pond CDS : CDS

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 2 YR Rainfall=2.85"

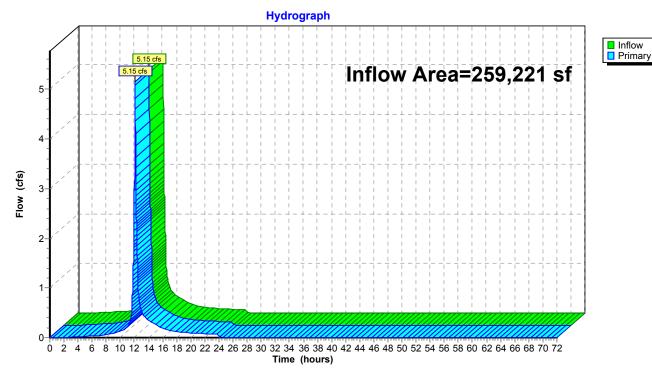
_	Α	rea (sf)	CN	Description						
*		9,402	76	Gravel, HS	G A					
		8,334	39	9 >75% Grass cover, Good, HSG A						
*		3,158	98	98 Impervious, HSG A						
_		2,603	30	Woods, Go	od, HSG A	4				
		23,497		Weighted A						
		20,339		86.56% Per	rvious Area	a				
		3,158		13.44% Imp	pervious Ar	rea				
	Tc	Length	Slope	e Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft	(ft/sec)	(cfs)		_			
	6.0					Direct Entry,				

Subcatchment A5: SUB-A5

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Page 14

Summary for Pond A: POI-A


Inflow Area = 259,221 sf, 16.80% Impervious, Inflow Depth = 0.80" for 2 YR event

Inflow = 5.15 cfs @ 12.09 hrs, Volume= 17,344 cf

Primary = 5.15 cfs @ 12.09 hrs, Volume= 17,344 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Pond A: POI-A

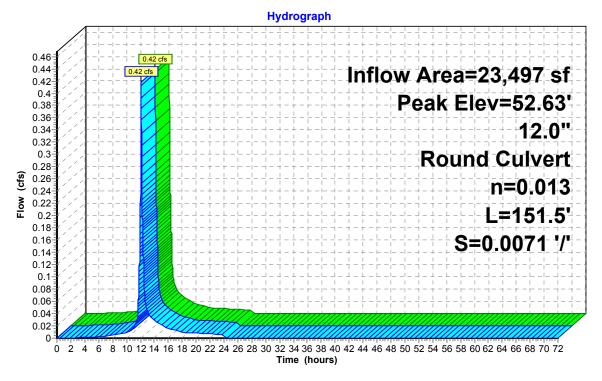
Summary for Pond CDS: CDS

Inflow Area = 23,497 sf, 13.44% Impervious, Inflow Depth = 0.72" for 2 YR event

Inflow = 0.42 cfs @ 12.09 hrs, Volume= 1,406 cf

Outflow = 0.42 cfs @ 12.09 hrs, Volume= 1,406 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.42 cfs @ 12.09 hrs, Volume= 1,406 cf


Routed to Pond A: POI-A

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 52.63' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices	
#1	Primary	52.27'	12.0" Round Culvert	
			L= 151.5' CPP, projecting, no headwall, Ke= 0.900	
			Inlet / Outlet Invert= 52.27' / 51.19' S= 0.0071 '/' Cc= 0.900	
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=0.42 cfs @ 12.09 hrs HW=52.63' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.42 cfs @ 1.62 fps)

Pond CDS: CDS

Type III 24-hr 10 YR Rainfall=4.33"

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022

Page 16

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: SUB-A1 Runoff Area=18,606 sf 100.00% Impervious Runoff Depth=4.09"

Tc=6.0 min CN=98 Runoff=1.81 cfs 6,348 cf

SubcatchmentA2: SUB-A2 Runoff Area=49,161 sf 0.00% Impervious Runoff Depth=0.02"

Flow Length=858' Tc=11.3 min CN=WQ Runoff=0.00 cfs 75 cf

SubcatchmentA3: SUB-A3 Runoff Area=117,921 sf 18.47% Impervious Runoff Depth=1.70"

Tc=6.0 min CN=WQ Runoff=5.00 cfs 16,712 cf

SubcatchmentA4: SUB-A4 Runoff Area=50,036 sf 0.00% Impervious Runoff Depth=1.54"

Tc=6.0 min CN=WQ Runoff=2.06 cfs 6,428 cf

SubcatchmentA5: SUB-A5 Runoff Area=23,497 sf 13.44% Impervious Runoff Depth=1.38"

Tc=6.0 min CN=WQ Runoff=0.81 cfs 2,700 cf

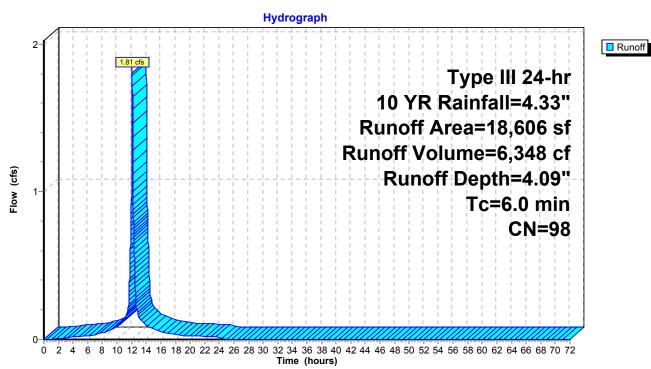
Pond A: POI-A Inflow=9.68 cfs 32,264 cf

Primary=9.68 cfs 32,264 cf

Pond CDS: CDS Peak Elev=52.79' Inflow=0.81 cfs 2,700 cf 12.0" Round Culvert n=0.013 L=151.5' S=0.0071 '/' Outflow=0.81 cfs 2,700 cf

Total Runoff Area = 259,221 sf Runoff Volume = 32,264 cf Average Runoff Depth = 1.49" 83.20% Pervious = 215,681 sf 16.80% Impervious = 43,540 sf

Summary for Subcatchment A1: SUB-A1


Runoff = 1.81 cfs @ 12.08 hrs, Volume= 6,348 cf, Depth= 4.09"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

	Area (sf)	CN [Description							
	18,606	98 F	Paved roads w/curbs & sewers, HSG A							
_	18,606	1	100.00% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry,					

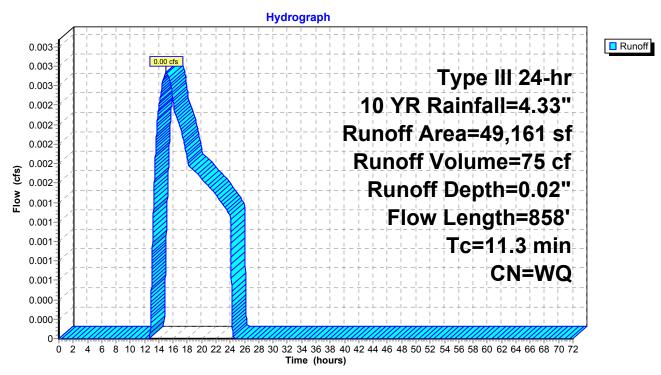
Subcatchment A1: SUB-A1

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022

Page 18

Summary for Subcatchment A2: SUB-A2

Runoff = 0.00 cfs @ 15.03 hrs, Volume= 75 cf, Depth= 0.02"


Routed to Pond A: POI-A

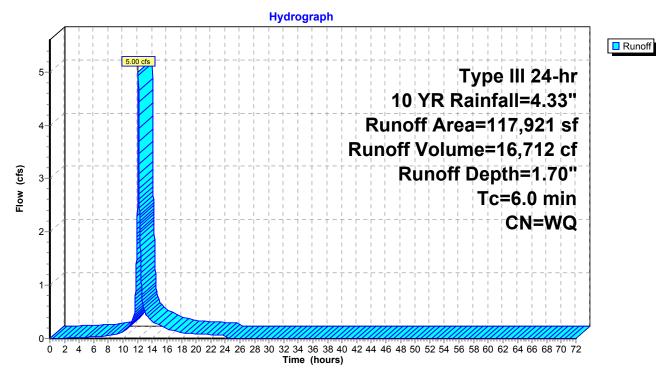
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

A	rea (sf)	CN D	escription				
25,149 30 Woods, Good, HSG A							
	13,489	30 E	rush, Goo	d, HSG A			
10,523 39 >75% Grass cover, Good, HSG A							
	49,161	V	Veighted A	verage			
	49,161	1	00.00% Pe	ervious Are	a		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
6.2	50	0.0400	0.13		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 3.24"		
0.6	87	0.1050	2.27		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
3.7	182	0.0030	0.82		Shallow Concentrated Flow,		
					Grassed Waterway Kv= 15.0 fps		
8.0	539	0.0200	11.82	58.01	Pipe Channel,		
					30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'		
					n= 0.013 Corrugated PE, smooth interior		
11.3	858	Total					

Printed 12/20/2022 Page 19

Subcatchment A2: SUB-A2

Summary for Subcatchment A3: SUB-A3


Runoff = 5.00 cfs @ 12.09 hrs, Volume= 16,712 cf, Depth= 1.70"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

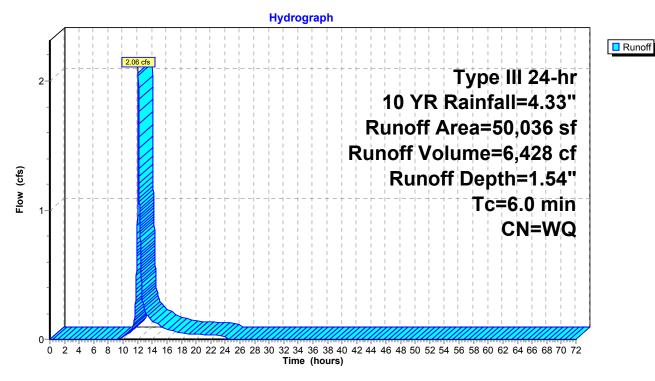
	Area (sf)	CN	Description						
	38,646	39	>75% Grass	s cover, Go	ood, HSG A				
*	31,098	76	Gravel, HS0	G A					
	22,199	77	Fallow, bare	Fallow, bare soil, HSG A					
*	21,776	98	Impervious,	HSG A					
	2,138	30	Woods, Go	od, HSG A	1				
	2,064	30	Brush, Goo	d, HSG A					
	117,921		Weighted A	verage					
	96,145		81.53% Per	vious Area	a				
	21,776		18.47% Imp	ervious Ar	rea				
	Tc Length	Slop		Capacity	Description				
	(min) (feet)	(ft/	ft) (ft/sec)	(cfs)					
	6.0				Direct Entry,				

Subcatchment A3: SUB-A3

Printed 12/20/2022

Page 21

Summary for Subcatchment A4: SUB-A4


Runoff = 2.06 cfs @ 12.09 hrs, Volume= 6,428 cf, Depth= 1.54"

Routed to Pond A: POI-A

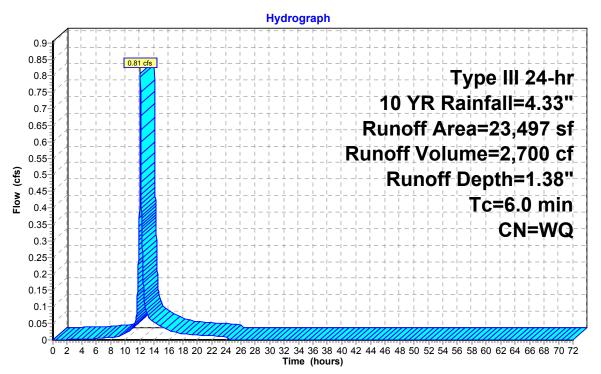
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

	Α	rea (sf)	CN	Description					
*		30,483	76	Gravel, HSG A					
		7,875	77	Fallow, bare	e soil, HSG	G A			
		7,644	30	Brush, Goo	d, HSG A				
		4,034	30	Woods, Go	od, HSG A	A			
		50,036		Weighted A	verage				
		50,036		100.00% P	ervious Are	ea			
	Тс	Length	Slope	•	Capacity	Description			
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment A4: SUB-A4

Runoff

Summary for Subcatchment A5: SUB-A5


Runoff = 0.81 cfs @ 12.09 hrs, Volume= 2,700 cf, Depth= 1.38"

Routed to Pond CDS: CDS

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

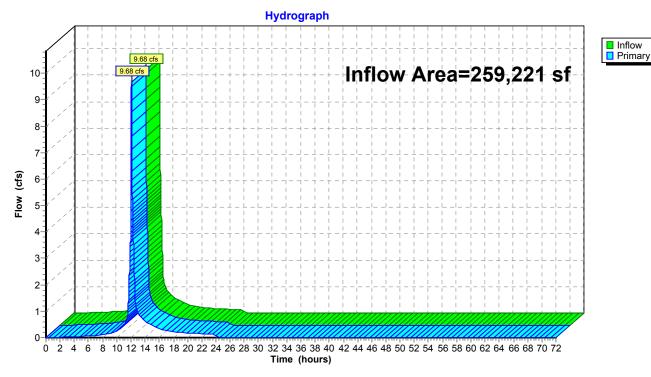
_	Α	rea (sf)	CN	Description						
*		9,402	76	Gravel, HSG A						
		8,334	39	>75% Gras	s cover, Go	Good, HSG A				
*		3,158	98	Impervious,	, HSG A					
_		2,603	30	Woods, Go	od, HSG A	A				
		23,497	,	Weighted Average						
		20,339		86.56% Pei	rvious Area	a				
		3,158		13.44% lmp	pervious Ar	rea				
	_		01			D 1.0				
	Tc	Length	Slope	•	Capacity	•				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment A5: SUB-A5

Printed 12/20/2022

Page 23

Summary for Pond A: POI-A


Inflow Area = 259,221 sf, 16.80% Impervious, Inflow Depth = 1.49" for 10 YR event

Inflow = 9.68 cfs @ 12.09 hrs, Volume= 32,264 cf

Primary = 9.68 cfs @ 12.09 hrs, Volume= 32,264 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Pond A: POI-A

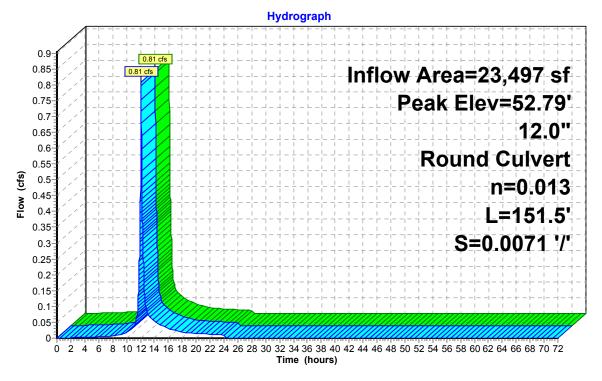
Summary for Pond CDS: CDS

Inflow Area = 23,497 sf, 13.44% Impervious, Inflow Depth = 1.38" for 10 YR event

Inflow = 0.81 cfs @ 12.09 hrs, Volume= 2,700 cf

Outflow = 0.81 cfs @ 12.09 hrs, Volume= 2,700 cf, Atten= 0%, Lag= 0.0 min

Primary = 0.81 cfs @ 12.09 hrs, Volume= 2,700 cf


Routed to Pond A: POI-A

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 52.79' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.27'	12.0" Round Culvert
			L= 151.5' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 52.27' / 51.19' S= 0.0071 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.81 cfs @ 12.09 hrs HW=52.79' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.81 cfs @ 1.94 fps)

Pond CDS: CDS

HydroCAD-PR

Type III 24-hr 50 YR Rainfall=6.57"

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/20/2022 Page 25

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q
Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentA1: SUB-A1 Runoff Area=18,606 sf 100.00% Impervious Runoff Depth=6.33"

Tc=6.0 min CN=98 Runoff=2.75 cfs 9,817 cf

SubcatchmentA2: SUB-A2 Runoff Area=49,161 sf 0.00% Impervious Runoff Depth=0.25"

Flow Length=858' Tc=11.3 min CN=WQ Runoff=0.07 cfs 1,007 cf

SubcatchmentA3: SUB-A3 Runoff Area=117,921 sf 18.47% Impervious Runoff Depth=3.15"

Tc=6.0 min CN=WQ Runoff=8.98 cfs 30,951 cf

SubcatchmentA4: SUB-A4 Runoff Area=50,036 sf 0.00% Impervious Runoff Depth=3.02"

Tc=6.0 min CN=WQ Runoff=4.02 cfs 12,601 cf

SubcatchmentA5: SUB-A5 Runoff Area=23,497 sf 13.44% Impervious Runoff Depth=2.64"

Tc=6.0 min CN=WQ Runoff=1.48 cfs 5,166 cf

Pond A: POI-A Inflow=17.23 cfs 59,540 cf

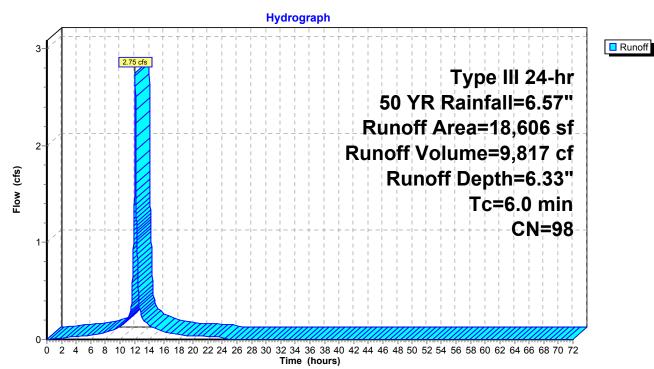
Primary=17.23 cfs 59,540 cf

Pond CDS: CDS Peak Elev=53.02' Inflow=1.48 cfs 5,166 cf

12.0" Round Culvert n=0.013 L=151.5' S=0.0071 '/' Outflow=1.48 cfs 5,166 cf

Total Runoff Area = 259,221 sf Runoff Volume = 59,540 cf Average Runoff Depth = 2.76" 83.20% Pervious = 215,681 sf 16.80% Impervious = 43,540 sf

Summary for Subcatchment A1: SUB-A1


Runoff = 2.75 cfs @ 12.08 hrs, Volume= 9,817 cf, Depth= 6.33"

Routed to Pond A: POI-A

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

_	Α	rea (sf)	CN [Description							
_		18,606	98 F	Paved roads w/curbs & sewers, HSG A							
_		18,606 100.00% Impervious Area									
	To	Longth	Slope	Volocity	Canacity	Description					
	(min)	Length (feet)	(ft/ft)	(ft/sec)	(cfs)	Description					
-	6.0	, ,	, ,	,	,	Direct Entry					

Subcatchment A1: SUB-A1

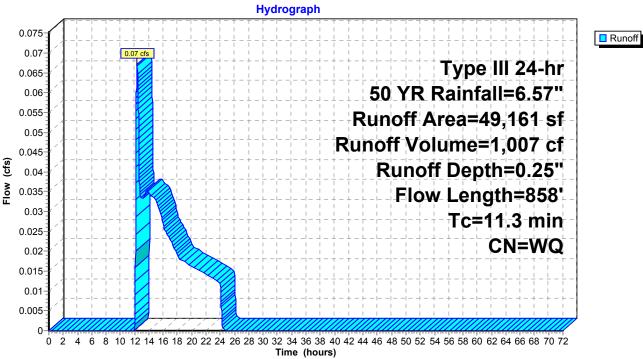
Printed 12/20/2022

Page 27

Summary for Subcatchment A2: SUB-A2

Runoff = 0.07 cfs @ 12.37 hrs, Volume= 1,007 cf, Depth= 0.25"

Routed to Pond A: POI-A


Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

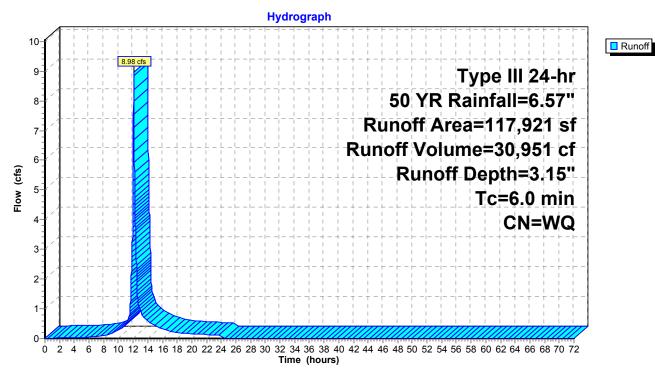
A	rea (sf)	CN E	escription		
	13,489	30 E	Brush, Goo	d, HSG A	
	10,523	39 >	75% Gras	s cover, Go	ood, HSG A
	49,161	V	Veighted A	verage	
	49,161		•	ervious Are	a
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.2	50	0.0400	0.13		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.24"
0.6	87	0.1050	2.27		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
3.7	182	0.0030	0.82		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
8.0	539	0.0200	11.82	58.01	Pipe Channel,
					30.0" Round Area= 4.9 sf Perim= 7.9' r= 0.63'
					n= 0.013 Corrugated PE, smooth interior
11.3	858	Total			

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Page 28

Subcatchment A2: SUB-A2

Summary for Subcatchment A3: SUB-A3


Runoff = 8.98 cfs @ 12.09 hrs, Volume= 30,951 cf, Depth= 3.15"

Routed to Pond A: POI-A

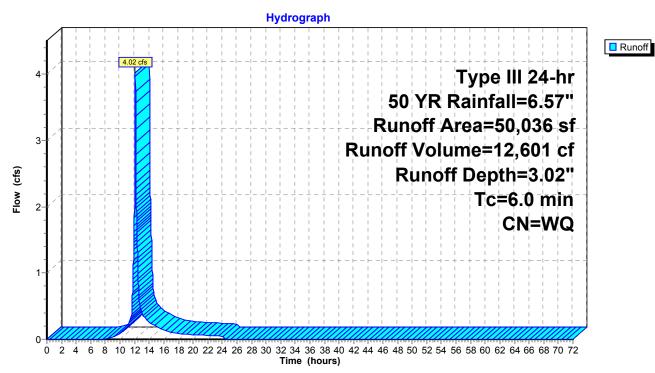
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

	Area (sf)	CN	Description							
	38,646	39	>75% Grass	cover, Go	ood, HSG A					
*	31,098	76	Gravel, HSG	Gravel, HSG A						
	22,199	77	Fallow, bare	Fallow, bare soil, HSG A						
*	21,776	98	Impervious,	HSG A						
	2,138	30	Woods, Goo	d, HSG A						
_	2,064	30	Brush, Good	l, HSG A						
	117,921		Weighted Av	/erage						
	96,145		81.53% Per	vious Area	l .					
	21,776		18.47% Imp	ervious Ar	rea					
	Tc Length	Slo	,	Capacity	Description					
_	(min) (feet)	(ft/	ft) (ft/sec)	(cfs)						
	6.0				Direct Entry					

Subcatchment A3: SUB-A3

Page 30

Summary for Subcatchment A4: SUB-A4


Runoff = 4.02 cfs @ 12.09 hrs, Volume= 12,601 cf, Depth= 3.02"

Routed to Pond A: POI-A

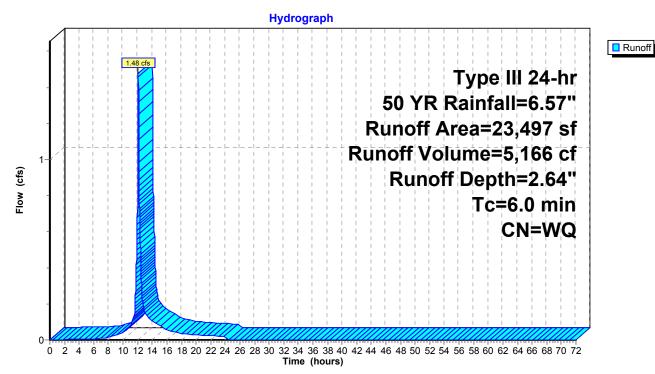
Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

	Α	rea (sf)	CN	Description					
*		30,483	76	Gravel, HSG A					
		7,875	77	Fallow, bare	e soil, HSG	G A			
		7,644	30	Brush, Good, HSG A					
		4,034	30	Woods, Good, HSG A					
		50,036		Weighted A	verage				
		50,036		100.00% P	ervious Are	ea			
	Тс	Length	Slope	•	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.0					Direct Entry,			

Subcatchment A4: SUB-A4

Printed 12/20/2022

Page 31


Summary for Subcatchment A5: SUB-A5

Runoff = 1.48 cfs @ 12.09 hrs, Volume= 5,166 cf, Depth= 2.64" Routed to Pond CDS : CDS

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 50 YR Rainfall=6.57"

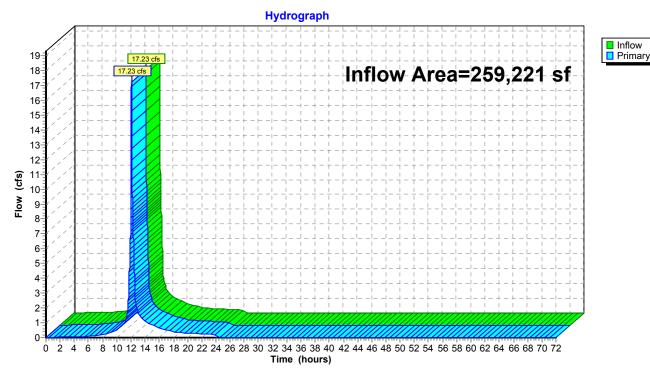
_	Α	rea (sf)	CN	Description						
*		9,402	76	Gravel, HSG A						
		8,334	39	>75% Gras	s cover, Go	Good, HSG A				
*		3,158	98	Impervious,	, HSG A					
_		2,603	30	Woods, Go	od, HSG A	A				
		23,497	,	Weighted Average						
		20,339		86.56% Pei	rvious Area	a				
		3,158		13.44% lmp	pervious Ar	rea				
	_		01			D 1.0				
	Tc	Length	Slope	•	Capacity	•				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	6.0					Direct Entry,				

Subcatchment A5: SUB-A5

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Page 32

Summary for Pond A: POI-A


Inflow Area = 259,221 sf, 16.80% Impervious, Inflow Depth = 2.76" for 50 YR event

Inflow = 17.23 cfs @ 12.09 hrs, Volume= 59,540 cf

Primary = 17.23 cfs @ 12.09 hrs, Volume= 59,540 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Pond A: POI-A

Printed 12/20/2022

Page 33

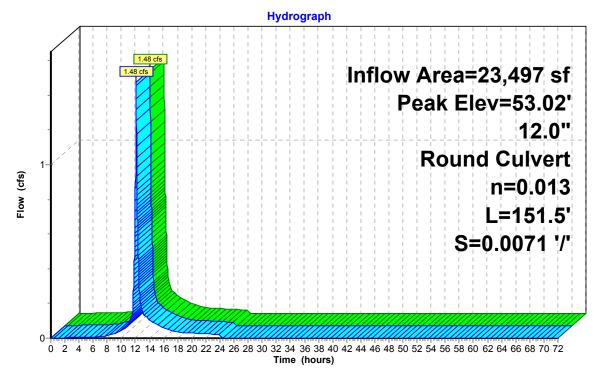
Summary for Pond CDS: CDS

Inflow Area = 23,497 sf, 13.44% Impervious, Inflow Depth = 2.64" for 50 YR event

Inflow = 1.48 cfs @ 12.09 hrs, Volume= 5,166 cf

Outflow = 1.48 cfs @ 12.09 hrs, Volume= 5,166 cf, Atten= 0%, Lag= 0.0 min

Primary = 1.48 cfs @ 12.09 hrs, Volume= 5,166 cf


Routed to Pond A: POI-A

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 53.02' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	52.27'	12.0" Round Culvert
			L= 151.5' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 52.27' / 51.19' S= 0.0071 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.48 cfs @ 12.09 hrs HW=53.02' TW=0.00' (Dynamic Tailwater) 1=Culvert (Inlet Controls 1.48 cfs @ 2.33 fps)

Pond CDS: CDS

Route 33 Skate Park Portsmouth, NH

Prepared By: AKG
Checked By: JIP
Date: 12/22/22

OUTLET PROTECTION SIZING CALCULATION SHEET

Design Criteria

$$L_A = \frac{1.8Q}{Do^{1.5}} + 7Do$$

$$W_1 = 3Do$$

$$W_2 = 3Do + L_A$$

$$d_{50} = 0.02 \times Q^{1.33}$$
Tw X Do

Where,

 L_A = the length of the apron (FT)

 W_1 = the width of apron at outlet of the pipe or width of channel (FT)

 W_2 = the width of the downstream end of the apron (FT)

 d_{50} = the median stone diameter (FT)

Q = the discharge from the pipe during the 10-year storm event (CFS)

Do = the diameter of the pipe of width of the box culvert (FT)
Tw = the tailwater depth above the invert of the pipe (FT)

Outlet	Q (10 Yr)	Do	Barrels	Min. L _A	Min. W ₁	Min. W ₂	Tw	Min.d ₅₀	Velocity	Req'd
	(CFS)	(Ft.)		(Ft.)	(Ft.)	(Ft.)	(Ft.)	(Ft.)	(FPS)	V>2.5 fps
EXISTING	8.34	2.0	1	19.3	6.0	25.3	0.60	0.28	2.65	Yes
PROP	7.58	2.0	1	18.8	6.0	24.8	0.60	0.25	2.41	No

Notes:

- 1 The 10 Year flow for each outlet was generated using HydroCAD
- 2 This analysis compares existing conditions to proposed conditions at the existing pipe outlet and demonstrates a decrease in outlet velocity. No improvement to the existing rip-rap outlet is necessary.

HydroCAD-EX Outlet Calcs

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/19/2022

Page 1

Summary for Subcatchment A1: SUB-A1

Runoff = 1.81 cfs @ 12.08 hrs, Volume=

6,348 cf, Depth= 4.09"

Routed to Reach 24" PIPE: EXISTING OUTLET

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

A	rea (sf)	CN D	escription				
	18,606	98 F	Paved roads w/curbs & sewers, HSG A				
	18,606	1	00.00% In	pervious A	Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment A3: SUB-A3

Runoff = 6.58 cfs @ 12.09 hrs, Volume=

20,553 cf, Depth= 1.86"

Routed to Reach 24" PIPE: EXISTING OUTLET

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

	Area (sf)	CN	Description			
*	97,147	76	Gravel, HS	G A		
	22,748	77	Fallow, bare	e soil, HSG	S A	
	5,871	30	Woods, Go	od, HSG A	1	
	5,577	30	Brush, Goo	d, HSG A		
*	1,384	98	Impervious,	, HSG A		
	132,727		Weighted A	verage		
	131,343		98.96% Pei	rvious Area	a	
	1,384		1.04% Impe	ervious Are	ea	
	Tc Length (min) (feet)			Capacity (cfs)	Description	
	6.0		•		Direct Entry,	_

Summary for Reach 24" PIPE: EXISTING OUTLET

Inflow Area = 151,333 sf, 13.21% Impervious, Inflow Depth = 2.13" for 10 YR event

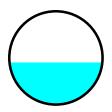
Inflow = 8.38 cfs @ 12.09 hrs, Volume= 26,902 cf

Outflow = 8.34 cfs @ 12.10 hrs, Volume= 26,902 cf, Atten= 0%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Max. Velocity= 6.07 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.83 fps, Avg. Travel Time= 2.1 min

HydroCAD-EX Outlet Calcs


Type III 24-hr 10 YR Rainfall=4.33"

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/19/2022

Page 2

Peak Storage= 324 cf @ 12.10 hrs Average Depth at Peak Storage= 0.90', Surface Width= 1.99' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 19.99 cfs

24.0" Round Pipe n= 0.013 Corrugated PE, smooth interior Length= 235.7' Slope= 0.0078 '/' Inlet Invert= 47.50', Outlet Invert= 45.66'

THE REACH IS REPRESENTATIVE OF THE EXISTING 24"
OUTLET AND EXISTING RIP-RAP APRON WHICH RECEIVES
STORMWATER FLOW FROM PORTIONS OF GREENLAND ROAD
& THE EXISTING STORMWATER INFRASTRUCTURE ON SITE.
UNDER EXISTING CONDITIONS, PEAK DISCHARGE RATE
DURING THE 10 YEAR STORM EVENT AT THE PIPE OUTLET IS
8.34-CFS

HydroCAD-PR Outlet Calcs

Prepared by Weston & Sampson Engineers, Inc. HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC Printed 12/19/2022

Page 1

Summary for Subcatchment A1: SUB-A1

Runoff 1.81 cfs @ 12.08 hrs, Volume= 6,348 cf, Depth= 4.09"

Routed to Reach 24" PIPE: EXISTING OUTLET

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

A	rea (sf)	CN D	escription				
	18,606	98 F	Paved roads w/curbs & sewers, HSG A				
	18,606	1	00.00% In	pervious A	Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
6.0					Direct Entry,		

Summary for Subcatchment A3: SUB-A3

Runoff 5.00 cfs @ 12.09 hrs, Volume= 16,712 cf, Depth= 1.70"

Routed to Reach 24" PIPE: EXISTING OUTLET

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

	Area (sf)	CN	Description		
	38,646	39	>75% Gras	s cover, Go	ood, HSG A
*	31,098	76	Gravel, HS	G A	
	22,199	77	Fallow, bare	e soil, HSG	G A
*	21,776	98	Impervious,	HSG A	
	2,138	30	Woods, Go	od, HSG A	
	2,064	30	Brush, Goo	d, HSG A	
	117,921		Weighted A	verage	
	96,145		81.53% Per	vious Area	a
	21,776		18.47% Imp	pervious Ar	rea
	Tc Length	Slop	•	Capacity	·
(ı	min) (feet)	(ft/	ft) (ft/sec)	(cfs)	
	6.0				Direct Entry,

Summary for Subcatchment A5: SUB-A5

2,700 cf, Depth= 1.38" 0.81 cfs @ 12.09 hrs, Volume= Runoff

Routed to Pond CDS: CDS

Runoff by SCS TR-20 method, UH=SCS, Weighted-Q, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 YR Rainfall=4.33"

HydroCAD-PR Outlet Calcs

Prepared by Weston & Sampson Engineers, Inc.

Printed 12/19/2022

HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Page 2

	Aı	rea (sf)	CN	Description				
*		9,402	76	Gravel, HS	G A			
		8,334	39	>75% Gras	s cover, Go	lood, HSG A		
*		3,158	98	Impervious	Impervious, HSG A			
		2,603	30	Woods, Go	od, HSG A	4		
		23,497		Weighted Average				
		20,339		86.56% Pervious Area				
		3,158		13.44% Imp	pervious Ar	rea		
	Тс	Length	Slope	e Velocity	Capacity	Description		
<u>(n</u>	nin)	(feet)	(ft/ft	(ft/sec)	(cfs)			
	6.0					Direct Entry,		

Summary for Reach 24" PIPE: EXISTING OUTLET

Inflow Area = 160,024 sf, 27.21% Impervious, Inflow Depth = 1.93" for 10 YR event

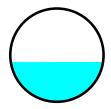
Inflow 7.61 cfs @ 12.09 hrs, Volume= 25,760 cf

Outflow 7.58 cfs @ 12.09 hrs, Volume= 25,760 cf, Atten= 1%, Lag= 0.5 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Max. Velocity= 5.92 fps, Min. Travel Time= 0.7 min Avg. Velocity = 1.89 fps, Avg. Travel Time= 2.1 min

Peak Storage= 301 cf @ 12.09 hrs


Average Depth at Peak Storage= 0.85', Surface Width= 1.98' Bank-Full Depth= 2.00' Flow Area= 3.1 sf, Capacity= 19.99 cfs

24.0" Round Pipe

n= 0.013 Corrugated PE, smooth interior

Length= 235.7' Slope= 0.0078 '/'

Inlet Invert= 47.50', Outlet Invert= 45.66'

Summary for Pond CDS: CDS

Inflow Area = 23,497 sf, 13.44% Impervious, Inflow Depth = 1.38" for 10 YR event

Inflow 0.81 cfs @ 12.09 hrs, Volume= 2.700 cf

0.81 cfs @ 12.09 hrs, Volume= 0.81 cfs @ 12.09 hrs, Volume= 2,700 cf, Atten= 0%, Lag= 0.0 min Outflow

Primary = 2,700 cf

Routed to Reach 24" PIPE: EXISTING OUTLET

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 52.79' @ 12.09 hrs

HydroCAD-PR Outlet Calcs

Type III 24-hr 10 YR Rainfall=4.33"

Prepared by Weston & Sampson Engineers, Inc HydroCAD® 10.20-2d s/n 00455 © 2021 HydroCAD Software Solutions LLC

Printed 12/19/2022 Page 3

Device	Routing	Invert	Outlet Devices
#1	Primary	52.27'	12.0" Round Culvert
			L= 151.5' CPP, projecting, no headwall, Ke= 0.900
			Inlet / Outlet Invert= 52.27' / 51.19' S= 0.0071 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.81 cfs @ 12.09 hrs HW=52.79' TW=48.35' (Dynamic Tailwater) 1=Culvert (Inlet Controls 0.81 cfs @ 1.94 fps)

THE REACH IS REPRESENTATIVE OF THE EXISTING 24"
OUTLET AND EXISTING RIP-RAP APRON WHICH RECEIVES
STORMWATER FLOW FROM PORTIONS OF GREENLAND ROAD
& THE EXISTING STORMWATER INFRASTRUCTURE ON SITE.
UNDER PROPOSED CONDITIONS, PEAK DISCHARGE RATE
DURING THE 10 YEAR STORM EVENT IS 7.58-CFS AT THE PIPE
OUTLET

1.0 Introduction

This Operations and Maintenance plan has been prepared in accordance with the Stormwater Management Policy issued by the New Hampshire Department of Environmental Services (NHDES). Upon completion of construction activities, all structural BMPs shall be inspected per the frequencies listed in this document. All inspection and maintenance activities shall be recorded in the provided maintenance logs, with photographs taken of the BMP at each inspection, and records provided to NHDES upon request.

2.0 Purpose

This Operation and Maintenance Plan (O&M Plan) is intended to provide a mechanism for the consistent inspection and maintenance of each BMP installed on the project site. Included in this O&M Plan is a description of the BMP type and an inspection form for the BMP. The City of Portsmouth Department of Public Works is the owner and operator of the system and is responsible for its upkeep and maintenance. This work will be funded on an annual basis through the owner's operating budget.

In the event the Owner sells the property, it is the Owner's responsibility to transfer this plan as well as the past operation and maintenance records to the new property owner.

3.0 BMP Description and Locations

3.1 Deep Sump Hooded Catch Basins

There are three catch basins on site that will receive stormwater run-off from the proposed development. The deep sump hooded catch basins provide pre-treatment to remove sediment and hydrocarbons from stormwater run-off.

3.2 CDS Hydrodynamic Separator

There is one CDS unit on site that will receive stormwater run-off from the proposed development. The CDS unit is a hydrodynamic separator design to remove sediments, hydrocarbons, and trash from stormwater run-off to improve water quality.

4.0 <u>Inspection, Maintenance Checklist and Schedule</u>

4.1 Snow Storage & Removal

Snow removed from the proposed parking lot and pedestrian areas on site will be placed or disposed of in designated areas. Under no circumstances

shall snow be placed within wetland resource areas. If conditions arise where snow storage areas are at capacity, the Owner shall remove and dispose of snow off-site according to all local, state, and federal regulations.

4.2 Deep Sump Hooded Catch Basins

Deep sump hooded catch basins shall be inspected and/or cleaned at least four times per year, and at the end of foliage and snow removal seasons. Sediment shall be removed at least four times per year or when the depth of sediment is greater than or equal to one half the depth measured from the sump to the invert of the lowest outlet. When cleaning is necessary, use a vacuum truck to clean and remove pollutants. All pollutants shall be disposed of according to all local, state, and federal regulations.

4.3 CDS Hydrodynamic Separator

The CDS unit shall be inspected every three months for the first year, then twice a year at a minimum thereafter. The maintenance cycle shall be determined by the depth of sediment and hydrocarbon buildup witnessed in previous inspections. See the CDS operations and maintenance guide following this O&M plan for additional information regarding maintenance intervals and procedures.

The interior of the CDS unit shall be visually inspected upon opening. Use a sediment probe and oil dipstick to check respected levels of accumulation. When cleaning is necessary, use a vacuum truck to clean and remove pollutants. All pollutants shall be disposed of according to all local, state, and federal regulations.

4.4 Invasive Species Control

Care must be taken to not allow invasive species to take hold. Monitor frequently for invasive species. When invasive species are discovered, remove by hand pulling, mechanical harvesting, hydro-raking, chemical treatment, or biological controls. If invasive species are discovered, the Owner shall also report the discovery to the Exotic Species Program at NHDES. See additional documentation following this O&M plan for guidance.

4.5 Inspections and Record Keeping

- An inspection form should be filled out each, and every time maintenance work is performed.
- Photographs of the BMP shall be taken each time it is inspected.

- A binder should be kept that contains all of the completed inspection forms and any other related materials.
- A review of Operations & Maintenance actions should take place annually such that the Stormwater BMPs are being taken care of in the manner illustrated in this Operations & Maintenance Plan.
- Operations & Maintenance log forms for the last three years, at a minimum, shall be kept.
- The inspection and maintenance schedule may be refined in the future based on the findings and results of this Operations & Maintenance program or policy.

5 Public Safety Features

No public safety features will be necessary.

6 Stormwater Management System Owner/Responsible Party

The stormwater management system shall be owned and maintained by the following party or its future designee/assigns:

City of Portsmouth, Department of Public Works 680 Peverly Hill Road, Portsmouth, NH 03801

This operation and Maintenance Plan will be recorded with the registry of deeds so that current and future owners are aware of the requirement for proper operation and maintenance of the onsite stormwater system

7 General Good Housekeeping Practices

All non-hazardous waste shall be stored in designated trash or recycling containers onsite for periodic collection by the local trash collector. The owner shall have maintenance staff who monitor the site for the accumulation of trash. Any trash that is seen onsite shall immediately be collected and placed into designated trash or recycling containers. The owner's maintenance staff shall make an inspection of the site once per week at minimum.

8 Estimated Operations and Maintenance Budget

The estimated budget for annual operations and maintenance of this stormwater system is \$1,000 per year.

Deep Sump Hooded Catch Basins

Frequency:	The catch basins shall be inspected and/or cleaned at least four times per year, and at the end of foliage and snow seasons.
Structure No.:	
Inspected By:	Date:
Observations:	
Actions Taken:	
Instructions:	Sediment shall be removed at least four times per year or when the depth of sediment is greater than or equal to one half the depth measured from the sump to the invert of the lowest outlet. When cleaning is necessary, use a vacuum truck to clean and remove pollutants. All pollutants shall be disposed of according to all local, state, and federal regulations.

CDS Hydrodynamic Separator

Frequency:	Inspect and clean the CDS unit every three months for the first year and at a minimum, at least twice a year or as necessary thereafter.
Structure No.:	
Inspected By:	Date:
Observations:	
Actions Taken:	
Instructions:	Clean the system whenever the depth of the deposits is equal to 50% of the maximum storage volume. Visually inspect unit via manhole. Use vacuum truck to remove sediment, trash and hydrocarbons. See CDS maintenance guide for additional information. All pollutants shall be disposed of according to all local, state, and federal regulations.

CDS Inspection & Maintenance Log

CDS Model:	Location:

Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

^{1.} The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

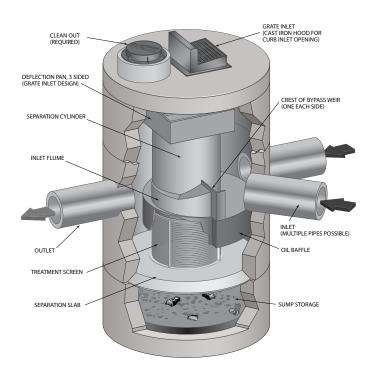
^{2.} For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

DATE	NOTES IN	INITIALS

CDS Guide Operation, Design, Performance and Maintenance

CDS®

Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Inline units can treat up to 6 cfs, and internally bypass flows in excess of 50 cfs (1416 L/s). Available precast or cast-in-place, offline units can treat flows from 1 to 300 cfs (28.3 to 8495 L/s). The pollutant removal capacity of the CDS system has been proven in lab and field testing.


Operation Overview

Stormwater enters the diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed from the flow. All flows up to the system's treatment design capacity enter the separation chamber and are treated.

Swirl concentration and screen deflection force floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During the flow events exceeding the treatment design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants are retained in the separation cylinder.

Design Basics

There are three primary methods of sizing a CDS system. The Water Quality Flow Rate Method determines which model size provides the desired removal efficiency at a given flow rate for a defined particle size. The Rational Rainfall Method™ or the and Probabilistic Method is used when a specific removal efficiency of the net annual sediment load is required.

Typically in the Unites States, CDS systems are designed to achieve an 80% annual solids load reduction based on lab generated performance curves for a gradation with an average particle size (d50) of 125 microns (μ m). For some regulatory environments, CDS systems can also be designed to achieve an 80% annual solids load reduction based on an average particle size (d50) of 75 microns (μ m) or 50 microns (μ m).

Water Quality Flow Rate Method

In some cases, regulations require that a specific treatment rate, often referred to as the water quality design flow (WQQ), be treated. This WQQ represents the peak flow rate from either an event with a specific recurrence interval, e.g. the six-month storm, or a water quality depth, e.g. 1/2-inch (13 mm) of rainfall.

The CDS is designed to treat all flows up to the WQQ. At influent rates higher than the WQQ, the diversion weir will direct most flow exceeding the WQQ around the separation chamber. This allows removal efficiency to remain relatively constant in the separation chamber and eliminates the risk of washout during bypass flows regardless of influent flow rates.

Treatment flow rates are defined as the rate at which the CDS will remove a specific gradation of sediment at a specific removal efficiency. Therefore the treatment flow rate is variable, based on the gradation and removal efficiency specified by the design engineer.

Rational Rainfall Method™

Differences in local climate, topography and scale make every site hydraulically unique. It is important to take these factors into consideration when estimating the long-term performance of any stormwater treatment system. The Rational Rainfall Method combines site-specific information with laboratory generated performance data, and local historical precipitation records to estimate removal efficiencies as accurately as possible.

Short duration rain gauge records from across the United States and Canada were analyzed to determine the percent of the total annual rainfall that fell at a range of intensities. US stations' depths were totaled every 15 minutes, or hourly, and recorded in 0.01-inch increments. Depths were recorded hourly with 1-mm resolution at Canadian stations. One trend was consistent at all sites; the vast majority of precipitation fell at low intensities and high intensity storms contributed relatively little to the total annual depth.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Rainfall Method. Since most sites are relatively small and highly impervious, the Rational Rainfall Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS system are

determined. Performance efficiency curve determined from full scale laboratory tests on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Probabilistic Rational Method

The Probabilistic Rational Method is a sizing program Contech developed to estimate a net annual sediment load reduction for a particular CDS model based on site size, site runoff coefficient, regional rainfall intensity distribution, and anticipated pollutant characteristics.

The Probabilistic Method is an extension of the Rational Method used to estimate peak discharge rates generated by storm events of varying statistical return frequencies (e.g. 2-year storm event). Under the Rational Method, an adjustment factor is used to adjust the runoff coefficient estimated for the 10-year event, correlating a known hydrologic parameter with the target storm event. The rainfall intensities vary depending on the return frequency of the storm event under consideration. In general, these two frequency dependent parameters (rainfall intensity and runoff coefficient) increase as the return frequency increases while the drainage area remains constant.

These intensities, along with the total drainage area and runoff coefficient for each specific site, are translated into flow rates using the Rational Method. Since most sites are relatively small and highly impervious, the Rational Method is appropriate. Based on the runoff flow rates calculated for each intensity, operating rates within a proposed CDS are determined. Performance efficiency curve on defined sediment PSDs is applied to calculate solids removal efficiency. The relative removal efficiency at each operating rate is added to produce a net annual pollutant removal efficiency estimate.

Treatment Flow Rate

The inlet throat area is sized to ensure that the WQQ passes through the separation chamber at a water surface elevation equal to the crest of the diversion weir. The diversion weir bypasses excessive flows around the separation chamber, thus preventing re-suspension or re-entrainment of previously captured particles.

Hydraulic Capacity

The hydraulic capacity of a CDS system is determined by the length and height of the diversion weir and by the maximum allowable head in the system. Typical configurations allow hydraulic capacities of up to ten times the treatment flow rate. The crest of the diversion weir may be lowered and the inlet throat may be widened to increase the capacity of the system at a given water surface elevation. The unit is designed to meet project specific hydraulic requirements.

Performance

Full-Scale Laboratory Test Results

A full-scale CDS system (Model CDS2020-5B) was tested at the facility of University of Florida, Gainesville, FL. This CDS unit was evaluated under controlled laboratory conditions of influent flow rate and addition of sediment.

Two different gradations of silica sand material (UF Sediment & OK-110) were used in the CDS performance evaluation. The particle size distributions (PSDs) of the test materials were analyzed using standard method "Gradation ASTM D-422 "Standard Test Method for Particle-Size Analysis of Soils" by a certified laboratory.

UF Sediment is a mixture of three different products produced by the U.S. Silica Company: "Sil-Co-Sil 106", "#1 DRY" and "20/40 Oil Frac". Particle size distribution analysis shows that the UF Sediment has a very fine gradation (d50 = 20 to 30 μ m) covering a wide size range (Coefficient of Uniformity, C averaged at 10.6). In comparison with the hypothetical TSS gradation specified in the NJDEP (New Jersey Department of Environmental Protection) and NJCAT (New Jersey Corporation for Advanced Technology) protocol for lab testing, the UF Sediment covers a similar range of particle size but with a finer d50 (d50 for NJDEP is approximately 50 μ m) (NJDEP, 2003).

The OK-110 silica sand is a commercial product of U.S. Silica Sand. The particle size distribution analysis of this material, also included in Figure 1, shows that 99.9% of the OK-110 sand is finer than 250 microns, with a mean particle size (d50) of 106 microns. The PSDs for the test material are shown in Figure 1.

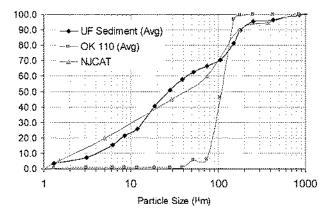


Figure 1. Particle size distributions

Tests were conducted to quantify the performance of a specific CDS unit (1.1 cfs (31.3-L/s) design capacity) at various flow rates, ranging from 1% up to 125% of the treatment design capacity of the unit, using the 2400 micron screen. All tests were conducted with controlled influent concentrations of approximately 200 mg/L. Effluent samples were taken at equal time intervals across the entire duration of each test run. These samples were then processed with a Dekaport Cone sample splitter to obtain representative sub-samples for Suspended Sediment Concentration (SSC) testing using ASTM D3977-97 "Standard Test Methods for Determining Sediment Concentration in Water Samples", and particle size distribution analysis.

Results and Modeling

Based on the data from the University of Florida, a performance model was developed for the CDS system. A regression analysis was used to develop a fitting curve representative of the scattered data points at various design flow rates. This model, which demonstrated good agreement with the laboratory data, can then be used to predict CDS system performance with respect

to SSC removal for any particle size gradation, assuming the particles are inorganic sandy-silt. Figure 2 shows CDS predictive performance for two typical particle size gradations (NJCAT gradation and OK-110 sand) as a function of operating rate.

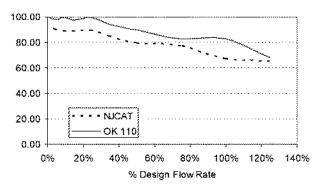


Figure 2. CDS stormwater treatment predictive performance for various particle gradations as a function of operating rate.

Many regulatory jurisdictions set a performance standard for hydrodynamic devices by stating that the devices shall be capable of achieving an 80% removal efficiency for particles having a mean particle size (d50) of 125 microns (e.g. Washington State Department of Ecology — WASDOE - 2008). The model can be used to calculate the expected performance of such a PSD (shown in Figure 3). The model indicates (Figure 4) that the CDS system with 2400 micron screen achieves approximately 80% removal at the design (100%) flow rate, for this particle size distribution (d50 = 125 μ m).

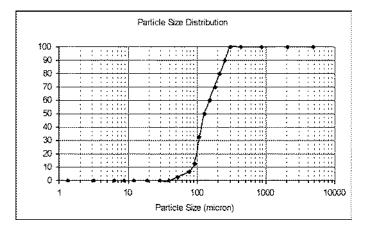


Figure 3. WASDOE PSD

CDS Unit Performance for Ecology PSD d_{st}=125 um



Figure 4. Modeled performance for WASDOE PSD.


Maintenance

The CDS system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects pollutants will depend more heavily on site activities than the size of the unit. For example, unstable soils or heavy winter sanding will cause the grit chamber to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

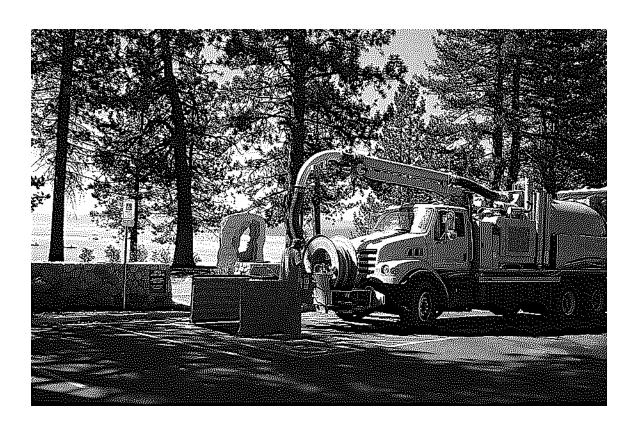
Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (e.g. spring and fall) however more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment washdown areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified

during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided.

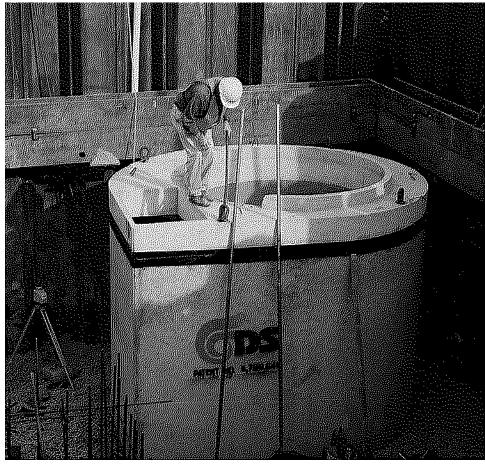
Access to the CDS unit is typically achieved through two manhole access covers. One opening allows for inspection and cleanout of the separation chamber (cylinder and screen) and isolated sump. The other allows for inspection and cleanout of sediment captured and retained outside the screen. For deep units, a single manhole access point would allows both sump cleanout and access outside the screen.


The CDS system should be cleaned when the level of sediment has reached 75% of capacity in the isolated sump or when an appreciable level of hydrocarbons and trash has accumulated. If absorbent material is used, it should be replaced when significant discoloration has occurred. Performance will not be impacted until 100% of the sump capacity is exceeded however it is recommended that the system be cleaned prior to that for easier removal of sediment. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the as-built drawing for the unit to determine weather the height of the sediment pile off the bottom of the sump floor exceeds 75% of the total height of isolated sump.

Cleaning

Cleaning of a CDS systems should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole covers and insert the vacuum hose into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The area outside the screen should also be cleaned out if pollutant build-up exists in this area.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. The screen should be cleaned to ensure it is free of trash and debris.


Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and also to ensure that proper safety precautions have been followed. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the CDS system should be done in accordance with local regulations. In many jurisdictions, disposal of the sediments may be handled in the same manner as the disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal.

CDS Model	Dian	Diameter		Water Surface ediment Pile	Sediment Storage Capacity		
	ft	m	ft	m	y³	m³	
CDS1515	3	0.9	3.0	0.9	0.5	0.4	
CDS2015	4	1.2	3.0	0.9	0.9	0.7	
CDS2015	5	1.5	3.0	0.9	1.3	1.0	
CDS2020	5	1.5	3.5	1.1	1.3	1.0	
CDS2025	5	1.5	4.0	1.2	1.3	1.0	
CDS3020	6	1.8	4.0	1.2	2.1	1.6	
CDS3025	6	1.8	4.0	1.2	2.1	1.6	
CDS3030	6	1.8	4.6	1.4	2.1	1.6	
CDS3035	6	1.8	5.0	1.5	2.1	1.6	
CDS4030	8	2.4	4.6	1.4	5.6	4.3	
CDS4040	8	2.4	5.7	1.7	5.6	4.3	
CDS4045	8	2.4	6.2	1.9	5.6	4.3	
CDS5640	10	3.0	6.3	1.9	8.7	6.7	
CDS5653	10	3.0	7.7	2.3	8.7	6.7	
CDS5668	10	3.0	9.3	2.8	8.7	6.7	
CDS5678	10	3.0	10.3	3.1	8.7	6.7	

Table 1: CDS Maintenance Indicators and Sediment Storage Capacities

Note: To avoid underestimating the volume of sediment in the chamber, carefully lower the measuring device to the top of the sediment pile. Finer silty particles at the top of the pile may be more difficult to feel with a measuring stick. These finer particles typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile.

CDS Inspection & Maintenance Log

CDS Model:	Location:

Date	Water depth to sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments

^{1.} The water depth to sediment is determined by taking two measurements with a stadia rod: one measurement from the manhole opening to the top of the sediment pile and the other from the manhole opening to the water surface. If the difference between these measurements is less than the values listed in table 1 the system should be cleaned out. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

^{2.} For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our engineers.

©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, earth stabilization and stormwater treatment products. For information on other Contech division offerings, visit www.ContechES.com or call 800.338.1122

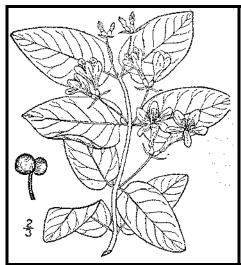
NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266; related foreign patents or other patents pending.

CONTROL OF INVASIVE PLANTS

During maintenance activities, check for the presence of invasive plants and remove in a safe manner as described on the following pages. They should be controlled as described on the following pages.

Background:


Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control, or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials, or fresh produce. Some exotic plants become invasive and cause harm by:

- becoming weedy and overgrown;
- killing established shade trees;
- obstructing pipes and drainage systems;
- forming dense beds in water;
- lowering water levels in lakes, streams, and wetlands;
- destroying natural communities;
- promoting erosion on stream banks and hillsides; and
- resisting control except by hazardous chemical.

University of New Hampshire Methods for Disposing COOPERATIVE EXTENSION

Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

Tatarian honeysuckle Lonicera tatarica

USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit www.nhinvasives.org or contact your UNH Cooperative Extension office.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)

How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Japanese knotweed
Polygonum cuspidatum
USDA-NRCS PLANTS Database /
Britton, N.L., and A. Brown. 1913. An
illustrated flora of the northern United
States, Canada and the British
Possessions Vol. 1: 676

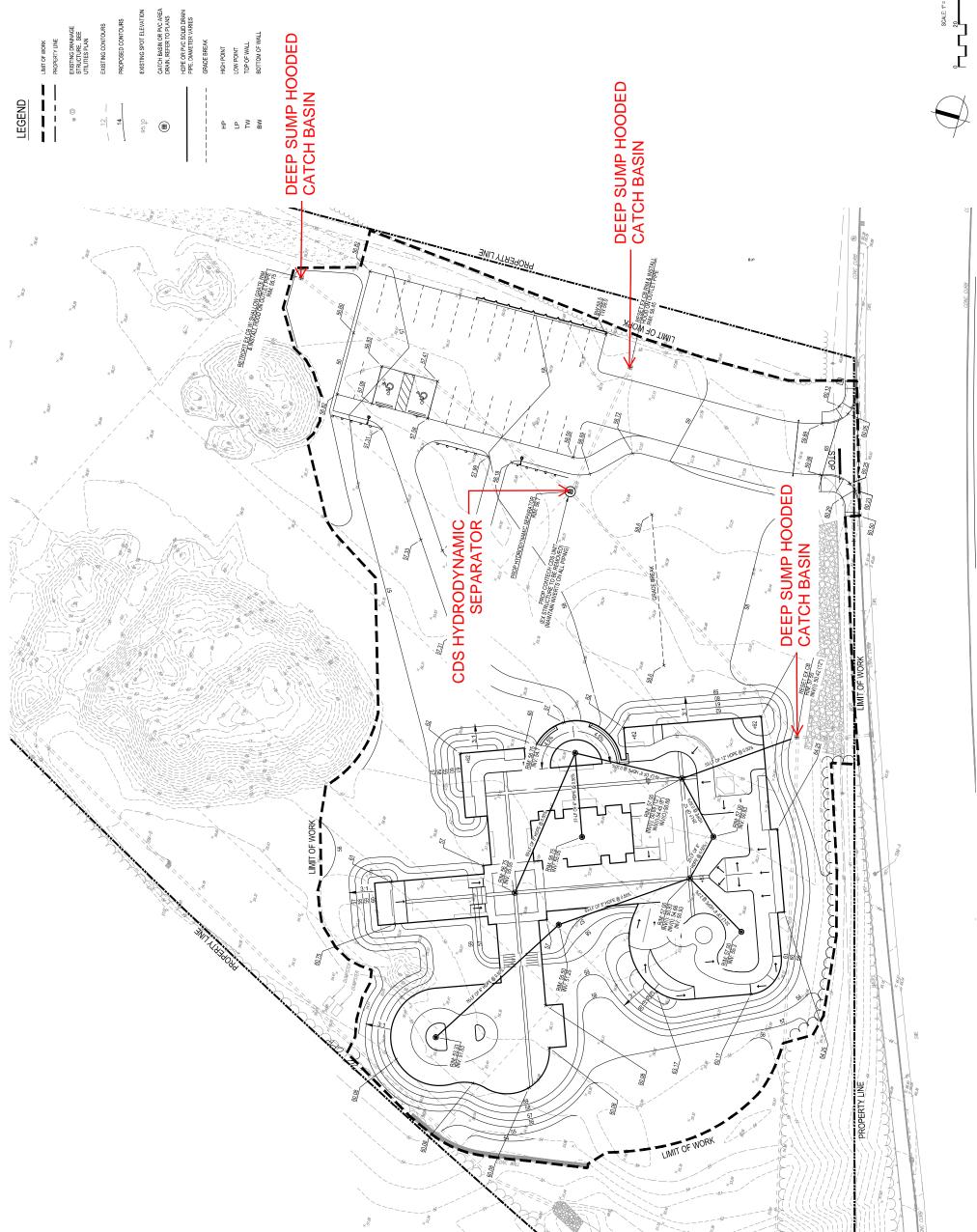
Tarping and Drying: Pile material on a sheet of plastic and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well-rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.


Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)	Fruit and Seeds	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.

Non-Woody Plants	Method of Reproducing	Methods of Disposal
garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)	Fruits and Seeds	Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material. During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
common reed (Phragmites australis) Japanese knotweed (Polygonum cuspidatum) Bohemian knotweed (Polygonum x bohemicum)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	 Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Ken Gendron Weston & Sampson Engineers, Inc. 427 Main St Worcester, MA 01608

RE: RTE 33 Portsmouth (N/A)

ESS Laboratory Work Order Number: 1610112

This signed Certificate of Analysis is our approved release of your analytical results. These results are only representative of sample aliquots received at the laboratory. ESS Laboratory expects its clients to follow all regulatory sampling guidelines. Beginning with this page, the entire report has been paginated. This report should not be copied except in full without the approval of the laboratory. Samples will be disposed of thirty days after the final report has been delivered. If you have any questions or concerns, please feel free to call our Customer Service Department.

REVIEWED

By ESS Laboratory at 4:02 pm, Oct 14, 2016

Laurel Stoddard Laboratory Director

Analytical Summary

The project as described above has been analyzed in accordance with the ESS Quality Assurance Plan. This plan utilizes the following methodologies: US EPA SW-846, US EPA Methods for Chemical Analysis of Water and Wastes per 40 CFR Part 136, APHA Standard Methods for the Examination of Water and Wastewater, American Society for Testing and Materials (ASTM), and other recognized methodologies. The analyses with these noted observations are in conformance to the Quality Assurance Plan. In chromatographic analysis, manual integration is frequently used instead of automated integration because it produces more accurate results.

The test results present in this report are in compliance with NELAC Standards, A2LA and/or client Quality Assurance Project Plans (QAPP). The laboratory has reviewed the following: Sample Preservations, Hold Times, Initial Calibrations, Continuing Calibrations, Method Blanks, Blank Spikes, Blank Spike Duplicates, Duplicates, Matrix Spikes, Matrix Spike Duplicates, Surrogates and Internal Standards. Any results which were found to be outside of the recommended ranges stated in our SOPs will be noted in the Project Narrative.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

SAMPLE RECEIPT

The following samples were received on October 06, 2016 for the analyses specified on the enclosed Chain of Custody Record.

Low Level VOA vials were frozen by Weston and Sampson on day of sampling.

<u>Lab Number</u> 1610112-01	<u>Sample Name</u> B-1 S-1	<u>Matrix</u> Soil	<u>Analysis</u> 6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
1010112-01	D-1 3-1	3011	8270D
1610112-02	B-2 S-2	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-03	B-3 S-4	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-04	B-4 S-3	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-05	B-5 S-4	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-06	B-6 S-3	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
	a ·	~	8270D
1610112-07	B-7 S-4	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
1610112 00	D 0 C 2	g. 11	8270D
1610112-08	B-8 S-2	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B, 8260B Low, 8270D
1610112-09	B-9 S-3	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
1010112-09	D-9 S-3	5011	8270D
1610112-10	B-10 S-3	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
1010112 10	B 10 5 5	5011	8270D
1610112-11	B-11 S-2	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-12	B-12 S-1	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-13	B-13 S-3	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-14	B-14 S-4	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-15	B-15 S-3	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D
1610112-16	B-16 S-2	Soil	6010C, 6020A, 7471B, 8082A, 8100M, 8260B Low,
			8270D

Quality

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

80-120%)

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

PROJECT NARRATIVE

5025/02/0D X/ 1 /*	
1610112-08	le Organic Compounds / Low Level <u>Reported above the quantitation limit; Estimated value (E).</u>
1010112-00	4-Isopropyltoluene
CJ61137-BS1	Blank Spike recovery is above upper control limit (B+).
CJ01157-B51	Methylene Chloride (131% @ 70-130%)
	Wellytelle Chloride (15170 to 70-15070)
8270D Semi-Volati	ile Organic Compounds
1610112-01	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
	Perylene-d12 (29% @ 50-200%)
1610112-02	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
	Perylene-d12 (45% @ 50-200%)
1610112-03	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
	Perylene-d12 (48% @ 50-200%)
1610112-03	Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
	2,4,6-Tribromophenol (5% @ 30-130%), 2-Fluorophenol (19% @ 30-130%)
1610112-04	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
	Perylene-d12 (31% @ 50-200%)
1610112-09	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
	Perylene-d12 (40% @ 50-200%)
1610112-13	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
	Perylene-d12 (49% @ 50-200%)
1610112-15	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
	Perylene-d12 (49% @ 50-200%)
CJ61112-BS1	Blank Spike recovery is below lower control limit (B-).
	Aniline (39% @ 40-140%), Benzidine (% @ 40-140%), Hexachlorocyclopentadiene (11% @ 40-140%)
CJ61112-BSD1	Blank Spike recovery is below lower control limit (B-).
	Benzidine (% @ 40-140%), Hexachlorocyclopentadiene (11% @ 40-140%)
CJ61112-BSD1	Relative percent difference for duplicate is outside of criteria (D+).
	Benzoic Acid (36% @ 30%)
CZJ0067-CCV1	Calibration required quadratic regression (Q).
	2,4-Dinitrophenol (106% @ 80-120%)
CZJ0067-CCV1	Continuing Calibration %Diff/Drift is above control limit (CD+).
	Benzidine (21% @ %)
CZJ0094-CCV1	Calibration required quadratic regression (Q).
	2,4-Dinitrophenol (95% @ 80-120%)
CZJ0113-CCV1	Calibration required quadratic regression (Q).
	2,4-Dinitrophenol (84% @ 80-120%)
CZJ0113-CCV1	Continuing Calibration %Diff/Drift is below control limit (CD-).
	4-Nitrophenol (36% @ 20%), Benzo(g,h,i)perylene (21% @ 20%), Pentachlorophenol (21% @ 20%)
CZJ0125-CCV1	Calibration required quadratic regression (Q).
	2,4-Dinitrophenol (84% @ 80-120%), Benzoic Acid (77% @ 80-120%), Pentachlorophenol (86% @

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

ESS Laboratory Work Order: 1610112 Client Project ID: RTE 33 Portsmouth

CZJ0125-CCV1 Continuing Calibration %Diff/Drift is below control limit (CD-).

Benzoic Acid (23% @ 20%)

Calibration required quadratic regression (Q). CZJ0132-CCV1

2,4-Dinitrophenol (74% @ 80-120%)

CZJ0132-CCV1 Continuing Calibration %Diff/Drift is below control limit (CD-).

> 2,4-Dinitrophenol (26% @ 20%), 4,6-Dinitro-2-Methylphenol (22% @ 20%), 4-Nitroaniline (24% @ 20%), 4-Nitrophenol (45% @ 20%), Benzoic Acid (31% @ 20%), Pentachlorophenol (24% @ 20%)

CZJ0162-CCV1 Calibration required quadratic regression (Q).

2,4-Dinitrophenol (84% @ 80-120%), Pentachlorophenol (88% @ 80-120%)

No other observations noted.

End of Project Narrative.

DATA USABILITY LINKS

Definitions of Quality Control Parameters

Semivolatile Organics Internal Standard Information

Semivolatile Organics Surrogate Information

Volatile Organics Internal Standard Information

Volatile Organics Surrogate Information

EPH and VPH Alkane Lists

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

CURRENT SW-846 METHODOLOGY VERSIONS

Analytical Methods

1010A - Flashpoint

6010C - ICP

6020A - ICP MS

7010 - Graphite Furnace

7196A - Hexavalent Chromium

7470A - Aqueous Mercury

7471B - Solid Mercury

8011 - EDB/DBCP/TCP

8015C - GRO/DRO

8081B - Pesticides

8082A - PCB

8100M - TPH

8151A - Herbicides

8260B - VOA

8270D - SVOA

8270D SIM - SVOA Low Level

9014 - Cyanide

9038 - Sulfate

9040C - Aqueous pH

9045D - Solid pH (Corrosivity)

9050A - Specific Conductance

9056A - Anions (IC)

9060A - TOC

9095B - Paint Filter

MADEP 04-1.1 - EPH / VPH

Prep Methods

3005A - Aqueous ICP Digestion

3020A - Aqueous Graphite Furnace / ICP MS Digestion

3050B - Solid ICP / Graphite Furnace / ICP MS Digestion

3060A - Solid Hexavalent Chromium Digestion

3510C - Separatory Funnel Extraction

3520C - Liquid / Liquid Extraction

3540C - Manual Soxhlet Extraction

3541 - Automated Soxhlet Extraction

3546 - Microwave Extraction

3580A - Waste Dilution

5030B - Aqueous Purge and Trap

5030C - Aqueous Purge and Trap

5035 - Solid Purge and Trap

SW846 Reactivity Methods 7.3.3.2 (Reactive Cyanide) and 7.3.4.1 (Reactive Sulfide) have been withdrawn by EPA. These methods are reported per client request and are not NELAP accredited.

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90

Extraction Method: 3050B

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry

Total Metals

Analyte Arsenic	Results (MRL) 8.83 (2.21)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:00	<u>I/V</u> 2.52	<u>F/V</u> 100	Batch CJ61103
Barium	41.5 (2.21)		6010C		1	KJK	10/12/16 20:00	2.52	100	CJ61103
Cadmium	ND (0.44)		6020A		20	NAR	10/13/16 14:57	2.52	100	CJ61103
Chromium	39.3 (0.88)		6010C		1	KJK	10/12/16 20:00	2.52	100	CJ61103
Lead	24.5 (4.42)		6010C		1	KJK	10/12/16 20:00	2.52	100	CJ61103
Mercury	0.058 (0.036)		7471B		1	BJV	10/11/16 12:55	0.62	40	CJ61104
Selenium	ND (0.44)		6020A		20	NAR	10/13/16 14:57	2.52	100	CJ61103
Silver	ND (0.44)		6010C		1	KJK	10/12/16 20:00	2.52	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 8.9 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0031)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 17:24	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0028)		8260B Low		0	10/07/16 17:24		[CALC]
1,4-Dichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0625)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
2-Butanone	ND (0.0313)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
2-Hexanone	ND (0.0313)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
4-Isopropyltoluene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0313)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Acetone	ND (0.0313)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Acrylonitrile	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Allyl Chloride	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 8.9 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Benzene	Results (MRL) ND (0.0031)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 17:24	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Bromochloromethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Bromoform	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Bromomethane	ND (0.0063)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Chlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Chloroethane	ND (0.0063)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Chloroform	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Chloromethane	ND (0.0063)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Dibromomethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0063)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Diethyl Ether	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Ethylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Methylene Chloride	ND (0.0156)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Naphthalene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Styrene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0313)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 8.9 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Tetrahydrofuran	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Toluene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Trichloroethene	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0031)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0063)		8260B Low		1	10/07/16 17:24	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0056)		8260B Low		1	10/07/16 17:24		[CALC]
	9	6Recovery	Qualifier	Limits				

	MCCOVCIY	Quanner	LITTICS
Surrogate: 1,2-Dichloroethane-d4	118 %		70-130
Surrogate: 4-Bromofluorobenzene	102 %		70-130
Surrogate: Dibromofluoromethane	107 %		70-130
Surrogate: Toluene-d8	105 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 20.4 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1221	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1232	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1242	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1248	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1254	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1260	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1262	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
Aroclor 1268	ND (0.0545)		8082A		1	10/11/16 15:01		CJ60604
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		64 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		74 %		30-150				
Surrogate: Tetrachloro-m-xylene		72 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		77 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 20.7 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

<u>Analyte</u> Total Petroleum Hydrocarbons	Results (MRL) 158 (40.3)	<u>Method</u> 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 10/07/16 15:39	Sequence CZJ0081	Batch CJ60608
	%Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl	73 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.359)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/08/16 3:30	Sequence CZJ0094	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
1,2-Dichlorobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
1,3-Dichlorobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
1,4-Dichlorobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,4,5-Trichlorophenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,4,6-Trichlorophenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,4-Dichlorophenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,4-Dimethylphenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,4-Dinitrophenol	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,4-Dinitrotoluene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2,6-Dinitrotoluene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2-Chloronaphthalene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2-Chlorophenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2-Methylnaphthalene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2-Methylphenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2-Nitroaniline	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
2-Nitrophenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
3,3'-Dichlorobenzidine	ND (0.718)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
3+4-Methylphenol	ND (0.718)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
3-Nitroaniline	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
4-Bromophenyl-phenylether	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
4-Chloro-3-Methylphenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
4-Chloroaniline	ND (0.718)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
4-Nitroaniline	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
4-Nitrophenol	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Acenaphthene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Acenaphthylene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.718)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/08/16 3:30	Sequence CZJ0094	Batch CJ60609
Aniline	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Anthracene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Azobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzidine	ND (0.718)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzo(a)anthracene	0.548 (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzo(a)pyrene	0.616 (0.180)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzo(b)fluoranthene	0.768 (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzo(g,h,i)perylene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzo(k)fluoranthene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzoic Acid	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Benzyl Alcohol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
bis(2-Chloroethoxy)methane	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
bis(2-Chloroethyl)ether	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Butylbenzylphthalate	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Carbazole	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Chrysene	0.519 (0.180)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Dibenzo(a,h)Anthracene	ND (0.180)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Dibenzofuran	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Diethylphthalate	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Dimethylphthalate	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Di-n-butylphthalate	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Di-n-octylphthalate	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Fluoranthene	1.34 (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Fluorene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Hexachlorobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Hexachlorobutadiene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Hexachlorocyclopentadiene	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Hexachloroethane	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-1 S-1 Date Sampled: 09/27/16 12:00

Percent Solids: 90 Initial Volume: 15.5 Final Volume: 0.5

Surrogate: Nitrobenzene-d5

Surrogate: p-Terphenyl-d14

Surrogate: Phenol-d6

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-01

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Isophorone	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Naphthalene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Nitrobenzene	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
N-Nitrosodimethylamine	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
N-nitrosodiphenylamine	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Pentachlorophenol	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Phenanthrene	0.807 (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Phenol	ND (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Pyrene	1.14 (0.359)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
Pyridine	ND (1.80)		8270D		1	10/08/16 3:30	CZJ0094	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		51 %		30-130				
Surrogate: 2,4,6-Tribromophenol		75 %		30-130				
Surrogate: 2-Chlorophenol-d4		55 %		30-130				
Surrogate: 2-Fluorobiphenyl		57 %		30-130				
Surrogate: 2-Fluorophenol		52 %		30-130				

52 %

56 %

87 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

30-130

30-130

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 8.66 (1.88)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:03	<u>I/V</u> 3.18	<u>F/V</u>	Batch CJ61103
Barium	58.3 (1.88)		6010C		1	KJK	10/12/16 20:03	3.18	100	CJ61103
Cadmium	ND (0.38)		6020A		20	NAR	10/13/16 15:15	3.18	100	CJ61103
Chromium	26.9 (0.75)		6010C		1	KJK	10/12/16 20:03	3.18	100	CJ61103
Lead	132 (3.76)		6010C		1	KJK	10/12/16 20:03	3.18	100	CJ61103
Mercury	2.12 (0.394)		7471B		10	BJV	10/11/16 15:39	0.6	40	CJ61104
Selenium	ND (0.38)		6020A		20	NAR	10/13/16 15:15	3.18	100	CJ61103
Silver	ND (0.38)		6010C		1	KJK	10/12/16 20:03	3.18	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 8.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0036)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 17:50	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0030)		8260B Low		0	10/07/16 17:50		[CALC]
1,4-Dichlorobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0711)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
2-Butanone	ND (0.0355)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
2-Hexanone	ND (0.0355)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
4-Isopropyltoluene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0355)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Acetone	0.166 (0.0355)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Acrylonitrile	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Allyl Chloride	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 8.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Benzene	Results (MRL) ND (0.0036)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 17:50	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Bromochloromethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Bromoform	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Bromomethane	ND (0.0071)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Chlorobenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Chloroethane	ND (0.0071)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Chloroform	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Chloromethane	ND (0.0071)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Dibromomethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0071)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Diethyl Ether	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Ethylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Methylene Chloride	ND (0.0178)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Naphthalene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Styrene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0355)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 8.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Tetrachloroethene	Results (MRL) ND (0.0036)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 17:50	Sequence CZJ0093	Batch CJ60724
Tetrahydrofuran	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Toluene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Trichloroethene	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0036)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0071)		8260B Low		1	10/07/16 17:50	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0060)		8260B Low		1	10/07/16 17:50		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	118 %		70-130
Surrogate: 4-Bromofluorobenzene	99 %		70-130
Surrogate: Dibromofluoromethane	108 %		70-130
Surrogate: Toluene-d8	108 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 19.4 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1221	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1232	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1242	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1248	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1254	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1260	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1262	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
Aroclor 1268	ND (0.0616)		8082A		1	10/11/16 16:23		CJ60604
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		61 %		30-150				

Surrogate: Decachlorobiphenyl	61 %	30-150
Surrogate: Decachlorobiphenyl [2C]	67 %	30-150
Surrogate: Tetrachloro-m-xylene	61 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	64 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 20.5 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 73.5 (43.7)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 16:19	Sequence CZJ0081	Batch CJ60608
	%	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		<i>75</i> %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability • Quality

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.385)	<u>MDL</u>	Method 8270D	<u>Limit</u>	$\frac{\mathbf{DF}}{1}$	<u>Analyzed</u> 10/08/16 4:07	Sequence CZJ0094	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
1,2-Dichlorobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
1,3-Dichlorobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
1,4-Dichlorobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,4,5-Trichlorophenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,4,6-Trichlorophenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,4-Dichlorophenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,4-Dimethylphenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,4-Dinitrophenol	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,4-Dinitrotoluene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2,6-Dinitrotoluene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2-Chloronaphthalene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2-Chlorophenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2-Methylnaphthalene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2-Methylphenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2-Nitroaniline	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
2-Nitrophenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
3,3'-Dichlorobenzidine	ND (0.771)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
3+4-Methylphenol	ND (0.771)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
3-Nitroaniline	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
4-Bromophenyl-phenylether	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
4-Chloro-3-Methylphenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
4-Chloroaniline	ND (0.771)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
4-Nitroaniline	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
4-Nitrophenol	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Acenaphthene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Acenaphthylene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.771)	MDL	Method 8270D	Limit	<u>DF</u>	Analyzed 10/08/16 4:07	Sequence CZJ0094	Batch CJ60609
Aniline	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Anthracene	0.415 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Azobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzidine	ND (0.771)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzo(a)anthracene	1.44 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzo(a)pyrene	1.24 (0.193)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzo(b)fluoranthene	2.24 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzo(g,h,i)perylene	0.608 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzo(k)fluoranthene	0.921 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzoic Acid	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Benzyl Alcohol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
bis(2-Chloroethoxy)methane	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
bis(2-Chloroethyl)ether	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Butylbenzylphthalate	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Carbazole	0.445 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Chrysene	1.62 (0.193)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Dibenzo(a,h)Anthracene	0.286 (0.193)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Dibenzofuran	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Diethylphthalate	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Dimethylphthalate	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Di-n-butylphthalate	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Di-n-octylphthalate	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Fluoranthene	4.58 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Fluorene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Hexachlorobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Hexachlorobutadiene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Hexachlorocyclopentadiene	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Hexachloroethane	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Indeno(1,2,3-cd)Pyrene	0.567 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-2 S-2 Date Sampled: 09/28/16 08:10

Percent Solids: 84 Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-02

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Naphthalene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Nitrobenzene	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
N-Nitrosodimethylamine	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
N-nitrosodiphenylamine	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Pentachlorophenol	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Phenanthrene	1.73 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Phenol	ND (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Pyrene	3.36 (0.385)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
Pyridine	ND (1.93)		8270D		1	10/08/16 4:07	CZJ0094	CJ60609
	9/	6Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4	76	75 %	gaaioi	30-130				

Surrogate: 1,2-Dichlorobenzene-d4	<i>75 %</i>	30-130
Surrogate: 2,4,6-Tribromophenol	89 %	30-130
Surrogate: 2-Chlorophenol-d4	81 %	30-130
Surrogate: 2-Fluorobiphenyl	<i>75 %</i>	30-130
Surrogate: 2-Fluorophenol	76 %	30-130
Surrogate: Nitrobenzene-d5	74 %	30-130
Surrogate: Phenol-d6	82 %	30-130
Surrogate: p-Terphenyl-d14	110 %	30-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91

Extraction Method: 3050B

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry

Total Metals

Analyte Arsenic	Results (MRL) 10.4 (2.64)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:20	<u>I/V</u> 2.08	<u>F/V</u>	Batch CJ61103
Barium	23.8 (2.64)		6010C		1	KJK	10/12/16 20:20	2.08	100	CJ61103
Cadmium	ND (0.53)		6020A		20	NAR	10/13/16 15:20	2.08	100	CJ61103
Chromium	18.7 (1.06)		6010C		1	KJK	10/12/16 20:20	2.08	100	CJ61103
Lead	14.6 (5.28)		6010C		1	KJK	10/12/16 20:20	2.08	100	CJ61103
Mercury	0.048 (0.034)		7471B		1	BJV	10/11/16 12:59	0.64	40	CJ61104
Selenium	ND (0.53)		6020A		20	NAR	10/13/16 15:20	2.08	100	CJ61103
Silver	ND (0.53)		6010C		1	KJK	10/12/16 20:20	2.08	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 7.2 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0038)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 18:16	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0035)		8260B Low		0	10/07/16 18:16		[CALC]
1,4-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0762)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
2-Butanone	ND (0.0381)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
2-Hexanone	ND (0.0381)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
4-Isopropyltoluene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0381)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Acetone	0.0826 (0.0381)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Acrylonitrile	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Allyl Chloride	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 7.2 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0038)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 18:16	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Bromochloromethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Bromoform	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Bromomethane	ND (0.0076)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Chlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Chloroethane	ND (0.0076)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Chloroform	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Chloromethane	ND (0.0076)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Dibromomethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0076)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Diethyl Ether	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Ethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Methylene Chloride	ND (0.0191)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Naphthalene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Styrene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0381)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 7.2 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Tetrahydrofuran	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Toluene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Trichloroethene	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0038)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0076)		8260B Low		1	10/07/16 18:16	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0069)		8260B Low		1	10/07/16 18:16		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	118 %		70-130
Surrogate: 4-Bromofluorobenzene	103 %		70-130
Surrogate: Dibromofluoromethane	76 %		70-130
Surrogate: Toluene-d8	106 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 19.2 Final Volume: 10

Surrogate: Tetrachloro-m-xylene

Surrogate: Tetrachloro-m-xylene [2C]

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1221	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1232	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1242	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1248	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1254	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1260	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1262	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
Aroclor 1268	ND (0.0572)		8082A		1	10/11/16 16:41		CJ60604
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		70 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		<i>78 %</i>		30-150				

77 %

79 %

30-150

30-150

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 19.8 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) M 65.8 (41.6)	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 16:58	Sequence CZJ0081	Batch CJ60608
	%Recove	ery Qualifier	Limits				
Surrogate: O-Ternhenyl	70.0		40 140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 15.3 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.358)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/08/16 4:45	Sequence CZJ0094	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
1,2-Dichlorobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
1,3-Dichlorobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
1,4-Dichlorobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,4,5-Trichlorophenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,4,6-Trichlorophenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,4-Dichlorophenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,4-Dimethylphenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,4-Dinitrophenol	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,4-Dinitrotoluene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2,6-Dinitrotoluene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2-Chloronaphthalene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2-Chlorophenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2-Methylnaphthalene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2-Methylphenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2-Nitroaniline	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
2-Nitrophenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
3,3'-Dichlorobenzidine	ND (0.718)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
3+4-Methylphenol	ND (0.718)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
3-Nitroaniline	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
4-Bromophenyl-phenylether	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
4-Chloro-3-Methylphenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
4-Chloroaniline	ND (0.718)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
4-Nitroaniline	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
4-Nitrophenol	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Acenaphthene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Acenaphthylene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 15.3 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.718)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/08/16 4:45	Sequence CZJ0094	Batch CJ60609
Aniline	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Anthracene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Azobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzidine	ND (0.718)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzo(a)anthracene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzo(a)pyrene	ND (0.180)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzo(b)fluoranthene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzo(g,h,i)perylene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzo(k)fluoranthene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzoic Acid	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Benzyl Alcohol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
bis(2-Chloroethoxy)methane	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
bis(2-Chloroethyl)ether	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Butylbenzylphthalate	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Carbazole	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Chrysene	ND (0.180)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Dibenzo(a,h)Anthracene	ND (0.180)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Dibenzofuran	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Diethylphthalate	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Dimethylphthalate	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Di-n-butylphthalate	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Di-n-octylphthalate	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Fluoranthene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Fluorene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Hexachlorobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Hexachlorobutadiene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Hexachlorocyclopentadiene	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Hexachloroethane	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-3 S-4 Date Sampled: 09/27/16 13:25

Percent Solids: 91 Initial Volume: 15.3 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-03

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Naphthalene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Nitrobenzene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
N-Nitrosodimethylamine	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
N-nitrosodiphenylamine	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Pentachlorophenol	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Phenanthrene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Phenol	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Pyrene	ND (0.358)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
Pyridine	ND (1.80)		8270D		1	10/08/16 4:45	CZJ0094	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		68 %		30-130				
Surrogate: 2,4,6-Tribromophenol		5 %	SM	30-130				
Surrogate: 2-Chlorophenol-d4		34 %		30-130				
Surrogate: 2-Fluorobiphenyl		70 %		30-130				
Surrogate: 2-Fluorophenol		19 %	SM	30-130				
Surrogate: Nitrobenzene-d5		68 %		30-130				
Surrogate: Phenol-d6		49 %		30-130				
Surrogate: p-Terphenyl-d14		117 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3 Date Sampled: 09/27/16 15:25

Percent Solids: 85

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 4.90 (2.27)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:26	<u>I/V</u> 2.6	<u>F/V</u> 100	Batch CJ61103
Barium	24.8 (2.27)		6010C		1	KJK	10/12/16 20:26	2.6	100	CJ61103
Cadmium	ND (0.45)		6020A		20	NAR	10/13/16 15:26	2.6	100	CJ61103
Chromium	17.6 (0.91)		6010C		1	KJK	10/12/16 20:26	2.6	100	CJ61103
Lead	50.0 (4.54)		6010C		1	KJK	10/12/16 20:26	2.6	100	CJ61103
Mercury	0.085 (0.033)		7471B		1	BJV	10/11/16 13:01	0.71	40	CJ61104
Selenium	ND (0.45)		6020A		20	NAR	10/13/16 15:26	2.6	100	CJ61103
Silver	ND (0.45)		6010C		1	KJK	10/12/16 20:26	2.6	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3

Date Sampled: 09/27/16 15:25 Percent Solids: 85

Initial Volume: 7.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0040)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 18:42	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0034)		8260B Low		0	10/07/16 18:42		[CALC]
1,4-Dichlorobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0809)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
2-Butanone	ND (0.0405)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
2-Hexanone	ND (0.0405)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
4-Isopropyltoluene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0405)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Acetone	0.303 (0.0405)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Acrylonitrile	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Allyl Chloride	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3

Date Sampled: 09/27/16 15:25

Percent Solids: 85 Initial Volume: 7.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Benzene	Results (MRL) ND (0.0040)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 18:42	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Bromochloromethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Bromoform	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Bromomethane	ND (0.0081)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Chlorobenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Chloroethane	ND (0.0081)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Chloroform	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Chloromethane	ND (0.0081)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Dibromomethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0081)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Diethyl Ether	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Ethylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Methylene Chloride	ND (0.0202)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Naphthalene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Styrene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0405)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3 Date Sampled: 09/27/16 15:25

Percent Solids: 85 Initial Volume: 7.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Tetrachloroethene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Tetrahydrofuran	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Toluene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Trichloroethene	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0040)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0081)		8260B Low		1	10/07/16 18:42	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0068)		8260B Low		1	10/07/16 18:42		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		120 %		70-130				

	,	
Surrogate: 1,2-Dichloroethane-d4	120 %	70-130
Surrogate: 4-Bromofluorobenzene	99 %	70-130
Surrogate: Dibromofluoromethane	108 %	70-130
Surrogate: Toluene-d8	110 %	70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3 Date Sampled: 09/27/16 15:25

Percent Solids: 85 Initial Volume: 19.5 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1221	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1232	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1242	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1248	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1254	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1260	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1262	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
Aroclor 1268	ND (0.0606)		8082A		1	10/12/16 19:12		CJ61327
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		67 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		74 %		30-150				
Surrogate: Tetrachloro-m-xylene		74 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		75 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3 Date Sampled: 09/27/16 15:25

Percent Solids: 85 Initial Volume: 20.2 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 186 (43.9)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/07/16 17:38	Sequence CZJ0081	Batch CJ60608
	%/	Recovery	Qualifier	Limits				-
Surrogate: O-Terphenyl		85 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Fax: 401-461-4486

http://www.ESSLaboratory.com

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3 Date Sampled: 09/27/16 15:25

Percent Solids: 85 Initial Volume: 14.2 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.416)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/08/16 5:22	Sequence CZJ0094	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
1,2-Dichlorobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
1,3-Dichlorobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
1,4-Dichlorobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,3,4,6-Tetrachlorophenol	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,4,5-Trichlorophenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,4,6-Trichlorophenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,4-Dichlorophenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,4-Dimethylphenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,4-Dinitrophenol	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,4-Dinitrotoluene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2,6-Dinitrotoluene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2-Chloronaphthalene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2-Chlorophenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2-Methylnaphthalene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2-Methylphenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2-Nitroaniline	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
2-Nitrophenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
3,3'-Dichlorobenzidine	ND (0.832)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
3+4-Methylphenol	ND (0.832)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
3-Nitroaniline	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
4,6-Dinitro-2-Methylphenol	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
4-Bromophenyl-phenylether	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
4-Chloro-3-Methylphenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
4-Chloroaniline	ND (0.832)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
4-Nitroaniline	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
4-Nitrophenol	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Acenaphthene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Acenaphthylene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3 Date Sampled: 09/27/16 15:25

Percent Solids: 85 Initial Volume: 14.2 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.832)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/08/16 5:22	Sequence CZJ0094	Batch CJ60609
Aniline	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Anthracene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Azobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzidine	ND (0.832)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzo(a)anthracene	0.993 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzo(a)pyrene	1.01 (0.208)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzo(b)fluoranthene	1.54 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzo(g,h,i)perylene	0.602 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzo(k)fluoranthene	0.653 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzoic Acid	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Benzyl Alcohol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
bis(2-Chloroethoxy)methane	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
bis(2-Chloroethyl)ether	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Butylbenzylphthalate	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Carbazole	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Chrysene	1.03 (0.208)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Dibenzo(a,h)Anthracene	0.235 (0.208)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Dibenzofuran	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Diethylphthalate	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Dimethylphthalate	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Di-n-butylphthalate	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Di-n-octylphthalate	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Fluoranthene	2.53 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Fluorene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Hexachlorobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Hexachlorobutadiene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Hexachlorocyclopentadiene	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Hexachloroethane	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Indeno(1,2,3-cd)Pyrene	0.495 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

-/181 I Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-4 S-3 Date Sampled: 09/27/16 15:25

Percent Solids: 85 Initial Volume: 14.2 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-04

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Naphthalene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Nitrobenzene	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
N-Nitrosodimethylamine	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
N-nitrosodiphenylamine	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Pentachlorophenol	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Phenanthrene	0.847 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Phenol	ND (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Pyrene	2.35 (0.416)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
Pyridine	ND (2.08)		8270D		1	10/08/16 5:22	CZJ0094	CJ60609
	,	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		67 %		30-130				
Surrogate: 2,4,6-Tribromophenol		83 %		30-130				
Surrogate: 2-Chlorophenol-d4		69 %		30-130				

Surrogate: 1,2-Dichlorobenzene-d4	67 %	30-130
Surrogate: 2,4,6-Tribromophenol	83 %	30-130
Surrogate: 2-Chlorophenol-d4	69 %	30-130
Surrogate: 2-Fluorobiphenyl	73 %	30-130
Surrogate: 2-Fluorophenol	66 %	30-130
Surrogate: Nitrobenzene-d5	67 %	30-130
Surrogate: Phenol-d6	69 %	30-130
Surrogate: p-Terphenyl-d14	118 %	30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids:

93

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 10.6 (2.38)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:30	<u>I/V</u> 2.26	$\frac{\mathbf{F/V}}{100}$	Batch CJ61103
Barium	28.7 (2.38)		6010C		1	KJK	10/12/16 20:30	2.26	100	CJ61103
Cadmium	ND (0.48)		6020A		20	NAR	10/13/16 15:32	2.26	100	CJ61103
Chromium	51.0 (0.95)		6010C		1	KJK	10/12/16 20:30	2.26	100	CJ61103
Lead	19.2 (4.76)		6010C		1	KJK	10/12/16 20:30	2.26	100	CJ61103
Mercury	0.035 (0.032)		7471B		1	BJV	10/11/16 13:03	0.67	40	CJ61104
Selenium	ND (0.48)		6020A		20	NAR	10/13/16 15:32	2.26	100	CJ61103
Silver	ND (0.48)		6010C		1	KJK	10/12/16 20:30	2.26	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids: 93 Initial Volume: 7.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0038)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 19:08	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0035)		8260B Low		0	10/07/16 19:08		[CALC]
1,4-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0758)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
2-Butanone	ND (0.0379)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
2-Hexanone	ND (0.0379)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
4-Isopropyltoluene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0379)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Acetone	ND (0.0379)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Acrylonitrile	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Allyl Chloride	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids: 93 Initial Volume: 7.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Benzene	Results (MRL) ND (0.0038)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 19:08	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Bromochloromethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Bromoform	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Bromomethane	ND (0.0076)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Chlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Chloroethane	ND (0.0076)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Chloroform	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Chloromethane	ND (0.0076)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Dibromomethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0076)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Diethyl Ether	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Ethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Methylene Chloride	ND (0.0189)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Naphthalene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Styrene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0379)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids: 93 Initial Volume: 7.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Tetrachloroethene	Results (MRL) ND (0.0038)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 19:08	Sequence CZJ0093	Batch CJ60724
Tetrahydrofuran	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Toluene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Trichloroethene	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0038)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0076)		8260B Low		1	10/07/16 19:08	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0070)		8260B Low		1	10/07/16 19:08		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	116 %		70-130
Surrogate: 4-Bromofluorobenzene	99 %		70-130
Surrogate: Dibromofluoromethane	107 %		70-130
Surrogate: Toluene-d8	107 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4

Date Sampled: 09/28/16 14:15 Percent Solids: 93

Initial Volume: 20.1 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1221	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1232	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1242	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1248	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1254	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1260	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1262	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
Aroclor 1268	ND (0.0535)		8082A		1	10/11/16 19:12		CJ60604
	9/6	6Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		69 %		30-150				

	70Kecovery	Qualifici	LIIIILS
Surrogate: Decachlorobiphenyl	69 %		30-150
Surrogate: Decachlorobiphenyl [2C]	74 %		30-150
Surrogate: Tetrachloro-m-xylene	74 %		30-150
Surrogate: Tetrachloro-m-xylene [2C]	75 %		30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids: 93 Initial Volume: 20.9 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) <u>M</u> 79.3 (38.6)	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 18:18	Sequence CZJ0081	Batch CJ60608
	%Recov	very Qualifier	Limits				
Surrogate: O-Ternhenyl	73.4	04	40 140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability

◆ Quality

Fa

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids: 93 Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.361)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 15:14	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2-Chlorophenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2-Methylnaphthalene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2-Methylphenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2-Nitroaniline	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
2-Nitrophenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (0.723)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
3+4-Methylphenol	ND (0.723)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
3-Nitroaniline	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
4-Chloroaniline	ND (0.723)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
4-Nitroaniline	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
4-Nitrophenol	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Acenaphthene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Acenaphthylene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids: 93 Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.723)	<u>MDL</u>	<u>Method</u> 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 15:14	Sequence CZJ0113	Batch CJ60609
Aniline	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Anthracene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Azobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzidine	ND (0.723)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzo(a)anthracene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzo(a)pyrene	0.295 (0.181)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzo(b)fluoranthene	0.466 (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzo(g,h,i)perylene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzo(k)fluoranthene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzoic Acid	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Carbazole	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Chrysene	0.289 (0.181)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	ND (0.181)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Dibenzofuran	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Diethylphthalate	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Dimethylphthalate	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Fluoranthene	0.549 (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Fluorene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Hexachloroethane	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-5 S-4 Date Sampled: 09/28/16 14:15

Percent Solids: 93 Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-05

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Naphthalene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Nitrobenzene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Pentachlorophenol	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Phenanthrene	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Phenol	ND (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Pyrene	0.394 (0.361)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
Pyridine	ND (1.81)		8270D		1	10/11/16 15:14	CZJ0113	CJ60609
	9/	6Recovery	Qualifier	Limits				

	· · · · · · · · · · · · · · · · · · ·	
Surrogate: 1,2-Dichlorobenzene-d4	80 %	30-130
Surrogate: 2,4,6-Tribromophenol	92 %	30-130
Surrogate: 2-Chlorophenol-d4	87 %	30-130
Surrogate: 2-Fluorobiphenyl	80 %	30-130
Surrogate: 2-Fluorophenol	84 %	30-130
Surrogate: Nitrobenzene-d5	81 %	30-130
Surrogate: Phenol-d6	92 %	30-130
Surrogate: p-Terphenyl-d14	82 %	30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85

creent bonds.

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 11.5 (2.90)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analys KJK	Analyzed 10/12/16 20:34	<u>I/V</u> 2.03	<u>F/V</u> 100	Batch CJ61103
Barium	91.4 (2.90)		6010C		1	KJK	10/12/16 20:34	2.03	100	CJ61103
Cadmium	ND (0.58)		6020A		20	NAR	10/13/16 15:38	2.03	100	CJ61103
Chromium	35.8 (1.16)		6010C		1	KJK	10/12/16 20:34	2.03	100	CJ61103
Lead	216 (5.80)		6010C		1	KJK	10/12/16 20:34	2.03	100	CJ61103
Mercury	0.523 (0.033)		7471B		1	BJV	10/11/16 13:05	0.7	40	CJ61104
Selenium	1.91 (0.58)		6020A		20	NAR	10/13/16 15:38	2.03	100	CJ61103
Silver	ND (0.58)		6010C		1	KJK	10/12/16 20:34	2.03	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85 Initial Volume: 9.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0031)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 19:34	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0027)		8260B Low		0	10/07/16 19:34		[CALC]
1,4-Dichlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0626)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
2-Butanone	ND (0.0313)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
2-Hexanone	ND (0.0313)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
4-Isopropyltoluene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0313)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Acetone	0.102 (0.0313)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Acrylonitrile	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Allyl Chloride	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85 Initial Volume: 9.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0031)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 19:34	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Bromochloromethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Bromoform	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Bromomethane	ND (0.0063)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Chlorobenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Chloroethane	ND (0.0063)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Chloroform	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Chloromethane	ND (0.0063)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Dibromomethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0063)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Diethyl Ether	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Ethylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Methylene Chloride	ND (0.0156)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Naphthalene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Styrene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0313)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85 Initial Volume: 9.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0031)	' <u></u>	8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Tetrahydrofuran	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Toluene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Trichloroethene	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0031)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0063)		8260B Low		1	10/07/16 19:34	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0053)		8260B Low		1	10/07/16 19:34		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	125 %		70-130
Surrogate: 4-Bromofluorobenzene	94 %		70-130
Surrogate: Dibromofluoromethane	110 %		70-130
Surrogate: Toluene-d8	112 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85 Initial Volume: 20.6 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1221	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1232	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1242	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1248	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1254	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1260	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1262	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
Aroclor 1268	ND (0.0571)	8082A		1	10/11/16 19:31		CJ60604
	%Re	ecovery Qualifier	Limits				
Surrogate: Decachlorobiphenyl		86 %	30-150				

	Miccovery	Qualifici	LITTICS
Surrogate: Decachlorobiphenyl	86 %		30-150
Surrogate: Decachlorobiphenyl [2C]	95 %		30-150
Surrogate: Tetrachloro-m-xylene	84 %		30-150
Surrogate: Tetrachloro-m-xylene [2C]	90 %		30-150

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85 Initial Volume: 20.9 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) ND (42.2)	MDL	Method 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/07/16 18:58	Sequence CZJ0081	Batch CJ60608
	%F	ecovery	Qualifier	Limits				
Surrogate: O-Terphenyl		66 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85 Initial Volume: 14 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.420)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/08/16 6:37	Sequence CZJ0094	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
1,2-Dichlorobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
1,3-Dichlorobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
1,4-Dichlorobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,3,4,6-Tetrachlorophenol	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,4,5-Trichlorophenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,4,6-Trichlorophenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,4-Dichlorophenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,4-Dimethylphenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,4-Dinitrophenol	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,4-Dinitrotoluene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2,6-Dinitrotoluene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2-Chloronaphthalene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2-Chlorophenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2-Methylnaphthalene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2-Methylphenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2-Nitroaniline	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
2-Nitrophenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
3,3'-Dichlorobenzidine	ND (0.841)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
3+4-Methylphenol	ND (0.841)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
3-Nitroaniline	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
4,6-Dinitro-2-Methylphenol	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
4-Bromophenyl-phenylether	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
4-Chloro-3-Methylphenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
4-Chloroaniline	ND (0.841)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
4-Nitroaniline	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
4-Nitrophenol	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Acenaphthene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Acenaphthylene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3

Date Sampled: 09/28/16 12:20 Percent Solids: 85

Initial Volume: 14 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Aniline ND (211) \$270D 1 1008/16 6.37 CZ1004 C16060 Anthracee ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Arobenzere ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Benzola)anthracene ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Benzola)anthracene ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Benzola)fluoranthene ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Benzola/fluoranthene ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Benzola Acid ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Benzyl Alcohol ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C160609 Benzyl Alcohol ND (0.420) \$270D 1 1008/16 6.37 CZ10094 C1660609 Bisig-C-Chloro	Analyte Acetophenone	Results (MRL) ND (0.841)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/08/16 6:37	Sequence CZJ0094	Batch CJ60609
Anthracene ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Azobarzene ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzidine ND (0.841) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzo(a)pyrene ND (0.211) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzo(b)fluoranthene ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzo(g), h)gerylene ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzo(s), h)gerylene ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzo(s), h)gerylene ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzo(s), h)gerylene ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Benzyl Alcohol ND (0.420) 8270D 1 1008/16 637 CZJ0094 CJ60609 Bisig-	_	,		8270D		1	10/08/16 6:37	CZJ0094	
Benzo(a)nathracene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(a)nathracene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(a)nyrene ND (0.211) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b)njperylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Benzo(b,n)perylene ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Bis(2-Chloroethosy)methane ND (0.420) 8270D 1 10.08/16 6:37 CZJ0094 CJ66069 Bis(2-Chloroethy)perylperylperylperylperylperylperylperyl	Anthracene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Benzo(a)nthracene ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Benzo(a)pyrene ND (0.211) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Benzo(g)hitoranthene ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Benzo(g,h.i)perylene ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Benzo(g,h.i)perylene ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Benzo(g,h.i)perylene ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Benzo(g,h.i)perylene ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Benzo(g,h.i)perylene ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Cisic2-Chlorecthoxy)methane ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Cisic2-Chlorecthoxy)methane ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609 Cisic2-Chlorecthoxy)methane ND (0.420) 8270D 1 10.08/16 6.37 CZ10094 CJ60609	Azobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Benzo(a)pyrene ND (0.211) 8270D 1 1008/16 6.37 CZJ0094 CJ66096	Benzidine	ND (0.841)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Benzo(b)fluoranthene ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Benzo(g,h,i)perylene ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Benzo(k)fluoranthene ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Benzo(acid ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Benzyl Alcohol ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Benzyl Alcohol ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 bis(2-Chloroethxy)methane ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 bis(2-Chloroethy)methane ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 bis(2-Eithylhexyl)phthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 bis(2-Eithylhexyl)phthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 bis(2-Eithylhexyl)phthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Butylbenzylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Chrysene ND (0.211) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dibenzo(a,h)Anthracene ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dibenzo(furan ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dibenzo(furan ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609 Dien	Benzo(a)anthracene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Benzo(g,h,i)perylene ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 CJ60609	Benzo(a)pyrene	ND (0.211)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Benzo(k)fluoranthene	Benzo(b)fluoranthene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Benzoic Acid ND (2.11) 8270D 1 10/08/16 6.37 CZ10094 C16009 Benzyl Alcohol ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 bis(2-Chloroethoxy)methane ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 bis(2-Chloroispropy)Ether ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 bis(2-Ethlylhexyl)phthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 Butylbenzylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 Carbazole ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 Chrysene ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 Dibenzofuran ND (0.211) 8270D 1 10/08/16 6.37 CZ10094 C160609 Diethylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZ10094 C160609 <td>Benzo(g,h,i)perylene</td> <td>ND (0.420)</td> <td></td> <td>8270D</td> <td></td> <td>1</td> <td>10/08/16 6:37</td> <td>CZJ0094</td> <td>CJ60609</td>	Benzo(g,h,i)perylene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Benzyl Alcohol ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 bis(2-Chloroethoxy)methane ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 bis(2-Chloroethyl)ether ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 bis(2-Ethylhexyl)phthalate ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Butylbenzylphthalate ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Carbazole ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Chrysene ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzo(a,h)Anthracene ND (0,211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Diethylphthalate ND (0,420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 <td>Benzo(k)fluoranthene</td> <td>ND (0.420)</td> <td></td> <td>8270D</td> <td></td> <td>1</td> <td>10/08/16 6:37</td> <td>CZJ0094</td> <td>CJ60609</td>	Benzo(k)fluoranthene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
bis(2-Chloroethoxy)methane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 bis(2-Chloroethyl)ether ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 bis(2-chloroisopropyl)Ether ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 bis(2-Ethylhexyl)phthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Butylbenzylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Carbazole ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Carbazole ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Chrysne ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzo(a,h)Anthracene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-o	Benzoic Acid	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Discalable Dis	Benzyl Alcohol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
bis(2-chloroisopropyl)Ether ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 bis(2-Ethylhexyl)phthalate ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Butylbenzylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Carbazole ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Chrysene ND (0.211) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Dibenzo(a,h)Anthracene ND (0.211) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6.37 CZJ0094 CJ60609 CJC CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60609 CZD0094 CJ60	bis(2-Chloroethoxy)methane	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
bis(2-Ethylhexyl)phthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Butylbenzylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Carbazole ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Chrysene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzo(a,h)Anthracene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Diethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 <td>bis(2-Chloroethyl)ether</td> <td>ND (0.420)</td> <td></td> <td>8270D</td> <td></td> <td>1</td> <td>10/08/16 6:37</td> <td>CZJ0094</td> <td>CJ60609</td>	bis(2-Chloroethyl)ether	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Butylbenzylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Carbazole ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Chrysene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzo(a,h)Anthracene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Diethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	bis(2-chloroisopropyl)Ether	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Carbazole ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Chrysene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzo(a,h)Anthracene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Diethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	bis(2-Ethylhexyl)phthalate	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Chrysene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzo(a,h)Anthracene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Diethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Butylbenzylphthalate	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Dibenzo(a,h)Anthracene ND (0.211) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Diethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dimethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 <td>Carbazole</td> <td>ND (0.420)</td> <td></td> <td>8270D</td> <td></td> <td>1</td> <td>10/08/16 6:37</td> <td>CZJ0094</td> <td>CJ60609</td>	Carbazole	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Dibenzofuran ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Diethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dimethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Pluoranthene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Chrysene	ND (0.211)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Diethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Dimethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60	Dibenzo(a,h)Anthracene	ND (0.211)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Dimethylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachloroethane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Dibenzofuran	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Di-n-butylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Diethylphthalate	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Di-n-octylphthalate ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachloroethane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Dimethylphthalate	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Fluoranthene 0.424 (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (2.11) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachloroethane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Di-n-butylphthalate	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Fluorene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (2.11) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachloroethane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Di-n-octylphthalate	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Hexachlorobenzene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (2.11) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachloroethane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Fluoranthene	0.424 (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Hexachlorobutadiene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocyclopentadiene ND (2.11) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachloroethane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Fluorene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Hexachlorocyclopentadiene ND (2.11) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609 Hexachlorocthane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Hexachlorobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Hexachloroethane ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Hexachlorobutadiene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
	Hexachlorocyclopentadiene	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Indeno(1,2,3-cd)Pyrene ND (0.420) 8270D 1 10/08/16 6:37 CZJ0094 CJ60609	Hexachloroethane	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
	Indeno(1,2,3-cd)Pyrene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-6 S-3 Date Sampled: 09/28/16 12:20

Percent Solids: 85 Initial Volume: 14 Final Volume: 0.5

Surrogate: p-Terphenyl-d14

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-06

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Naphthalene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Nitrobenzene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
N-Nitrosodimethylamine	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
N-nitrosodiphenylamine	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Pentachlorophenol	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Phenanthrene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Phenol	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Pyrene	ND (0.420)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
Pyridine	ND (2.11)		8270D		1	10/08/16 6:37	CZJ0094	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		73 %		30-130				
Surrogate: 2,4,6-Tribromophenol		83 %		30-130				
Surrogate: 2-Chlorophenol-d4		76 %		30-130				
Surrogate: 2-Fluorobiphenyl		74 %		30-130				
Surrogate: 2-Fluorophenol		75 %		30-130				
Surrogate: Nitrobenzene-d5		74 %		30-130				
Surrogate: Phenol-d6		77 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

105 %

Fax: 401-461-4486

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 7.43 (2.77)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:38	<u>I/V</u> 2.12	$\frac{\mathbf{F/V}}{100}$	Batch CJ61103
Barium	43.2 (2.77)		6010C		1	KJK	10/12/16 20:38	2.12	100	CJ61103
Cadmium	ND (0.55)		6020A		20	NAR	10/13/16 15:44	2.12	100	CJ61103
Chromium	29.0 (1.11)		6010C		1	KJK	10/12/16 20:38	2.12	100	CJ61103
Lead	307 (5.53)		6010C		1	KJK	10/12/16 20:38	2.12	100	CJ61103
Mercury	0.105 (0.037)		7471B		1	BJV	10/11/16 13:07	0.62	40	CJ61104
Selenium	ND (0.55)		6020A		20	NAR	10/13/16 15:44	2.12	100	CJ61103
Silver	ND (0.55)		6010C		1	KJK	10/12/16 20:38	2.12	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 7.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0038)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 20:00	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0032)		8260B Low		0	10/07/16 20:00		[CALC]
1,4-Dichlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0762)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
2-Butanone	ND (0.0381)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
2-Hexanone	ND (0.0381)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
4-Isopropyltoluene	0.0312 (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0381)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Acetone	0.176 (0.0381)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Acrylonitrile	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Allyl Chloride	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 7.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0038)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 20:00	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Bromochloromethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Bromoform	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Bromomethane	ND (0.0076)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Chlorobenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Chloroethane	ND (0.0076)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Chloroform	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Chloromethane	ND (0.0076)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Dibromomethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0076)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Diethyl Ether	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Ethylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Methylene Chloride	ND (0.0190)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Naphthalene	0.0255 (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Styrene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0381)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 7.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Tetrachloroethene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Tetrahydrofuran	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Toluene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Trichloroethene	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0038)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0076)		8260B Low		1	10/07/16 20:00	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0065)		8260B Low		1	10/07/16 20:00		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		124 %		70-130				

	,	•	
Surrogate: 1,2-Dichloroethane-d4	124 %		70-130
Surrogate: 4-Bromofluorobenzene	102 %		70-130
Surrogate: Dibromofluoromethane	110 %		70-130
Surrogate: Toluene-d8	106 %		70-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 20.6 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1221	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1232	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1242	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1248	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1254	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1260	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1262	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
Aroclor 1268	ND (0.0569)		8082A		1	10/12/16 19:31		CJ61327
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		93 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		105 %		30-150				
Surrogate: Tetrachloro-m-xylene		63 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		57 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 19.2 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 354 (45.8)	MDL	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 19:39	Sequence CZJ0081	Batch CJ60608
	%	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		72 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability ♦ Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 14.8 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.792)	<u>MDL</u>	Method 8270D	<u>Limit</u>	$\frac{\mathbf{DF}}{2}$	<u>Analyzed</u> 10/11/16 15:52	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2-Chlorophenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2-Methylnaphthalene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2-Methylphenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2-Nitroaniline	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
2-Nitrophenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (1.59)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
3+4-Methylphenol	ND (1.59)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
3-Nitroaniline	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
4-Chloroaniline	ND (1.59)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
4-Nitroaniline	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
4-Nitrophenol	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Acenaphthene	1.14 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Acenaphthylene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 14.8 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (1.59)	<u>MDL</u>	Method 8270D	<u>Limit</u>	$\frac{\mathbf{DF}}{2}$	<u>Analyzed</u> 10/11/16 15:52	Sequence CZJ0113	Batch CJ60609
Aniline	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Anthracene	1.71 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Azobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzidine	ND (1.59)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzo(a)anthracene	2.80 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzo(a)pyrene	2.38 (0.397)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzo(b)fluoranthene	3.98 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzo(g,h,i)perylene	0.819 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzo(k)fluoranthene	1.15 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzoic Acid	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Carbazole	1.29 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Chrysene	2.81 (0.397)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	ND (0.397)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Dibenzofuran	1.76 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Diethylphthalate	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Dimethylphthalate	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Fluoranthene	8.26 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Fluorene	2.72 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Hexachloroethane	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-7 S-4 Date Sampled: 09/28/16 12:00

Percent Solids: 85 Initial Volume: 14.8 Final Volume: 0.5

Surrogate: p-Terphenyl-d14

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-07

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Naphthalene	0.897 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Nitrobenzene	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Pentachlorophenol	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Phenanthrene	9.88 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Phenol	ND (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Pyrene	5.32 (0.792)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
Pyridine	ND (3.97)		8270D		2	10/11/16 15:52	CZJ0113	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		67 %		30-130				
Surrogate: 2,4,6-Tribromophenol		88 %		30-130				
Surrogate: 2-Chlorophenol-d4		72 %		30-130				
Surrogate: 2-Fluorobiphenyl		70 %		30-130				
Surrogate: 2-Fluorophenol		68 %		30-130				
Surrogate: Nitrobenzene-d5		65 %		30-130				
Surrogate: Phenol-d6		<i>75 %</i>		30-130				

30-130

84 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91

Extraction Method: 3050B

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry

Total Metals

Analyte Arsenic	Results (MRL) 6.42 (2.60)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:42	<u>I/V</u> 2.11	<u>F/V</u> 100	Batch CJ61103
Barium	22.6 (2.60)		6010C		1	KJK	10/12/16 20:42	2.11	100	CJ61103
Cadmium	0.58 (0.52)		6020A		20	NAR	10/13/16 15:50	2.11	100	CJ61103
Chromium	28.4 (1.04)		6010C		1	KJK	10/12/16 20:42	2.11	100	CJ61103
Lead	72.0 (5.20)		6010C		1	KJK	10/12/16 20:42	2.11	100	CJ61103
Mercury	0.038 (0.031)		7471B		1	BJV	10/11/16 13:13	0.7	40	CJ61104
Selenium	ND (0.52)		6020A		20	NAR	10/13/16 15:50	2.11	100	CJ61103
Silver	ND (0.52)		6010C		1	KJK	10/12/16 20:42	2.11	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 7.9 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0035)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 20:26	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0032)		8260B Low		0	10/07/16 20:26		[CALC]
1,4-Dichlorobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0695)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
2-Butanone	ND (0.0347)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
2-Hexanone	ND (0.0347)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
4-Isopropyltoluene	E 0.337 (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0347)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Acetone	0.237 (0.0347)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Acrylonitrile	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Allyl Chloride	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 7.9 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Benzene	Results (MRL) ND (0.0035)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 20:26	Sequence CZJ0093	Batch CJ60724
Bromobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Bromochloromethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Bromodichloromethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Bromoform	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Bromomethane	ND (0.0069)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Carbon Disulfide	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Carbon Tetrachloride	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Chlorobenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Chloroethane	ND (0.0069)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Chloroform	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Chloromethane	ND (0.0069)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
cis-1,2-Dichloroethene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Dibromochloromethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Dibromomethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Dichlorodifluoromethane	ND (0.0069)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Diethyl Ether	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Di-isopropyl ether	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Ethyl tertiary-butyl ether	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Ethylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Hexachlorobutadiene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Isopropylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Methyl tert-Butyl Ether	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Methylene Chloride	ND (0.0174)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Naphthalene	0.0047 (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
n-Butylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
n-Propylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
sec-Butylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Styrene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
tert-Butylbenzene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Tertiary-amyl methyl ether	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Tertiary-butyl Alcohol	ND (0.0347)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 7.9 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte Tetrachloroethene	Results (MRL) ND (0.0035)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 20:26	Sequence CZJ0093	Batch CJ60724
Tetrahydrofuran	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Toluene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Trichloroethene	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0035)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0069)		8260B Low		1	10/07/16 20:26	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0063)		8260B Low		1	10/07/16 20:26		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	119 %		70-130
Surrogate: 4-Bromofluorobenzene	103 %		70-130
Surrogate: Dibromofluoromethane	106 %		70-130
Surrogate: Toluene-d8	108 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 26.3 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.145)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 15:59	Sequence CZJ0121	Batch CJ61136
1,1,1-Trichloroethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,1,2,2-Tetrachloroethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,1,2-Trichloroethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,1-Dichloroethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,1-Dichloroethene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,1-Dichloropropene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2,3-Trichlorobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2,3-Trichloropropane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2,4-Trichlorobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2,4-Trimethylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2-Dibromo-3-Chloropropane	ND (0.723)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2-Dibromoethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2-Dichlorobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2-Dichloroethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,2-Dichloropropane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,3 Dichloropropene (Total)	ND (0.145)		8260B		1	10/11/16 15:59		[CALC]
1,3,5-Trichlorobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,3,5-Trimethylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,3-Dichlorobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,4-Dichlorobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
1,4-Dioxane - Screen	ND (28.9)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
2,2-Dichloropropane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
2-Butanone	ND (0.723)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
2-Chlorotoluene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
2-Hexanone	ND (0.723)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
4-Chlorotoluene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
4-Isopropyltoluene	8.86 (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
4-Methyl-2-Pentanone	ND (0.723)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Acetone	ND (0.723)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Acrylonitrile	ND (0.723)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Allyl Chloride	ND (0.289)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 26.3 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Benzene	Results (MRL) ND (0.145)	<u>MDL</u>	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 15:59	Sequence CZJ0121	Batch CJ61136
Bromobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Bromochloromethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Bromodichloromethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Bromoform	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Bromomethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Carbon Disulfide	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Carbon Tetrachloride	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Chlorobenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Chloroethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Chloroform	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Chloromethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
cis-1,2-Dichloroethene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Dibromochloromethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Dibromomethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Dichlorodifluoromethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Diethyl Ether	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Di-isopropyl ether	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Ethyl tertiary-butyl ether	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Ethylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Hexachlorobutadiene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Isopropylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Methyl tert-Butyl Ether	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Methylene Chloride	ND (0.289)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Naphthalene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
n-Butylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
n-Propylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
sec-Butylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Styrene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
tert-Butylbenzene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Tertiary-amyl methyl ether	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Tetrachloroethene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 26.3 Final Volume: 15

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Methanol

Analyte Tetrahydrofuran	Results (MRL) ND (0.723)	MDL	Method 8260B	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 15:59	Sequence CZJ0121	Batch CJ61136
Toluene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
trans-1,2-Dichloroethene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Trichloroethene	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Trichlorofluoromethane	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Vinyl Chloride	ND (0.145)		8260B		1	10/11/16 15:59	CZJ0121	CJ61136
Xylenes (Total)	ND (0.289)		8260B		1	10/11/16 15:59		[CALC]

Oualifier

I imits

	MCCOVCIY	Qualifici	LITTICS
Surrogate: 1,2-Dichloroethane-d4	94 %		70-130
Surrogate: 4-Bromofluorobenzene	90 %		70-130
Surrogate: Dibromofluoromethane	101 %		70-130
Surrogate: Toluene-d8	93 %		70-130

%Recovery

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 19.1 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1221	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1232	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1242	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1248	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1254	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1260	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1262	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
Aroclor 1268	ND (0.0575)		8082A		1	10/12/16 19:50		CJ61327
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		65 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		73 %		30-150				
Surrogate: Tetrachloro-m-xylene		71 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		73 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 19.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 168 (42.4)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/07/16 20:19	Sequence CZJ0081	Batch CJ60608
	%Re	ecovery	Qualifier	Limits				
Surrogate: O-Ternhenyl		60.00		40 140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 15.6 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.703)	<u>MDL</u>	Method 8270D	<u>Limit</u>	$\frac{\mathbf{DF}}{2}$	<u>Analyzed</u> 10/11/16 16:29	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2-Chlorophenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2-Methylnaphthalene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2-Methylphenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2-Nitroaniline	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
2-Nitrophenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (1.41)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
3+4-Methylphenol	ND (1.41)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
3-Nitroaniline	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
4-Chloroaniline	ND (1.41)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
4-Nitroaniline	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
4-Nitrophenol	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Acenaphthene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Acenaphthylene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 15.6 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (1.41)	MDL.	Method 8270D	<u>Limit</u>	$\frac{\mathbf{DF}}{2}$	<u>Analyzed</u> 10/11/16 16:29	Sequence CZJ0113	Batch CJ60609
Aniline	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Anthracene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Azobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzidine	ND (1.41)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzo(a)anthracene	0.802 (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzo(a)pyrene	0.830 (0.352)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzo(b)fluoranthene	1.62 (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzo(g,h,i)perylene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzo(k)fluoranthene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzoic Acid	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Carbazole	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Chrysene	0.951 (0.352)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	ND (0.352)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Dibenzofuran	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Diethylphthalate	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Dimethylphthalate	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Fluoranthene	2.15 (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Fluorene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Hexachloroethane	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-8 S-2 Date Sampled: 09/28/16 14:40

Percent Solids: 91 Initial Volume: 15.6 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-08

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Isophorone	Results (MRL)	MDL	Method 8270D	<u>Limit</u>	$\frac{\mathbf{DF}}{2}$	<u>Analyzed</u> 10/11/16 16:29	Sequence CZJ0113	Batch CJ60609
Naphthalene	ND (0.703) ND (0.703)		8270D 8270D		2	10/11/16 16:29	CZJ0113 CZJ0113	CJ60609
Nitrobenzene	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Pentachlorophenol	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Phenanthrene	0.953 (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Phenol	ND (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Pyrene	1.46 (0.703)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
Pyridine	ND (3.52)		8270D		2	10/11/16 16:29	CZJ0113	CJ60609
		%Recovery	Qualifier	Limits				

	,	
Surrogate: 1,2-Dichlorobenzene-d4	68 %	30-130
Surrogate: 2,4,6-Tribromophenol	93 %	30-130
Surrogate: 2-Chlorophenol-d4	76 %	30-130
Surrogate: 2-Fluorobiphenyl	74 %	30-130
Surrogate: 2-Fluorophenol	71 %	30-130
Surrogate: Nitrobenzene-d5	68 %	30-130
Surrogate: Phenol-d6	81 %	30-130
Surrogate: p-Terphenyl-d14	96 %	30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 13.7 (2.75)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:46	<u>I/V</u> 2.21	$\frac{\mathbf{F/V}}{100}$	Batch CJ61103
Barium	58.4 (2.75)		6010C		1	KJK	10/12/16 20:46	2.21	100	CJ61103
Cadmium	ND (0.55)		6020A		20	NAR	10/13/16 15:56	2.21	100	CJ61103
Chromium	32.7 (1.10)		6010C		1	KJK	10/12/16 20:46	2.21	100	CJ61103
Lead	30.9 (5.50)		6010C		1	KJK	10/12/16 20:46	2.21	100	CJ61103
Mercury	0.046 (0.033)		7471B		1	BJV	10/11/16 13:15	0.73	40	CJ61104
Selenium	ND (0.55)		6020A		20	NAR	10/13/16 15:56	2.21	100	CJ61103
Silver	ND (0.55)		6010C		1	KJK	10/12/16 20:46	2.21	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 6.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0045)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/07/16 20:52	Sequence CZJ0093	Batch CJ60724
1,1,1-Trichloroethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,1,2,2-Tetrachloroethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,1,2-Trichloroethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,1-Dichloroethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,1-Dichloroethene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,1-Dichloropropene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2,3-Trichlorobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2,3-Trichloropropane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2,4-Trichlorobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2,4-Trimethylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2-Dibromo-3-Chloropropane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2-Dibromoethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2-Dichlorobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2-Dichloroethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,2-Dichloropropane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,3,5-Trichlorobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,3,5-Trimethylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,3-Dichlorobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,3-Dichloropropene (Total)	ND (0.0037)		8260B Low		0	10/07/16 20:52		[CALC]
1,4-Dichlorobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
1,4-Dioxane	ND (0.0907)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
2,2-Dichloropropane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
2-Butanone	ND (0.0453)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
2-Chlorotoluene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
2-Hexanone	ND (0.0453)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
4-Chlorotoluene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
4-Isopropyltoluene	0.0440 (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
4-Methyl-2-Pentanone	ND (0.0453)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Acetone	0.235 (0.0453)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Acrylonitrile	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Allyl Chloride	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

Posulte (MRI)

MDI

BAL Laboratory

The Microbiology Division of Thielsch Engineering, Inc.

Datah

Saguanca

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 6.7 Final Volume: 10

Analyta

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Analyzad

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

DE

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Mathad

I imit

	<u>inalyte</u> enzene	Results (MRL) ND (0.0045)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 20:52	Sequence CZJ0093	Batch CJ60724
В	romobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
В	romochloromethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
В	romodichloromethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
В	romoform	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
В	romomethane	ND (0.0091)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
C	arbon Disulfide	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
C	arbon Tetrachloride	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
C	hlorobenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
C	hloroethane	ND (0.0091)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
C	hloroform	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
C	hloromethane	ND (0.0091)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
ci	s-1,2-Dichloroethene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
D	ibromochloromethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
D	ibromomethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
D	ichlorodifluoromethane	ND (0.0091)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
D	iethyl Ether	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
D	i-isopropyl ether	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Et	thyl tertiary-butyl ether	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Et	thylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Н	exachlorobutadiene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Is	opropylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
M	lethyl tert-Butyl Ether	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
M	lethylene Chloride	ND (0.0227)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
N	aphthalene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
n-	Butylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
n-	Propylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
se	ec-Butylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
St	tyrene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
te	rt-Butylbenzene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Te	ertiary-amyl methyl ether	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Т	ertiary-butyl Alcohol	ND (0.0453)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 6.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry Analyst: MEK

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Tetrahydrofuran	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Toluene	0.0105 (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
trans-1,2-Dichloroethene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Trichloroethene	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Trichlorofluoromethane	ND (0.0045)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Vinyl Chloride	ND (0.0091)		8260B Low		1	10/07/16 20:52	CZJ0093	CJ60724
Xylenes (Total)	ND (0.0075)		8260B Low		1	10/07/16 20:52		[CALC]
	9	%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		112 %		70-130				

	,	• • • • • • • • • • • • • • • • • • • •	
Surrogate: 1,2-Dichloroethane-d4	112 %		70-130
Surrogate: 4-Bromofluorobenzene	103 %		70-130
Surrogate: Dibromofluoromethane	104 %		70-130
Surrogate: Toluene-d8	106 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 20.5

Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 11:45

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1221	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1232	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1242	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1248	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1254	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1260	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1262	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
Aroclor 1268	ND (0.0593)		8082A		1	10/11/16 20:27		CJ60604
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		72 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		77 %		30-150				
Surrogate: Tetrachloro-m-xylene		82 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		87 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 19 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 136 (48.0)	MDL	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 21:01	Sequence CZJ0081	Batch CJ60608
	%R	ecovery	Qualifier	Limits				
Surrogate: O-Ternhenyl		C7.0/		40 140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181
Dependability
◆ Quality

lity

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 15.6 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.389)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/08/16 8:29	Sequence CZJ0094	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
1,2-Dichlorobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
1,3-Dichlorobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
1,4-Dichlorobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,4,5-Trichlorophenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,4,6-Trichlorophenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,4-Dichlorophenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,4-Dimethylphenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,4-Dinitrophenol	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,4-Dinitrotoluene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2,6-Dinitrotoluene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2-Chloronaphthalene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2-Chlorophenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2-Methylnaphthalene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2-Methylphenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2-Nitroaniline	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
2-Nitrophenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
3,3'-Dichlorobenzidine	ND (0.779)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
3+4-Methylphenol	ND (0.779)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
3-Nitroaniline	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
4-Bromophenyl-phenylether	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
4-Chloro-3-Methylphenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
4-Chloroaniline	ND (0.779)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
4-Nitroaniline	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
4-Nitrophenol	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Acenaphthene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Acenaphthylene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 15.6 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.779)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/08/16 8:29	Sequence CZJ0094	Batch CJ60609
Aniline	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Anthracene	0.526 (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Azobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzidine	ND (0.779)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzo(a)anthracene	1.09 (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzo(a)pyrene	0.803 (0.195)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzo(b)fluoranthene	1.19 (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzo(g,h,i)perylene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzo(k)fluoranthene	0.395 (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzoic Acid	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Benzyl Alcohol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
bis(2-Chloroethoxy)methane	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
bis(2-Chloroethyl)ether	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Butylbenzylphthalate	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Carbazole	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Chrysene	0.890 (0.195)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Dibenzo(a,h)Anthracene	ND (0.195)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Dibenzofuran	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Diethylphthalate	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Dimethylphthalate	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Di-n-butylphthalate	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Di-n-octylphthalate	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Fluoranthene	2.88 (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Fluorene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Hexachlorobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Hexachlorobutadiene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Hexachlorocyclopentadiene	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Hexachloroethane	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

-/181 Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-9 S-3 Date Sampled: 09/27/16 11:20

Percent Solids: 82 Initial Volume: 15.6 Final Volume: 0.5

Surrogate: p-Terphenyl-d14

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-09

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	<u>MDL</u>	Method	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u>	Sequence	Batch
Isophorone	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Naphthalene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Nitrobenzene	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
N-Nitrosodimethylamine	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
N-nitrosodiphenylamine	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Pentachlorophenol	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Phenanthrene	2.26 (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Phenol	ND (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Pyrene	3.17 (0.389)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
Pyridine	ND (1.95)		8270D		1	10/08/16 8:29	CZJ0094	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		65 %	•	30-130				
Surrogate: 2,4,6-Tribromophenol		<i>75 %</i>		30-130				
Surrogate: 2-Chlorophenol-d4		<i>72 %</i>		30-130				
Surrogate: 2-Fluorobiphenyl		60 %		30-130				
Surrogate: 2-Fluorophenol		71 %		30-130				
Surrogate: Nitrobenzene-d5		59 %		30-130				
Surrogate: Phenol-d6		<i>75 %</i>		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

129 %

Fax: 401-461-4486

http://www.ESSLaboratory.com

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3 Date Sampled: 09/29/16 14:10

Percent Solids: 85

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 12.4 (2.37)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:50	<u>I/V</u> 2.49	$\frac{\mathbf{F/V}}{100}$	Batch CJ61103
Barium	50.4 (2.37)		6010C		1	KJK	10/12/16 20:50	2.49	100	CJ61103
Cadmium	ND (0.47)		6020A		20	NAR	10/13/16 16:01	2.49	100	CJ61103
Chromium	34.3 (0.95)		6010C		1	KJK	10/12/16 20:50	2.49	100	CJ61103
Lead	34.1 (4.73)		6010C		1	KJK	10/12/16 20:50	2.49	100	CJ61103
Mercury	0.053 (0.034)		7471B		1	BJV	10/11/16 13:17	0.69	40	CJ61104
Selenium	ND (0.47)		6020A		20	NAR	10/13/16 16:01	2.49	100	CJ61103
Silver	ND (0.47)		6010C		1	KJK	10/12/16 20:50	2.49	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3

Date Sampled: 09/29/16 14:10 Percent Solids: 85

Initial Volume: 8.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0036)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 17:12	Sequence CZJ0122	Batch CJ61137
1,1,1-Trichloroethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,1,2,2-Tetrachloroethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,1,2-Trichloroethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,1-Dichloroethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,1-Dichloroethene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,1-Dichloropropene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2,3-Trichlorobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2,3-Trichloropropane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2,4-Trichlorobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2,4-Trimethylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2-Dibromo-3-Chloropropane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2-Dibromoethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2-Dichlorobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2-Dichloroethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,2-Dichloropropane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,3,5-Trichlorobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,3,5-Trimethylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,3-Dichlorobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,3-Dichloropropene (Total)	ND (0.0031)		8260B Low		0	10/11/16 17:12		[CALC]
1,4-Dichlorobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
1,4-Dioxane	ND (0.0727)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
2,2-Dichloropropane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
2-Butanone	ND (0.0364)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
2-Chlorotoluene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
2-Hexanone	ND (0.0364)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
4-Chlorotoluene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
4-Isopropyltoluene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
4-Methyl-2-Pentanone	ND (0.0364)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Acetone	ND (0.0364)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Acrylonitrile	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Allyl Chloride	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3 Date Sampled: 09/29/16 14:10

Percent Solids: 85
Initial Volume: 8.1

Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0036)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/11/16 17:12	Sequence CZJ0122	Batch CJ61137
Bromobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Bromochloromethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Bromodichloromethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Bromoform	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Bromomethane	ND (0.0073)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Carbon Disulfide	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Carbon Tetrachloride	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Chlorobenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Chloroethane	ND (0.0073)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Chloroform	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Chloromethane	ND (0.0073)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
cis-1,2-Dichloroethene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Dibromochloromethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Dibromomethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Dichlorodifluoromethane	ND (0.0073)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Diethyl Ether	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Di-isopropyl ether	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Ethyl tertiary-butyl ether	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Ethylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Hexachlorobutadiene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Isopropylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Methyl tert-Butyl Ether	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Methylene Chloride	ND (0.0182)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Naphthalene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
n-Butylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
n-Propylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
sec-Butylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Styrene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
tert-Butylbenzene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Tertiary-amyl methyl ether	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Tertiary-butyl Alcohol	ND (0.0364)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3 Date Sampled: 09/29/16 14:10

Percent Solids: 85 Initial Volume: 8.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Analyte	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Tetrahydrofuran	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Toluene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
trans-1,2-Dichloroethene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Trichloroethene	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Trichlorofluoromethane	ND (0.0036)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Vinyl Chloride	ND (0.0073)		8260B Low		1	10/11/16 17:12	CZJ0122	CJ61137
Xylenes (Total)	ND (0.0062)		8260B Low		1	10/11/16 17:12		[CALC]
	9/	6Recovery	Qualifier	Limits				

	MCCOVCIY	Quanner	LITTICS
Surrogate: 1,2-Dichloroethane-d4	122 %		70-130
Surrogate: 4-Bromofluorobenzene	103 %		70-130
Surrogate: Dibromofluoromethane	115 %		70-130
Surrogate: Toluene-d8	108 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3

Date Sampled: 09/29/16 14:10

Percent Solids: 85 Initial Volume: 20.1 Final Volume: 10

Extraction Method: 3540C

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 16:53

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1221	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1232	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1242	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1248	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1254	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1260	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1262	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
Aroclor 1268	ND (0.0586)		8082A		1	10/11/16 20:46		CJ60709
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		65 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		71 %		30-150				
Surrogate: Tetrachloro-m-xylene		74 %		30-150				

72 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3 Date Sampled: 09/29/16 14:10

Percent Solids: 85 Initial Volume: 19.7 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: DPS

Prepared: 10/7/16 9:45

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 64.2 (44.9)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 21:39	Sequence CZJ0081	Batch CJ60608
	%Rec	covery	Qualifier	Limits				
Surrogate: O-Terphenyl	,	74 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

mality A

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3

Date Sampled: 09/29/16 14:10 Percent Solids: 85

Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.395)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 17:06	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2-Chlorophenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2-Methylnaphthalene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2-Methylphenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2-Nitroaniline	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
2-Nitrophenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (0.791)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
3+4-Methylphenol	ND (0.791)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
3-Nitroaniline	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
4-Chloroaniline	ND (0.791)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
4-Nitroaniline	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
4-Nitrophenol	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Acenaphthene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Acenaphthylene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3 Date Sampled: 09/29/16 14:10

Percent Solids: 85 Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.791)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 17:06	Sequence CZJ0113	Batch CJ60609
Aniline	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Anthracene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Azobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzidine	ND (0.791)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzo(a)anthracene	0.982 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzo(a)pyrene	1.06 (0.198)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzo(b)fluoranthene	1.67 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzo(g,h,i)perylene	0.490 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzo(k)fluoranthene	0.523 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzoic Acid	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Carbazole	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Chrysene	0.953 (0.198)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	0.205 (0.198)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Dibenzofuran	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Diethylphthalate	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Dimethylphthalate	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Fluoranthene	2.26 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Fluorene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Hexachloroethane	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	0.428 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

-7181 Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-10 S-3 Date Sampled: 09/29/16 14:10

Percent Solids: 85 Initial Volume: 14.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-10

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Naphthalene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Nitrobenzene	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Pentachlorophenol	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Phenanthrene	1.26 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Phenol	ND (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Pyrene	1.86 (0.395)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
Pyridine	ND (1.98)		8270D		1	10/11/16 17:06	CZJ0113	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		54 %		30-130				
Surrogate: 2,4,6-Tribromophenol		90 %		30-130				
Surrogate: 2-Chlorophenol-d4		63 %		30-130				
Surrogate: 2-Fluorobiphenyl		59 %		30-130				
Surrogate: 2-Fluorophenol		59 %		30-130				
Surrogate: Nitrobenzene-d5		<i>55 %</i>		30-130				
Surrogate: Phenol-d6		66 %		30-130				
Surrogate: p-Terphenyl-d14		109 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2 Date Sampled: 09/29/16 14:45

88

Percent Solids:

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 6.57 (2.39)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:54	<u>I/V</u> 2.38	<u>F/V</u> 100	Batch CJ61103
Barium	45.0 (2.39)		6010C		1	KJK	10/12/16 20:54	2.38	100	CJ61103
Cadmium	ND (0.48)		6020A		20	NAR	10/13/16 16:07	2.38	100	CJ61103
Chromium	24.8 (0.96)		6010C		1	KJK	10/12/16 20:54	2.38	100	CJ61103
Lead	35.3 (4.79)		6010C		1	KJK	10/12/16 20:54	2.38	100	CJ61103
Mercury	0.098 (0.033)		7471B		1	BJV	10/11/16 13:19	0.69	40	CJ61104
Selenium	ND (0.48)		6020A		20	NAR	10/13/16 16:07	2.38	100	CJ61103
Silver	0.78 (0.48)		6010C		1	KJK	10/12/16 20:54	2.38	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2 Date Sampled: 09/29/16 14:45

Percent Solids: 88 Initial Volume: 8.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0034)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 17:38	Sequence CZJ0122	Batch CJ61137
1,1,1-Trichloroethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,1,2,2-Tetrachloroethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,1,2-Trichloroethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,1-Dichloroethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,1-Dichloroethene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,1-Dichloropropene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2,3-Trichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2,3-Trichloropropane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2,4-Trichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2,4-Trimethylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2-Dibromo-3-Chloropropane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2-Dibromoethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2-Dichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2-Dichloroethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,2-Dichloropropane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,3,5-Trichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,3,5-Trimethylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,3-Dichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,3-Dichloropropene (Total)	ND (0.0030)		8260B Low		0	10/11/16 17:38		[CALC]
1,4-Dichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
1,4-Dioxane	ND (0.0678)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
2,2-Dichloropropane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
2-Butanone	ND (0.0339)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
2-Chlorotoluene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
2-Hexanone	ND (0.0339)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
4-Chlorotoluene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
4-Isopropyltoluene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
4-Methyl-2-Pentanone	ND (0.0339)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Acetone	ND (0.0339)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Acrylonitrile	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Allyl Chloride	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2 Date Sampled: 09/29/16 14:45

Percent Solids: 88 Initial Volume: 8.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Analyte Benzene	Results (MRL) ND (0.0034)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/11/16 17:38	Sequence CZJ0122	Batch CJ61137
Bromobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Bromochloromethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Bromodichloromethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Bromoform	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Bromomethane	ND (0.0068)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Carbon Disulfide	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Carbon Tetrachloride	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Chlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Chloroethane	ND (0.0068)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Chloroform	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Chloromethane	ND (0.0068)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
cis-1,2-Dichloroethene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Dibromochloromethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Dibromomethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Dichlorodifluoromethane	ND (0.0068)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Diethyl Ether	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Di-isopropyl ether	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Ethyl tertiary-butyl ether	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Ethylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Hexachlorobutadiene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Isopropylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Methyl tert-Butyl Ether	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Methylene Chloride	ND (0.0170)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Naphthalene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
n-Butylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
n-Propylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
sec-Butylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Styrene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
tert-Butylbenzene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Tertiary-amyl methyl ether	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Tertiary-butyl Alcohol	ND (0.0339)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2

Date Sampled: 09/29/16 14:45

Percent Solids: 88 Initial Volume: 8.4 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Tetrahydrofuran	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Toluene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
trans-1,2-Dichloroethene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Trichloroethene	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Trichlorofluoromethane	ND (0.0034)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Vinyl Chloride	ND (0.0068)		8260B Low		1	10/11/16 17:38	CZJ0122	CJ61137
Xylenes (Total)	ND (0.0060)		8260B Low		1	10/11/16 17:38		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	125 %		70-130
Surrogate: 4-Bromofluorobenzene	105 %		70-130
Surrogate: Dibromofluoromethane	116 %		70-130
Surrogate: Toluene-d8	105 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2 Date Sampled: 09/29/16 14:45

Percent Solids: 88 Initial Volume: 20.7 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 16:53

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1221	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1232	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1242	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1248	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1254	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1260	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1262	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
Aroclor 1268	ND (0.0550)		8082A		1	10/11/16 21:04		CJ60709
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		61 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		68 %		30-150				
Surrogate: Tetrachloro-m-xylene		72 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		72 %		20_150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2 Date Sampled: 09/29/16 14:45

Percent Solids: 88 Initial Volume: 19.8 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: ZLC

Prepared: 10/7/16 10:00

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) M 209 (43.2)	DL Method 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 10/07/16 15:39	Sequence CZJ0090	Batch CJ60712
	%Recove	ry Qualifier	Limits				
Surrogate: O-Ternhenyl	C2.00		40 140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability ♦ Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2

Date Sampled: 09/29/16 14:45 Percent Solids: 88

Initial Volume: 14.4 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (1.58)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u> 4	<u>Analyzed</u> 10/13/16 19:03	Sequence CZJ0162	Batch CJ60609
1,2,4-Trichlorobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
1,2-Dichlorobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
1,3-Dichlorobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
1,4-Dichlorobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,3,4,6-Tetrachlorophenol	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,4,5-Trichlorophenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,4,6-Trichlorophenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,4-Dichlorophenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,4-Dimethylphenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,4-Dinitrophenol	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,4-Dinitrotoluene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2,6-Dinitrotoluene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2-Chloronaphthalene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2-Chlorophenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2-Methylnaphthalene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2-Methylphenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2-Nitroaniline	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
2-Nitrophenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
3,3'-Dichlorobenzidine	ND (3.17)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
3+4-Methylphenol	ND (3.17)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
3-Nitroaniline	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
4,6-Dinitro-2-Methylphenol	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
4-Bromophenyl-phenylether	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
4-Chloro-3-Methylphenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
4-Chloroaniline	ND (3.17)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
4-Chloro-phenyl-phenyl ether	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
4-Nitroaniline	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
4-Nitrophenol	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Acenaphthene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Acenaphthylene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2 Date Sampled: 09/29/16 14:45

Percent Solids: 88 Initial Volume: 14.4 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (3.17)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u> 4	<u>Analyzed</u> 10/13/16 19:03	Sequence CZJ0162	Batch CJ60609
Aniline	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Anthracene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Azobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzidine	ND (3.17)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzo(a)anthracene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzo(a)pyrene	ND (0.793)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzo(b)fluoranthene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzo(g,h,i)perylene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzo(k)fluoranthene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzoic Acid	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Benzyl Alcohol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
bis(2-Chloroethoxy)methane	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
bis(2-Chloroethyl)ether	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
bis(2-chloroisopropyl)Ether	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
bis(2-Ethylhexyl)phthalate	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Butylbenzylphthalate	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Carbazole	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Chrysene	0.853 (0.793)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Dibenzo(a,h)Anthracene	ND (0.793)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Dibenzofuran	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Diethylphthalate	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Dimethylphthalate	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Di-n-butylphthalate	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Di-n-octylphthalate	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Fluoranthene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Fluorene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Hexachlorobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Hexachlorobutadiene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Hexachlorocyclopentadiene	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Hexachloroethane	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-11 S-2 Date Sampled: 09/29/16 14:45

Percent Solids: 88 Initial Volume: 14.4 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-11

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Naphthalene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Nitrobenzene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
N-Nitrosodimethylamine	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
N-Nitroso-Di-n-Propylamine	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
N-nitrosodiphenylamine	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Pentachlorophenol	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Phenanthrene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Phenol	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Pyrene	ND (1.58)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
Pyridine	ND (7.93)		8270D		4	10/13/16 19:03	CZJ0162	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		56 %		30-130				
Surrogate: 2,4,6-Tribromophenol		73 %		30-130				
Surrogate: 2-Chlorophenol-d4		64 %		30-130				
Surrogate: 2-Fluorobiphenyl		72 %		30-130				
Surrogate: 2-Fluorophenol		64 %		30-130				
Surrogate: Nitrobenzene-d5		59 %		30-130				
Surrogate: Phenol-d6		65 %		30-130				
Surrogate: p-Terphenyl-d14		84 %		30-130				

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1 Date Sampled: 09/29/16 15:05

Percent Solids: 92

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 13.9 (1.92)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 20:59	<u>I/V</u> 2.83	$\frac{\mathbf{F/V}}{100}$	Batch CJ61103
Barium	50.5 (1.92)		6010C		1	KJK	10/12/16 20:59	2.83	100	CJ61103
Cadmium	ND (0.38)		6020A		20	NAR	10/13/16 16:25	2.83	100	CJ61103
Chromium	53.0 (0.77)		6010C		1	KJK	10/12/16 20:59	2.83	100	CJ61103
Lead	12.5 (3.84)		6010C		1	KJK	10/12/16 20:59	2.83	100	CJ61103
Mercury	ND (0.032)		7471B		1	BJV	10/11/16 13:21	0.67	40	CJ61104
Selenium	ND (0.38)		6020A		20	NAR	10/13/16 16:25	2.83	100	CJ61103
Silver	ND (0.38)		6010C		1	KJK	10/12/16 20:59	2.83	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1 Date Sampled: 09/29/16 15:05

Percent Solids: 92 Initial Volume: 7.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0037)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:04	Sequence CZJ0122	Batch CJ61137
1,1,1-Trichloroethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,1,2,2-Tetrachloroethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,1,2-Trichloroethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,1-Dichloroethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,1-Dichloroethene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,1-Dichloropropene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2,3-Trichlorobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2,3-Trichloropropane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2,4-Trichlorobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2,4-Trimethylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2-Dibromo-3-Chloropropane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2-Dibromoethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2-Dichlorobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2-Dichloroethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,2-Dichloropropane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,3,5-Trichlorobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,3,5-Trimethylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,3-Dichlorobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,3-Dichloropropene (Total)	ND (0.0034)		8260B Low		0	10/11/16 18:04		[CALC]
1,4-Dichlorobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
1,4-Dioxane	ND (0.0744)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
2,2-Dichloropropane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
2-Butanone	ND (0.0372)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
2-Chlorotoluene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
2-Hexanone	ND (0.0372)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
4-Chlorotoluene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
4-Isopropyltoluene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
4-Methyl-2-Pentanone	ND (0.0372)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Acetone	0.0525 (0.0372)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Acrylonitrile	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Allyl Chloride	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1 Date Sampled: 09/29/16 15:05

Percent Solids: 92 Initial Volume: 7.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0037)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:04	Sequence CZJ0122	Batch CJ61137
Bromobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Bromochloromethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Bromodichloromethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Bromoform	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Bromomethane	ND (0.0074)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Carbon Disulfide	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Carbon Tetrachloride	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Chlorobenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Chloroethane	ND (0.0074)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Chloroform	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Chloromethane	ND (0.0074)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
cis-1,2-Dichloroethene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Dibromochloromethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Dibromomethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Dichlorodifluoromethane	ND (0.0074)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Diethyl Ether	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Di-isopropyl ether	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Ethyl tertiary-butyl ether	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Ethylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Hexachlorobutadiene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Isopropylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Methyl tert-Butyl Ether	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Methylene Chloride	ND (0.0186)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Naphthalene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
n-Butylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
n-Propylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
sec-Butylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Styrene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
tert-Butylbenzene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Tertiary-amyl methyl ether	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Tertiary-butyl Alcohol	ND (0.0372)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1 Date Sampled: 09/29/16 15:05

Percent Solids: 92 Initial Volume: 7.3 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Analyte Tetrachloroethene	Results (MRL) ND (0.0037)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:04	Sequence CZJ0122	Batch CJ61137
Tetrahydrofuran	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Toluene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
trans-1,2-Dichloroethene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Trichloroethene	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Trichlorofluoromethane	ND (0.0037)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Vinyl Chloride	ND (0.0074)		8260B Low		1	10/11/16 18:04	CZJ0122	CJ61137
Xylenes (Total)	ND (0.0068)		8260B Low		1	10/11/16 18:04		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	124 %		70-130
Surrogate: 4-Bromofluorobenzene	104 %		70-130
Surrogate: Dibromofluoromethane	117 %		70-130
Surrogate: Toluene-d8	106 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1 Date Sampled: 09/29/16 15:05

Percent Solids: 92 Initial Volume: 19.4

Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 16:53

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1221	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1232	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1242	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1248	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1254	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1260	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1262	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
Aroclor 1268	ND (0.0560)		8082A		1	10/11/16 21:23		CJ60709
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		71 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		78 %		30-150				
Surrogate: Tetrachloro-m-xylene		77 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		<i>78 %</i>		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1 Date Sampled: 09/29/16 15:05

Percent Solids: 92 Initial Volume: 19.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: ZLC

Prepared: 10/7/16 10:00

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 48.3 (42.0)	MDL	Method 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/07/16 16:18	Sequence CZJ0090	Batch CJ60712
	%Re	ecovery	Qualifier	Limits				
Surrogate: O-Terphenyl		CO 0/		40 140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fa

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1

Date Sampled: 09/29/16 15:05 92

Percent Solids: Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.350)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:21	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2-Chlorophenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2-Methylnaphthalene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2-Methylphenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2-Nitroaniline	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
2-Nitrophenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (0.701)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
3+4-Methylphenol	ND (0.701)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
3-Nitroaniline	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
4-Chloroaniline	ND (0.701)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
4-Nitroaniline	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
4-Nitrophenol	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Acenaphthene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Acenaphthylene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1

Date Sampled: 09/29/16 15:05

Percent Solids: 92

Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.701)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:21	Sequence CZJ0113	Batch CJ60609
Aniline	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Anthracene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Azobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzidine	ND (0.701)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzo(a)anthracene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzo(a)pyrene	0.199 (0.176)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzo(b)fluoranthene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzo(g,h,i)perylene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzo(k)fluoranthene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzoic Acid	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Carbazole	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Chrysene	ND (0.176)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	ND (0.176)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Dibenzofuran	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Diethylphthalate	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Dimethylphthalate	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Fluoranthene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Fluorene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Hexachloroethane	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-12 S-1 Date Sampled: 09/29/16 15:05

Percent Solids: 92 Initial Volume: 15.5 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-12

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Naphthalene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Nitrobenzene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Pentachlorophenol	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Phenanthrene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Phenol	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Pyrene	ND (0.350)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
Pyridine	ND (1.76)		8270D		1	10/11/16 18:21	CZJ0113	CJ60609
-		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		79 %		30-130				
Surrogate: 2,4,6-Tribromophenol		89 %		30-130				
Surrogate: 2-Chlorophenol-d4		85 %		30-130				
Surrogate: 2-Fluorobiphenyl		78 %		30-130				
Surrogate: 2-Fluorophenol		80 %		30-130				
Surrogate: Nitrobenzene-d5		80 %		30-130				
Surrogate: Phenol-d6		87 %		30-130				
Surrogate: p-Terphenyl-d14		102 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92

reicent sonus. 92

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 15.8 (2.55)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 21:18	<u>I/V</u> 2.13	<u>F/V</u> 100	Batch CJ61103
Barium	30.1 (2.55)		6010C		1	KJK	10/12/16 21:18	2.13	100	CJ61103
Cadmium	ND (0.51)		6020A		20	NAR	10/13/16 16:31	2.13	100	CJ61103
Chromium	27.3 (1.02)		6010C		1	KJK	10/12/16 21:18	2.13	100	CJ61103
Lead	277 (5.11)		6010C		1	KJK	10/12/16 21:18	2.13	100	CJ61103
Mercury	0.094 (0.030)		7471B		1	BJV	10/11/16 13:23	0.71	40	CJ61104
Selenium	ND (0.51)		6020A		20	NAR	10/13/16 16:31	2.13	100	CJ61103
Silver	ND (0.51)		6010C		1	KJK	10/12/16 21:18	2.13	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92 Initial Volume: 8.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0034)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/11/16 18:30	Sequence CZJ0122	Batch CJ61137
1,1,1-Trichloroethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,1,2,2-Tetrachloroethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,1,2-Trichloroethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,1-Dichloroethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,1-Dichloroethene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,1-Dichloropropene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2,3-Trichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2,3-Trichloropropane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2,4-Trichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2,4-Trimethylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2-Dibromo-3-Chloropropane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2-Dibromoethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2-Dichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2-Dichloroethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,2-Dichloropropane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,3,5-Trichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,3,5-Trimethylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,3-Dichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,3-Dichloropropene (Total)	ND (0.0031)		8260B Low		0	10/11/16 18:30		[CALC]
1,4-Dichlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
1,4-Dioxane	ND (0.0671)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
2,2-Dichloropropane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
2-Butanone	ND (0.0336)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
2-Chlorotoluene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
2-Hexanone	ND (0.0336)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
4-Chlorotoluene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
4-Isopropyltoluene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
4-Methyl-2-Pentanone	ND (0.0336)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Acetone	ND (0.0336)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Acrylonitrile	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Allyl Chloride	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92 Initial Volume: 8.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0034)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/11/16 18:30	Sequence CZJ0122	Batch CJ61137
Bromobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Bromochloromethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Bromodichloromethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Bromoform	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Bromomethane	ND (0.0067)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Carbon Disulfide	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Carbon Tetrachloride	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Chlorobenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Chloroethane	ND (0.0067)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Chloroform	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Chloromethane	ND (0.0067)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
cis-1,2-Dichloroethene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Dibromochloromethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Dibromomethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Dichlorodifluoromethane	ND (0.0067)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Diethyl Ether	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Di-isopropyl ether	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Ethyl tertiary-butyl ether	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Ethylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Hexachlorobutadiene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Isopropylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Methyl tert-Butyl Ether	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Methylene Chloride	ND (0.0168)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Naphthalene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
n-Butylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
n-Propylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
sec-Butylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Styrene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
tert-Butylbenzene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Tertiary-amyl methyl ether	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Tertiary-butyl Alcohol	ND (0.0336)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service http://www.ESSLaboratory.com

Page 119 of 198

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92 Initial Volume: 8.1 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Tetrahydrofuran	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Toluene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
trans-1,2-Dichloroethene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Trichloroethene	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Trichlorofluoromethane	ND (0.0034)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Vinyl Chloride	ND (0.0067)		8260B Low		1	10/11/16 18:30	CZJ0122	CJ61137
Xylenes (Total)	ND (0.0062)		8260B Low		1	10/11/16 18:30		[CALC]
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichloroethane-d4		123 %		70-130				

	,	
Surrogate: 1,2-Dichloroethane-d4	123 %	70-130
Surrogate: 4-Bromofluorobenzene	100 %	70-130
Surrogate: Dibromofluoromethane	115 %	70-130
Surrogate: Toluene-d8	109 %	70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92 Initial Volume: 20.3 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 16:53

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1221	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1232	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1242	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1248	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1254	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1260	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1262	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
Aroclor 1268	ND (0.0536)		8082A		1	10/11/16 22:20		CJ60709
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		79 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		91 %		30-150				
Surrogate: Tetrachloro-m-xylene		77 %		30-150				
Surrogate: Tetrachloro-m-xylene [2C]		96 %		30-150				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92 Initial Volume: 19.9 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: ZLC

Prepared: 10/7/16 10:00

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 222 (41.0)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	<u>Analyzed</u> 10/07/16 18:14	Sequence CZJ0090	Batch CJ60712
	%Rec	overy:	Qualifier	Limits				
Surrogate: O-Terphenyl	7	76 04		40 140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3

Date Sampled: 09/28/16 14:50 Percent Solids: 92

Percent Solids: 99 Initial Volume: 14 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.388)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:59	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2-Chlorophenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2-Methylnaphthalene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2-Methylphenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2-Nitroaniline	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
2-Nitrophenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (0.777)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
3+4-Methylphenol	ND (0.777)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
3-Nitroaniline	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
4-Chloroaniline	ND (0.777)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
4-Nitroaniline	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
4-Nitrophenol	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Acenaphthene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Acenaphthylene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92
Initial Volume: 14

Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.777)	<u>MDL</u>	<u>Method</u> 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:59	Sequence CZJ0113	Batch CJ60609
Aniline	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Anthracene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Azobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzidine	ND (0.777)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzo(a)anthracene	0.723 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzo(a)pyrene	0.856 (0.195)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzo(b)fluoranthene	1.36 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzo(g,h,i)perylene	0.552 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzo(k)fluoranthene	0.531 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzoic Acid	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Carbazole	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Chrysene	0.922 (0.195)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	ND (0.195)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Dibenzofuran	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Diethylphthalate	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Dimethylphthalate	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Fluoranthene	2.20 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Fluorene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Hexachloroethane	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	0.422 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-13 S-3 Date Sampled: 09/28/16 14:50

Percent Solids: 92 Initial Volume: 14 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-13

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Naphthalene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Nitrobenzene	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Pentachlorophenol	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Phenanthrene	0.871 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Phenol	ND (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Pyrene	2.21 (0.388)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
Pyridine	ND (1.95)		8270D		1	10/11/16 18:59	CZJ0113	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		61 %		30-130				
Surrogate: 2,4,6-Tribromophenol		87 %		30-130				
Surrogate: 2-Chlorophenol-d4		73 %		30-130				
Surrogate: 2-Fluorobiphenyl		70 %		30-130				
Surrogate: 2-Fluorophenol		68 %		30-130				
Surrogate: Nitrobenzene-d5		65 %		30-130				
Surrogate: Phenol-d6		76 %		30-130				
Surrogate: p-Terphenyl-d14		120 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4 Date Sampled: 09/29/16 12:25

Percent Solids:

84

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 11.8 (2.28)	<u>MDL</u>	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 21:22	<u>I/V</u> 2.62	<u>F/V</u> 100	Batch CJ61103
Barium	71.4 (2.28)		6010C		1	KJK	10/12/16 21:22	2.62	100	CJ61103
Cadmium	ND (0.46)		6020A		20	NAR	10/13/16 16:37	2.62	100	CJ61103
Chromium	57.2 (0.91)		6010C		1	KJK	10/12/16 21:22	2.62	100	CJ61103
Lead	318 (4.56)		6010C		1	KJK	10/12/16 21:22	2.62	100	CJ61103
Mercury	0.043 (0.039)		7471B		1	BJV	10/11/16 13:25	0.6	40	CJ61104
Selenium	ND (0.46)		6020A		20	NAR	10/13/16 16:37	2.62	100	CJ61103
Silver	ND (0.46)		6010C		1	KJK	10/12/16 21:22	2.62	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4

Date Sampled: 09/29/16 12:25

Percent Solids: 84 Initial Volume: 6.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0045)	<u>MDL</u>	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 18:56	Sequence CZJ0122	Batch CJ61137
1,1,1-Trichloroethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,1,2,2-Tetrachloroethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,1,2-Trichloroethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,1-Dichloroethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,1-Dichloroethene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,1-Dichloropropene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2,3-Trichlorobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2,3-Trichloropropane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2,4-Trichlorobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2,4-Trimethylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2-Dibromo-3-Chloropropane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2-Dibromoethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2-Dichlorobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2-Dichloroethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,2-Dichloropropane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,3,5-Trichlorobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,3,5-Trimethylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,3-Dichlorobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,3-Dichloropropene (Total)	ND (0.0037)		8260B Low		0	10/11/16 18:56		[CALC]
1,4-Dichlorobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
1,4-Dioxane	ND (0.0892)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
2,2-Dichloropropane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
2-Butanone	ND (0.0446)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
2-Chlorotoluene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
2-Hexanone	ND (0.0446)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
4-Chlorotoluene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
4-Isopropyltoluene	0.138 (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
4-Methyl-2-Pentanone	ND (0.0446)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Acetone	ND (0.0446)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Acrylonitrile	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Allyl Chloride	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4

Date Sampled: 09/29/16 12:25 Percent Solids: 84

Initial Volume: 6.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0045)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/11/16 18:56	Sequence CZJ0122	Batch CJ61137
Bromobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Bromochloromethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Bromodichloromethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Bromoform	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Bromomethane	ND (0.0089)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Carbon Disulfide	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Carbon Tetrachloride	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Chlorobenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Chloroethane	ND (0.0089)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Chloroform	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Chloromethane	ND (0.0089)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
cis-1,2-Dichloroethene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Dibromochloromethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Dibromomethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Dichlorodifluoromethane	ND (0.0089)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Diethyl Ether	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Di-isopropyl ether	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Ethyl tertiary-butyl ether	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Ethylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Hexachlorobutadiene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Isopropylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Methyl tert-Butyl Ether	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Methylene Chloride	ND (0.0223)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Naphthalene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
n-Butylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
n-Propylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
sec-Butylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Styrene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
tert-Butylbenzene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Tertiary-amyl methyl ether	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Tertiary-butyl Alcohol	ND (0.0446)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4 Date Sampled: 09/29/16 12:25

Percent Solids: 84 Initial Volume: 6.7 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Tetrachloroethene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Tetrahydrofuran	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Toluene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
trans-1,2-Dichloroethene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Trichloroethene	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Trichlorofluoromethane	ND (0.0045)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Vinyl Chloride	ND (0.0089)		8260B Low		1	10/11/16 18:56	CZJ0122	CJ61137
Xylenes (Total)	ND (0.0075)		8260B Low		1	10/11/16 18:56		[CALC]
	9/	6Recovery	Qualifier	Limits				

	,	•	
Surrogate: 1,2-Dichloroethane-d4	117 %		70-130
Surrogate: 4-Bromofluorobenzene	107 %		70-130
Surrogate: Dibromofluoromethane	111 %		70-130
Surrogate: Toluene-d8	109 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4

Date Sampled: 09/29/16 12:25

Percent Solids: 84 Initial Volume: 19.9 Final Volume: 10

Extraction Method: 3540C

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 16:53

8082A Polychlorinated Biphenyls (PCB)

Analyte	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1221	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1232	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1242	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1248	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1254	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1260	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1262	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
Aroclor 1268	ND (0.0601)		8082A		1	10/11/16 22:39		CJ60709
	9	%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		70 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		83 %		30-150				
Surrogate: Tetrachloro-m-xylene		78 %		30-150				

30-150

74 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4 Date Sampled: 09/29/16 12:25

Percent Solids: 84 Initial Volume: 19.4 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: ZLC

Prepared: 10/7/16 10:00

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 163 (46.2)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 10/07/16 18:53	Sequence CZJ0090	Batch CJ60712
	%/	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		69 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability • Quality

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4 Date Sampled: 09/29/16 12:25

Percent Solids: 84 Initial Volume: 14.2 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.421)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 19:36	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2-Chlorophenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2-Methylnaphthalene	1.67 (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2-Methylphenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2-Nitroaniline	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
2-Nitrophenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (0.843)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
3+4-Methylphenol	ND (0.843)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
3-Nitroaniline	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
4-Chloroaniline	ND (0.843)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
4-Nitroaniline	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
4-Nitrophenol	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Acenaphthene	1.44 (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Acenaphthylene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4

Date Sampled: 09/29/16 12:25

Percent Solids: 84 Initial Volume: 14.2 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.843)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 19:36	Sequence CZJ0113	Batch CJ60609
Aniline	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Anthracene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Azobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzidine	ND (0.843)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzo(a)anthracene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzo(a)pyrene	ND (0.211)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzo(b)fluoranthene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzo(g,h,i)perylene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzo(k)fluoranthene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzoic Acid	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Carbazole	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Chrysene	ND (0.211)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	ND (0.211)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Dibenzofuran	1.10 (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Diethylphthalate	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Dimethylphthalate	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Fluoranthene	0.429 (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Fluorene	0.992 (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Hexachloroethane	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-14 S-4 Date Sampled: 09/29/16 12:25

Percent Solids: 84 Initial Volume: 14.2 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-14

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Isophorone	Results (MRL) ND (0.421)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 19:36	Sequence CZJ0113	Batch CJ60609
Naphthalene	2.42 (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Nitrobenzene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Pentachlorophenol	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Phenanthrene	1.40 (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Phenol	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Pyrene	ND (0.421)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
Pyridine	ND (2.11)		8270D		1	10/11/16 19:36	CZJ0113	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		77 %		30-130				
Surrogate: 2,4,6-Tribromophenol		90 %		30-130				
Surrogate: 2-Chlorophenol-d4		82 %		30-130				
Surrogate: 2-Fluorobiphenyl		77 %		30-130				
Surrogate: 2-Fluorophenol		78 %		30-130				
Surrogate: Nitrobenzene-d5		77 %		30-130				
Surrogate: Phenol-d6		83 %		30-130				
Surrogate: p-Terphenyl-d14		116 %		30-130				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3 Date Sampled: 09/29/16 10:05

Percent Solids:

74

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 9.64 (2.77)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 21:31	<u>I/V</u> 2.43	$\frac{\mathbf{F/V}}{100}$	Batch CJ61103
Barium	95.7 (2.77)		6010C		1	KJK	10/12/16 21:31	2.43	100	CJ61103
Cadmium	ND (0.55)		6020A		20	NAR	10/13/16 16:42	2.43	100	CJ61103
Chromium	31.0 (1.11)		6010C		1	KJK	10/12/16 21:31	2.43	100	CJ61103
Lead	221 (5.54)		6010C		1	KJK	10/12/16 21:31	2.43	100	CJ61103
Mercury	0.441 (0.044)		7471B		1	BJV	10/11/16 13:27	0.61	40	CJ61104
Selenium	ND (0.55)		6020A		20	NAR	10/13/16 16:42	2.43	100	CJ61103
Silver	ND (0.55)		6010C		1	KJK	10/12/16 21:31	2.43	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3

Date Sampled: 09/29/16 10:05 Percent Solids: 74

Initial Volume: 8
Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Analyte 1,1,1,2-Tetrachloroethane	Results (MRL) ND (0.0042)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 19:48	Sequence CZJ0122	Batch CJ61137
1,1,1-Trichloroethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,1,2,2-Tetrachloroethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,1,2-Trichloroethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,1-Dichloroethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,1-Dichloroethene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,1-Dichloropropene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2,3-Trichlorobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2,3-Trichloropropane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2,4-Trichlorobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2,4-Trimethylbenzene	0.146 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2-Dibromo-3-Chloropropane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2-Dibromoethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2-Dichlorobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2-Dichloroethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,2-Dichloropropane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,3,5-Trichlorobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,3,5-Trimethylbenzene	0.0534 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,3-Dichlorobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,3-Dichloropropene (Total)	ND (0.0031)		8260B Low		0	10/11/16 19:48		[CALC]
1,4-Dichlorobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
1,4-Dioxane	ND (0.0842)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
2,2-Dichloropropane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
2-Butanone	ND (0.0421)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
2-Chlorotoluene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
2-Hexanone	ND (0.0421)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
4-Chlorotoluene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
4-Isopropyltoluene	0.0074 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
4-Methyl-2-Pentanone	ND (0.0421)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Acetone	0.208 (0.0421)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Acrylonitrile	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Allyl Chloride	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

74

Client Sample ID: B-15 S-3

Date Sampled: 09/29/16 10:05

Percent Solids: Initial Volume: 8 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Analyte Benzene	Results (MRL) ND (0.0042)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 19:48	Sequence CZJ0122	Batch CJ61137
Bromobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Bromochloromethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Bromodichloromethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Bromoform	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Bromomethane	ND (0.0084)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Carbon Disulfide	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Carbon Tetrachloride	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Chlorobenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Chloroethane	ND (0.0084)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Chloroform	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Chloromethane	ND (0.0084)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
cis-1,2-Dichloroethene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Dibromochloromethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Dibromomethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Dichlorodifluoromethane	ND (0.0084)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Diethyl Ether	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Di-isopropyl ether	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Ethyl tertiary-butyl ether	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Ethylbenzene	0.0156 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Hexachlorobutadiene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Isopropylbenzene	0.0065 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Methyl tert-Butyl Ether	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Methylene Chloride	ND (0.0211)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Naphthalene	0.0097 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
n-Butylbenzene	0.0097 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
n-Propylbenzene	0.0090 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
sec-Butylbenzene	0.0050 (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Styrene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
tert-Butylbenzene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Tertiary-amyl methyl ether	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Tertiary-butyl Alcohol	ND (0.0421)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3 Date Sampled: 09/29/16 10:05

Percent Solids: 74 Initial Volume: 8 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Analyte Tetrachloroethene	Results (MRL) ND (0.0042)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 19:48	Sequence CZJ0122	Batch CJ61137
Tetrahydrofuran	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Toluene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
trans-1,2-Dichloroethene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Trichloroethene	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Trichlorofluoromethane	ND (0.0042)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Vinyl Chloride	ND (0.0084)		8260B Low		1	10/11/16 19:48	CZJ0122	CJ61137
Xylenes (Total)	0.0441 (0.0062)		8260B Low		1	10/11/16 19:48		[CALC]

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	122 %		70-130
Surrogate: 4-Bromofluorobenzene	99 %		70-130
Surrogate: Dibromofluoromethane	113 %		70-130
Surrogate: Toluene-d8	107 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3 Date Sampled: 09/29/16 10:05

Percent Solids: 74 Initial Volume: 20.6 Final Volume: 10

Extraction Method: 3540C

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 16:53

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	<u>DF</u>	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1221	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1232	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1242	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1248	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1254	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1260	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1262	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
Aroclor 1268	ND (0.0654)		8082A		1	10/12/16 19:11		CJ61328
	0,	6Recovery	Qualifier	Limits				
Surrogator Docachlorobinhonyl	,	•	Qualifici					
Surrogate: Decachlorobiphenyl		83 %		30-150				
Surrogate: Decachlorohinhenyl [20]								

Surrogate: Decachlorobiphenyl	83 %	30-150
Surrogate: Decachlorobiphenyl [2C]	82 %	30-150
Surrogate: Tetrachloro-m-xylene	66 %	30-150
Surrogate: Tetrachloro-m-xylene [2C]	74 %	30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3 Date Sampled: 09/29/16 10:05

Percent Solids: 74 Initial Volume: 20.9 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: ZLC

Prepared: 10/7/16 10:00

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 319 (48.3)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/07/16 19:31	Sequence CZJ0090	Batch CJ60712
	%	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		63 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability ♦ Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3 Date Sampled: 09/29/16 10:05

Percent Solids: 74 Initial Volume: 15.9 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.423)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 20:13	Sequence CZJ0113	Batch CJ60609
1,2,4-Trichlorobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
1,2-Dichlorobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
1,2-Diphenylhydrazine as Azobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
1,3-Dichlorobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
1,4-Dichlorobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,3,4,6-Tetrachlorophenol	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,4,5-Trichlorophenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,4,6-Trichlorophenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,4-Dichlorophenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,4-Dimethylphenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,4-Dinitrophenol	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,4-Dinitrotoluene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2,6-Dinitrotoluene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2-Chloronaphthalene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2-Chlorophenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2-Methylnaphthalene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2-Methylphenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2-Nitroaniline	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
2-Nitrophenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
3,3'-Dichlorobenzidine	ND (0.848)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
3+4-Methylphenol	ND (0.848)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
3-Nitroaniline	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
4,6-Dinitro-2-Methylphenol	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
4-Bromophenyl-phenylether	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
4-Chloro-3-Methylphenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
4-Chloroaniline	ND (0.848)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
4-Chloro-phenyl-phenyl ether	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
4-Nitroaniline	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
4-Nitrophenol	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Acenaphthene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Acenaphthylene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3 Date Sampled: 09/29/16 10:05

Percent Solids: 74
Initial Volume: 15.9

Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.848)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	<u>Analyzed</u> 10/11/16 20:13	Sequence CZJ0113	Batch CJ60609
Aniline	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Anthracene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Azobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzidine	ND (0.848)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzo(a)anthracene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzo(a)pyrene	ND (0.212)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzo(b)fluoranthene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzo(g,h,i)perylene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzo(k)fluoranthene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzoic Acid	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Benzyl Alcohol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
bis(2-Chloroethoxy)methane	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
bis(2-Chloroethyl)ether	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
bis(2-chloroisopropyl)Ether	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
bis(2-Ethylhexyl)phthalate	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Butylbenzylphthalate	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Carbazole	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Chrysene	ND (0.212)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Dibenzo(a,h)Anthracene	ND (0.212)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Dibenzofuran	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Diethylphthalate	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Dimethylphthalate	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Di-n-butylphthalate	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Di-n-octylphthalate	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Fluoranthene	0.490 (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Fluorene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Hexachlorobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Hexachlorobutadiene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Hexachlorocyclopentadiene	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Hexachloroethane	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Indeno(1,2,3-cd)Pyrene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-15 S-3 Date Sampled: 09/29/16 10:05

Percent Solids: 74 Initial Volume: 15.9 Final Volume: 0.5

Surrogate: p-Terphenyl-d14

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-15

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/7/16 10:05

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Naphthalene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Nitrobenzene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
N-Nitrosodimethylamine	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
N-Nitroso-Di-n-Propylamine	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
N-nitrosodiphenylamine	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Pentachlorophenol	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Phenanthrene	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Phenol	ND (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Pyrene	0.478 (0.423)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
Pyridine	ND (2.12)		8270D		1	10/11/16 20:13	CZJ0113	CJ60609
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		56 %		30-130				
Surrogate: 2,4,6-Tribromophenol		84 %		30-130				
Surrogate: 2-Chlorophenol-d4		67 %		30-130				
Surrogate: 2-Fluorobiphenyl		62 %		30-130				
Surrogate: 2-Fluorophenol		63 %		30-130				
Surrogate: Nitrobenzene-d5		57 %		30-130				
Surrogate: Phenol-d6		71 %		30-130				

30-130

122 %

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2 Date Sampled: 09/29/16 09:20

Percent Solids: 88

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry

Extraction Method: 3050B

Total Metals

Analyte Arsenic	Results (MRL) 10.5 (2.10)	MDL	Method 6010C	<u>Limit</u>	<u>DF</u>	Analyst KJK	Analyzed 10/12/16 21:35	<u>I/V</u> 2.69	$\frac{\mathbf{F/V}}{100}$	Batch CJ61103
Barium	110 (2.10)		6010C		1	KJK	10/12/16 21:35	2.69	100	CJ61103
Cadmium	0.49 (0.42)		6020A		20	NAR	10/13/16 16:48	2.69	100	CJ61103
Chromium	34.4 (0.84)		6010C		1	KJK	10/12/16 21:35	2.69	100	CJ61103
Lead	416 (4.20)		6010C		1	KJK	10/12/16 21:35	2.69	100	CJ61103
Mercury	0.971 (0.170)		7471B		5	BJV	10/11/16 15:41	0.66	40	CJ61104
Selenium	0.49 (0.42)		6020A		20	NAR	10/13/16 16:48	2.69	100	CJ61103
Silver	ND (0.42)		6010C		1	KJK	10/12/16 21:35	2.69	100	CJ61103

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2 Date Sampled: 09/29/16 09:20

Percent Solids: 88 Initial Volume: 6 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

1,1,1-Trichloroethane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	
1,1,2,2-Tetrachloroethane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,1,2-Trichloroethane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,1-Dichloroethane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,1-Dichloroethene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,1-Dichloropropene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2,3-Trichlorobenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2,3-Trichloropropane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2,4-Trichlorobenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2,4-Trimethylbenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2-Dibromo-3-Chloropropane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2-Dibromoethane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2-Dichlorobenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2-Dichloroethane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,2-Dichloropropane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,3,5-Trichlorobenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,3,5-Trimethylbenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,3-Dichlorobenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,3-Dichloropropene (Total) ND (0.0042) 8260B Low 0 10/11/16 19:22	[CALC]
1,4-Dichlorobenzene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
1,4-Dioxane ND (0.0942) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
2,2-Dichloropropane ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
2-Butanone ND (0.0471) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
2-Chlorotoluene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
2-Hexanone ND (0.0471) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
4-Chlorotoluene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
4-Isopropyltoluene ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
4-Methyl-2-Pentanone ND (0.0471) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
Acetone 0.0867 (0.0471) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
Acrylonitrile ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137
Allyl Chloride ND (0.0047) 8260B Low 1 10/11/16 19:22 CZJ0	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

 Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2

Date Sampled: 09/29/16 09:20

Percent Solids: 88 Initial Volume: 6 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

$5035/8260 B\ Volatile\ Organic\ Compounds\ /\ Low\ Level$

Analyte Benzene	Results (MRL) ND (0.0047)	MDL	Method 8260B Low	<u>Limit</u>	<u>DF</u>	Analyzed 10/11/16 19:22	Sequence CZJ0122	Batch CJ61137
Bromobenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Bromochloromethane	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Bromodichloromethane	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Bromoform	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Bromomethane	ND (0.0094)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Carbon Disulfide	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Carbon Tetrachloride	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Chlorobenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Chloroethane	ND (0.0094)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Chloroform	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Chloromethane	ND (0.0094)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
cis-1,2-Dichloroethene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Dibromochloromethane	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Dibromomethane	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Dichlorodifluoromethane	ND (0.0094)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Diethyl Ether	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Di-isopropyl ether	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Ethyl tertiary-butyl ether	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Ethylbenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Hexachlorobutadiene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Isopropylbenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Methyl tert-Butyl Ether	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Methylene Chloride	ND (0.0236)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Naphthalene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
n-Butylbenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
n-Propylbenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
sec-Butylbenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Styrene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
tert-Butylbenzene	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Tertiary-amyl methyl ether	ND (0.0047)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Tertiary-butyl Alcohol	ND (0.0471)		8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

88

Client Sample ID: B-16 S-2

Date Sampled: 09/29/16 09:20

Percent Solids: Initial Volume: 6 Final Volume: 10

Extraction Method: 5035

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: MD

5035/8260B Volatile Organic Compounds / Low Level

Analyte Tetrachloroethene	<u>Results (MRL)</u> ND (0.0047)	MDL Method 8260B Low		<u>DF</u>	<u>Analyzed</u> 10/11/16 19:22	Sequence CZJ0122	Batch CJ61137
Tetrahydrofuran	ND (0.0047)	8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Toluene	ND (0.0047)	8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
trans-1,2-Dichloroethene	ND (0.0047)	8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Trichloroethene	ND (0.0047)	8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Trichlorofluoromethane	ND (0.0047)	8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Vinyl Chloride	ND (0.0094)	8260B Low		1	10/11/16 19:22	CZJ0122	CJ61137
Xylenes (Total)	ND (0.0083)	8260B Low		1	10/11/16 19:22		[CALC]
	0/	Pacovany Ouglifier	Limite				

	%Recovery	Qualifier	Limits
Surrogate: 1,2-Dichloroethane-d4	117 %		70-130
Surrogate: 4-Bromofluorobenzene	103 %		70-130
Surrogate: Dibromofluoromethane	112 %		70-130
Surrogate: Toluene-d8	109 %		70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2

Date Sampled: 09/29/16 09:20

Percent Solids: 88 Initial Volume: 20.5 Final Volume: 10

Extraction Method: 3540C

Surrogate: Tetrachloro-m-xylene [2C]

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: SMR

Prepared: 10/7/16 16:53

8082A Polychlorinated Biphenyls (PCB)

<u>Analyte</u>	Results (MRL)	MDL	Method	Limit	DF	Analyzed	Sequence	Batch
Aroclor 1016	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1221	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1232	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1242	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1248	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1254	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1260	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1262	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
Aroclor 1268	ND (0.0551)		8082A		1	10/12/16 19:29		CJ61328
		%Recovery	Qualifier	Limits				
Surrogate: Decachlorobiphenyl		86 %		30-150				
Surrogate: Decachlorobiphenyl [2C]		91 %		30-150				
Surrogate: Tetrachloro-m-xylene		71 %		30-150				

79 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

30-150

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2 Date Sampled: 09/29/16 09:20

Percent Solids: 88 Initial Volume: 19.6 Final Volume: 1

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: ZLC

Prepared: 10/7/16 10:00

8100M Total Petroleum Hydrocarbons

Analyte Total Petroleum Hydrocarbons	Results (MRL) 136 (43.3)	<u>MDL</u>	Method 8100M	<u>Limit</u>	<u>DF</u> 1	Analyzed 10/07/16 20:10	Sequence CZJ0090	Batch CJ60712
	%F	Recovery	Qualifier	Limits				
Surrogate: O-Terphenyl		78 %		40-140				

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fa

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2 Date Sampled: 09/29/16 09:20

Percent Solids: 88 Initial Volume: 15 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/11/16 17:24

8270D Semi-Volatile Organic Compounds

Analyte 1,1-Biphenyl	Results (MRL) ND (0.376)	<u>MDL</u>	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/13/16 3:49	Sequence CZJ0132	Batch CJ61112
1,2,4-Trichlorobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
1,2-Dichlorobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
1,2-Diphenylhydrazine as Azobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
1,3-Dichlorobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
1,4-Dichlorobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,3,4,6-Tetrachlorophenol	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,4,5-Trichlorophenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,4,6-Trichlorophenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,4-Dichlorophenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,4-Dimethylphenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,4-Dinitrophenol	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,4-Dinitrotoluene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2,6-Dinitrotoluene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2-Chloronaphthalene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2-Chlorophenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2-Methylnaphthalene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2-Methylphenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2-Nitroaniline	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
2-Nitrophenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
3,3'-Dichlorobenzidine	ND (0.754)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
3+4-Methylphenol	ND (0.754)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
3-Nitroaniline	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
4,6-Dinitro-2-Methylphenol	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
4-Bromophenyl-phenylether	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
4-Chloro-3-Methylphenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
4-Chloroaniline	ND (0.754)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
4-Chloro-phenyl-phenyl ether	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
4-Nitroaniline	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
4-Nitrophenol	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Acenaphthene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Acenaphthylene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Dependability

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2

Date Sampled: 09/29/16 09:20

Percent Solids: 88 Initial Volume: 15 Final Volume: 0.5

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/11/16 17:24

8270D Semi-Volatile Organic Compounds

Analyte Acetophenone	Results (MRL) ND (0.754)	MDL	Method 8270D	<u>Limit</u>	<u>DF</u>	Analyzed 10/13/16 3:49	Sequence CZJ0132	Batch CJ61112
Aniline	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Anthracene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Azobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzidine	ND (0.754)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzo(a)anthracene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzo(a)pyrene	0.313 (0.189)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzo(b)fluoranthene	0.483 (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzo(g,h,i)perylene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzo(k)fluoranthene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzoic Acid	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Benzyl Alcohol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
bis(2-Chloroethoxy)methane	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
bis(2-Chloroethyl)ether	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
bis(2-chloroisopropyl)Ether	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
bis(2-Ethylhexyl)phthalate	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Butylbenzylphthalate	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Carbazole	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Chrysene	0.340 (0.189)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Dibenzo(a,h)Anthracene	ND (0.189)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Dibenzofuran	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Diethylphthalate	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Dimethylphthalate	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Di-n-butylphthalate	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Di-n-octylphthalate	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Fluoranthene	0.737 (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Fluorene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Hexachlorobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Hexachlorobutadiene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Hexachlorocyclopentadiene	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Hexachloroethane	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Indeno(1,2,3-cd)Pyrene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

Client Sample ID: B-16 S-2

Date Sampled: 09/29/16 09:20

Percent Solids: 88 Initial Volume: 15 Final Volume: 0.5

Surrogate: p-Terphenyl-d14

Extraction Method: 3546

ESS Laboratory Work Order: 1610112 ESS Laboratory Sample ID: 1610112-16

Sample Matrix: Soil Units: mg/kg dry Analyst: TJ

Prepared: 10/11/16 17:24

8270D Semi-Volatile Organic Compounds

<u>Analyte</u>	Results (MRL)	MDL	Method	<u>Limit</u>	<u>DF</u>	Analyzed	Sequence	Batch
Isophorone	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Naphthalene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Nitrobenzene	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
N-Nitrosodimethylamine	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
N-Nitroso-Di-n-Propylamine	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
N-nitrosodiphenylamine	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Pentachlorophenol	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Phenanthrene	0.456 (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Phenol	ND (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Pyrene	0.720 (0.376)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
Pyridine	ND (1.89)		8270D		1	10/13/16 3:49	CZJ0132	CJ61112
		%Recovery	Qualifier	Limits				
Surrogate: 1,2-Dichlorobenzene-d4		41 %		30-130				
Surrogate: 2,4,6-Tribromophenol		51 %		30-130				
Surrogate: 2-Chlorophenol-d4		42 %		30-130				
Surrogate: 2-Fluorobiphenyl		42 %		30-130				
Surrogate: 2-Fluorophenol		41 %		30-130				
Surrogate: Nitrobenzene-d5		41 %		30-130				
Surrogate: Phenol-d6		43 %		30-130				

65 %

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

30-130

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

Analyte	Result	MRL	Units	Spike	Source	%REC	%REC	RPD	RPD Limit	Qualifier
Analyte	Resuit	IIKL		Level	Result	70KEC	Limits	KYU	Limit	Qualifie
			Total Meta	IS						
Batch CJ61103 - 3050B										
Blank										
Arsenic	ND	2.50	mg/kg wet							
Barium	ND	2.50	mg/kg wet							
Cadmium	ND	0.50	mg/kg wet							
Chromium	ND	1.00	mg/kg wet							
ead	ND	5.00	mg/kg wet							
Selenium	ND	0.50	mg/kg wet							
Silver	ND	0.50	mg/kg wet							
cs										
Arsenic	151	9.26	mg/kg wet	161.0		94	80-120			
Barium	333	9.26	mg/kg wet	351.0		95	80-120			
Cadmium	190	23.1	mg/kg wet	190.0		100	80-120			
Chromium	85.1	3.70	mg/kg wet	87.90		97	80-120			
ead	134	18.5	mg/kg wet	138.0		97	80-120			
Selenium	310	23.1	mg/kg wet	305.0		101	80-120			
ilver	56.7	1.85	mg/kg wet	58.00		98	80-120			
CS Dup										
rsenic	145	9.62	mg/kg wet	161.0		90	80-120	4	20	
arium	323	9.62	mg/kg wet	351.0		92	80-120	3	20	
admium	190	24.0	mg/kg wet	190.0		100	80-120	0.01	30	
Chromium	82.5	3.85	mg/kg wet	87.90		94	80-120	3	20	
.ead Selenium	131	19.2 24.0	mg/kg wet	138.0 305.0		95 100	80-120 80-120	3 1	20 30	
Silver	306 55.0	1.92	mg/kg wet	58.00		95	80-120	3	20	
bilver	55.0	1.92	mg/kg wet	56.00		95	80-120	3	20	
atch CJ61104 - 7471B										
Blank										
1ercury	ND	0.033	mg/kg wet							
.cs										
Mercury	16.2	1.65	mg/kg wet	15.90		102	80-120			
.CS Dup										
Mercury	16.1	1.83	mg/kg wet	15.90		101	80-120	1	20	
	5035/8	3260B Volati	le Organic Co	ompound	s / Low L	.evel				
20-b-b C3C0724 F025										
Batch CJ60724 - 5035										
J.1,1,2-Tetrachloroethane	ND	0.0050	mg/kg wet							
.,1,1-Trichloroethane	ND ND	0.0050	mg/kg wet							
.,1,1-Trichloroethane	ND ND	0.0050	mg/kg wet							
1,1,2,7-Trichloroethane	ND ND	0.0050	mg/kg wet							
1,1,2-111chloroethane	ND	0.0050	mg/kg wet							
,,1-Dichloroethene	ND	0.0050	mg/kg wet							
.,1-Dichloropropene	ND	0.0050	mg/kg wet							
., = = .a.no.op.opono	ND	0.0000	g/ ng WCt							

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ60724 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Low Level

Batch CJ60/24 - 5035			
1,2,3-Trichloropropane	ND	0.0050	mg/kg wet
1,2,4-Trichlorobenzene	ND	0.0050	mg/kg wet
1,2,4-Trimethylbenzene	ND	0.0050	mg/kg wet
1,2-Dibromo-3-Chloropropane	ND	0.0050	mg/kg wet
1,2-Dibromoethane	ND	0.0050	mg/kg wet
1,2-Dichlorobenzene	ND	0.0050	mg/kg wet
1,2-Dichloroethane	ND	0.0050	mg/kg wet
1,2-Dichloropropane	ND	0.0050	mg/kg wet
1,3,5-Trichlorobenzene	ND	0.0050	mg/kg wet
.,3,5-Trimethylbenzene	ND	0.0050	mg/kg wet
,3-Dichlorobenzene	ND	0.0050	mg/kg wet
,3-Dichloropropene (Total)	ND	0.0050	mg/kg
,4-Dichlorobenzene	ND	0.0050	mg/kg wet
,4-Dioxane	ND	0.100	mg/kg wet
,2-Dichloropropane	ND	0.0050	mg/kg wet
-Butanone	ND	0.0500	mg/kg wet
-Chlorotoluene	ND	0.0050	mg/kg wet
Hexanone	ND	0.0500	mg/kg wet
-Chlorotoluene	ND	0.0050	mg/kg wet
-Isopropyltoluene	ND	0.0050	mg/kg wet
-Methyl-2-Pentanone	ND	0.0500	mg/kg wet
cetone	ND	0.0500	mg/kg wet
crylonitrile	ND	0.0050	mg/kg wet
lyl Chloride	ND	0.0050	mg/kg wet
enzene	ND	0.0050	mg/kg wet
romobenzene	ND	0.0050	mg/kg wet
romochloromethane	ND	0.0050	mg/kg wet
romodichloromethane	ND	0.0050	mg/kg wet
romoform	ND	0.0050	mg/kg wet
romomethane	ND	0.0100	mg/kg wet
arbon Disulfide	ND	0.0050	mg/kg wet
arbon Tetrachloride	ND	0.0050	mg/kg wet
hlorobenzene	ND	0.0050	mg/kg wet
hloroethane	ND	0.0100	mg/kg wet
hloroform	ND	0.0050	mg/kg wet
hloromethane	ND	0.0100	mg/kg wet
is-1,2-Dichloroethene	ND	0.0050	mg/kg wet
ibromochloromethane	ND	0.0050	mg/kg wet
ibromomethane	ND	0.0050	mg/kg wet
ichlorodifluoromethane	ND	0.0100	mg/kg wet
ethyl Ether	ND	0.0050	mg/kg wet
oi-isopropyl ether	ND	0.0050	mg/kg wet
thyl tertiary-butyl ether	ND	0.0050	mg/kg wet
Ethylbenzene	ND	0.0050	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ60724 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	s /	Low	Leve
------------	----------	---------	-----------	-----	-----	------

Datcii C300724 - 3033							
Isopropylbenzene	ND	0.0050	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.0050	mg/kg wet				
Methylene Chloride	ND	0.0250	mg/kg wet				
Naphthalene	ND	0.0050	mg/kg wet				
n-Butylbenzene	ND	0.0050	mg/kg wet				
n-Propylbenzene	ND	0.0050	mg/kg wet				
sec-Butylbenzene	ND	0.0050	mg/kg wet				
Styrene	ND	0.0050	mg/kg wet				
tert-Butylbenzene	ND	0.0050	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.0050	mg/kg wet				
Tertiary-butyl Alcohol	ND	0.0500	mg/kg wet				
Tetrachloroethene	ND	0.0050	mg/kg wet				
Tetrahydrofuran	ND	0.0050	mg/kg wet				
Toluene	ND	0.0050	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.0050	mg/kg wet				
Trichloroethene	ND	0.0050	mg/kg wet				
Trichlorofluoromethane	ND	0.0050	mg/kg wet				
Vinyl Chloride	ND	0.0100	mg/kg wet				
Xylenes (Total)	ND	0.0100	mg/kg				
Surrogate: 1,2-Dichloroethane-d4	0.0544		mg/kg wet	0.05000	109	70-130	
Surrogate: 4-Bromofluorobenzene	0.0507		mg/kg wet	0.05000	101	70-130	
Surrogate: Dibromofluoromethane	0.0522		mg/kg wet	0.05000	104	70-130	
Surrogate: Toluene-d8	0.0534		mg/kg wet	0.05000	107	70-130	
LCS							
1,1,1,2-Tetrachloroethane	0.0549	0.0050	mg/kg wet	0.05000	110	70-130	
1,1,1-Trichloroethane	0.0530	0.0050	mg/kg wet	0.05000	106	70-130	
1,1,2,2-Tetrachloroethane	0.0472	0.0050	mg/kg wet	0.05000	94	70-130	
1,1,2-Trichloroethane	0.0461	0.0050	mg/kg wet	0.05000	92	70-130	
1,1-Dichloroethane	0.0478	0.0050	mg/kg wet	0.05000	96	70-130	
1,1-Dichloroethene	0.0487	0.0050	mg/kg wet	0.05000	97	70-130	
1,1-Dichloropropene	0.0496	0.0050	mg/kg wet	0.05000	99	70-130	
1,2,3-Trichlorobenzene	0.0489	0.0050	mg/kg wet	0.05000	98	70-130	
1,2,3-Trichloropropane	0.0459	0.0050	mg/kg wet	0.05000	92	70-130	
1,2,4-Trichlorobenzene	0.0478	0.0050	mg/kg wet	0.05000	96	70-130	
1,2,4-Trimethylbenzene	0.0496	0.0050	mg/kg wet	0.05000	99	70-130	
1,2-Dibromo-3-Chloropropane	0.0431	0.0050	mg/kg wet	0.05000	86	70-130	
1,2-Dibromoethane	0.0499	0.0050	mg/kg wet	0.05000	100	70-130	
1,2-Dichlorobenzene	0.0460	0.0050	mg/kg wet	0.05000	92	70-130	
1,2-Dichloroethane	0.0523	0.0050	mg/kg wet	0.05000	105	70-130	
1,2-Dichloropropane	0.0459	0.0050	mg/kg wet	0.05000	92	70-130	
1,3,5-Trichlorobenzene	0.0496	0.0050	mg/kg wet	0.05000	99	70-130	
1,3,5-Trimethylbenzene	0.0505	0.0050	mg/kg wet	0.05000	101	70-130	
1,3-Dichlorobenzene	0.0463	0.0050	mg/kg wet	0.05000	93	70-130	
1,3-Dichloropropene (Total)	0.0881	0.0050	mg/kg				
1,4-Dichlorobenzene	0.0467	0.0050	mg/kg wet	0.05000	93	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ60724 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	s /	Low	Leve
------------	----------	---------	-----------	-----	-----	------

Satch CJ60/24 - 5035						
,4-Dioxane	1.01	0.100	mg/kg wet	1.000	101	70-130
,2-Dichloropropane	0.0504	0.0050	mg/kg wet	0.05000	101	70-130
-Butanone	0.238	0.0500	mg/kg wet	0.2500	95	70-130
-Chlorotoluene	0.0484	0.0050	mg/kg wet	0.05000	97	70-130
Hexanone	0.233	0.0500	mg/kg wet	0.2500	93	70-130
Chlorotoluene	0.0488	0.0050	mg/kg wet	0.05000	98	70-130
-Isopropyltoluene	0.0498	0.0050	mg/kg wet	0.05000	100	70-130
-Methyl-2-Pentanone	0.214	0.0500	mg/kg wet	0.2500	86	70-130
cetone	0.238	0.0500	mg/kg wet	0.2500	95	70-130
crylonitrile	0.0477	0.0050	mg/kg wet	0.05000	95	70-130
lyl Chloride	0.0500	0.0050	mg/kg wet	0.05000	100	70-130
enzene	0.0461	0.0050	mg/kg wet	0.05000	92	70-130
omobenzene	0.0466	0.0050	mg/kg wet	0.05000	93	70-130
omochloromethane	0.0472	0.0050	mg/kg wet	0.05000	94	70-130
omodichloromethane	0.0547	0.0050	mg/kg wet	0.05000	109	70-130
omoform	0.0464	0.0050	mg/kg wet	0.05000	93	70-130
omomethane	0.0496	0.0100	mg/kg wet	0.05000	99	70-130
arbon Disulfide	0.0485	0.0050	mg/kg wet	0.05000	97	70-130
rbon Tetrachloride	0.0551	0.0050	mg/kg wet	0.05000	110	70-130
llorobenzene	0.0484	0.0050	mg/kg wet	0.05000	97	70-130
lloroethane	0.0435	0.0100	mg/kg wet	0.05000	87	70-130
loroform	0.0490	0.0050	mg/kg wet	0.05000	98	70-130
loromethane	0.0545	0.0100	mg/kg wet	0.05000	109	70-130
s-1,2-Dichloroethene	0.0476	0.0050	mg/kg wet	0.05000	95	70-130
bromochloromethane	0.0501	0.0050	mg/kg wet	0.05000	100	70-130
bromomethane	0.0483	0.0050	mg/kg wet	0.05000	97	70-130
chlorodifluoromethane	0.0468	0.0100	mg/kg wet	0.05000	94	70-130
ethyl Ether	0.0474	0.0050	mg/kg wet	0.05000	95	70-130
-isopropyl ether	0.0463	0.0050	mg/kg wet	0.05000	93	70-130
hyl tertiary-butyl ether	0.0440	0.0050	mg/kg wet	0.05000	88	70-130
hylbenzene	0.0521	0.0050	mg/kg wet	0.05000	104	70-130
exachlorobutadiene	0.0490	0.0050	mg/kg wet	0.05000	98	70-130
opropylbenzene	0.0413	0.0050	mg/kg wet	0.05000	83	70-130
ethyl tert-Butyl Ether	0.0468	0.0050	mg/kg wet	0.05000	94	70-130
ethylene Chloride	0.0434	0.0250	mg/kg wet	0.05000	87	70-130
aphthalene	0.0420	0.0050	mg/kg wet	0.05000	84	70-130
Butylbenzene	0.0521	0.0050	mg/kg wet	0.05000	104	70-130
Propylbenzene	0.0487	0.0050	mg/kg wet	0.05000	97	70-130
c-Butylbenzene	0.0485	0.0050	mg/kg wet	0.05000	97	70-130
yrene	0.0509	0.0050	mg/kg wet	0.05000	102	70-130
rt-Butylbenzene	0.0495	0.0050	mg/kg wet	0.05000	99	70-130
ertiary-amyl methyl ether	0.0415	0.0050	mg/kg wet	0.05000	83	70-130
ertiary-butyl Alcohol	0.212	0.0500	mg/kg wet	0.2500	85	70-130
etrachloroethene	0.0500	0.0050	mg/kg wet	0.05000	100	70-130
etrahydrofuran	0.0382	0.0050	mg/kg wet	0.05000	76	70-130

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ60724 - 5035

4-Chlorotoluene

Acetone

Benzene

Acrylonitrile

Allyl Chloride

Bromobenzene

4-Isopropyltoluene

4-Methyl-2-Pentanone

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD		
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier	
	Analyte Result MRL Units Level Result %REC Limits RPI 5035/8260B Volatile Organic Compounds / Low Level										

Datcii CJ00/24 - 3033									
Toluene	0.0474	0.0050	mg/kg wet	0.05000	95	70-130			
trans-1,2-Dichloroethene	0.0467	0.0050	mg/kg wet	0.05000	93	70-130			
Trichloroethene	0.0475	0.0050	mg/kg wet	0.05000	95	70-130			
Trichlorofluoromethane	0.0463	0.0050	mg/kg wet	0.05000	93	70-130			
Vinyl Chloride	0.0552	0.0100	mg/kg wet	0.05000	110	70-130			
Xylenes (Total)	0.152	0.0100	mg/kg						
Surrogate: 1,2-Dichloroethane-d4	0.0578		mg/kg wet	0.05000	116	70-130			
Surrogate: 4-Bromofluorobenzene	0.0562		mg/kg wet	0.05000	112	70-130			
Surrogate: Dibromofluoromethane	0.0549		mg/kg wet	0.05000	110	70-130			
Surrogate: Toluene-d8	0.0547		mg/kg wet	0.05000	109	70-130			
.CS Dup									
,1,1,2-Tetrachloroethane	0.0537	0.0050	mg/kg wet	0.05000	107	70-130	2	25	
.,1,1-Trichloroethane	0.0551	0.0050	mg/kg wet	0.05000	110	70-130	4	25	
.,1,2,2-Tetrachloroethane	0.0511	0.0050	mg/kg wet	0.05000	102	70-130	8	25	
.,1,2-Trichloroethane	0.0489	0.0050	mg/kg wet	0.05000	98	70-130	6	25	
,1-Dichloroethane	0.0502	0.0050	mg/kg wet	0.05000	100	70-130	5	25	
,1-Dichloroethene	0.0517	0.0050	mg/kg wet	0.05000	103	70-130	6	25	
,1-Dichloropropene	0.0518	0.0050	mg/kg wet	0.05000	104	70-130	4	25	
,2,3-Trichlorobenzene	0.0526	0.0050	mg/kg wet	0.05000	105	70-130	7	25	
,2,3-Trichloropropane	0.0492	0.0050	mg/kg wet	0.05000	98	70-130	7	25	
,2,4-Trichlorobenzene	0.0507	0.0050	mg/kg wet	0.05000	101	70-130	6	25	
1,2,4-Trimethylbenzene	0.0513	0.0050	mg/kg wet	0.05000	103	70-130	3	25	
,2-Dibromo-3-Chloropropane	0.0462	0.0050	mg/kg wet	0.05000	92	70-130	7	25	
.,2-Dibromoethane	0.0502	0.0050	mg/kg wet	0.05000	100	70-130	0.5	25	
.,2-Dichlorobenzene	0.0486	0.0050	mg/kg wet	0.05000	97	70-130	5	25	
,2-Dichloroethane	0.0543	0.0050	mg/kg wet	0.05000	109	70-130	4	25	
,2-Dichloropropane	0.0485	0.0050	mg/kg wet	0.05000	97	70-130	5	25	
,3,5-Trichlorobenzene	0.0518	0.0050	mg/kg wet	0.05000	104	70-130	4	25	
,3,5-Trimethylbenzene	0.0521	0.0050	mg/kg wet	0.05000	104	70-130	3	25	
,3-Dichlorobenzene	0.0478	0.0050	mg/kg wet	0.05000	96	70-130	3	25	
.,3-Dichloropropene (Total)	0.0934	0.0050	mg/kg						
,4-Dichlorobenzene	0.0485	0.0050	mg/kg wet	0.05000	97	70-130	4	25	
,4-Dioxane	1.05	0.100	mg/kg wet	1.000	105	70-130	4	20	
2,2-Dichloropropane	0.0525	0.0050	mg/kg wet	0.05000	105	70-130	4	25	
2-Butanone	0.253	0.0500	mg/kg wet	0.2500	101	70-130	6	25	
2-Chlorotoluene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	4	25	
2-Hexanone	0.239	0.0500	mg/kg wet	0.2500	96	70-130	2	25	
			_				_		

185 Frances Avenue, Cranston, RI 02910-2211

0.0503

0.0513

0.233

0.255

0.0513

0.0534

0.0484

0.0050

0.0050

0.0500

0.0500

0.0050

0.0050

0.0050

0.0050

Tel: 401-461-7181

mg/kg wet

0.05000

0.05000

0.2500

0.2500

0.05000

0.05000

0.05000

0.05000

Fax: 401-461-4486

101

103

93

102

103

107

97

http://www.ESSLaboratory.com

3

9

7

7

5

70-130

70-130

70-130

70-130

70-130

70-130

25

25

25

25

25

25

25

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	s /	Low	Leve
------------	----------	---------	-----------	-----	-----	------

Batch CJ60724 - 5035								
Bromochloromethane	0.0507	0.0050	mg/kg wet	0.05000	101	70-130	7	25
romodichloromethane	0.0575	0.0050	mg/kg wet	0.05000	115	70-130	5	25
romoform	0.0460	0.0050	mg/kg wet	0.05000	92	70-130	1	25
romomethane	0.0512	0.0100	mg/kg wet	0.05000	102	70-130	3	25
arbon Disulfide	0.0512	0.0050	mg/kg wet	0.05000	102	70-130	5	25
arbon Tetrachloride	0.0566	0.0050	mg/kg wet	0.05000	113	70-130	3	25
hlorobenzene	0.0476	0.0050	mg/kg wet	0.05000	95	70-130	2	25
nloroethane	0.0448	0.0100	mg/kg wet	0.05000	90	70-130	3	25
nloroform	0.0513	0.0050	mg/kg wet	0.05000	103	70-130	4	25
nloromethane	0.0576	0.0100	mg/kg wet	0.05000	115	70-130	6	25
s-1,2-Dichloroethene	0.0506	0.0050	mg/kg wet	0.05000	101	70-130	6	25
bromochloromethane	0.0492	0.0050	mg/kg wet	0.05000	98	70-130	2	25
bromomethane	0.0513	0.0050	mg/kg wet	0.05000	103	70-130	6	25
chlorodifluoromethane	0.0483	0.0100	mg/kg wet	0.05000	97	70-130	3	25
iethyl Ether	0.0509	0.0050	mg/kg wet	0.05000	102	70-130	7	25
-isopropyl ether	0.0489	0.0050	mg/kg wet	0.05000	98	70-130	6	25
hyl tertiary-butyl ether	0.0470	0.0050	mg/kg wet	0.05000	94	70-130	7	25
hylbenzene	0.0509	0.0050	mg/kg wet	0.05000	102	70-130	2	25
exachlorobutadiene	0.0510	0.0050	mg/kg wet	0.05000	102	70-130	4	25
opropylbenzene	0.0426	0.0050	mg/kg wet	0.05000	85	70-130	3	25
ethyl tert-Butyl Ether	0.0500	0.0050	mg/kg wet	0.05000	100	70-130	7	25
ethylene Chloride	0.0456	0.0250	mg/kg wet	0.05000	91	70-130	5	25
aphthalene	0.0464	0.0050	mg/kg wet	0.05000	93	70-130	10	25
Butylbenzene	0.0540	0.0050	mg/kg wet	0.05000	108	70-130	4	25
Propylbenzene	0.0505	0.0050	mg/kg wet	0.05000	101	70-130	4	25
ec-Butylbenzene	0.0506	0.0050	mg/kg wet	0.05000	101	70-130	4	25
yrene	0.0495	0.0050	mg/kg wet	0.05000	99	70-130	3	25
ert-Butylbenzene	0.0516	0.0050	mg/kg wet	0.05000	103	70-130	4	25
ertiary-amyl methyl ether	0.0443	0.0050	mg/kg wet	0.05000	89	70-130	7	25
ertiary-butyl Alcohol	0.233	0.0500	mg/kg wet	0.2500	93	70-130	9	20
etrachloroethene	0.0487	0.0050	mg/kg wet	0.05000	97	70-130	3	25
etrahydrofuran	0.0407	0.0050	mg/kg wet	0.05000	81	70-130	6	25
oluene	0.0497	0.0050	mg/kg wet	0.05000	99	70-130	5	25
ans-1,2-Dichloroethene	0.0495	0.0050	mg/kg wet	0.05000	99	70-130	6	25
richloroethene	0.0489	0.0050	mg/kg wet	0.05000	98	70-130	3	25
ichlorofluoromethane	0.0477	0.0050	mg/kg wet	0.05000	95	70-130	3	25
nyl Chloride	0.0576	0.0100	mg/kg wet	0.05000	115	70-130	4	25
rlenes (Total)	0.149	0.0100	mg/kg					
urrogate: 1,2-Dichloroethane-d4	0.0574		mg/kg wet	0.05000	115	70-130		
urrogate: 4-Bromofluorobenzene	0.0527		mg/kg wet	0.05000	105	70-130		
urrogate: Dibromofluoromethane	0.0546		mg/kg wet	0.05000	109	70-130		
urrogate: Toluene-d8	0.0517		mg/kg wet	0.05000	103	70-130		

Batch CJ61137 - 5035

Blank

1,1,1,2-Tetrachloroethane ND 0.0050 mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211 Tel Dependability

Tel: 401-461-7181 lity • Quality Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ61137 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Low Level

1,1,1-Trichloroethane ND 0.0050 mg/kg wet 1,1,2,2-Tetachloroethane ND 0.0050 mg/kg wet 1,1,2-Trichloroethane ND 0.0050 mg/kg wet 1,1-Dichloroethane ND 0.0050 mg/kg wet 1,1-Dichloroethene ND 0.0050 mg/kg wet 1,1-Dichloropropene ND 0.0050 mg/kg wet 1,2,3-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,3-Trichloropropane ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trimethylbenzene ND 0.0050 mg/kg wet 1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3-Dichloropropane ND 0.0050 mg/kg wet 1,3-Trimethylbenzene ND 0.0050 mg/kg wet	
1,1,2-Trichloroethane ND 0.0050 mg/kg wet 1,1-Dichloroethane ND 0.0050 mg/kg wet 1,1-Dichloropthene ND 0.0050 mg/kg wet 1,1-Dichloropropene ND 0.0050 mg/kg wet 1,2,3-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trimethylbenzene ND 0.0050 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3-5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichloropropane ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg wet 1,4-Dichloropropane ND 0.0050 m	
1,1-Dichloroethane ND 0.0050 mg/kg wet 1,1-Dichloroptene ND 0.0050 mg/kg wet 1,2-3-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,3-Trichloropropane ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trimethylbenzene ND 0.0050 mg/kg wet 1,2-Dichromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropenzene ND 0.0050 mg/kg wet 1,2-Dichloropenzene ND 0.0050 mg/kg wet 1,3-5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3-5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-5-Trimethylbenzene ND 0.0050 mg/kg wet 1,4-Dichlorobenzene ND 0.0050 mg/kg w	
1,1-Dichloroethene ND 0.0050 mg/kg wet 1,2,3-Trichloropropene ND 0.0050 mg/kg wet 1,2,3-Trichloropropane ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2-Dibriomo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibriomo-thane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropthane ND 0.0050 mg/kg wet 1,2-Dichloroptopane ND 0.0050 mg/kg wet 1,2-Dichloroptopane ND 0.0050 mg/kg wet 1,3-5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3-5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichloroptopene (Total) ND 0.0050 mg/kg wet 1,3-Dichloroptopene (Total) ND 0.0050 mg/kg wet 1,4-Dicknopenzene ND 0.0050 mg/kg wet 1,4-Dicknopenzene ND 0.0050	
1,1-Dichloropropene ND 0.0050 mg/kg wet 1,2,3-Trichloropenzene ND 0.0050 mg/kg wet 1,2,4-Trichloropenzene ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trinethylbenzene ND 0.0050 mg/kg wet 1,3,5-Trinethylbenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg wet 1,4-Dichloropropene (Total) ND 0.0050 mg/kg wet 1,4-Dichloropropene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.0050 mg/kg wet 2-Dichloropropane ND 0.0050 mg/kg	
1,2,3-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,3-Trichloropropane ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trimethylbenzene ND 0.0050 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.0050 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet	
1,2,3-Trichloropropane ND 0.0050 mg/kg wet 1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trimethylbenzene ND 0.0050 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3-5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3-5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.0050 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,2,4-Trichlorobenzene ND 0.0050 mg/kg wet 1,2,4-Trimethylbenzene ND 0.0050 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg wet 1,4-Dickone ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.0050 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Huxanone ND 0.0050 mg/kg wet 2-Hexanone ND 0.0050 mg/kg wet	
1,2,4-Trimethylbenzene ND 0.0050 mg/kg wet 1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichloropenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,2-Dichloropenzene ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg wet 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,2-Dibromo-3-Chloropropane ND 0.0050 mg/kg wet 1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropethane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dichloropropane ND 0.0050 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Hexanone ND 0.0050 mg/kg wet 2-Hexanone ND 0.0050 mg/kg wet	
1,2-Dibromoethane ND 0.0050 mg/kg wet 1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloroethane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0500 mg/kg wet 2-Hexanone ND 0.0050 mg/kg wet	
1,2-Dichlorobenzene ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg wet 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0500 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,2-Dichloroethane ND 0.0050 mg/kg wet 1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,2-Dichloropropane ND 0.0050 mg/kg wet 1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,3,5-Trichlorobenzene ND 0.0050 mg/kg wet 1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,3,5-Trimethylbenzene ND 0.0050 mg/kg wet 1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,3-Dichlorobenzene ND 0.0050 mg/kg wet 1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,3-Dichloropropene (Total) ND 0.0050 mg/kg 1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
1,4-Dichlorobenzene ND 0.0050 mg/kg wet 1,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0500 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
L,4-Dioxane ND 0.100 mg/kg wet 2,2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
Z.2-Dichloropropane ND 0.0050 mg/kg wet 2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
2-Butanone ND 0.0500 mg/kg wet 2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
2-Chlorotoluene ND 0.0050 mg/kg wet 2-Hexanone ND 0.0500 mg/kg wet	
2-Hexanone ND 0.0500 mg/kg wet	
3. 3	
4 Chlorothiuses	
I-Chlorotoluene ND 0.0050 mg/kg wet	
4-Isopropyltoluene ND 0.0050 mg/kg wet	
4-Methyl-2-Pentanone ND 0.0500 mg/kg wet	
Acetone ND 0.0500 mg/kg wet	
Acrylonitrile ND 0.0050 mg/kg wet	
Allyl Chloride ND 0.0050 mg/kg wet	
Benzene ND 0.0050 mg/kg wet	
Bromobenzene ND 0.0050 mg/kg wet	
Bromochloromethane ND 0.0050 mg/kg wet	
Bromodichloromethane ND 0.0050 mg/kg wet	
Bromoform ND 0.0050 mg/kg wet	
Bromomethane ND 0.0100 mg/kg wet	
Carbon Disulfide ND 0.0050 mg/kg wet	
Carbon Tetrachloride ND 0.0050 mg/kg wet	
Chlorobenzene ND 0.0050 mg/kg wet	
Chloroethane ND 0.0100 mg/kg wet	
Chloroform ND 0.0050 mg/kg wet	
Chloromethane ND 0.0100 mg/kg wet	
cis-1,2-Dichloroethene ND 0.0050 mg/kg wet	
Dibromochloromethane ND 0.0050 mg/kg wet	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ61137 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	s /	Low	Level
------------	----------	---------	-----------	-----	-----	-------

Dibromomethane	ND	0.0050	mg/kg wet				
Dichlorodifluoromethane	ND	0.0100	mg/kg wet				
Diethyl Ether	ND	0.0050	mg/kg wet				
Di-isopropyl ether	ND	0.0050	mg/kg wet				
Ethyl tertiary-butyl ether	ND	0.0050	mg/kg wet				
Ethylbenzene	ND	0.0050	mg/kg wet				
Hexachlorobutadiene	ND	0.0050	mg/kg wet				
Isopropylbenzene	ND	0.0050	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.0050	mg/kg wet				
Methylene Chloride	ND	0.0250	mg/kg wet				
Naphthalene	ND	0.0050	mg/kg wet				
n-Butylbenzene	ND	0.0050	mg/kg wet				
n-Propylbenzene	ND	0.0050	mg/kg wet				
sec-Butylbenzene	ND	0.0050	mg/kg wet				
Styrene	ND	0.0050	mg/kg wet				
tert-Butylbenzene	ND	0.0050	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.0050	mg/kg wet				
Tertiary-butyl Alcohol	ND	0.0500	mg/kg wet				
Tetrachloroethene	ND	0.0050	mg/kg wet				
Tetrahydrofuran	ND	0.0050	mg/kg wet				
Toluene	ND	0.0050	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.0050	mg/kg wet				
Trichloroethene	ND	0.0050	mg/kg wet				
Trichlorofluoromethane	ND	0.0050	mg/kg wet				
Vinyl Chloride	ND	0.0100	mg/kg wet				
Xylenes (Total)	ND	0.0100	mg/kg				
Surrogate: 1,2-Dichloroethane-d4	0.0539		mg/kg wet	0.05000	108	70-130	
Surrogate: 4-Bromofluorobenzene	0.0517		mg/kg wet	0.05000	103	70-130	
Surrogate: Dibromofluoromethane	0.0545		mg/kg wet	0.05000	109	70-130	
Surrogate: Toluene-d8	0.0542		mg/kg wet	0.05000	108	70-130	
LCS							
1,1,1,2-Tetrachloroethane	0.0543	0.0050	mg/kg wet	0.05000	109	70-130	
1,1,1-Trichloroethane	0.0585	0.0050	mg/kg wet	0.05000	117	70-130	
1,1,2,2-Tetrachloroethane	0.0570	0.0050	mg/kg wet	0.05000	114	70-130	
1,1,2-Trichloroethane	0.0534	0.0050	mg/kg wet	0.05000	107	70-130	
1,1-Dichloroethane	0.0559	0.0050	mg/kg wet	0.05000	112	70-130	
1,1-Dichloroethene	0.0550	0.0050	mg/kg wet	0.05000	110	70-130	
1,1-Dichloropropene	0.0558	0.0050	mg/kg wet	0.05000	112	70-130	
1,2,3-Trichlorobenzene	0.0540	0.0050	mg/kg wet	0.05000	108	70-130	
1,2,3-Trichloropropane	0.0566	0.0050	mg/kg wet	0.05000	113	70-130	
1,2,4-Trichlorobenzene	0.0531	0.0050	mg/kg wet	0.05000	106	70-130	
1,2,4-Trimethylbenzene	0.0559	0.0050	mg/kg wet	0.05000	112	70-130	
1,2-Dibromo-3-Chloropropane	0.0526	0.0050	mg/kg wet	0.05000	105	70-130	
1,2-Dibromoethane	0.0518	0.0050	mg/kg wet	0.05000	104	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ61137 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	s /	Low	Level
------------	----------	---------	-----------	-----	-----	-------

Batch CJ61137 - 5035							
1,2-Dichloroethane	0.0577	0.0050	mg/kg wet	0.05000	115	70-130	
1,2-Dichloropropane	0.0556	0.0050	mg/kg wet	0.05000	111	70-130	
1,3,5-Trichlorobenzene	0.0545	0.0050	mg/kg wet	0.05000	109	70-130	
1,3,5-Trimethylbenzene	0.0565	0.0050	mg/kg wet	0.05000	113	70-130	
1,3-Dichlorobenzene	0.0509	0.0050	mg/kg wet	0.05000	102	70-130	
1,3-Dichloropropene (Total)	0.107	0.0050	mg/kg				
1,4-Dichlorobenzene	0.0518	0.0050	mg/kg wet	0.05000	104	70-130	
1,4-Dioxane	1.08	0.100	mg/kg wet	1.000	108	70-130	
2,2-Dichloropropane	0.0589	0.0050	mg/kg wet	0.05000	118	70-130	
2-Butanone	0.275	0.0500	mg/kg wet	0.2500	110	70-130	
2-Chlorotoluene	0.0553	0.0050	mg/kg wet	0.05000	111	70-130	
2-Hexanone	0.242	0.0500	mg/kg wet	0.2500	97	70-130	
4-Chlorotoluene	0.0556	0.0050	mg/kg wet	0.05000	111	70-130	
4-Isopropyltoluene	0.0551	0.0050	mg/kg wet	0.05000	110	70-130	
4-Methyl-2-Pentanone	0.254	0.0500	mg/kg wet	0.2500	101	70-130	
Acetone	0.279	0.0500	mg/kg wet	0.2500	112	70-130	
Acrylonitrile	0.0564	0.0050	mg/kg wet	0.05000	113	70-130	
Allyl Chloride	0.0584	0.0050	mg/kg wet	0.05000	117	70-130	
Benzene	0.0528	0.0050	mg/kg wet	0.05000	106	70-130	
Bromobenzene	0.0530	0.0050	mg/kg wet	0.05000	106	70-130	
Bromochloromethane	0.0529	0.0050	mg/kg wet	0.05000	106	70-130	
Bromodichloromethane	0.0633	0.0050	mg/kg wet	0.05000	127	70-130	
Bromoform	0.0479	0.0050	mg/kg wet	0.05000	96	70-130	
Bromomethane	0.0576	0.0100	mg/kg wet	0.05000	115	70-130	
Carbon Disulfide	0.0568	0.0050	mg/kg wet	0.05000	114	70-130	
Carbon Tetrachloride	0.0584	0.0050	mg/kg wet	0.05000	117	70-130	
Chlorobenzene	0.0474	0.0050	mg/kg wet	0.05000	95	70-130	
Chloroethane	0.0520	0.0100	mg/kg wet	0.05000	104	70-130	
Chloroform	0.0550	0.0050	mg/kg wet	0.05000	110	70-130	
Chloromethane	0.0613	0.0100	mg/kg wet	0.05000	123	70-130	
cis-1,2-Dichloroethene	0.0545	0.0050	mg/kg wet	0.05000	109	70-130	
Dibromochloromethane	0.0497	0.0050	mg/kg wet	0.05000	99	70-130	
Dibromomethane	0.0558	0.0050	mg/kg wet	0.05000	112	70-130	
Dichlorodifluoromethane	0.0488	0.0100	mg/kg wet	0.05000	98	70-130	
Diethyl Ether	0.0570	0.0050	mg/kg wet	0.05000	114	70-130	
Di-isopropyl ether	0.0550	0.0050	mg/kg wet	0.05000	110	70-130	
Ethyl tertiary-butyl ether	0.0527	0.0050	mg/kg wet	0.05000	105	70-130	
Ethylbenzene	0.0510	0.0050	mg/kg wet	0.05000	102	70-130	
Hexachlorobutadiene	0.0514	0.0050	mg/kg wet	0.05000	103	70-130	
Isopropylbenzene	0.0468	0.0050	mg/kg wet	0.05000	94	70-130	
Methyl tert-Butyl Ether	0.0552	0.0050	mg/kg wet	0.05000	110	70-130	
Methylene Chloride	0.0655	0.0250	mg/kg wet	0.05000	131	70-130	B+
Naphthalene	0.0492	0.0050	mg/kg wet	0.05000	98	70-130	
n-Butylbenzene	0.0594	0.0050	mg/kg wet	0.05000	119	70-130	
n-Propylbenzene	0.0557	0.0050	mg/kg wet	0.05000	111	70-130	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ61137 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds /	Low	Level
------------	----------	---------	-------------	-----	-------

Batch CJ61137 - 5035									
sec-Butylbenzene	0.0546	0.0050	mg/kg wet	0.05000	109	70-130			
Styrene	0.0503	0.0050	mg/kg wet	0.05000	101	70-130			
tert-Butylbenzene	0.0550	0.0050	mg/kg wet	0.05000	110	70-130			
Tertiary-amyl methyl ether	0.0491	0.0050	mg/kg wet	0.05000	98	70-130			
Tertiary-butyl Alcohol	0.256	0.0500	mg/kg wet	0.2500	102	70-130			
Tetrachloroethene	0.0457	0.0050	mg/kg wet	0.05000	91	70-130			
Tetrahydrofuran	0.0458	0.0050	mg/kg wet	0.05000	92	70-130			
Toluene	0.0536	0.0050	mg/kg wet	0.05000	107	70-130			
trans-1,2-Dichloroethene	0.0542	0.0050	mg/kg wet	0.05000	108	70-130			
Trichloroethene	0.0534	0.0050	mg/kg wet	0.05000	107	70-130			
Trichlorofluoromethane	0.0494	0.0050	mg/kg wet	0.05000	99	70-130			
Vinyl Chloride	0.0616	0.0100	mg/kg wet	0.05000	123	70-130			
Xylenes (Total)	0.145	0.0100	mg/kg						
Surrogate: 1,2-Dichloroethane-d4	0.0583		mg/kg wet	0.05000	117	70-130			
Surrogate: 4-Bromofluorobenzene	0.0518		mg/kg wet	0.05000	104	70-130			
Surrogate: Dibromofluoromethane	0.0574		mg/kg wet	0.05000	115	70-130			
Surrogate: Toluene-d8	0.0511		mg/kg wet	0.05000	102	70-130			
LCS Dup									
1,1,1,2-Tetrachloroethane	0.0519	0.0050	mg/kg wet	0.05000	104	70-130	5	25	
1,1,1-Trichloroethane	0.0550	0.0050	mg/kg wet	0.05000	110	70-130	6	25	
1,1,2,2-Tetrachloroethane	0.0548	0.0050	mg/kg wet	0.05000	110	70-130	4	25	
1,1,2-Trichloroethane	0.0516	0.0050	mg/kg wet	0.05000	103	70-130	3	25	
1,1-Dichloroethane	0.0533	0.0050	mg/kg wet	0.05000	107	70-130	5	25	
1,1-Dichloroethene	0.0525	0.0050	mg/kg wet	0.05000	105	70-130	5	25	
1,1-Dichloropropene	0.0529	0.0050	mg/kg wet	0.05000	106	70-130	5	25	
1,2,3-Trichlorobenzene	0.0504	0.0050	mg/kg wet	0.05000	101	70-130	7	25	
1,2,3-Trichloropropane	0.0540	0.0050	mg/kg wet	0.05000	108	70-130	5	25	
1,2,4-Trichlorobenzene	0.0498	0.0050	mg/kg wet	0.05000	100	70-130	6	25	
1,2,4-Trimethylbenzene	0.0535	0.0050	mg/kg wet	0.05000	107	70-130	4	25	
1,2-Dibromo-3-Chloropropane	0.0488	0.0050	mg/kg wet	0.05000	98	70-130	7	25	
1,2-Dibromoethane	0.0481	0.0050	mg/kg wet	0.05000	96	70-130	7	25	
1,2-Dichlorobenzene	0.0491	0.0050	mg/kg wet	0.05000	98	70-130	5	25	
1,2-Dichloroethane	0.0551	0.0050	mg/kg wet	0.05000	110	70-130	5	25	
1,2-Dichloropropane	0.0534	0.0050	mg/kg wet	0.05000	107	70-130	4	25	
1,3,5-Trichlorobenzene	0.0512	0.0050	mg/kg wet	0.05000	102	70-130	6	25	
1,3,5-Trimethylbenzene	0.0541	0.0050	mg/kg wet	0.05000	108	70-130	4	25	
1,3-Dichlorobenzene	0.0495	0.0050	mg/kg wet	0.05000	99	70-130	3	25	
1,3-Dichloropropene (Total)	0.102	0.0050	mg/kg						
1,4-Dichlorobenzene	0.0481	0.0050	mg/kg wet	0.05000	96	70-130	7	25	
1,4-Dioxane	1.09	0.100	mg/kg wet	1.000	109	70-130	0.7	20	
2,2-Dichloropropane	0.0550	0.0050	mg/kg wet	0.05000	110	70-130	7	25	
2-Butanone	0.262	0.0500	mg/kg wet	0.2500	105	70-130	5	25	
2-Chlorotoluene	0.0526	0.0050	mg/kg wet	0.05000	105	70-130	5	25	
			_				_	25	
2-Hexanone	0.225	0.0500	mg/kg wet	0.2500	90	70-130	7	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	s /	Low	Leve
------------	----------	---------	-----------	-----	-----	------

Batch CJ61137 - 5035									
4-Isopropyltoluene	0.0522	0.0050	mg/kg wet	0.05000	104	70-130	5	25	
4-Methyl-2-Pentanone	0.242	0.0500	mg/kg wet	0.2500	97	70-130	5	25	
Acetone	0.264	0.0500	mg/kg wet	0.2500	106	70-130	5	25	
Acrylonitrile	0.0548	0.0050	mg/kg wet	0.05000	110	70-130	3	25	
Allyl Chloride	0.0565	0.0050	mg/kg wet	0.05000	113	70-130	3	25	
Benzene	0.0509	0.0050	mg/kg wet	0.05000	102	70-130	4	25	
Bromobenzene	0.0509	0.0050	mg/kg wet	0.05000	102	70-130	4	25	
Bromochloromethane	0.0502	0.0050	mg/kg wet	0.05000	100	70-130	5	25	
Bromodichloromethane	0.0597	0.0050	mg/kg wet	0.05000	119	70-130	6	25	
Bromoform	0.0450	0.0050	mg/kg wet	0.05000	90	70-130	6	25	
Bromomethane	0.0548	0.0100	mg/kg wet	0.05000	110	70-130	5	25	
Carbon Disulfide	0.0540	0.0050	mg/kg wet	0.05000	108	70-130	5	25	
Carbon Tetrachloride	0.0552	0.0050	mg/kg wet	0.05000	110	70-130	6	25	
Chlorobenzene	0.0451	0.0050	mg/kg wet	0.05000	90	70-130	5	25	
Chloroethane	0.0481	0.0100	mg/kg wet	0.05000	96	70-130	8	25	
Chloroform	0.0528	0.0050	mg/kg wet	0.05000	106	70-130	4	25	
Chloromethane	0.0593	0.0100	mg/kg wet	0.05000	119	70-130	3	25	
cis-1,2-Dichloroethene	0.0522	0.0050	mg/kg wet	0.05000	104	70-130	4	25	
Dibromochloromethane	0.0472	0.0050	mg/kg wet	0.05000	94	70-130	5	25	
Dibromomethane	0.0532	0.0050	mg/kg wet	0.05000	106	70-130	5	25	
Dichlorodifluoromethane	0.0449	0.0100	mg/kg wet	0.05000	90	70-130	8	25	
Diethyl Ether	0.0542	0.0050	mg/kg wet	0.05000	108	70-130	5	25	
Di-isopropyl ether	0.0528	0.0050	mg/kg wet	0.05000	106	70-130	4	25	
Ethyl tertiary-butyl ether	0.0506	0.0050	mg/kg wet	0.05000	101	70-130	4	25	
Ethylbenzene	0.0481	0.0050	mg/kg wet	0.05000	96	70-130	6	25	
Hexachlorobutadiene	0.0480	0.0050	mg/kg wet	0.05000	96	70-130	7	25	
Isopropylbenzene	0.0446	0.0050	mg/kg wet	0.05000	89	70-130	5	25	
Methyl tert-Butyl Ether	0.0525	0.0050	mg/kg wet	0.05000	105	70-130	5	25	
Methylene Chloride	0.0626	0.0250	mg/kg wet	0.05000	125	70-130	4	25	
Naphthalene	0.0470	0.0050	mg/kg wet	0.05000	94	70-130	5	25	
n-Butylbenzene	0.0555	0.0050	mg/kg wet	0.05000	111	70-130	7	25	
n-Propylbenzene	0.0531	0.0050	mg/kg wet	0.05000	106	70-130	5	25	
sec-Butylbenzene	0.0519	0.0050	mg/kg wet	0.05000	104	70-130	5	25	
Styrene	0.0477	0.0050	mg/kg wet	0.05000	95	70-130	5	25	
tert-Butylbenzene	0.0524	0.0050	mg/kg wet	0.05000	105	70-130	5	25	
Tertiary-amyl methyl ether	0.0482	0.0050	mg/kg wet	0.05000	96	70-130	2	25	
Tertiary-butyl Alcohol	0.248	0.0500	mg/kg wet	0.2500	99	70-130	3	20	
Tetrachloroethene	0.0426	0.0050	mg/kg wet	0.05000	85	70-130	7	25	
Tetrahydrofuran	0.0444	0.0050	mg/kg wet	0.05000	89	70-130	3	25	
Toluene	0.0507	0.0050	mg/kg wet	0.05000	101	70-130	6	25	
trans-1,2-Dichloroethene	0.0509	0.0050	mg/kg wet	0.05000	102	70-130	6	25	
Trichloroethene	0.0508	0.0050	mg/kg wet	0.05000	102	70-130	5	25	
Trichlorofluoromethane	0.0460	0.0050	mg/kg wet	0.05000	92	70-130	7	25	
Vinyl Chloride	0.0583	0.0100	mg/kg wet	0.05000	117	70-130	6	25	
Xylenes (Total)	0.137	0.0100	mg/kg						

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B Volatile Organic Compounds / Low Level

Batch CJ61137 - 5035							
						•	
Surrogate: 1,2-Dichloroethane-d4	0.0585	mg/kg wet 0.	05000	117	70-130		
Surrogate: 4-Bromofluorobenzene	0.0511	mg/kg wet 0.	05000	102	70-130		
Surrogate: Dibromofluoromethane	0.0573	mg/kg wet $ extit{O.}$	05000	115	70-130		
Surrogate: Toluene-d8	0.0514	mg/kg wet $ extit{O}.$	05000	103	70-130		

5035/8260B Volatile Organic Compounds / Methanol

	3033/	OZOOD VOIGU	e Organic Compounds / Methanol	
Batch CJ61136 - 5035				
Blank				
1,1,1,2-Tetrachloroethane	ND	0.200	mg/kg wet	
1,1,1-Trichloroethane	ND	0.200	mg/kg wet	
1,1,2,2-Tetrachloroethane	ND	0.200	mg/kg wet	
1,1,2-Trichloroethane	ND	0.200	mg/kg wet	
1,1-Dichloroethane	ND	0.200	mg/kg wet	
1,1-Dichloroethene	ND	0.200	mg/kg wet	
1,1-Dichloropropene	ND	0.200	mg/kg wet	
1,2,3-Trichlorobenzene	ND	0.200	mg/kg wet	
1,2,3-Trichloropropane	ND	0.200	mg/kg wet	
1,2,4-Trichlorobenzene	ND	0.200	mg/kg wet	
1,2,4-Trimethylbenzene	ND	0.200	mg/kg wet	
1,2-Dibromo-3-Chloropropane	ND	1.00	mg/kg wet	
1,2-Dibromoethane	ND	0.200	mg/kg wet	
1,2-Dichlorobenzene	ND	0.200	mg/kg wet	
1,2-Dichloroethane	ND	0.200	mg/kg wet	
1,2-Dichloropropane	ND	0.200	mg/kg wet	
1,3 Dichloropropene (Total)	ND	0.200	mg/kg wet	
1,3,5-Trichlorobenzene	ND	0.200	mg/kg wet	
1,3,5-Trimethylbenzene	ND	0.200	mg/kg wet	
1,3-Dichlorobenzene	ND	0.200	mg/kg wet	
1,4-Dichlorobenzene	ND	0.200	mg/kg wet	
1,4-Dioxane - Screen	ND	40.0	mg/kg wet	
2,2-Dichloropropane	ND	0.200	mg/kg wet	
2-Butanone	ND	1.00	mg/kg wet	
2-Chlorotoluene	ND	0.200	mg/kg wet	
2-Hexanone	ND	1.00	mg/kg wet	
4-Chlorotoluene	ND	0.200	mg/kg wet	
4-Isopropyltoluene	ND	0.200	mg/kg wet	
4-Methyl-2-Pentanone	ND	1.00	mg/kg wet	
Acetone	ND	1.00	mg/kg wet	
Acrylonitrile	ND	1.00	mg/kg wet	
Allyl Chloride	ND	0.400	mg/kg wet	
Benzene	ND	0.200	mg/kg wet	
Bromobenzene	ND	0.200	mg/kg wet	
Bromochloromethane	ND	0.200	mg/kg wet	
Bromodichloromethane	ND	0.200	mg/kg wet	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ61136 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B V	olatile Organic	Compounds	/ M	1ethan	ol
--------------	-----------------	-----------	-----	--------	----

Batch CJ61136 - 5035							
Bromoform	ND	0.200	mg/kg wet				
Bromomethane	ND	0.200	mg/kg wet				
Carbon Disulfide	ND	0.200	mg/kg wet				
Carbon Tetrachloride	ND	0.200	mg/kg wet				
Chlorobenzene	ND	0.200	mg/kg wet				
Chloroethane	ND	0.200	mg/kg wet				
Chloroform	ND	0.200	mg/kg wet				
Chloromethane	ND	0.200	mg/kg wet				
cis-1,2-Dichloroethene	ND	0.200	mg/kg wet				
Dibromochloromethane	ND	0.200	mg/kg wet				
Dibromomethane	ND	0.200	mg/kg wet				
Dichlorodifluoromethane	ND	0.200	mg/kg wet				
Diethyl Ether	ND	0.200	mg/kg wet				
Di-isopropyl ether	ND	0.200	mg/kg wet				
Ethyl tertiary-butyl ether	ND	0.200	mg/kg wet				
Ethylbenzene	ND	0.200	mg/kg wet				
Hexachlorobutadiene	ND	0.200	mg/kg wet				
Isopropylbenzene	ND	0.200	mg/kg wet				
Methyl tert-Butyl Ether	ND	0.200	mg/kg wet				
Methylene Chloride	ND	0.400	mg/kg wet				
Naphthalene	ND	0.200	mg/kg wet				
n-Butylbenzene	ND	0.200	mg/kg wet				
n-Propylbenzene	ND	0.200	mg/kg wet				
sec-Butylbenzene	ND	0.200	mg/kg wet				
Styrene	ND	0.200	mg/kg wet				
tert-Butylbenzene	ND	0.200	mg/kg wet				
Tertiary-amyl methyl ether	ND	0.200	mg/kg wet				
Tetrachloroethene	ND	0.200	mg/kg wet				
Tetrahydrofuran	ND	1.00	mg/kg wet				
Toluene	ND	0.200	mg/kg wet				
trans-1,2-Dichloroethene	ND	0.200	mg/kg wet				
Trichloroethene	ND	0.200	mg/kg wet				
Trichlorofluoromethane	ND	0.200	mg/kg wet				
Vinyl Chloride	ND	0.200	mg/kg wet				
Xylenes (Total)	ND	0.400	mg/kg wet				
Surrogate: 1,2-Dichloroethane-d4	4.70		mg/kg wet	5.000	94	70-130	
Surrogate: 4-Bromofluorobenzene	5.04		mg/kg wet	5.000	101	70-130	
Surrogate: Dibromofluoromethane	5.12		mg/kg wet	5.000	102	70-130	
Surrogate: Toluene-d8	4.90		mg/kg wet	5.000	98	70-130	
LCS							
1,1,1,2-Tetrachloroethane	2.08	0.200	mg/kg wet	2.000	104	70-130	
1,1,1-Trichloroethane	1.97	0.200	mg/kg wet	2.000	99	70-130	
1,1,2,2-Tetrachloroethane	1.88	0.200	mg/kg wet	2.000	94	70-130	
1,1,2-Trichloroethane	1.89	0.200	mg/kg wet	2.000	95	70-130	
1,1-Dichloroethane	1.90	0.200	mg/kg wet	2.000	95	70-130	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ61136 - 5035

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compound	s /	Μe	et	hano	ı
------------	----------	---------	----------	-----	----	----	------	---

Satch CJ61136 - 5035						
.,1-Dichloroethene	1.99	0.200	mg/kg wet	2.000	100	70-130
.,1-Dichloropropene	2.00	0.200	mg/kg wet	2.000	100	70-130
.,2,3-Trichlorobenzene	2.01	0.200	mg/kg wet	2.000	100	70-130
,2,3-Trichloropropane	2.00	0.200	mg/kg wet	2.000	100	70-130
,2,4-Trichlorobenzene	1.94	0.200	mg/kg wet	2.000	97	70-130
,2,4-Trimethylbenzene	1.90	0.200	mg/kg wet	2.000	95	70-130
,2-Dibromo-3-Chloropropane	1.92	1.00	mg/kg wet	2.000	96	70-130
.,2-Dibromoethane	1.93	0.200	mg/kg wet	2.000	96	70-130
,2-Dichlorobenzene	1.98	0.200	mg/kg wet	2.000	99	70-130
,2-Dichloroethane	1.87	0.200	mg/kg wet	2.000	94	70-130
,2-Dichloropropane	1.93	0.200	mg/kg wet	2.000	97	70-130
,3 Dichloropropene (Total)	3.88	0.200	mg/kg wet			
3,5-Trichlorobenzene	2.14	0.200	mg/kg wet	2.000	107	70-130
3,5-Trimethylbenzene	1.96	0.200	mg/kg wet	2.000	98	70-130
.3-Dichlorobenzene	1.93	0.200	mg/kg wet	2.000	96	70-130
4-Dichlorobenzene	1.89	0.200	mg/kg wet	2.000	95	70-130
,4-Dioxane - Screen	50.0	40.0	mg/kg wet	40.00	125	44-241
.2-Dichloropropane	1.97	0.200	mg/kg wet	2.000	99	70-130
Butanone	9.55	1.00	mg/kg wet	10.00	95	70-130
Chlorotoluene	1.96	0.200	mg/kg wet	2.000	98	70-130
Hexanone	9.95	1.00	mg/kg wet	10.00	99	70-130
Chlorotoluene	1.94	0.200	mg/kg wet	2.000	97	70-130
Isopropyltoluene	2.01	0.200	mg/kg wet	2.000	100	70-130
Methyl-2-Pentanone	10.1	1.00	mg/kg wet	10.00	101	70-130
cetone	9.92	1.00	mg/kg wet	10.00	99	70-130
crylonitrile	1.66	1.00	mg/kg wet	2.000	83	70-130
llyl Chloride	1.94	0.400	mg/kg wet	2.000	97	70-130
enzene	2.03	0.200	mg/kg wet	2.000	101	70-130
romobenzene	1.98	0.200	mg/kg wet	2.000	99	70-130
romochloromethane	1.92	0.200	mg/kg wet	2.000	96	70-130
romodichloromethane	2.05	0.200	mg/kg wet	2.000	102	70-130
romoform	2.15	0.200	mg/kg wet	2.000	108	70-130
romomethane	1.97	0.200	mg/kg wet	2.000	98	70-130
arbon Disulfide	1.94	0.200	mg/kg wet	2.000	97	70-130
arbon Tetrachloride	2.04	0.200	mg/kg wet	2.000	102	70-130
hlorobenzene	1.93	0.200	mg/kg wet	2.000	97	70-130
hloroethane	1.80	0.200	mg/kg wet	2.000	90	70-130
hloroform	1.95	0.200	mg/kg wet	2.000	97	70-130
hloromethane	1.98	0.200	mg/kg wet	2.000	99	70-130
s-1,2-Dichloroethene	1.94	0.200	mg/kg wet	2.000	97	70-130
ibromochloromethane	2.20	0.200	mg/kg wet	2.000	110	70-130
ibromomethane	1.82	0.200	mg/kg wet	2.000	91	70-130
ichlorodifluoromethane	1.83	0.200	mg/kg wet	2.000	92	70-130
iethyl Ether	1.96	0.200	mg/kg wet	2.000	98	70-130
·			J. J			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

3033/0200D	voiatile Orgai	iic Compound	is / Medianoi

Batch CJ61136 - 5035									
Ethyl tertiary-butyl ether	2.03	0.200	mg/kg wet	2.000	102	70-130			
Ethylbenzene	1.97	0.200	mg/kg wet	2.000	99	70-130			
Hexachlorobutadiene	1.99	0.200	mg/kg wet	2.000	100	70-130			
Isopropylbenzene	1.64	0.200	mg/kg wet	2.000	82	70-130			
Methyl tert-Butyl Ether	1.89	0.200	mg/kg wet	2.000	95	70-130			
Methylene Chloride	1.87	0.400	mg/kg wet	2.000	93	70-130			
Naphthalene	2.04	0.200	mg/kg wet	2.000	102	70-130			
n-Butylbenzene	1.99	0.200	mg/kg wet	2.000	100	70-130			
n-Propylbenzene	1.92	0.200	mg/kg wet	2.000	96	70-130			
sec-Butylbenzene	1.91	0.200	mg/kg wet	2.000	95	70-130			
Styrene	2.06	0.200	mg/kg wet	2.000	103	70-130			
tert-Butylbenzene	2.00	0.200	mg/kg wet	2.000	100	70-130			
Tertiary-amyl methyl ether	1.95	0.200	mg/kg wet	2.000	98	70-130			
Tetrachloroethene	1.98	0.200	mg/kg wet	2.000	99	70-130			
Tetrahydrofuran	1.73	1.00	mg/kg wet	2.000	87	70-130			
Toluene	1.91	0.200	mg/kg wet	2.000	96	70-130			
trans-1,2-Dichloroethene	1.94	0.200	mg/kg wet	2.000	97	70-130			
Trichloroethene	1.95	0.200	mg/kg wet	2.000	98	70-130			
Trichlorofluoromethane	1.67	0.200	mg/kg wet	2.000	83	70-130			
Vinyl Chloride	1.91	0.200	mg/kg wet	2.000	95	70-130			
Xylenes (Total)	5.88	0.400	mg/kg wet						
Surrogate: 1,2-Dichloroethane-d4	4.81		mg/kg wet	5.000	96	70-130			
Surrogate: 4-Bromofluorobenzene	5.07		mg/kg wet	5.000	101	70-130			
Surrogate: Dibromofluoromethane	5.27		mg/kg wet	5.000	105	70-130			
Surrogate: Toluene-d8	4.99		mg/kg wet	5.000	100	70-130			
LCS Dup									
1,1,1,2-Tetrachloroethane	2.06	0.200	mg/kg wet	2.000	103	70-130	1	25	
1,1,1-Trichloroethane	1.92	0.200	mg/kg wet	2.000	96	70-130	3	25	
1,1,2,2-Tetrachloroethane	1.87	0.200	mg/kg wet	2.000	93	70-130	0.9	25	
1,1,2-Trichloroethane	1.92	0.200	mg/kg wet	2.000	96	70-130	1	25	
1,1-Dichloroethane	1.81	0.200	mg/kg wet	2.000	91	70-130	5	25	
1,1-Dichloroethene	1.83	0.200	mg/kg wet	2.000	92	70-130	8	25	
1,1-Dichloropropene	2.04	0.200	mg/kg wet	2.000	102	70-130	2	25	
1,2,3-Trichlorobenzene	1.99	0.200	mg/kg wet	2.000	99	70-130	1	25	
1,2,3-Trichloropropane	1.98	0.200	mg/kg wet	2.000	99	70-130	0.8	25	
1,2,4-Trichlorobenzene	1.95	0.200	mg/kg wet	2.000	97	70-130	0.2	25	
1,2,4-Trimethylbenzene	1.95	0.200	mg/kg wet	2.000	98	70-130	3	25	
1,2-Dibromo-3-Chloropropane	2.03	1.00	mg/kg wet	2.000	102	70-130	5	25	
1,2-Dibromoethane	1.90	0.200	mg/kg wet	2.000	95	70-130	2	25	
1,2-Dichlorobenzene	1.95	0.200	mg/kg wet	2.000	98	70-130	1	25	
1,2-Dichloroethane	1.78	0.200	mg/kg wet	2.000	89	70-130	5	25	
1,2-Dichloropropane	2.03	0.200	mg/kg wet	2.000	102	70-130	5	25	
1,3 Dichloropropene (Total)	3.59	0.200	mg/kg wet						
1,3,5-Trichlorobenzene	2.07	0.200	mg/kg wet	2.000	104	70-130	3	25	
1,3,5-Trimethylbenzene	2.00	0.200	mg/kg wet	2.000	100	70-130	2	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

5035/8260B	Volatile	Organic	Compounds	s /	Methanol
------------	----------	---------	-----------	-----	----------

Batch CJ61136 - 5035									
1,3-Dichlorobenzene	1.95	0.200	mg/kg wet	2.000	97	70-130	1	25	
1,4-Dichlorobenzene	1.93	0.200	mg/kg wet	2.000	96	70-130	2	25	
1,4-Dioxane - Screen	48.7	40.0	mg/kg wet	40.00	122	44-241	3	200	
2,2-Dichloropropane	1.88	0.200	mg/kg wet	2.000	94	70-130	5	25	
2-Butanone	8.90	1.00	mg/kg wet	10.00	89	70-130	7	25	
2-Chlorotoluene	1.97	0.200	mg/kg wet	2.000	98	70-130	0.3	25	
2-Hexanone	10.1	1.00	mg/kg wet	10.00	101	70-130	1	25	
4-Chlorotoluene	1.92	0.200	mg/kg wet	2.000	96	70-130	0.9	25	
4-Isopropyltoluene	2.05	0.200	mg/kg wet	2.000	103	70-130	2	25	
4-Methyl-2-Pentanone	9.17	1.00	mg/kg wet	10.00	92	70-130	10	25	
Acetone	8.98	1.00	mg/kg wet	10.00	90	70-130	10	25	
Acrylonitrile	1.86	1.00	mg/kg wet	2.000	93	70-130	12	25	
Allyl Chloride	1.90	0.400	mg/kg wet	2.000	95	70-130	2	25	
Benzene	2.03	0.200	mg/kg wet	2.000	102	70-130	0.4	25	
Bromobenzene	1.97	0.200	mg/kg wet	2.000	98	70-130	0.5	25	
Bromochloromethane	1.86	0.200	mg/kg wet	2.000	93	70-130	3	25	
Bromodichloromethane	1.98	0.200	mg/kg wet	2.000	99	70-130	3	25	
Bromoform	2.11	0.200	mg/kg wet	2.000	106	70-130	2	25	
Bromomethane	1.97	0.200	mg/kg wet	2.000	99	70-130	0.2	25	
Carbon Disulfide	1.96	0.200	mg/kg wet	2.000	98	70-130	0.8	25	
Carbon Tetrachloride	2.00	0.200	mg/kg wet	2.000	100	70-130	2	25	
Chlorobenzene	1.93	0.200	mg/kg wet	2.000	97	70-130	0.1	25	
Chloroethane	1.77	0.200	mg/kg wet	2.000	88	70-130	2	25	
Chloroform	1.80	0.200	mg/kg wet	2.000	90	70-130	8	25	
Chloromethane	1.96	0.200	mg/kg wet	2.000	98	70-130	1	25	
cis-1,2-Dichloroethene	1.79	0.200	mg/kg wet	2.000	89	70-130	8	25	
Dibromochloromethane	2.07	0.200	mg/kg wet	2.000	103	70-130	6	25	
Dibromomethane	1.79	0.200	mg/kg wet	2.000	90	70-130	1	25	
Dichlorodifluoromethane	1.76	0.200	mg/kg wet	2.000	88	70-130	4	25	
Diethyl Ether	1.79	0.200	mg/kg wet	2.000	90	70-130	9	25	
Di-isopropyl ether	1.93	0.200	mg/kg wet	2.000	96	70-130	0.6	25	
Ethyl tertiary-butyl ether	1.93	0.200	mg/kg wet	2.000	97	70-130	5	25	
Ethylbenzene	2.00	0.200	mg/kg wet	2.000	100	70-130	1	25	
Hexachlorobutadiene	1.93	0.200	mg/kg wet	2.000	96	70-130	3	25	
Isopropylbenzene	1.68	0.200	mg/kg wet	2.000	84	70-130	2	25	
Methyl tert-Butyl Ether	1.75	0.200	mg/kg wet	2.000	87	70-130	8	25	
Methylene Chloride	1.91	0.400	mg/kg wet	2.000	96	70-130	2	25	
Naphthalene	2.02	0.200	mg/kg wet	2.000	101	70-130	1	25	
n-Butylbenzene	1.97	0.200	mg/kg wet	2.000	99	70-130	0.8	25	
n-Propylbenzene	2.00	0.200	mg/kg wet	2.000	100	70-130	4	25	
sec-Butylbenzene	1.89	0.200	mg/kg wet	2.000	95	70-130	0.6	25	
Styrene	2.03	0.200	mg/kg wet	2.000	102	70-130	1	25	
tert-Butylbenzene	2.04	0.200	mg/kg wet	2.000	102	70-130	2	25	
Tertiary-amyl methyl ether	1.92	0.200	mg/kg wet	2.000	96	70-130	2	25	
Tetrachloroethene	2.02	0.200	mg/kg wet	2.000	101	70-130	2	25	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
	5035/8	3260B Volati	le Organic C	ompound	ds / Meth	anol				
Batch CJ61136 - 5035										
Tetrahydrofuran	1.69	1.00	mg/kg wet	2.000		84	70-130	3	25	
Toluene	1.92	0.200	mg/kg wet	2.000		96	70-130	0.3	25	
trans-1,2-Dichloroethene	1.81	0.200	mg/kg wet	2.000		90	70-130	7	25	
Trichloroethene	1.92	0.200	mg/kg wet	2.000		96	70-130	2	25	
Trichlorofluoromethane	1.54	0.200	mg/kg wet	2.000		77	70-130	8	25	
/inyl Chloride	1.97	0.200	mg/kg wet	2.000		98	70-130	3	25	
(ylenes (Total)	5.89	0.400	mg/kg wet							
Surrogate: 1,2-Dichloroethane-d4	4.49		mg/kg wet	5.000		90	70-130			
Surrogate: 4-Bromofluorobenzene	5.05		mg/kg wet	5.000		101	70-130			
Surrogate: Dibromofluoromethane	4.90		mg/kg wet	5.000		98	70-130			
Surrogate: Toluene-d8	5.04		mg/kg wet	5.000		101	70-130			
an egator routine do		8082A Poly	chlorinated E	Biphenyls	(PCB)					
Batch CJ60604 - 3540C										
Blank	ND	0.0500	ma/l/a ···at							
Aroclor 1016	ND		mg/kg wet							
Aroclor 1221	ND	0.0500	mg/kg wet							
Aroclor 1232	ND	0.0500	mg/kg wet							
Aroclor 1242	ND	0.0500	mg/kg wet							
Aroclor 1248	ND	0.0500	mg/kg wet							
Aroclor 1254	ND	0.0500	mg/kg wet							
Aroclor 1260	ND	0.0500	mg/kg wet							
Aroclor 1262	ND	0.0500	mg/kg wet							
Aroclor 1268	ND	0.0500	mg/kg wet							
Surrogate: Decachlorobiphenyl	0.0222		mg/kg wet	0.02500		89	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0229		mg/kg wet	0.02500		92	30-150			
Surrogate: Tetrachloro-m-xylene	0.0188		mg/kg wet	0.02500		<i>75</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0185		mg/kg wet	0.02500		74	30-150			
LCS										
Aroclor 1016	0.444	0.0500	mg/kg wet	0.5000		89	40-140			
Aroclor 1260	0.455	0.0500	mg/kg wet	0.5000		91	40-140			
Surrogate: Decachlorobiphenyl	0.0233		mg/kg wet	0.02500		93	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0249		mg/kg wet	0.02500		100	30-150			
Surrogate: Tetrachloro-m-xylene	0.0211		mg/kg wet	0.02500		84	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0192		mg/kg wet	0.02500		77	30-150			
LCS Dup										
Aroclor 1016	0.449	0.0500	mg/kg wet	0.5000		90	40-140	1	30	
Aroclor 1260	0.461	0.0500	mg/kg wet	0.5000		92	40-140	1	30	
	0.0231		mg/kg wet	0.02500		92	30-150			
Surrogate: Decachlorobinhenyl	0.0231									
Surrogate: Decachlorobiphenyl				0.02500		98	30-150			
Surrogate: Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene	0.0246 0.0210		mg/kg wet	0.02500 0.02500		98 84	30-150 30-150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Quality

Dependability

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

%REC

RPD

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

Spike

Source

Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		8082A Poly	chlorinated E	Biphenyls	(PCB)					
atch CJ60709 - 3540C										
lank										
roclor 1016	ND	0.0500	mg/kg wet							
roclor 1221	ND	0.0500	mg/kg wet							
roclor 1232	ND	0.0500	mg/kg wet							
roclor 1242	ND	0.0500	mg/kg wet							
roclor 1248	ND	0.0500	mg/kg wet							
roclor 1254	ND	0.0500	mg/kg wet							
roclor 1260	ND	0.0500	mg/kg wet							
roclor 1262	ND	0.0500	mg/kg wet							
roclor 1268	ND	0.0500	mg/kg wet							
urrogate: Decachlorobiphenyl	0.0200		mg/kg wet	0.02500		80	30-150			
urrogate: Decachlorobiphenyl [2C]	0.0207		mg/kg wet	0.02500		83	30-150			
urrogate: Tetrachloro-m-xylene	0.0183		mg/kg wet	0.02500		73	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.0183		mg/kg wet	0.02500		<i>73</i>	30-150			
CS .										
roclor 1016	0.447	0.0500	mg/kg wet	0.5000		89	40-140			
roclor 1260	0.452	0.0500	mg/kg wet	0.5000		90	40-140			
urrogate: Decachlorobiphenyl	0.0216		mg/kg wet	0.02500		87	30-150			
urrogate: Decachlorobiphenyl [2C]	0.0225		mg/kg wet	0.02500		90	30-150			
urrogate: Tetrachloro-m-xylene	0.0207		mg/kg wet	0.02500		83	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.0193		mg/kg wet	0.02500		<i>77</i>	30-150			
CS Dup										
roclor 1016	0.430	0.0500	mg/kg wet	0.5000		86	40-140	4	30	
roclor 1260	0.441	0.0500	mg/kg wet	0.5000		88	40-140	3	30	
ırrogate: Decachlorobiphenyl	0.0214		mg/kg wet	0.02500		<i>85</i>	30-150			
urrogate: Decachlorobiphenyl [2C]	0.0223		mg/kg wet	0.02500		89	30-150			
urrogate: Tetrachloro-m-xylene	0.0200		mg/kg wet	0.02500		80	30-150			
urrogate: Tetrachloro-m-xylene [2C]	0.0184		mg/kg wet	0.02500		74	30-150			
atch CJ61327 - 3540C										
ank										
oclor 1016	ND	0.0500	mg/kg wet	<u> </u>	<u> </u>		<u> </u>		<u> </u>	
roclor 1221	ND	0.0500	mg/kg wet							
roclor 1232	ND	0.0500	mg/kg wet							
roclor 1242	ND	0.0500	mg/kg wet							
oclor 1248	ND	0.0500	mg/kg wet							
oclor 1254	ND	0.0500	mg/kg wet							
oclor 1260	ND	0.0500	mg/kg wet							
oclor 1262	ND	0.0500	mg/kg wet							
oclor 1268	ND	0.0500	mg/kg wet							
urrogate: Decachlorobiphenyl	0.0212		mg/kg wet	0.02500		85	30-150			
urrogate: Decachlorobiphenyl [2C]	0.0226		mg/kg wet	0.02500		90	30-150			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability Quality Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth

ESS Laboratory Work Order: 1610112

Analyte	Result	MRL	Units	Spike Level	Source Result %	REC	%REC Limits	RPD	RPD Limit	Qualifier
· ,	. Codit		chlorinated E							-Zudiiiol
atch CJ61327 - 3540C										
Surrogate: Tetrachloro-m-xylene	0.0195		mg/kg wet	0.02500		<i>78</i>	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0193		mg/kg wet	0.02500		<i>77</i>	30-150			
.cs										
Aroclor 1016	0.462	0.0500	mg/kg wet	0.5000		92	40-140			
Aroclor 1260	0.460	0.0500	mg/kg wet	0.5000		92	40-140			
Surrogate: Decachlorobiphenyl	0.0226		mg/kg wet	0.02500		90	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0245		mg/kg wet	0.02500		98	30-150			
Surrogate: Tetrachloro-m-xylene	0.0221		mg/kg wet	0.02500		89	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0204		mg/kg wet	0.02500		82	30-150			
.CS Dup										
Aroclor 1016	0.450	0.0500	mg/kg wet	0.5000		90	40-140	3	30	
Aroclor 1260	0.446	0.0500	mg/kg wet	0.5000		89	40-140	3	30	
			9/119 1100				.0 1.0			
Surrogate: Decachlorobiphenyl	0.0214		mg/kg wet	0.02500		86	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0231		mg/kg wet	0.02500		92	30-150			
Surrogate: Tetrachloro-m-xylene	0.0211		mg/kg wet	0.02500		84	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0196		mg/kg wet	0.02500		<i>78</i>	30-150			
Batch CJ61328 - 3540C			<u> </u>							
Sarch CJ61328 - 3540C Blank										
Aroclor 1016	ND	0.0500	ma/ka wat							
	ND		mg/kg wet							
Aroclor 1221	ND	0.0500	mg/kg wet							
Aroclor 1232	ND	0.0500	mg/kg wet							
Aroclor 1242	ND	0.0500	mg/kg wet							
Aroclor 1248	ND	0.0500	mg/kg wet							
Aroclor 1254	ND	0.0500	mg/kg wet							
Aroclor 1260	ND	0.0500	mg/kg wet							
Aroclor 1262	ND	0.0500	mg/kg wet							
Aroclor 1268	ND	0.0500	mg/kg wet							
	0.0193		mg/kg wet	0.02500		<i>77</i>	30-150			
Surrogate: Decachlorobiphenyl	0.0201		mg/kg wet	0.02500		81	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0168			0.02500		67	30-150			
Surrogate: Tetrachloro-m-xylene	0.0189		mg/kg wet mg/kg wet	0.02500		76	30-150 30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0103		mg/kg wet	0.02300		,,,	30 130			
.CS		0.0	<i>p</i> .	0.5000			40.4.0			
Aroclor 1016	0.486	0.0500	mg/kg wet	0.5000		97	40-140			
Aroclor 1260	0.444	0.0500	mg/kg wet	0.5000		89	40-140			
Surrogate: Decachlorobiphenyl	0.0233		mg/kg wet	0.02500		93	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.0248		mg/kg wet	0.02500		99	30-150			
Surrogate: Tetrachloro-m-xylene	0.0196		mg/kg wet	0.02500		78	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.0206		mg/kg wet	0.02500		83	30-150			
.CS Dup										
Aroclor 1016	0.489	0.0500	mg/kg wet	0.5000		98	40-140	0.7	30	

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

.			Spike	Source	0/ 5=0	%REC	D.C.5	RPD	0 ""
Result					%REC	Limits	RPD	Limit	Qualifier
	8082A Poly	chlorinated I	Biphenyls	(PCB)					
0.0245		mg/kg wet	0.02500		98	30-150			
0.0258		mg/kg wet	0.02500		103	30-150			
0.0198		mg/kg wet	0.02500		<i>79</i>	30-150			
0.0208		mg/kg wet	0.02500		83	30-150			
	8100M Tot	al Petroleum	Hydroca	rbons					
ND	0.2	mg/kg wet							
ND	0.2	mg/kg wet							
ND	0.2	mg/kg wet							
ND	0.2	mg/kg wet							
ND									
ND	0.2	mg/kg wet							
4.68		mg/kg wet	5.000		94	40-140			
1.9	0.2	ma/ka wet	2.500		78	40-140			
	0.2								
4.89		mg/kg wet	5.000		98	40-140			
			2.500			40 : : :			
2.2	0.2	mg/kg wet	2.500		87	40-140	11	50	
	0.0258 0.0198 0.0208 ND ND ND ND ND ND ND ND ND ND ND ND ND	8082A Poly 0.0245 0.0258 0.0198 0.0208 8100M Tot ND	8082A Polychlorinated 6 0.0245	Result MRL Units Level	Result MRL Units Level Result	Result MRL Units Level Result %REC 8082A Polychlorinated Biphenyls (PCB)	Result MRL Units Level Result YeREC Limits	Result MRL Units Level Result %6REC Limits RPD	Result MRL Units Level Result %REC Limits RPD Limit

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifie
		8100M Tot	al Petroleum	Hydroca	irbons					
Batch CJ60608 - 3546										
Dodecane (C12)	2.2	0.2	mg/kg wet	2.500		89	40-140	5	50	
Eicosane (C20)	2.6	0.2	mg/kg wet	2.500		103	40-140	4	50	
Hexacosane (C26)	2.5	0.2	mg/kg wet	2.500		101	40-140	4	50	
Hexadecane (C16)	2.5	0.2	mg/kg wet	2.500		102	40-140	7	50	
Nonadecane (C19)	2.3	0.2	mg/kg wet	2.500		92	40-140	5	50	
lonane (C9)	1.9	0.2	mg/kg wet	2.500		77	30-140	11	50	
Octacosane (C28)	2.5	0.2	mg/kg wet	2.500		101	40-140	5	50	
Octadecane (C18)	2.5	0.2	mg/kg wet	2.500		99	40-140	5	50	
etracosane (C24)	2.5	0.2	mg/kg wet	2.500		101	40-140	4	50	
etradecane (C14)	2.3	0.2	mg/kg wet	2.500		92	40-140	7	50	
Fotal Petroleum Hydrocarbons	34.1	37.5	mg/kg wet	35.00		97	40-140	4	50	
Friacontane (C30)	2.5	0.2	mg/kg wet	2.500		101	40-140	4	50	
Surrogate: O-Terphenyl	5.02		mg/kg wet	5.000		100	40-140			
Batch CJ60712 - 3546										
Blank										
Decane (C10)	ND	0.2	mg/kg wet							
Pocosane (C22)	ND	0.2	mg/kg wet							
Oodecane (C12)	ND	0.2	mg/kg wet							
iicosane (C20)	ND	0.2	mg/kg wet							
dexacosane (C26)	ND	0.2	mg/kg wet							
dexadecane (C16)	ND	0.2	mg/kg wet							
Ionadecane (C19)	ND	0.2	mg/kg wet							
Nonane (C9)	ND	0.2	mg/kg wet							
Octacosane (C28)	ND	0.2	mg/kg wet							
Octadecane (C18)	ND	0.2	mg/kg wet							
Tetracosane (C24)	ND	0.2	mg/kg wet							
etracosane (C24)	ND	0.2	mg/kg wet							
Fotal Petroleum Hydrocarbons	ND	37.5	mg/kg wet							
Friacontane (C30)	ND	0.2	mg/kg wet							
			3, 3							
Gurrogate: O-Terphenyl	4.60		mg/kg wet	5.000		92	40-140			
cs										
Decane (C10)	2.2	0.2	mg/kg wet	2.500		88	40-140			
Docosane (C22)	2.5	0.2	mg/kg wet	2.500		100	40-140			
Dodecane (C12)	2.3	0.2	mg/kg wet	2.500		92	40-140			
cicosane (C20)	2.5	0.2	mg/kg wet	2.500		100	40-140			
lexacosane (C26)	2.4	0.2	mg/kg wet	2.500		97	40-140			
dexadecane (C16)	2.5	0.2	mg/kg wet	2.500		101	40-140			
lonadecane (C19)	2.5	0.2	mg/kg wet	2.500		101	40-140			
Nonane (C9)	1.9	0.2	mg/kg wet	2.500		76	30-140			
Octacosane (C28)	2.4	0.2	mg/kg wet	2.500		96	40-140			
Octadecane (C18)	2.5	0.2	mg/kg wet	2.500		99	40-140			
Fetracosane (C24)	2.5	0.2	mg/kg wet	2.500		99	40-140			
Tetradecane (C14)	2.4	0.2	mg/kg wet	2.500		94	40-140			

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifie
		8100M Tot	tal Petroleum	Hydroca	rbons					
Batch CJ60712 - 3546										
Total Petroleum Hydrocarbons	33.4	37.5	mg/kg wet	35.00		95	40-140			
Triacontane (C30)	2.4	0.2	mg/kg wet	2.500		95	40-140			
Surrogate: O-Terphenyl	4.52		mg/kg wet	5.000		90	40-140			
LCS Dup										
Decane (C10)	2.1	0.2	mg/kg wet	2.500		84	40-140	4	50	
Docosane (C22)	2.4	0.2	mg/kg wet	2.500		96	40-140	4	50	
Dodecane (C12)	2.2	0.2	mg/kg wet	2.500		88	40-140	4	50	
Eicosane (C20)	2.4	0.2	mg/kg wet	2.500		97	40-140	4	50	
Hexacosane (C26)	2.3	0.2	mg/kg wet	2.500		94	40-140	3	50	
Hexadecane (C16)	2.5	0.2	mg/kg wet	2.500		99	40-140	2	50	
Nonadecane (C19)	2.4	0.2	mg/kg wet	2.500		97	40-140	4	50	
Nonane (C9)	1.8	0.2	mg/kg wet	2.500		73	30-140	5	50	
Octacosane (C28)	2.3	0.2	mg/kg wet	2.500		92	40-140	4	50	
Octadecane (C18)	2.4	0.2	mg/kg wet	2.500		95	40-140	4	50	
Tetracosane (C24)	2.4	0.2	mg/kg wet	2.500		95	40-140	4	50	
Tetradecane (C14)	2.4	0.2	mg/kg wet	2.500		95	40-140	0.3	50	
Total Petroleum Hydrocarbons	32.3	37.5	mg/kg wet	35.00		92	40-140	3	50	
Triacontane (C30)	2.3	0.2	mg/kg wet	2.500		92	40-140	3	50	
Surrogate: O-Terphenyl	4.30		mg/kg wet	5.000		86	40-140			

8270D Semi-Volatile Organic Compounds

Batch CJ60609 - 3546			
Blank			
1,1-Biphenyl	ND	0.333	mg/kg wet
1,2,4-Trichlorobenzene	ND	0.333	mg/kg wet
1,2-Dichlorobenzene	ND	0.333	mg/kg wet
1,2-Diphenylhydrazine as Azobenzene	ND	0.333	mg/kg wet
1,3-Dichlorobenzene	ND	0.333	mg/kg wet
1,4-Dichlorobenzene	ND	0.333	mg/kg wet
2,3,4,6-Tetrachlorophenol	ND	1.67	mg/kg wet
2,4,5-Trichlorophenol	ND	0.333	mg/kg wet
2,4,6-Trichlorophenol	ND	0.333	mg/kg wet
2,4-Dichlorophenol	ND	0.333	mg/kg wet
2,4-Dimethylphenol	ND	0.333	mg/kg wet
2,4-Dinitrophenol	ND	1.67	mg/kg wet
2,4-Dinitrotoluene	ND	0.333	mg/kg wet
2,6-Dinitrotoluene	ND	0.333	mg/kg wet
2-Chloronaphthalene	ND	0.333	mg/kg wet
2-Chlorophenol	ND	0.333	mg/kg wet
2-Methylnaphthalene	ND	0.333	mg/kg wet
2-Methylphenol	ND	0.333	mg/kg wet
2-Nitroaniline	ND	0.333	mg/kg wet
2-Nitrophenol	ND	0.333	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Batch CJ60609 - 3546			
3,3´-Dichlorobenzidine	ND	0.667	mg/kg wet
3+4-Methylphenol	ND	0.667	mg/kg wet
3-Nitroaniline	ND	0.333	mg/kg wet
4,6-Dinitro-2-Methylphenol	ND	1.67	mg/kg wet
4-Bromophenyl-phenylether	ND	0.333	mg/kg wet
4-Chloro-3-Methylphenol	ND	0.333	mg/kg wet
4-Chloroaniline	ND	0.667	mg/kg wet
4-Chloro-phenyl-phenyl ether	ND	0.333	mg/kg wet
4-Nitroaniline	ND	0.333	mg/kg wet
4-Nitrophenol	ND	1.67	mg/kg wet
Acenaphthene	ND	0.333	mg/kg wet
Acenaphthylene	ND	0.333	mg/kg wet
Acetophenone	ND	0.667	mg/kg wet
Aniline	ND	1.67	mg/kg wet
Anthracene	ND	0.333	mg/kg wet
Azobenzene	ND	0.333	mg/kg wet
Benzidine	ND	0.667	mg/kg wet
Benzo(a)anthracene	ND	0.333	mg/kg wet
Benzo(a)pyrene	ND	0.167	mg/kg wet
Benzo(b)fluoranthene	ND	0.333	mg/kg wet
Benzo(g,h,i)perylene	ND	0.333	mg/kg wet
Benzo(k)fluoranthene	ND	0.333	mg/kg wet
Benzoic Acid	ND	1.67	mg/kg wet
Benzyl Alcohol	ND	0.333	mg/kg wet
bis(2-Chloroethoxy)methane	ND	0.333	mg/kg wet
bis(2-Chloroethyl)ether	ND	0.333	mg/kg wet
bis(2-chloroisopropyl)Ether	ND	0.333	mg/kg wet
bis(2-Ethylhexyl)phthalate	ND	0.333	mg/kg wet
Butylbenzylphthalate	ND	0.333	mg/kg wet
Carbazole	ND	0.333	mg/kg wet
Chrysene	ND	0.167	mg/kg wet
Dibenzo(a,h)Anthracene	ND	0.167	mg/kg wet
Dibenzofuran	ND	0.333	mg/kg wet
Diethylphthalate	ND	0.333	mg/kg wet
Dimethylphthalate	ND	0.333	mg/kg wet
Di-n-butylphthalate	ND	0.333	mg/kg wet
Di-n-octylphthalate	ND	0.333	mg/kg wet
Fluoranthene	ND	0.333	mg/kg wet
Fluorene	ND	0.333	mg/kg wet
Hexachlorobenzene	ND	0.333	mg/kg wet
Hexachlorobutadiene	ND	0.333	mg/kg wet
Hexachlorocyclopentadiene	ND	1.67	mg/kg wet
Hexachloroethane	ND	0.333	mg/kg wet
Indeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet
Isophorone	ND	0.333	mg/kg wet

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

• Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ60609 - 3546

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compo	uno	d
-----------------------------------	-----	---

Batch CJ60609 - 3546						
Naphthalene	ND	0.333	mg/kg wet			
Nitrobenzene	ND	0.333	mg/kg wet			
N-Nitrosodimethylamine	ND	0.333	mg/kg wet			
N-Nitroso-Di-n-Propylamine	ND	0.333	mg/kg wet			
N-nitrosodiphenylamine	ND	0.333	mg/kg wet			
Pentachlorophenol	ND	1.67	mg/kg wet			
Phenanthrene	ND	0.333	mg/kg wet			
Phenol	ND	0.333	mg/kg wet			
Pyrene	ND	0.333	mg/kg wet			
Pyridine	ND	1.67	mg/kg wet			
Surrogate: 1,2-Dichlorobenzene-d4	2.63		mg/kg wet	3.333	<i>79</i>	30-130
Surrogate: 2,4,6-Tribromophenol	4.46		mg/kg wet	5.000	89	30-130
Surrogate: 2-Chlorophenol-d4	3.99		mg/kg wet	5.000	80	30-130
Surrogate: 2-Fluorobiphenyl	2.75		mg/kg wet	3.333	82	30-130
Surrogate: 2-Fluorophenol	3.92		mg/kg wet	5.000	<i>78</i>	30-130
Surrogate: Nitrobenzene-d5	2.68		mg/kg wet	3.333	80	30-130
Surrogate: Phenol-d6	4.01		mg/kg wet	5.000	80	30-130
Surrogate: p-Terphenyl-d14	3.07		mg/kg wet	3.333	92	30-130
LCS						
1,1-Biphenyl	2.46	0.333	mg/kg wet	3.333	74	40-140
1,2,4-Trichlorobenzene	2.29	0.333	mg/kg wet	3.333	69	40-140
1,2-Dichlorobenzene	2.19	0.333	mg/kg wet	3.333	66	40-140
1,2-Diphenylhydrazine as Azobenzene	2.59	0.333	mg/kg wet	3.333	78	40-140
1,3-Dichlorobenzene	2.20	0.333	mg/kg wet	3.333	66	40-140
1,4-Dichlorobenzene	2.15	0.333	mg/kg wet	3.333	65	40-140
2,3,4,6-Tetrachlorophenol	2.77	1.67	mg/kg wet	3.333	83	30-130
2,4,5-Trichlorophenol	2.99	0.333	mg/kg wet	3.333	90	30-130
2,4,6-Trichlorophenol	2.81	0.333	mg/kg wet	3.333	84	30-130
2,4-Dichlorophenol	2.57	0.333	mg/kg wet	3.333	77	30-130
2,4-Dimethylphenol	2.59	0.333	mg/kg wet	3.333	78	30-130
2,4-Dinitrophenol	2.74	1.67	mg/kg wet	3.333	82	30-130
2,4-Dinitrotoluene	3.11	0.333	mg/kg wet	3.333	93	40-140
2,6-Dinitrotoluene	2.77	0.333	mg/kg wet	3.333	83	40-140
2-Chloronaphthalene	2.20	0.333	mg/kg wet	3.333	66	40-140
2-Chlorophenol	2.29	0.333	mg/kg wet	3.333	69	30-130
2-Methylnaphthalene	2.40	0.333	mg/kg wet	3.333	72	40-140
2-Methylphenol	2.39	0.333	mg/kg wet	3.333	72	30-130
2-Nitroaniline	2.58	0.333	mg/kg wet	3.333	77	40-140
2-Nitrophenol		0.333	mg/kg wet	3.333	74	30-130
	2.48	0.555	mg/ng mee			
3,3 ´-Dichlorobenzidine	2.48 2.73	0.667	mg/kg wet	3.333	82	40-140
				3.333 6.667		40-140 30-130
3,3 ´-Dichlorobenzidine 3+4-Methylphenol 3-Nitroaniline	2.73	0.667	mg/kg wet		82	
3+4-Methylphenol 3-Nitroaniline	2.73 4.74	0.667 0.667	mg/kg wet mg/kg wet	6.667	82 71	30-130
3+4-Methylphenol	2.73 4.74 2.72	0.667 0.667 0.333	mg/kg wet mg/kg wet mg/kg wet	6.667 3.333	82 71 82	30-130 40-140

185 Frances Avenue, Cranston, RI 02910-2211

2211 Tel: 401-461-7181

Dependability

◆ Quality

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile	Organic	Compound	IS
---------------------	---------	----------	----

atch CJ60609 - 3546						
-Chloroaniline	2.28	0.667	mg/kg wet	3.333	68	40-140
-Chloro-phenyl-phenyl ether	2.65	0.333	mg/kg wet	3.333	79	40-140
Nitroaniline	2.77	0.333	mg/kg wet	3.333	83	40-140
-Nitrophenol	2.80	1.67	mg/kg wet	3.333	84	30-130
cenaphthene	2.61	0.333	mg/kg wet	3.333	78	40-140
cenaphthylene	2.72	0.333	mg/kg wet	3.333	82	40-140
cetophenone	2.32	0.667	mg/kg wet	3.333	70	40-140
niline	1.76	1.67	mg/kg wet	3.333	53	40-140
nthracene	2.86	0.333	mg/kg wet	3.333	86	40-140
obenzene	2.59	0.333	mg/kg wet	3.333	78	40-140
enzidine	1.58	0.667	mg/kg wet	3.333	47	40-140
nzo(a)anthracene	2.99	0.333	mg/kg wet	3.333	90	40-140
nzo(a)pyrene	3.10	0.167	mg/kg wet	3.333	93	40-140
nzo(b)fluoranthene	3.00	0.333	mg/kg wet	3.333	90	40-140
enzo(g,h,i)perylene	3.06	0.333	mg/kg wet	3.333	92	40-140
nzo(k)fluoranthene	2.86	0.333	mg/kg wet	3.333	86	40-140
nzoic Acid	2.82	1.67	mg/kg wet	3.333	84	40-140
nzyl Alcohol	2.36	0.333	mg/kg wet	3.333	71	40-140
s(2-Chloroethoxy)methane	2.37	0.333	mg/kg wet	3.333	71	40-140
(2-Chloroethyl)ether	2.12	0.333	mg/kg wet	3.333	64	40-140
(2-chloroisopropyl)Ether	2.24	0.333	mg/kg wet	3.333	67	40-140
(2-Ethylhexyl)phthalate	3.04	0.333	mg/kg wet	3.333	91	40-140
tylbenzylphthalate	2.97	0.333	mg/kg wet	3.333	89	40-140
rbazole	2.97	0.333	mg/kg wet	3.333	89	40-140
rysene	2.90	0.167	mg/kg wet	3.333	87	40-140
penzo(a,h)Anthracene	3.11	0.167	mg/kg wet	3.333	93	40-140
penzofuran	2.61	0.333	mg/kg wet	3.333	78	40-140
ethylphthalate	2.89	0.333	mg/kg wet	3.333	87	40-140
methylphthalate	2.77	0.333	mg/kg wet	3.333	83	40-140
n-butylphthalate	3.17	0.333	mg/kg wet	3.333	95	40-140
-n-octylphthalate	2.90	0.333	mg/kg wet	3.333	87	40-140
uoranthene	3.04	0.333	mg/kg wet	3.333	91	40-140
uorene	2.76	0.333	mg/kg wet	3.333	83	40-140
exachlorobenzene	2.77	0.333	mg/kg wet	3.333	83	40-140
exachlorobutadiene	2.32	0.333	mg/kg wet	3.333	70	40-140
exachlorocyclopentadiene	2.22	1.67	mg/kg wet	3.333	67	40-140
exachloroethane	2.12	0.333	mg/kg wet	3.333	64	40-140
deno(1,2,3-cd)Pyrene	3.11	0.333	mg/kg wet	3.333	93	40-140
phorone	2.57	0.333	mg/kg wet	3.333	77	40-140
phthalene	2.26	0.333	mg/kg wet	3.333	68	40-140
robenzene	2.32	0.333	mg/kg wet	3.333	70	40-140
Nitrosodimethylamine	2.30	0.333	mg/kg wet	3.333	69	40-140
Nitroso-Di-n-Propylamine	2.46	0.333	mg/kg wet	3.333	74	40-140
nitrosodiphenylamine	2.94	0.333	mg/kg wet	3.333	88	40-140
p	2.51	0.555		3.333	00	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
Zaldiyee						/UNLC	LIIIIG	Ν·D	LIIIIL	Qualifier
	8	sz/ud Semi	-Volatile Orga	anic Com	pounas					
Batch CJ60609 - 3546										
Phenanthrene	2.76	0.333	mg/kg wet	3.333		83	40-140			
Phenol	2.36	0.333	mg/kg wet	3.333		71	30-130			
Pyrene	2.99	0.333	mg/kg wet	3.333		90	40-140			
Pyridine	1.85	1.67	mg/kg wet	3.333		55	40-140			
Surrogate: 1,2-Dichlorobenzene-d4	2.40		mg/kg wet	3.333		<i>72</i>	30-130			
Surrogate: 2,4,6-Tribromophenol	4.78		mg/kg wet	5.000		96	30-130			
Surrogate: 2-Chlorophenol-d4	3.81		mg/kg wet	5.000		76	30-130			
Surrogate: 2-Fluorobiphenyl	2.71		mg/kg wet	3.333		81	30-130			
Surrogate: 2-Fluorophenol	3.70		mg/kg wet	5.000		74	30-130			
Surrogate: Nitrobenzene-d5	2.59		mg/kg wet	3.333		<i>78</i>	30-130			
Surrogate: Phenol-d6	3.98		mg/kg wet	5.000		80	30-130			
Surrogate: p-Terphenyl-d14	3.42		mg/kg wet	3.333		102	30-130			
LCS Dup										
1,1-Biphenyl	2.21	0.333	mg/kg wet	3.333		66	40-140	11	30	
1,2,4-Trichlorobenzene	2.04	0.333	mg/kg wet	3.333		61	40-140	11	30	
1,2-Dichlorobenzene	1.99	0.333	mg/kg wet	3.333		60	40-140	10	30	
1,2-Diphenylhydrazine as Azobenzene	2.42	0.333	mg/kg wet	3.333		72	40-140	7	30	
1,3-Dichlorobenzene	1.99	0.333	mg/kg wet	3.333		60	40-140	10	30	
1,4-Dichlorobenzene	1.95	0.333	mg/kg wet	3.333		59	40-140	10	30	
2,3,4,6-Tetrachlorophenol	2.61	1.67	mg/kg wet	3.333		78	30-130	6	30	
2,4,5-Trichlorophenol	2.76	0.333	mg/kg wet	3.333		83	30-130	8	30	
2,4,6-Trichlorophenol	2.59	0.333	mg/kg wet	3.333		78	30-130	8	30	
2,4-Dichlorophenol	2.30	0.333	mg/kg wet	3.333		69	30-130	11	30	
2,4-Dimethylphenol	2.30	0.333	mg/kg wet	3.333		69	30-130	12	30	
2,4-Dinitrophenol	2.66	1.67	mg/kg wet	3.333		80	30-130	3	30	
2,4-Dinitrotoluene	2.92	0.333	mg/kg wet	3.333		88	40-140	6	30	
2,6-Dinitrotoluene	2.60	0.333	mg/kg wet	3.333		78	40-140	7	30	
2-Chloronaphthalene	1.95	0.333	mg/kg wet	3.333		59	40-140	12	30	
2-Chlorophenol	2.08	0.333	mg/kg wet	3.333		62	30-130	10	30	
2-Methylnaphthalene	2.12	0.333	mg/kg wet	3.333		64	40-140	12	30	
2-Methylphenol	2.19	0.333	mg/kg wet	3.333		66	30-130	9	30	
2-Nitroaniline	2.41	0.333	mg/kg wet	3.333		72	40-140	7	30	
2-Nitrophenol	2.19	0.333	mg/kg wet	3.333		66	30-130	13	30	
3,3´-Dichlorobenzidine	2.64	0.667	mg/kg wet	3.333		79	40-140	3	30	
3+4-Methylphenol	4.41	0.667	mg/kg wet	6.667		66	30-130	7	30	
3-Nitroaniline	2.57	0.333	mg/kg wet	3.333		77	40-140	6	30	
4,6-Dinitro-2-Methylphenol	2.85	1.67	mg/kg wet	3.333		85	30-130	4	30	
4-Bromophenyl-phenylether	2.57	0.333	mg/kg wet	3.333		77	40-140	5	30	
4-Chloro-3-Methylphenol	2.53	0.333	mg/kg wet	3.333		76	30-130	10	30	
4-Chloroaniline	2.05	0.667	mg/kg wet	3.333		61	40-140	11	30	
4-Chloro-phenyl-phenyl ether	2.43	0.333	mg/kg wet	3.333		73	40-140	9	30	
4-Nitroaniline	2.70	0.333	mg/kg wet	3.333		81	40-140	3	30	
4-Nitrophenol	2.64	1.67	mg/kg wet	3.333		79	30-130	6	30	
Acenaphthene	2.37	0.333	mg/kg wet	3.333		71	40-140	10	30	
Acenaphthylene	2.45	0.333	mg/kg wet	3.333		74	40-140	10	30	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compo	uno	d
-----------------------------------	-----	---

Batch CJ60609 - 3546									
Acetophenone	2.12	0.667	mg/kg wet	3.333	64	40-140	9	30	
Aniline	1.58	1.67	mg/kg wet	3.333	47	40-140	11	30	
Anthracene	2.73	0.333	mg/kg wet	3.333	82	40-140	5	30	
Azobenzene	2.42	0.333	mg/kg wet	3.333	72	40-140	7	30	
Benzidine	1.72	0.667	mg/kg wet	3.333	52	40-140	8	30	
Benzo(a)anthracene	2.81	0.333	mg/kg wet	3.333	84	40-140	6	30	
Benzo(a)pyrene	2.98	0.167	mg/kg wet	3.333	89	40-140	4	30	
Benzo(b)fluoranthene	2.78	0.333	mg/kg wet	3.333	83	40-140	8	30	
Benzo(g,h,i)perylene	2.96	0.333	mg/kg wet	3.333	89	40-140	3	30	
Benzo(k)fluoranthene	2.88	0.333	mg/kg wet	3.333	86	40-140	0.8	30	
Benzoic Acid	2.74	1.67	mg/kg wet	3.333	82	40-140	3	30	
Benzyl Alcohol	2.12	0.333	mg/kg wet	3.333	64	40-140	10	30	
bis(2-Chloroethoxy)methane	2.07	0.333	mg/kg wet	3.333	62	40-140	13	30	
bis(2-Chloroethyl)ether	1.96	0.333	mg/kg wet	3.333	59	40-140	8	30	
bis(2-chloroisopropyl)Ether	2.02	0.333	mg/kg wet	3.333	60	40-140	10	30	
bis(2-Ethylhexyl)phthalate	2.86	0.333	mg/kg wet	3.333	86	40-140	6	30	
Butylbenzylphthalate	2.81	0.333	mg/kg wet	3.333	84	40-140	6	30	
Carbazole	2.84	0.333	mg/kg wet	3.333	85	40-140	4	30	
Chrysene	2.78	0.167	mg/kg wet	3.333	83	40-140	4	30	
Dibenzo(a,h)Anthracene	3.00	0.167	mg/kg wet	3.333	90	40-140	3	30	
Dibenzofuran	2.37	0.333	mg/kg wet	3.333	71	40-140	10	30	
Diethylphthalate	2.72	0.333	mg/kg wet	3.333	82	40-140	6	30	
Dimethylphthalate	2.59	0.333	mg/kg wet	3.333	78	40-140	7	30	
Di-n-butylphthalate	3.03	0.333	mg/kg wet	3.333	91	40-140	5	30	
Di-n-octylphthalate	2.74	0.333	mg/kg wet	3.333	82	40-140	5	30	
Fluoranthene	2.93	0.333	mg/kg wet	3.333	88	40-140	4	30	
Fluorene	2.54	0.333	mg/kg wet	3.333	76	40-140	8	30	
Hexachlorobenzene	2.64	0.333	mg/kg wet	3.333	79	40-140	5	30	
Hexachlorobutadiene	1.98	0.333	mg/kg wet	3.333	60	40-140	16	30	
Hexachlorocyclopentadiene	1.66	1.67	mg/kg wet	3.333	50	40-140	29	30	
Hexachloroethane	1.96	0.333	mg/kg wet	3.333	59	40-140	8	30	
Indeno(1,2,3-cd)Pyrene	2.99	0.333	mg/kg wet	3.333	90	40-140	4	30	
Isophorone	2.26	0.333	mg/kg wet	3.333	68	40-140	13	30	
Naphthalene	2.00	0.333	mg/kg wet	3.333	60	40-140	12	30	
Nitrobenzene	2.07	0.333	mg/kg wet	3.333	62	40-140	12	30	
N-Nitrosodimethylamine	2.04	0.333	mg/kg wet	3.333	61	40-140	12	30	
N-Nitroso-Di-n-Propylamine	2.21	0.333	mg/kg wet	3.333	66	40-140	11	30	
N-nitrosodiphenylamine	2.80	0.333	mg/kg wet	3.333	84	40-140	5	30	
Pentachlorophenol	3.01	1.67	mg/kg wet	3.333	90	30-130	5	30	
Phenanthrene	2.67	0.333	mg/kg wet	3.333	80	40-140	3	30	
Phenol	2.13	0.333	mg/kg wet	3.333	64	30-130	10	30	
Pyrene	2.82	0.333	mg/kg wet	3.333	84	40-140	6	30	
Pyridine	1.66	1.67	mg/kg wet	3.333	50	40-140	11	30	
Surrogate: 1,2-Dichlorobenzene-d4	2.12		mg/kg wet	3.333	64	30-130			
Surrogate: 2,4,6-Tribromophenol	4.50		mg/kg wet	5.000	90	30-130			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486 ◆ Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

Analyte	Result	MRL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Qualifier
riidiyee			-Volatile Orga			/UINEC	LIIIIII	NFD	LIIIIL	Qualifier
	•	OZIOD SCIIII	voiaule Orga	uriic COIII	ipouilus					
Batch CJ60609 - 3546										
Surrogate: 2-Chlorophenol-d4	3.33		mg/kg wet	5.000		67	30-130			
Surrogate: 2-Fluorobiphenyl	2.30		mg/kg wet	3.333		69	30-130			
Surrogate: 2-Fluorophenol	3.21		mg/kg wet	5.000		64	30-130			
Surrogate: Nitrobenzene-d5	2.22		mg/kg wet	3.333		67	30-130			
Surrogate: Phenol-d6	3.44		mg/kg wet	5.000		69	30-130			
Surrogate: p-Terphenyl-d14	3.09		mg/kg wet	3.333		93	30-130			
Batch CJ61112 - 3546										
Blank										
1,1-Biphenyl	ND	0.333	mg/kg wet							
1,2,4-Trichlorobenzene	ND	0.333	mg/kg wet							
1,2-Dichlorobenzene	ND	0.333	mg/kg wet							
1,2-Diphenylhydrazine as Azobenzene	ND	0.333	mg/kg wet							
1,3-Dichlorobenzene	ND	0.333	mg/kg wet							
1,4-Dichlorobenzene	ND	0.333	mg/kg wet							
2,3,4,6-Tetrachlorophenol	ND	1.67	mg/kg wet							
2,4,5-Trichlorophenol	ND	0.333	mg/kg wet							
2,4,6-Trichlorophenol	ND	0.333	mg/kg wet							
2,4-Dichlorophenol	ND	0.333	mg/kg wet							
2,4-Dimethylphenol	ND	0.333	mg/kg wet							
2,4-Dinitrophenol	ND	1.67	mg/kg wet							
2,4-Dinitrotoluene	ND	0.333	mg/kg wet							
2,6-Dinitrotoluene	ND	0.333	mg/kg wet							
2-Chloronaphthalene	ND	0.333	mg/kg wet							
2-Chlorophenol	ND	0.333	mg/kg wet							
2-Methylnaphthalene	ND	0.333	mg/kg wet							
2-Methylphenol	ND	0.333	mg/kg wet							
2-Nitroaniline	ND	0.333	mg/kg wet							
2-Nitrophenol	ND	0.333	mg/kg wet							
3,3 ´-Dichlorobenzidine	ND	0.667	mg/kg wet							
3+4-Methylphenol	ND	0.667	mg/kg wet							
3-Nitroaniline	ND	0.333	mg/kg wet							
4,6-Dinitro-2-Methylphenol	ND	1.67	mg/kg wet							
4-Bromophenyl-phenylether	ND	0.333	mg/kg wet							
4-Chloro-3-Methylphenol	ND	0.333	mg/kg wet							
4-Chloroaniline	ND	0.667	mg/kg wet							
4-Chloro-phenyl-phenyl ether	ND	0.333	mg/kg wet							
4-Nitroaniline	ND	0.333	mg/kg wet							
4-Nitrophenol	ND	1.67	mg/kg wet							
Acenaphthene	ND	0.333	mg/kg wet							
Acenaphthylene	ND	0.333	mg/kg wet							
Acetophenone	ND	0.667	mg/kg wet							
Aniline	ND	1.67	mg/kg wet							
Anthracene	ND	0.333	mg/kg wet							
		0.222								

185 Frances Avenue, Cranston, RI 02910-2211

Azobenzene

ND

Tel: 401-461-7181

mg/kg wet

0.333

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Batch CJ61112 - 3546

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Datcii CJ01112 - J340						
Benzidine	ND	0.667	mg/kg wet			
Benzo(a)anthracene	ND	0.333	mg/kg wet			
Benzo(a)pyrene	ND	0.167	mg/kg wet			
Benzo(b)fluoranthene	ND	0.333	mg/kg wet			
Benzo(g,h,i)perylene	ND	0.333	mg/kg wet			
Benzo(k)fluoranthene	ND	0.333	mg/kg wet			
Benzoic Acid	ND	1.67	mg/kg wet			
Benzyl Alcohol	ND	0.333	mg/kg wet			
ois(2-Chloroethoxy)methane	ND	0.333	mg/kg wet			
ois(2-Chloroethyl)ether	ND	0.333	mg/kg wet			
ois(2-chloroisopropyl)Ether	ND	0.333	mg/kg wet			
ois(2-Ethylhexyl)phthalate	ND	0.333	mg/kg wet			
Butylbenzylphthalate	ND	0.333	mg/kg wet			
Carbazole	ND	0.333	mg/kg wet			
Chrysene	ND	0.167	mg/kg wet			
Dibenzo(a,h)Anthracene	ND	0.167	mg/kg wet			
Dibenzofuran	ND	0.333	mg/kg wet			
Diethylphthalate	ND	0.333	mg/kg wet			
Dimethylphthalate	ND	0.333	mg/kg wet			
vi-n-butylphthalate	ND	0.333	mg/kg wet			
vi-n-octylphthalate	ND	0.333	mg/kg wet			
luoranthene	ND	0.333	mg/kg wet			
luorene	ND	0.333	mg/kg wet			
lexachlorobenzene	ND	0.333	mg/kg wet			
lexachlorobutadiene	ND	0.333	mg/kg wet			
Hexachlorocyclopentadiene	ND	1.67	mg/kg wet			
lexachloroethane	ND	0.333	mg/kg wet			
ndeno(1,2,3-cd)Pyrene	ND	0.333	mg/kg wet			
sophorone	ND	0.333	mg/kg wet			
laphthalene	ND	0.333	mg/kg wet			
litrobenzene	ND	0.333	mg/kg wet			
I-Nitrosodimethylamine	ND	0.333	mg/kg wet			
I-Nitroso-Di-n-Propylamine	ND	0.333	mg/kg wet			
I-nitrosodiphenylamine	ND	0.333	mg/kg wet			
entachlorophenol	ND	1.67	mg/kg wet			
henanthrene	ND	0.333	mg/kg wet			
Phenol	ND	0.333	mg/kg wet			
yrene	ND	0.333	mg/kg wet			
yridine	ND	1.67	mg/kg wet			
•	2.34	1.07	mg/kg wet	3.333	70	30-130
Surrogate: 1,2-Dichlorobenzene-d4	3.02		mg/kg wet	5.000	60	30-130
Surrogate: 2,4,6-Tribromophenol	3.60		mg/kg wet	5.000	72	30-130
Surrogate: 2-Chlorophenol-d4	2.37		mg/kg wet	3.333	72	30-130
Surrogate: 2-Fluorobiphenyl	3.61		mg/kg wet	5.000	72	<i>30-130</i>
Surrogate: 2-Fluorophenol	2.34		mg/kg wet	3.333	72 70	30-130
Surrogate: Nitrobenzene-d5	3.72		mg/kg wet	5.000	70 74	30-130
Surrogate: Phenol-d6	nue, Cranston, RI 029	10 2211	під/кд wet Ге1: 401-461-718)1-461-4486	http://www.ESSLaboratory.com

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile Organic Compounds

Batch CJ61112 - 3546							
Surrogate: p-Terphenyl-d14	3.53		mg/kg wet	3.333	106	30-130	
LCS							
1,1-Biphenyl	2.35	0.333	mg/kg wet	3.333	70	40-140	
1,2,4-Trichlorobenzene	2.18	0.333	mg/kg wet	3.333	65	40-140	
1,2-Dichlorobenzene	2.10	0.333	mg/kg wet	3.333	63	40-140	
1,2-Diphenylhydrazine as Azobenzene	2.41	0.333	mg/kg wet	3.333	72	40-140	
1,3-Dichlorobenzene	2.14	0.333	mg/kg wet	3.333	64	40-140	
1,4-Dichlorobenzene	2.12	0.333	mg/kg wet	3.333	64	40-140	
2,3,4,6-Tetrachlorophenol	2.23	1.67	mg/kg wet	3.333	67	30-130	
2,4,5-Trichlorophenol	2.72	0.333	mg/kg wet	3.333	81	30-130	
2,4,6-Trichlorophenol	2.50	0.333	mg/kg wet	3.333	75	30-130	
2,4-Dichlorophenol	2.41	0.333	mg/kg wet	3.333	72	30-130	
2,4-Dimethylphenol	2.28	0.333	mg/kg wet	3.333	69	30-130	
2,4-Dinitrophenol	2.23	1.67	mg/kg wet	3.333	67	30-130	
2,4-Dinitrotoluene	2.91	0.333	mg/kg wet	3.333	87	40-140	
2,6-Dinitrotoluene	2.54	0.333	mg/kg wet	3.333	76	40-140	
2-Chloronaphthalene	2.14	0.333	mg/kg wet	3.333	64	40-140	
2-Chlorophenol	2.25	0.333	mg/kg wet	3.333	68	30-130	
2-Methylnaphthalene	2.22	0.333	mg/kg wet	3.333	67	40-140	
2-Methylphenol	2.27	0.333	mg/kg wet	3.333	68	30-130	
2-Nitroaniline	2.37	0.333	mg/kg wet	3.333	71	40-140	
2-Nitrophenol	2.31	0.333	mg/kg wet	3.333	69	30-130	
3,3´-Dichlorobenzidine	1.67	0.667	mg/kg wet	3.333	50	40-140	
3+4-Methylphenol	4.65	0.667	mg/kg wet	6.667	70	30-130	
3-Nitroaniline	2.40	0.333	mg/kg wet	3.333	72	40-140	
4,6-Dinitro-2-Methylphenol	2.46	1.67	mg/kg wet	3.333	74	30-130	
4-Bromophenyl-phenylether	2.39	0.333	mg/kg wet	3.333	72	40-140	
4-Chloro-3-Methylphenol	2.41	0.333	mg/kg wet	3.333	72	30-130	
4-Chloroaniline	1.93	0.667	mg/kg wet	3.333	58	40-140	
4-Chloro-phenyl-phenyl ether	2.43	0.333	mg/kg wet	3.333	73	40-140	
4-Nitroaniline	2.91	0.333	mg/kg wet	3.333	87	40-140	
4-Nitrophenol	2.66	1.67	mg/kg wet	3.333	80	30-130	
Acenaphthene	2.41	0.333	mg/kg wet	3.333	72	40-140	
Acenaphthylene	2.39	0.333	mg/kg wet	3.333	72	40-140	
Acetophenone	2.24	0.667	mg/kg wet	3.333	67	40-140	
Aniline	1.30	1.67	mg/kg wet	3.333	39	40-140	B-
Anthracene	2.65	0.333	mg/kg wet	3.333	79	40-140	
Azobenzene	2.41	0.333	mg/kg wet	3.333	72	40-140	
Benzidine	ND	0.667	mg/kg wet	3.333		40-140	B-
Benzo(a)anthracene	2.68	0.333	mg/kg wet	3.333	80	40-140	
Benzo(a)pyrene	2.92	0.167	mg/kg wet	3.333	88	40-140	
Benzo(b)fluoranthene	2.96	0.333	mg/kg wet	3.333	89	40-140	
Benzo(g,h,i)perylene	2.90	0.333	mg/kg wet	3.333	87	40-140	
Benzo(k)fluoranthene	2.95	0.333	mg/kg wet	3.333	88	40-140	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
8270D Semi-Volatile Organic Compounds										

atch CJ61112 - 3546									
enzoic Acid	2.18	1.67	mg/kg wet	3.333	66	40-140			
enzyl Alcohol	2.24	0.333	mg/kg wet	3.333	67	40-140			
is(2-Chloroethoxy)methane	2.23	0.333	mg/kg wet	3.333	67	40-140			
is(2-Chloroethyl)ether	2.53	0.333	mg/kg wet	3.333	76	40-140			
is(2-chloroisopropyl)Ether	2.21	0.333	mg/kg wet	3.333	66	40-140			
is(2-Ethylhexyl)phthalate	3.05	0.333	mg/kg wet	3.333	91	40-140			
utylbenzylphthalate	2.90	0.333	mg/kg wet	3.333	87	40-140			
arbazole	2.79	0.333	mg/kg wet	3.333	84	40-140			
hrysene	2.73	0.167	mg/kg wet	3.333	82	40-140			
ibenzo(a,h)Anthracene	2.91	0.167	mg/kg wet	3.333	87	40-140			
ibenzofuran	2.38	0.333	mg/kg wet	3.333	72	40-140			
iethylphthalate	2.62	0.333	mg/kg wet	3.333	79	40-140			
imethylphthalate	2.48	0.333	mg/kg wet	3.333	74	40-140			
i-n-butylphthalate	2.97	0.333	mg/kg wet	3.333	89	40-140			
i-n-octylphthalate	2.72	0.333	mg/kg wet	3.333	82	40-140			
luoranthene	2.79	0.333	mg/kg wet	3.333	84	40-140			
luorene	2.51	0.333	mg/kg wet	3.333	75	40-140			
exachlorobenzene	2.50	0.333	mg/kg wet	3.333	75	40-140			
exachlorobutadiene	2.18	0.333	mg/kg wet	3.333	65	40-140			
exachlorocyclopentadiene	0.361	1.67	mg/kg wet	3.333	11	40-140			B-
exachloroethane	2.13	0.333	mg/kg wet	3.333	64	40-140			
ndeno(1,2,3-cd)Pyrene	2.90	0.333	mg/kg wet	3.333	87	40-140			
sophorone	2.34	0.333	mg/kg wet	3.333	70	40-140			
aphthalene	2.21	0.333	mg/kg wet	3.333	66	40-140			
itrobenzene	2.26	0.333	mg/kg wet	3.333	68	40-140			
-Nitrosodimethylamine	2.13	0.333	mg/kg wet	3.333	64	40-140			
-Nitroso-Di-n-Propylamine	2.34	0.333	mg/kg wet	3.333	70	40-140			
-nitrosodiphenylamine	2.66	0.333	mg/kg wet	3.333	80	40-140			
entachlorophenol	2.77	1.67	mg/kg wet	3.333	83	30-130			
henanthrene	2.60	0.333	mg/kg wet	3.333	78	40-140			
henol	2.23	0.333	mg/kg wet	3.333	67	30-130			
yrene	2.79	0.333	mg/kg wet	3.333	84	40-140			
yridine	1.81	1.67	mg/kg wet	3.333	54	40-140			
Eurrogate: 1,2-Dichlorobenzene-d4	2.47		mg/kg wet	3.333	<i>74</i>	30-130			
Surrogate: 2,4,6-Tribromophenol	4.00		mg/kg wet	5.000	80	30-130			
Surrogate: 2-Chlorophenol-d4	3.87		mg/kg wet	5.000	<i>77</i>	30-130			
Surrogate: 2-Fluorobiphenyl	2.64		mg/kg wet	3.333	<i>79</i>	30-130			
Surrogate: 2-Fluorophenol	3.88		mg/kg wet	5.000	78	30-130			
Surrogate: Nitrobenzene-d5	2.60		mg/kg wet	3.333	78	30-130			
Surrogate: Phenol-d6	4.04		mg/kg wet	5.000	81	30-130			
Surrogate: p-Terphenyl-d14	3.34		mg/kg wet	3.333	100	30-130			
CS Dup									
,1-Biphenyl	2.52	0.333	mg/kg wet	3.333	76	40-140	7	30	
,2,4-Trichlorobenzene	2.32	0.333	mg/kg wet	3.333	70	40-140	6	30	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181 Dependability

Quality

Fax: 401-461-4486 Service

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

										$\overline{}$
				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier

8270D Semi-Volatile	Organic	Compound	S
---------------------	---------	----------	---

Batch CJ61112 - 3546									
1,2-Diphenylhydrazine as Azobenzene	2.60	0.333	mg/kg wet	3.333	78	40-140	7	30	
1,3-Dichlorobenzene	2.31	0.333	mg/kg wet	3.333	69	40-140	7	30	
1,4-Dichlorobenzene	2.22	0.333	mg/kg wet	3.333	67	40-140	5	30	
2,3,4,6-Tetrachlorophenol	2.45	1.67	mg/kg wet	3.333	73	30-130	9	30	
2,4,5-Trichlorophenol	2.92	0.333	mg/kg wet	3.333	88	30-130	7	30	
2,4,6-Trichlorophenol	2.72	0.333	mg/kg wet	3.333	81	30-130	8	30	
2,4-Dichlorophenol	2.59	0.333	mg/kg wet	3.333	78	30-130	7	30	
2,4-Dimethylphenol	2.48	0.333	mg/kg wet	3.333	75	30-130	8	30	
2,4-Dinitrophenol	2.55	1.67	mg/kg wet	3.333	76	30-130	13	30	
2,4-Dinitrotoluene	3.04	0.333	mg/kg wet	3.333	91	40-140	4	30	
2,6-Dinitrotoluene	2.66	0.333	mg/kg wet	3.333	80	40-140	5	30	
2-Chloronaphthalene	2.30	0.333	mg/kg wet	3.333	69	40-140	7	30	
2-Chlorophenol	2.45	0.333	mg/kg wet	3.333	74	30-130	9	30	
2-Methylnaphthalene	2.37	0.333	mg/kg wet	3.333	71	40-140	6	30	
2-Methylphenol	2.50	0.333	mg/kg wet	3.333	75	30-130	10	30	
2-Nitroaniline	2.49	0.333	mg/kg wet	3.333	75	40-140	5	30	
2-Nitrophenol	2.55	0.333	mg/kg wet	3.333	76	30-130	10	30	
3,3´-Dichlorobenzidine	1.42	0.667	mg/kg wet	3.333	43	40-140	16	30	
3+4-Methylphenol	5.08	0.667	mg/kg wet	6.667	76	30-130	9	30	
3-Nitroaniline	2.44	0.333	mg/kg wet	3.333	73	40-140	2	30	
4,6-Dinitro-2-Methylphenol	2.78	1.67	mg/kg wet	3.333	83	30-130	12	30	
4-Bromophenyl-phenylether	2.59	0.333	mg/kg wet	3.333	78	40-140	8	30	
4-Chloro-3-Methylphenol	2.56	0.333	mg/kg wet	3.333	77	30-130	6	30	
4-Chloroaniline	2.11	0.667	mg/kg wet	3.333	63	40-140	9	30	
4-Chloro-phenyl-phenyl ether	2.56	0.333	mg/kg wet	3.333	77	40-140	5	30	
4-Nitroaniline	3.12	0.333	mg/kg wet	3.333	94	40-140	7	30	
4-Nitrophenol	2.82	1.67	mg/kg wet	3.333	84	30-130	6	30	
Acenaphthene	2.56	0.333	mg/kg wet	3.333	77	40-140	6	30	
Acenaphthylene	2.55	0.333	mg/kg wet	3.333	77	40-140	7	30	
Acetophenone	2.43	0.667	mg/kg wet	3.333	73	40-140	8	30	
Aniline	1.53	1.67	mg/kg wet	3.333	46	40-140	17	30	
Anthracene	2.82	0.333	mg/kg wet	3.333	85	40-140	6	30	
Azobenzene	2.60	0.333	mg/kg wet	3.333	78	40-140	7	30	
Benzidine	ND	0.667	mg/kg wet	3.333		40-140		30	B-
Benzo(a)anthracene	2.90	0.333	mg/kg wet	3.333	87	40-140	8	30	
Benzo(a)pyrene	3.13	0.167	mg/kg wet	3.333	94	40-140	7	30	
Benzo(b)fluoranthene	3.09	0.333	mg/kg wet	3.333	93	40-140	4	30	
Benzo(g,h,i)perylene	3.08	0.333	mg/kg wet	3.333	92	40-140	6	30	
Benzo(k)fluoranthene	3.17	0.333	mg/kg wet	3.333	95	40-140	7	30	
Benzoic Acid	3.14	1.67	mg/kg wet	3.333	94	40-140	36	30	D+
Benzyl Alcohol	2.47	0.333	mg/kg wet	3.333	74	40-140	10	30	
bis(2-Chloroethoxy)methane	2.39	0.333	mg/kg wet	3.333	72	40-140	7	30	
bis(2-Chloroethyl)ether	2.71	0.333	mg/kg wet	3.333	81	40-140	7	30	
bis(2-chloroisopropyl)Ether	2.36	0.333	mg/kg wet	3.333	71	40-140	7	30	
bis(2-Ethylhexyl)phthalate	3.24	0.333	mg/kg wet	3.333	97	40-140	6	30	

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

Quality Control Data

				Spike	Source		%REC		RPD	
Analyte	Result	MRL	Units	Level	Result	%REC	Limits	RPD	Limit	Qualifier
9270D Somi Volatila Organic Compounds										

Batch CJ61112 - 3546	2.00	0.222		2 222		40.140		20	
Butylbenzylphthalate	3.09	0.333	mg/kg wet	3.333	93	40-140	6	30	
Carbazole	2.96	0.333	mg/kg wet	3.333	89	40-140	6	30	
Chrysene	2.85	0.167	mg/kg wet	3.333	85	40-140	4	30	
Dibenzo(a,h)Anthracene	3.14	0.167	mg/kg wet	3.333	94	40-140	7	30	
Dibenzofuran	2.51	0.333	mg/kg wet	3.333	75	40-140	5	30	
Diethylphthalate	2.72	0.333	mg/kg wet	3.333	82	40-140	4	30	
Dimethylphthalate	2.57	0.333	mg/kg wet	3.333	77	40-140	4	30	
Di-n-butylphthalate	3.17	0.333	mg/kg wet	3.333	95	40-140	6	30	
Di-n-octylphthalate	2.88	0.333	mg/kg wet	3.333	86	40-140	6	30	
Fluoranthene	3.05	0.333	mg/kg wet	3.333	92	40-140	9	30	
Fluorene	2.62	0.333	mg/kg wet	3.333	79	40-140	4	30	
Hexachlorobenzene	2.71	0.333	mg/kg wet	3.333	81	40-140	8	30	
Hexachlorobutadiene	2.31	0.333	mg/kg wet	3.333	69	40-140	6	30	
lexachlorocyclopentadiene	0.359	1.67	mg/kg wet	3.333	11	40-140	0.6	30	B-
lexachloroethane	2.25	0.333	mg/kg wet	3.333	67	40-140	5	30	
ndeno(1,2,3-cd)Pyrene	3.12	0.333	mg/kg wet	3.333	94	40-140	7	30	
sophorone	2.48	0.333	mg/kg wet	3.333	74	40-140	6	30	
laphthalene	2.34	0.333	mg/kg wet	3.333	70	40-140	5	30	
Nitrobenzene	2.40	0.333	mg/kg wet	3.333	72	40-140	6	30	
N-Nitrosodimethylamine	2.33	0.333	mg/kg wet	3.333	70	40-140	9	30	
N-Nitroso-Di-n-Propylamine	2.53	0.333	mg/kg wet	3.333	76	40-140	8	30	
I-nitrosodiphenylamine	2.82	0.333	mg/kg wet	3.333	84	40-140	6	30	
Pentachlorophenol	3.14	1.67	mg/kg wet	3.333	94	30-130	13	30	
Phenanthrene	2.77	0.333	mg/kg wet	3.333	83	40-140	6	30	
Phenol	2.39	0.333	mg/kg wet	3.333	72	30-130	7	30	
Pyrene	2.94	0.333	mg/kg wet	3.333	88	40-140	5	30	
Pyridine	1.93	1.67	mg/kg wet	3.333	58	40-140	6	30	
Surrogate: 1,2-Dichlorobenzene-d4	2.51		mg/kg wet	3.333	<i>75</i>	30-130			
Surrogate: 2,4,6-Tribromophenol	4.26		mg/kg wet	5.000	<i>85</i>	30-130			
Surrogate: 2-Chlorophenol-d4	4.02		mg/kg wet	5.000	80	30-130			
Surrogate: 2-Fluorobiphenyl	2.73		mg/kg wet	3.333	82	30-130			
Surrogate: 2-Fluorophenol	4.00		mg/kg wet	5.000	80	30-130			
Surrogate: Nitrobenzene-d5	2.65		mg/kg wet	3.333	80	30-130			
Surrogate: Phenol-d6	4.25		mg/kg wet	5.000	<i>85</i>	30-130			
Surrogate: p-Terphenyl-d14	3.38		mg/kg wet	3.333	102	30-130			

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

	Notes and Definitions
U	Analyte included in the analysis, but not detected
SM	Surrogate recovery(ies) outside of criteria due to matrix (UCM/coelution/matrix is present) (SM).
Q	Calibration required quadratic regression (Q).
IM	Internal Standard(s) outside of criteria due to matrix (UCM/coelution is present) (IM).
E	Reported above the quantitation limit; Estimated value (E).
D+	Relative percent difference for duplicate is outside of criteria (D+).
D	Diluted.
CD+	Continuing Calibration %Diff/Drift is above control limit (CD+).
CD-	Continuing Calibration %Diff/Drift is below control limit (CD-).
B+	Blank Spike recovery is above upper control limit (B+).
B-	Blank Spike recovery is below lower control limit (B-).
ND	Analyte NOT DETECTED at or above the MRL (LOQ), LOD for DoD Reports, MDL for J-Flagged Analytes
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
MDL	Method Detection Limit
MRL	Method Reporting Limit
LOD	Limit of Detection
LOQ	Limit of Quantitation
DL	Detection Limit
I/V	Initial Volume
F/V	Final Volume
Ş	Subcontracted analysis; see attached report
1	Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

Range result excludes concentrations of surrogates and/or internal standards eluting in that range.

2 Range result excludes concentrations of target analytes eluting in that range. 3 Range result excludes the concentration of the C9-C10 aromatic range.

Results reported as a mathematical average. Avg

NR No Recovery

[CALC] Calculated Analyte

SUB Subcontracted analysis; see attached report

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

The Microbiology Division of Thielsch Engineering, Inc.

CERTIFICATE OF ANALYSIS

Client Name: Weston & Sampson Engineers, Inc.

Client Project ID: RTE 33 Portsmouth ESS Laboratory Work Order: 1610112

ESS LABORATORY CERTIFICATIONS AND ACCREDITATIONS

ENVIRONMENTAL

Rhode Island Potable and Non Potable Water: LAI00179 http://www.health.ri.gov/find/labs/analytical/ESS.pdf

Connecticut Potable and Non Potable Water, Solid and Hazardous Waste: PH-0750 http://www.ct.gov/dph/lib/dph/environmental health/environmental laboratories/pdf/OutofStateCommercialLaboratories.pdf

Maine Potable and Non Potable Water, and Solid and Hazardous Waste: RI00002 http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp-services/labcert/documents/AllLabs.xls

Massachusetts Potable and Non Potable Water: M-RI002 http://public.dep.state.ma.us/Labcert/Labcert.aspx

New Hampshire (NELAP accredited) Potable and Non Potable Water, Solid and Hazardous Waste: 2424 http://des.nh.gov/organization/divisions/water/dwgb/nhelap/index.htm

New York (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: 11313 http://www.wadsworth.org/labcert/elap/comm.html

New Jersey (NELAP accredited) Non Potable Water, Solid and Hazardous Waste: RI006 http://datamine2.state.nj.us/DEP_OPRA/OpraMain/pi_main?mode=pi_by_site&sort_order=PI_NAMEA&Select+a+Site:=58715

United States Department of Agriculture Soil Permit: P330-12-00139

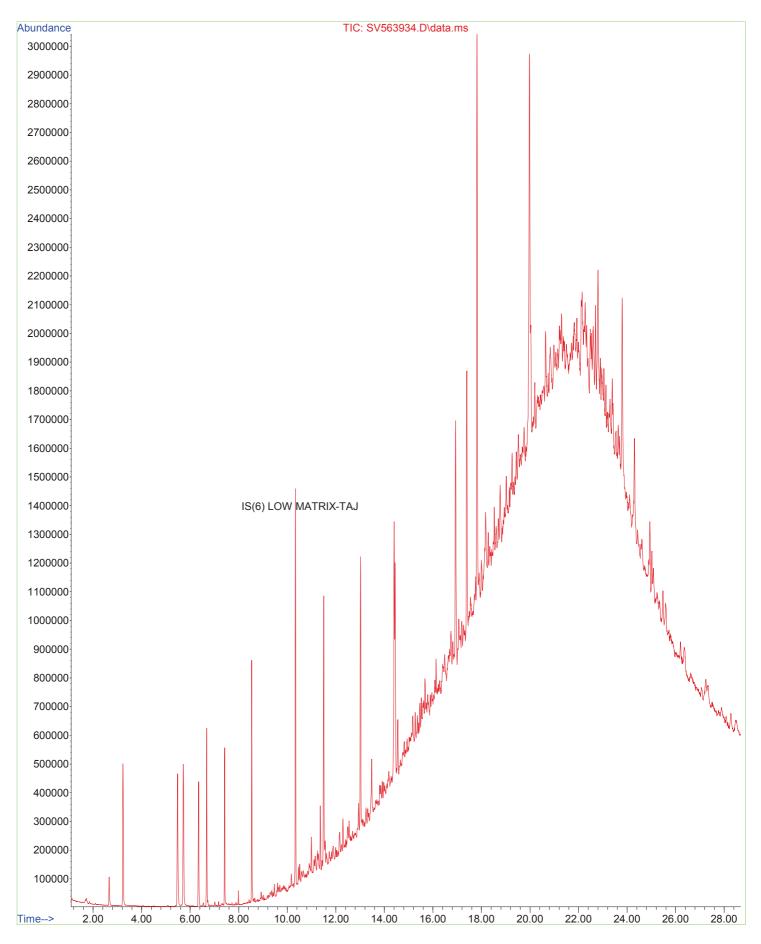
Pennsylvania: 68-01752

http://www.depweb.state.pa.us/portal/server.pt/community/labs/13780/laboratory_accreditation_program/590095

185 Frances Avenue, Cranston, RI 02910-2211

Tel: 401-461-7181

Fax: 401-461-4486

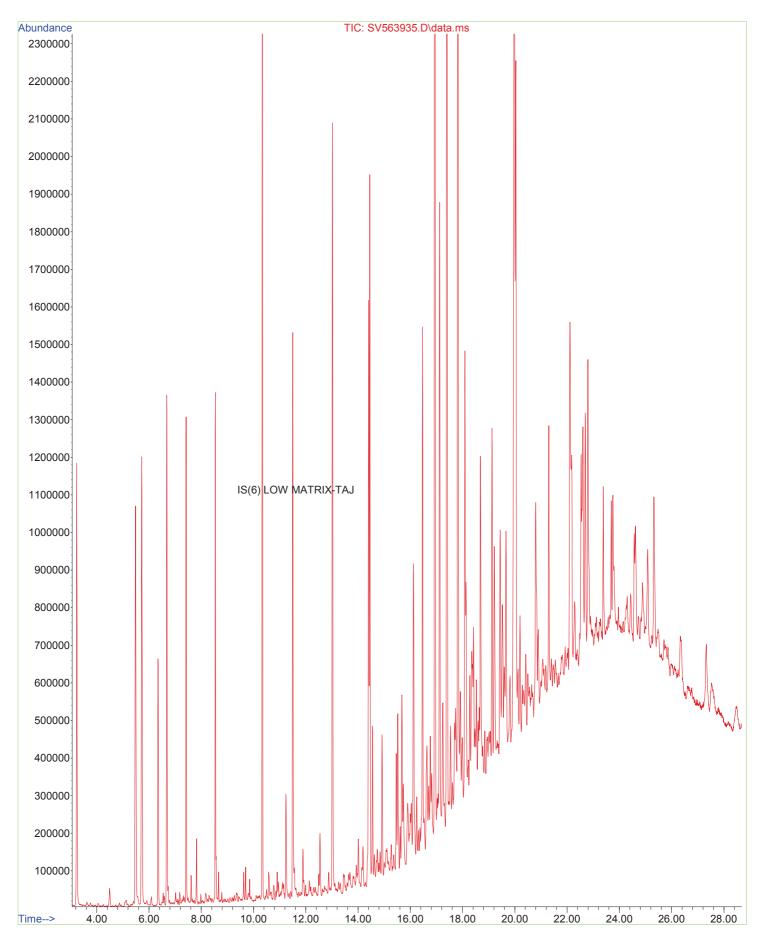

:Q:\SVOA\MS5\MS5-1016\100716\SV563934.D : TJ File

Operator

Acquired 8 Oct 2016 3:30 am using AcqMethod SV5A.M

Instrument : SVOAMS5 Sample Name: 1610112-01

Misc Info Vial Number: 12

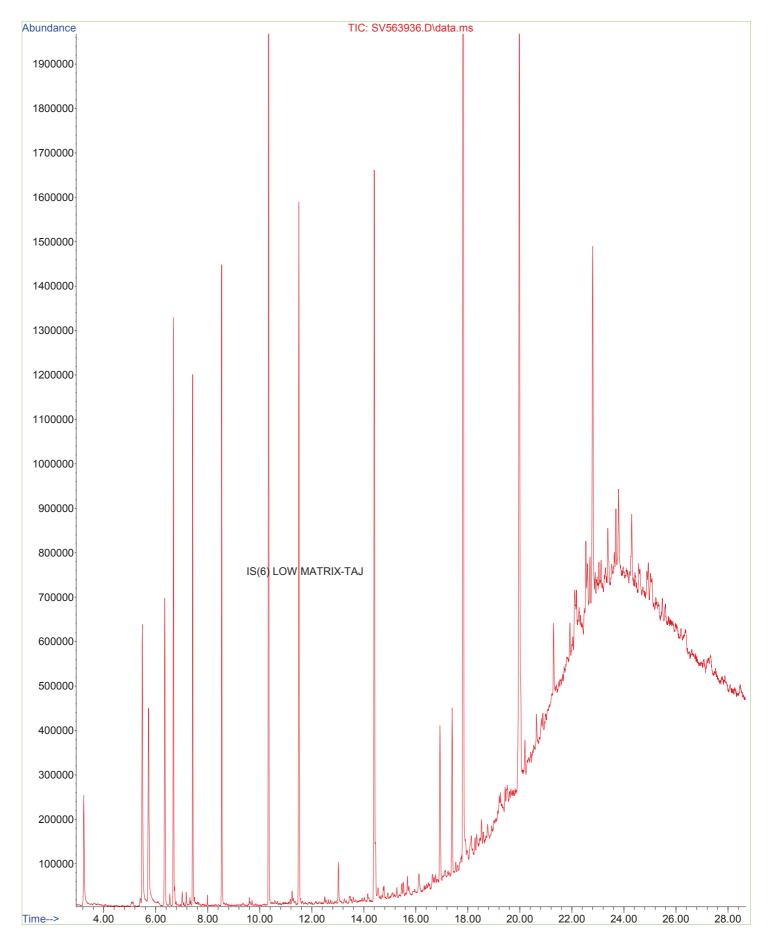

:Q:\SVOA\MS5\MS5-1016\100716\SV563935.D : TJ File

Operator

Acquired 8 Oct 2016 4:07 am using AcqMethod SV5A.M

SVOAMS5 Instrument : Sample Name: 1610112-02

Misc Info Vial Number: 13

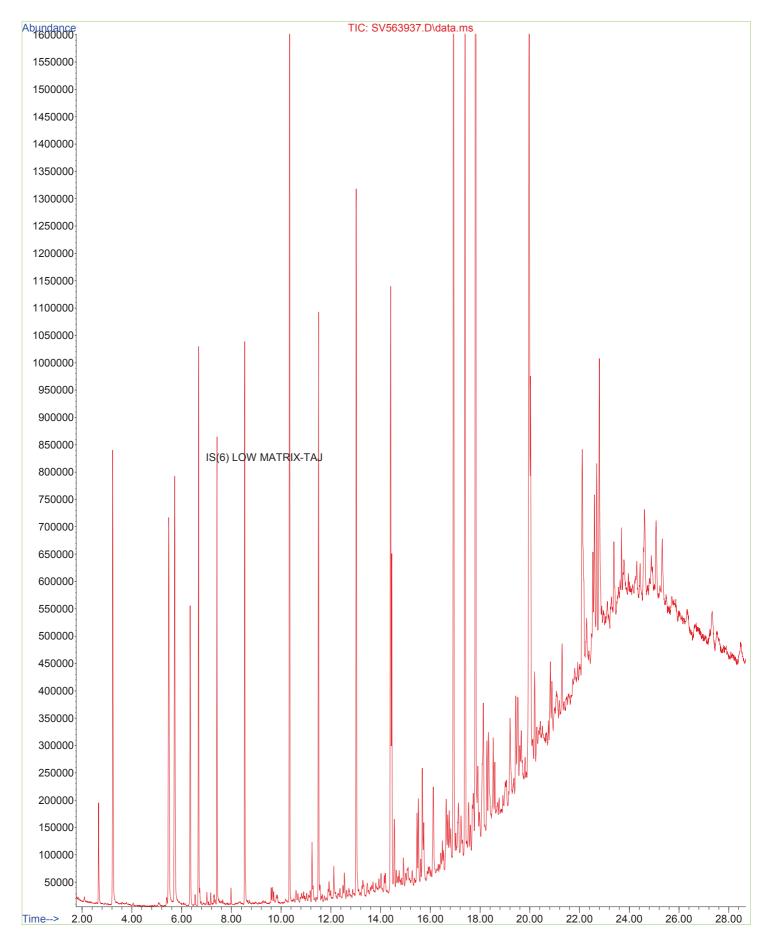

:Q:\SVOA\MS5\MS5-1016\100716\SV563936.D : TJ File

Operator

Acquired 8 Oct 2016 4:45 am using AcqMethod SV5A.M

SVOAMS5 Instrument : Sample Name: 1610112-03

Misc Info : Vial Number: 14

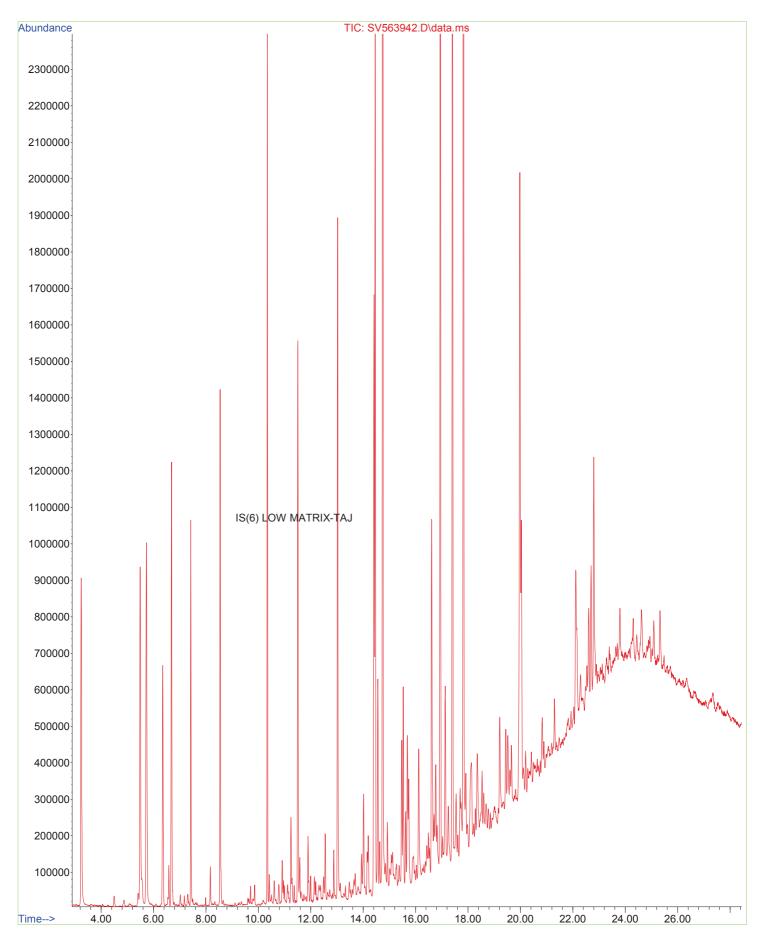

File :Q:\SVOA\MS5\MS5-1016\100716\SV563937.D

Operator : TJ

Acquired : 8 Oct 2016 5:22 am using AcqMethod SV5A.M

Instrument: SVOAMS5 Sample Name: 1610112-04

Misc Info : Vial Number: 15

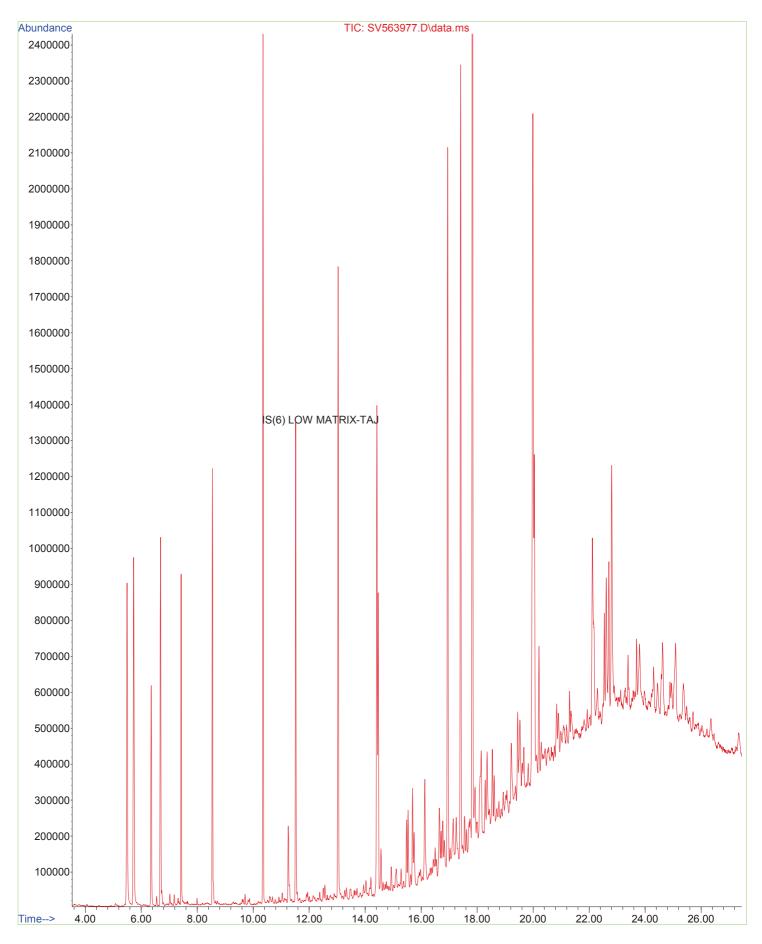

File :Q:\SVOA\MS5\MS5-1016\100716\SV563942.D

Operator : TJ

Acquired : 8 Oct 2016 8:29 am using AcqMethod SV5A.M

Instrument : SVOAMS5
Sample Name: 1610112-09

Misc Info : Vial Number: 20

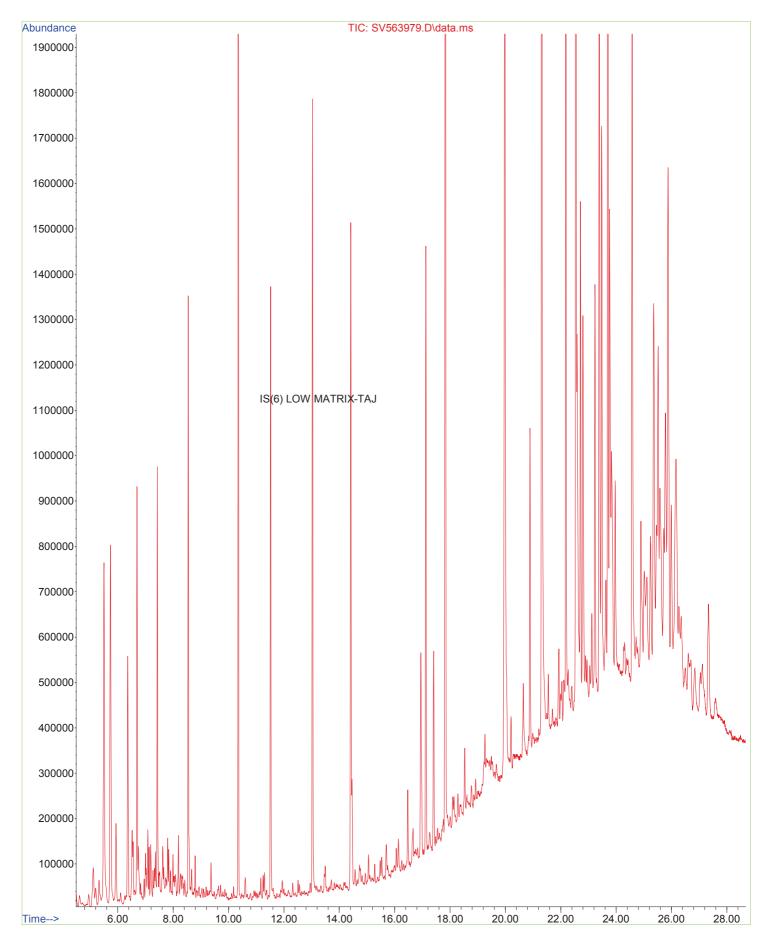

:Q:\SVOA\MS5\MS5-1016\101116\SV563977.D : TJ File

Operator

Acquired : 11 Oct 2016 6:59 pm using AcqMethod SV5A.M

Instrument : SVOAMS5 Sample Name: 1610112-13

Misc Info Vial Number: 12


:Q:\SVOA\MS5\MS5-1016\101116\SV563979.D : TJ File

Operator

Acquired : 11 Oct 2016 8:13 pm using AcqMethod SV5A.M

Instrument : SVOAMS5 Sample Name: 1610112-15

Misc Info Vial Number: 14

ESS Laboratory Sample and Cooler Receipt Checklist

Shipped/Delivered Vi	& Sampson Er		- TB/CMT	Date I Project E	Received: 10	610112 0/6/2016 /14/2016 5 Day	············
Air bill manifest pre Air No.:			No	6. Does COC	match bottles?		Yes
2. Were custody seal	s present?		No	7. is COC con	plete and correct?		Yes
3. Is radiation count	<100 CPM?		Yes	8. Were samp	les received intact?		Yes
4. Is a Cooler Presen	t?	Г	Yes	9. Were labs	Informed about short ho	ids & rushes?	Yes / No (N
Temp: 1.2 5. Was COC signed	lced with:	_	Yes	10. Were any	analyses received outside	of hold time?	Yes / No
11. Any Subcontractir		Yes /	ķ 6)	12. Were VO/			(Pes / No
ESS Sample ID Analysi			<u> </u>	-	in aqueous VOAs? anol cover soil completely	?	Yes / No / N
13. Are the samples a. If metals preserved b. Low Level VOA via	d upon receipt: als frozen:		(es) / No Date: Date:	Time:	By:	TC SC 101	<u>7/1</u> 6
Sample Receiving No	tes:	م د د	1 60	0-9 5-3 •	0-/3 5-3:	B-14 5-4	
1869 011	Di Nu	- V 1/4	1 10	B-9, S-3 - 50y Nor D) Wa	5.13, 3.3		····
a. Was there a need Who was contacted?	to contact the	oject Managei client? ————	r? Date: j	Yes / No Yes / No Time:	Бу:	······································	
a. Was there a need	to contact the				Бу:		
a. Was there a need	to contact the				By:	Record pH (Cy Pestic	anide and 608
a. Was there a need Who was contacted? Sample Contains Number ID 01 72115	er Proper Container	Air Bubbles Present	Date: Sufficient Volume Yes	Container Type 8 oz. Jar - Unpres	Preservative NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Contains Number ID 01 72115 01 72131	er Proper Container Yes Yes	Air Bubbles Present NA NA	Date: Sufficient Volume	Time: Container Type	Preservative	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72182 01 72163	er Proper Container Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA	Sufficient Volume Yes Yes Yes Yes	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other	Preservative NP MeOH Other Other	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72182 01 72163 02 72114	er Proper Container Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres	Preservative NP MeOH Other Other NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72163 01 72163 02 72114 02 72130	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes	Air Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol	Preservative NP MeOH Other Other NP MeOH	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72163 01 72163 02 72114 02 72130 02 72160	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres	Preservative NP MeOH Other NP MeOH Other Other Other	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72163 01 72163 02 72114 02 72130	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Methanol VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres	Preservative NP MeOH Other Other NP MeOH Other Other Other	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72163 02 72114 02 72130 02 72161 03 72113 03 72129	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other	Preservative NP MeOH Other Other NP MeOH Other Other NP MeOH	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72162 01 72164 02 72134 02 72164 02 72161 03 72113 03 72129 03 72158	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other	Preservative NP MeOH Other Other NP MeOH Other Other NP MeOH Other NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72162 01 72163 02 72114 02 72130 02 72161 03 72113 03 72129 03 72158 03 72159	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Date: Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other	Preservative NP MeOH Other Other NP MeOH Other Other NP MeOH Other Other Other NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72162 01 72163 02 72114 02 72130 02 72161 03 72113 03 72129 03 72158 03 72159 04 72112	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other	Preservative NP MeOH Other Other NP MeOH Other Other NP MeOH Other NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72163 02 72114 02 72160 02 72161 03 72113 03 72129 03 72158 03 72159 04 72128	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Date: Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Methanol VOA Vial - Other	Preservative NP MeOH Other Other NP MeOH Other Other Other NP MeOH Other NP MeOH Other Other Other Other	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72131 01 72163 02 72114 02 72160 02 72161 03 72113 03 72129 03 72158 03 72159 04 72112 04 72128	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Date: Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Methanol VOA Vial - Other	Preservative NP MeOH Other Other NP MeOH Other Other Other NP MeOH Other Other NP MeOH Other Other Other Other	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Contains Number ID 01 72115 01 72131 01 72162 01 72163 02 72114 02 72160 02 72161 03 72113 03 72129 03 72158 04 72128 04 72128 04 72128 04 72157 05 72111	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Date: Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres	Preservative NP MeOH Other Other NP MeOH Other Other NP MeOH Other NP MeOH Other Other Other Other NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Contains Number ID 01 72115 01 72131 01 72162 01 72163 02 72114 02 72130 02 72161 03 72113 03 72158 03 72159 04 72128 04 72128 04 72156 04 72157 05 72111	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other	Preservative NP MeOH Other Other Other Other Other Other NP MeOH Other Other NP MeOH Other Other NP MeOH Other NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Contains Number ID 01 72115 01 72131 01 72162 01 72163 02 72114 02 72130 02 72161 03 72113 03 72159 04 72156 04 72157 05 72111 05 72127	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Methanol VOA Vial - Methanol VOA Vial - Other	Preservative NP MeOH Other Other Other Other Other NP MeOH Other Other NP MeOH Other Other NP MeOH Other NP MeOH Other Other NP	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Contains Number ID 01 72115 01 72131 01 72162 01 72163 02 72114 02 72130 02 72161 03 72113 03 72159 04 72152 04 72156 04 72157 05 72111 05 72154 05 72155	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other	Preservative NP MeOH Other Other Other Other NP MeOH Other Other Other NP MeOH Other Other NP MeOH Other Other Other Other	Record pH (Cy	anide and 608
a. Was there a need Who was contacted? Sample Containe Number ID 01 72115 01 72163 01 72163 02 72114 02 72130 02 72161 03 72113 03 72129 03 72158 03 72159 04 72157 05 72111 05 72127 05 72154 05 72155 06 72110	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other Preservative NP MeOH Other Other Other Other NP MeOH Other Other NP MeOH Other Other NP MeOH Other Other NP	Record pH (Cy	anide and 608	
a. Was there a need Who was contacted? Sample Contains ID 01 72115 01 72131 01 72162 01 72163 02 72114 02 72130 02 72161 03 72113 03 72159 04 72156 04 72156 04 72157 05 72111 05 72154 05 72155	er Proper Container Yes Yes Yes Yes Yes Yes Yes Yes Yes Ye	Air Bubbles Present NA NA NA NA NA NA NA NA NA NA NA NA NA	Sufficient Volume Yes Yes Yes Yes Yes Yes Yes Yes Yes Y	Container Type 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Methanol VOA Vial - Other VOA Vial - Other VOA Vial - Other VOA Vial - Other 8 oz. Jar - Unpres VOA Vial - Other	Preservative NP MeOH Other Other Other Other NP MeOH Other Other Other NP MeOH Other Other NP MeOH Other Other Other Other	Record pH (Cy	anide and 608

ESS Laboratory Sample and Cooler Receipt Checklist

Client:	Weston & S	Sampson Er	igineers, Inc	: - 18/CMT		roject ID: Received:	1610112 10/6/2016
~~	70400	Van	NA	Yes	8 oz. Jar - Unpres	NP	10/0/2010
07	72109	Yes Yes	NA NA	Yes	VOA Vial - Methanol	MeOH	
07 07	72125 72150	Yes	NA NA	Yes	VOA Vial - Other	Other	
		Yes	NA NA	Yes	VOA Vial - Other	Other	
07 08	72151 72108	Yes	NA NA	Yes	8 oz. Jar - Unpres	NP.	
		Yes	NA NA	Yes	VOA Vial - Methanol	MeOH	
80	72124 72148	Yes	NA.	Yes	VOA Vial - Methanor	Other	
08		Yes	NA.	Yes	VOA Vial - Other	Other	
80	72149 72107	Yes	NA.	Yes	8 oz. Jar - Unpres	NP	
09	72107	Yes	NA	Yes	VOA Vial - Methanol	MeOH	
09	72147	Yes	NA	Yes	VOA Vial - Other	Other	
09		Yes	NA	Yes	8 oz. Jar - Unpres	NP	
10	72106		NA NA	Yes	VOA Vial - Methanol	MeOH	
10	72122	Yes Yes	NA NA	Yes	VOA Vial - Other	Other	
10	72144		NA NA	Yes	VOA Viai - Other	Other	
10	72145	Yes Yes	NA NA	Yes	8 oz. Jar - Unpres	NP	
11	72105 72121	Yes	NA NA	Yes	VOA Vial - Methanol	MeOH	
11			NA NA	Yes	VOA Vial - Other	Other	
11	72142	Yes Yes	NA NA	Yes	VOA Vial - Other	Other	
11	72143		NA NA	Yes	8 oz. Jar - Unpres	NP	
12	72104	Yes	NA NA	Yes	VOA Vial - Methanol	MeOH	
12	72120	Yes	NA NA	Yes	VOA Vial - NaHSO4	NaHSO4	
12	72140	Yes Yes	NA	Yes	VOA Vial - NaHSO4	NaHSO4	
12	72141		NA NA	Yes	8 oz. Jar - Unpres	NP	
13	72103	Yes Yes	NA NA	Yes	VOA Vial - Methanol	MeOH	
13	72119		NA NA	Yes	VOA Vial - Other	Other	
13	72138	Y e s Yes	NA NA	Yes	8 oz. Jar - Unpres	NP	
14	72102 72118	Yes	NA	Yes	VOA Vial - Methanol	MeOH	
14 14	72116	Yes	NA NA	Yes	VOA Vial - Other	Other	
	72101	Yes	NA.	Yes	8 oz. Jar - Unpres	NP	
15	72101	Yes	NA NA	Yes	VOA Vial - Methanol	MeOH	
15		Yes	NA NA	Yes	VOA Vial - Other	Other	
15 15	72134 72135	Yes	NA	Yes	VOA Vial - Other	Other	
	72100	Yes	NA	Yes	8 oz. Jar - Unpres	NP	
16 16	72100	Yes	NA	Yes	VOA Vial - Methanol	MeOH	
16	72132	Yes	NA	Yes	VOA Vial - Other	Other	
16	72132	Yes	NA	Yes	VOA Vial - Other	Other	
Review				100			
parcode	labels on co	HECT CONTAIL	agrs r		YES No		
npieted By:	k	Pot			Date & Time:	10 1930	
viewed By:	//	Pal	-20		Date & Time: 10/6//	6 1943	
livered		12.1	`\		1.101	11 1945	•
By:		an -	05		10/6/1	10 /11	

2 (Yellow) Client Receipt

collected in accordance with MADEP CAM VIIA

ESS Laboratory	CHAIN OF CUSTODY	ESS Lab# 1610112				
Division of Thielsch Engineering, Inc.	Turn Time Standard Other	Reporting Limits -				
185 Frances Avenue, Cranston, RI 02910-2211	Regulatory State: MA RI CT (NH) NJ NY ME Other					
Tel. (401) 461-7181 Fax (401) 461-4486	is this project for any of the following:(please circle)	Electonic Deliverables Excel Access PDF				
www.esslaboratory.com	MA-MCP Navy USACE CT DEP Other Project # Project Name A					
WESTON+SAMPSON ENG	RT33 PORTSMOUTH					
CONTROL GENDRON	Address CENTENNIAL DIZIVE	js, i i i i i i i i i i i i i i i i i i i				
PEABODY State	Zip 01960 PO#	Analysis				
Tel. 1 978 532 1900 Fax.	email: qenciron katurilari	No. 25 25 25 25 25 25 25 25 25 25 25 25 25				
ESS Lab ID Date Collection Time Grab -G Composite-						
11 9/29/16 1445 G	S B-11 5-2 AV 14296+5	NNANN				
12 9 21/16 1505	B-12 S-1 1 1 +2					
13 9/28/16 1450	B13 S-3					
14 9/29/16 1225	B-14 5-4 17+1					
15 9/2/16 1005	B-15 S-3 11+2					
16 9/29/6 9:20	1 B-16 5-2 V 19+2 V	WARAM I I I				
Container Type: P-Poty G-Glass AG-Anber Glass 8-Sterile V-VOA	Metrix: S-Soil SD-Solid D-Studge WW-Wastewater GW-Groundwater SW-Su	rface Water DW-Drinking Water O-Oil W-Wipes F-Filler				
Cooler Present V Yes No	Internal Use Only Preservation Code: 1-NP, 2-HCl, 3-H2SO4, 4-HNO3, 5-N					
Seals intactYesNo NA:	M Pickup Sampled by: The A Eator	M Suitab				
Cooler Temperature: 1.2	[] Technician Comments:	1				
Relingtibling by (Signature Date & Time)	mature Data & Time) Reference Date & Time)	Repetved by: (Signature, Date & Timp)				
Refliquished by: (Signature, Date of Time) Received by: (Signature, Date of Time)	D/G/16 B':36 S 10/6/10 18 nature, Date & Time) Religiquished by: (Signature, Date & Time)	5;31 2 /0/6/16 1839 Received by (Signature, Date at Time)				

100 International Drive, Suite 152, Portsmouth, NH 03801 Tel: 603.431.3937

MEMORANDUM

TO: Brandon Kunkel, RLA

FROM: Jeffrey Santacruce, PE PTOE

DATE: 1/23/2023

SUBJECT: Skate Park – 305 Greenland Road, Portsmouth, New Hampshire

Introduction

This project consists of the construction of a new skate park on a vacant parcel of land at 305 Greenland Road in Portsmouth, NH. Site improvements include the skate park, walkways, and a 25-space parking lot.

Existing Conditions

Site

This existing site is located at 305 Greenland Road and is approximately five acres in size. The lot is bounded by Greenland Road to the south, residential lots to the east and north, and the old railroad Right-of-Way to the west. The site is currently vacant lot and consist mainly of a large gravel that was once used as a contractor lay down area. The lot does contain some existing stormwater basins and pipes but does not contain any existing structures. The lot has an existing driveway curb cut onto Greenland Road. See Figure 1.

Roadway

Greenland Road is classified as an urban minor arterial under the jurisdiction of the City of Portsmouth. The roadway consists of two 12-foot-wide travel lanes in the westbound direction that merge into one lane west of the existing site and there is one 12-foot-wide exclusive left-turn lane and one 12-foot-wide travel lane in the eastbound direction. There are shoulders on both sides of the roadway that are approximately 3 feet wide. There is a sidewalk along the north side of the roadway that extends along Greenland Road east to the intersection of Peverly Hill Road and west to the intersection of Griffin Road. There are no existing striped bicycle lanes along Greenland Road. The posted speed along Greenland Road is 30 mph and the average observed speed (via following car method) is approximately 40 mph. There is an existing bus stop at the intersection of Greenland Road and Peverly Hill Road less than 1/4 mile from the existing site.

Figure 1 – Location Map

Proposed Conditions

The proposed development consists of the construction of a 0.45 acres (19,500 sq ft) skate park with walkways and a 25-space parking lot which includes two ADA Accessible spaces. The proposed development proposes to utilize the existing curb cut on Greenland Road. A new connection from the existing sidewalk along Greenland Road into the site will be provided. The existing ramps at the driveway will be reconstructed to meet current ADA Accessible standards.

Sight Distance

To identify potential safety concerns associated with site egress, sight distances have been evaluated at the site driveway location to determine if the available sight distances for vehicles entering/exiting the site meet or exceed the minimum distances required for approaching vehicles along Water Street to safely stop. The available sight distances were compared with minimum requirements, as

established by the American Association of State Highway and Transportation Officials (AASHTO)¹.

Stopping Sight Distance (SSD) is the minimum distance required for a vehicle traveling at a certain speed to safely stop before reaching a stationary object in the road. The values are based on a driver perception and reaction time of 2.5 seconds and a braking distance calculated for wet, level pavements. When the roadway is either on an upgrade or downgrade, grade correction factors are applied. Stopping sight distance is measured from a driver's eye height of 3.5 feet to an object height of 2 feet above street level.

Intersection sight distance (ISD) is the minimum distance required for a motorist exiting a minor street to turn onto the major street, without being overtaken by an approaching vehicle reducing its speed from the design speed to 70 percent of the design speed. Intersection sight distance is measured from a driver's eye height of 3.5 feet to an object height of 3.5 feet above street level.

SSD is generally more important as it represents the minimum distance required for safe stopping while ISD is based only upon acceptable speed reductions to the approaching traffic stream. However, the ISD must be equal to or greater than the minimum required SSD in order to provide safe operations at the intersection. The available SSD and ISD at the proposed site drive location was measured and compared to minimum requirements as established by AASHTO as shown in Table 3.

As indicated in Table 1, the available sight distance at the existing site driveway currently meets the minimum required SSD and ISD requirements.

Table 1 – Sight Distance

	Stopping Sight Distance (feet)			Inte	ersection Sig	ht Distance (feet)
	Minimum			Minimum	Desirable		
Location/Direction	Measured	Requireda	Desirable ^b	Measured	Required ^c	(Posted) ^a	Desirable ^b
Existing							
West of driveway	>400	250	305	450	250	335	445
East of driveway	>400	250	305	450	250	335	445

^a Values based on AASHTO requirements for posted speed limit of 30 mph on Greenland Road

Trip Generation

Traffic to be generated by a proposed project is typically generated by rates provided in the Institute of Transportation Engineers *Trip Generation*² manual. Research of the ITE Trip Generation Manual determined that there are no land use codes for this specific type of development. Since there are no existing skate parks within the area that are stand alone are a stand along use and usually part of a larger public park, it was determined that the closest land use code LUC411 Public Park was the most appropriate. Since the majority of the uses of the proposed skate park would be adolescents and teenagers the trip generation during the AM and PM peak hours were determined based on the peal hour of the generator and not the adjacent street traffic. In addition, it should be noted that the majority of the users of this type of facility will most likely get to/from the existing site utilizing non-vehicular means (walking or biking) or by utilizing the existing bus stop on Borthwick Ave approximately one mile west of

^b Values based on AASHTO requirements for observed speeds of 40 mph on Greenland Road.

 $^{^{\}mbox{\tiny c}}$ Values based on minimum SSD requirements.

¹ "A Policy on the Geometric Design of Highways and Street" American Association of State Highway Officials (AASHTO), Washington, DC 2018

² "Trip Generation Manual, 11th edition, Institute of Transportation Engineers, Washington, SC 2022.

the site. Since LUC 411 Public Park only contains data for vehicular trips it is consider conservative (worse case). Since LUC411 utilizes acres as the independent variable in the calculation of trip generation the size of the entire parcel was utilized since it is all public land. The trip generation data are summarized in Table 2 below. Trip Generation data are included at the end of the memorandum.

Therefore, it is anticipated that the proposed site would generate approximately 13 trips (8 trips entering and 5 exiting) during the AM peak hour of the generator, 16 trips (10 trips entering and 6 trips exiting) during the PM peak hour of the generator, and 27 trips (15 trips entering and 12 trips exiting) during the Saturday peak hour of the generator. The results of the trip generation for the proposed facility are shown below in Table 2.

Table 2 - Trip Generation

Site Driveway	Proposed Trips LUC 411 – Public Park
AM Peak Hour	
In	8
Out	<u>5</u>
Total	13
PM Peak Hour	
In	10
Out	<u>6</u>
Total	16
SAT Peak Hour	
In	15
Out	<u>12</u>
Total	27

Trip Distribution

The distribution of the proposed new site traffic on the area roadways and intersections is based on the existing travel patterns observed and location of the site in relation to population density. This site is located on the western side of the city. It is easily accessible by car to the downtown area by either Middle Road or Islington Street both of which are located to the east of the site. Therefore, it is anticipated that approximately 70% of all vehicle traffic will be destined to/from the east along Greenland Road.

Parking Generation

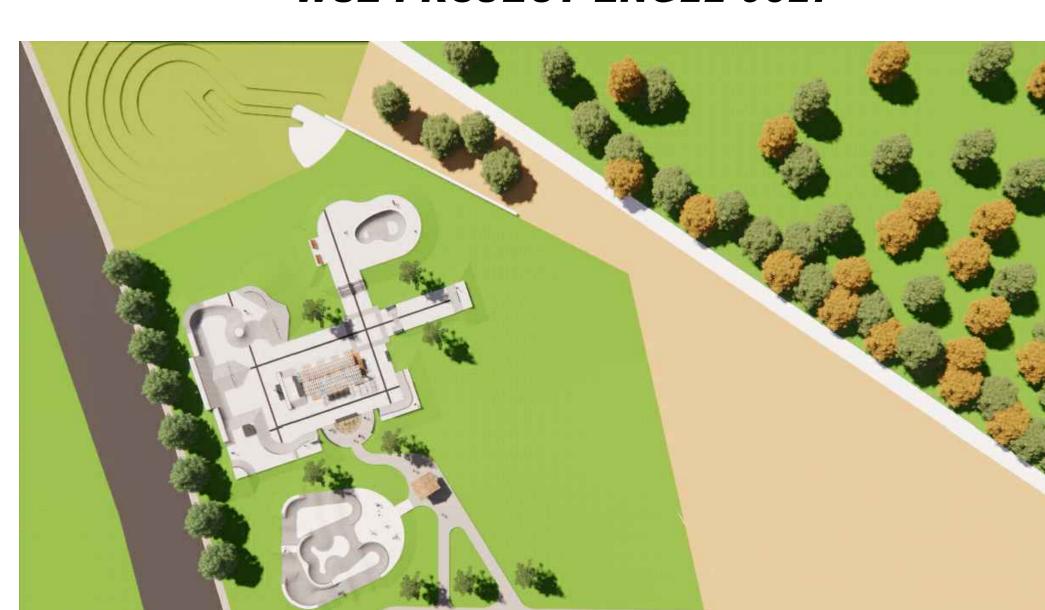
Parking needs by a proposed project are typically determined based on local regulations. The City of Portsmouth Zoning Ordinance Section 10.1112.321 states that for *Municipally owned and operated park and related activities* that there is no parking requirement. Therefore, the ITE Parking Generation Manual³, was researched to determine the parking generation for the site. Similar to the Trip Generation information, there are no land use codes for this specific type of development. Since there are no existing skate parks within the area that are stand alone are a stand along use and usually part of a larger public park, it was determined that the closest land use code LUC411 Public Park was the most

³ Parking Generation Manual, 5th edition, Institute of Transportation Engineers, Washington, DC 2019

appropriate. Unfortunately the data provided is limited and only contains information for a Saturday. Since this lines up with the highest trip generation information it appeared this would be reasonable to use. Based on the overall size of the site, 5 acres, the parking requirements for this site would be five (5 vehicles). Since this number seemed quite low we also considered the trip generation estimates for a Saturday and assumed that if up to 75% of the cars entering/exiting the site during the Saturday peak hour would need to park on site, there would be a need for approximately 21 spaces. Since the proposed lot will contain 25 spaces it is believed that the site will have adequate parking to meet the need.

Conclusion

The proposed skate park will mostly be utilized by adolescents and teenagers who will use non-vehicular means to get to the site. If the users come by car, the trip generation estimated provided in this memorandum are small and are oriented mostly to/from the east along Greenland Road. Therefore, the majority of the entering traffic will be right turns into the site which should not impede traffic flow and left turns out where any queues are contained on site while vehicles wait for a gap in the traffic flow. For the traffic turning left into the site there is an existing left-turn lane along Greenland Road where vehicles can safely wait for a gap in the westbound traffic to enter the site. Therefore, it is anticipated that the proposed use will not significantly impact the existing traffic operations along Greenland Road.



ROUTE 33

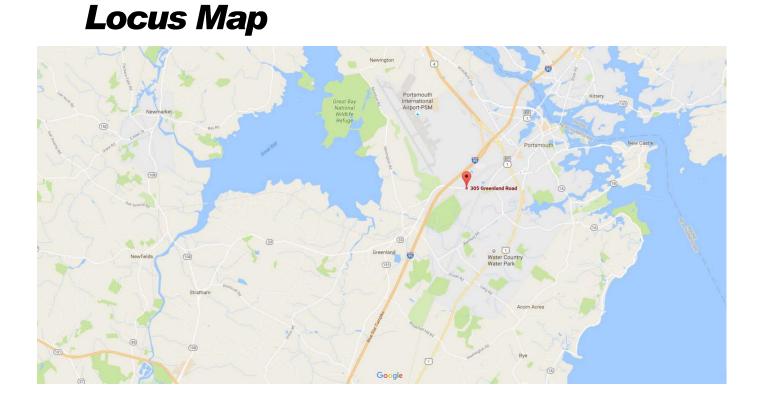
SKATE PARK

305 GREENLAND RD PORTSMOUTH, NH.

WSE PROJECT ENG22-0627

January 2023

PRANCE DATE


Prepared By

85 Devonshire Street, 3rd Floor, Boston, MA 02109 www.westonandsampson.com

CITY OF PORTSMOUTH

680 PEVERLY HILL ROAD

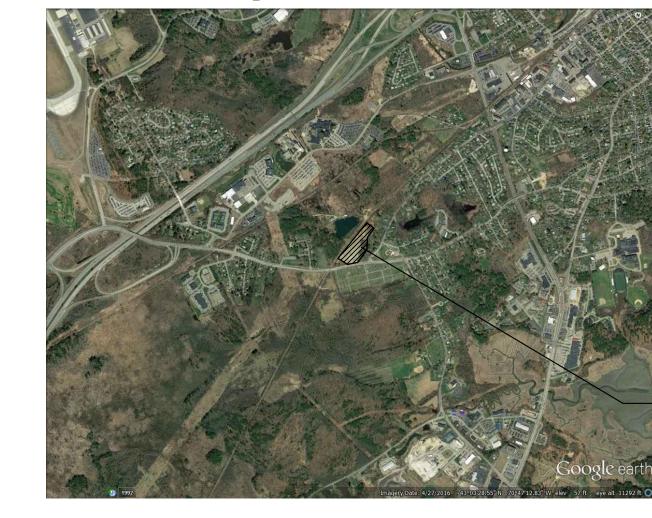
PORTSMOUTH, NH. 03801

ATTN: CHRISTINE SPROVIERO

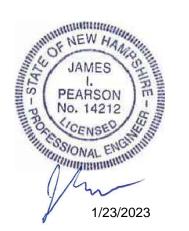
WESTON & SAMPSON ENGINEERS, INC.

85 DEVONSHIRE STREET, 3RD FLOOR

(603) 766-1755


(617)412-4480

BOSTON, MA 02109


ATTN: BRANDON KUNKEL

DEPARTMENT OF PUBLIC WORKS

Aerial Map

ROUTE 33. RECREATION FIELD 305 GREENLAND RD.

SHEET INDEX

L000	. COVER
L001	. GENERAL NOTES
L100	. EXISTING CONDITIONS PLAN
L110	. SITE PREPARATION AND DEMOLITION PLA
L120	. MATERIALS PLAN
L130	LAYOUT PLAN
L140	. GRADING, DRAINAGE, AND UTILITIES PLAN
L500	. CONSTRUCTION DETAILS
AS-01	. COVER
AS-02	. 3D IMAGES
AS-03	. MASTER PLAN
AS-04	. SUB SURFACE DRAINAGE PLAN
AS-05	. CONSTRUCTION DETAILS
AS-06	. CONSTRUCTION DETAILS
AS-07	. CONSTRUCTION DETAILS

SITE PERMIT APPLICATION, NOT FOR CONSTRUCTION

ADD ALTERNATE | SKATEPARK SHADE STRUCTURE UNDER ADD ALTERNATE THE CONTRACTOR SHALL PURCHASE AND INSTALL SHADE STRUCTURE IN ACCORDANCE WITH THE SPECIFICATIONS, PLANS AND DETAILS.

ZONING INFORMATION:

OWNER: CITY OF PORTSMOUTH DEPARTMENT OF PUBLIC WORKS PORTSMOUTH, NH. 03801

ZONE: M

TAX MAP: 241, LOT 18

ZONING REQUIREMENTS: LOTS AND BUILDINGS IN THE MUNICIPAL DISTRICT ARE EXEMPT FROM ALL DIMENSIONAL AND INTENSITY REGULATIONS.SEE SECTION 10.560 OF THE CITY OF PORTSMOUTH ZONING ORDINANCE.

ABUTTER INFORMATION:

MAP 165 LOT 14 **BOSTON AND MAINE** CORPORATION IRON HORSE PARK HIGH STREET

NORTH BILLERICA, MA 01862

OF MANCHESTER CHURCH OF IMMAC CONCEPTION 98 SUMMER STREET PORTSMOUTH, NH 03801

MAP 242 LOT 1 STATE OF NEW HAMPSHIRE FISH AND GAME DEPARTMENT 11 HAZEN DRIVE

ANDREW H. SHERBURNE REVOCABLE TRUST 24 TONGA DRIVE

MAP 241 LOT 20

MAP 242 LOT 5

ROMAN CATHOLIC BISHOP

BOW, NH 03304 RCRD BK.#5289 PG.#138

SURVEY PREPARED BY:

CONCORD, NH 03301

RCRD BK.#5248 PG.#739

170 Commerce Way, Suite 102 Phone (603) 431-2222 Fax (603) 431-0910 www.mscengineers.com

- 2. ALL BIDDERS ARE REQUIRED TO INSPECT THE PROJECT SITE IN ITS ENTIRETY PRIOR TO SUBMITTING THEIR BID, AND BECOME FAMILIAR WITH ALL CONDITIONS AS THEY MAY AFFECT THEIR BID. CONTRACTOR AND SUB-CONTRACTOR SHALL BE FAMILIAR WITH ALL DRAWINGS AND SPECIFICATIONS PRIOR TO COMMENCING THE CONSTRUCTION.
- 3. LOCATIONS OF ANY UTILITIES SHOWN ON THESE PLANS ARE APPROXIMATE ONLY. CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFYING THE LOCATION OF SUCH UTILITIES, PROTECTING ALL EXISTING UTILITIES AND REPAIRING ANY DAMAGE DONE DURING CONSTRUCTION. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ALL ON-SITE COORDINATION WITH UTILITY COMPANIES AND PUBLIC AGENCIES AND FOR OBTAINING ALL REQUIRED PERMITS AND PAYING ALL REQUIRED FEES. IN ACCORDANCE WITH THE CITY OF PORTSMOUTH AND THE STATE OF NEW HAMPSHIRE, INCLUDING AMENDMENTS, CONTRACTORS SHALL NOTIFY ALL UTILITY COMPANIES AND GOVERNMENT AGENCIES IN WRITING PRIOR TO EXCAVATION. CONTRACTOR SHALL ALSO CALL "DIG SAFE" AT (888) 344-7233 NO LESS THAN 72 HOURS, (EXCLUSIVE OF WEEKENDS AND HOLIDAYS), PRIOR TO SUCH EXCAVATION. DOCUMENTATION OF REQUESTS SHALL BE PROVIDED TO PROJECT REPRESENTATIVE PRIOR TO EXCAVATION WORK.
- WHERE AN EXISTING UTILITY IS FOUND TO CONFLICT WITH THE PROPOSED WORK, THE LOCATION, ELEVATION AND SIZE OF THE UTILITY SHALL BE ACCURATELY DETERMINED WITHOUT DELAY BY THE CONTRACTOR AND THE INFORMATION FURNISHED TO THE OWNER'S REPRESENTATIVE FOR RESOLUTION OF THE CONFLICT.
- 5. THE CONTRACTOR SHALL MAKE ALL ARRANGEMENTS FOR THE ALTERATION AND ADJUSTMENT OF ELECTRIC AND ANY OTHER PRIVATE UTILITIES BY THE UTILITY OWNER AT NO ADDITIONAL COST TO THE CITY OF PORTSMOUTH.
- 6. CONTRACTOR SHALL BE RESPONSIBLE FOR REVIEWING ALL DRAWINGS AND SPECIFICATIONS TO DETERMINE THE EXTENT OF EXCAVATION AND DEMOLITION REQUIRED TO RECEIVE SITE IMPROVEMENTS.
- 7. ANY DISCREPANCIES OR CONFLICTS BETWEEN THE DRAWINGS AND EXISTING CONDITIONS, EXISTING CONDITIONS TO REMAIN, TEMPORARY CONSTRUCTION, PERMANENT CONSTRUCTION AND WORK OF ADJACENT CONTRACTS SHALL BE BROUGHT TO THE ATTENTION OF THE OWNER BEFORE PROCEEDING. ITEMS ENCOUNTERED IN AREAS OF EXCAVATION THAT ARE NOT INDICATED ON THE DRAWINGS, BUT ARE VISIBLE ON SURFACE, SHALL BE THE CONTRACTOR'S RESPONSIBILITY AND SHALL BE REMOVED AT NO ADDITIONAL COST TO THE OWNER.
- 8. ANY ALTERATIONS TO THESE DRAWINGS MADE IN THE FIELD DURING CONSTRUCTION SHALL BE RECORDED BY THE GENERAL CONTRACTOR ON THE "AS-BUILT" DRAWINGS.
- 9. ALL AREAS DISTURBED BY THE CONTRACTOR'S OPERATIONS OUTSIDE THE PROJECT LIMITS, SHALL BE RESTORED TO THE ORIGINAL CONDITION BY THE CONTRACTOR AT NO ADDITIONAL COST AND TO THE SATISFACTION OF THE OWNER.
- 10. ALL WORK SHOWN ON THE PLANS AS BOLD SHALL REPRESENT PROPOSED WORK. THE TERM "PROPOSED (PROP)" INDICATES WORK TO BE CONSTRUCTED USING NEW MATERIALS OR, WHERE APPLICABLE, RE-USING EXISTING MATERIALS IDENTIFIED AS "REMOVE AND SALVAGE (R&S)", OR REMOVE, RELOCATE, SALVAGE, (R,R&S).
- 11. ALL KNOWN EXISTING STATE, COUNTY AND CITY LOCATION LINES AND PRIVATE PROPERTY LINES HAVE BEEN ESTABLISHED FROM AVAILABLE INFORMATION AND ARE INDICATED ON THE PLANS.
- 12. THE CONTRACTOR SHALL TAKE ALL NECESSARY PRECAUTIONS TO PROTECT HIS EMPLOYEES, AS WELL AS PUBLIC USERS FROM INJURY DURING THE ENTIRE CONSTRUCTION PERIOD USING ALL NECESSARY SAFEGUARDS, INCLUDING BUT NOT LIMITED TO, THE ERECTION OF TEMPORARY WALKS, STRUCTURES, PROTECTIVE BARRIERS, COVERING, OR FENCES AS NEEDED.
- 13. THE CONTRACTOR SHALL SUPPLY THE OWNER WITH THE NAME OF THE OSHA "COMPETENT PERSON" PRIOR TO CONSTRUCTION.
- 14. FILLING OF EXCAVATED AREAS SHALL NOT TAKE PLACE WITHOUT THE PRESENCE OR PERMISSION OF THE OWNER.
- 15. EXISTING TREES TO REMAIN SHALL BE PROTECTED FROM CONSTRUCTION ACTIVITIES. NO STOCKPILING OF MATERIAL, EQUIPMENT OR VEHICULAR TRAFFIC SHALL BE ALLOWED WITHIN THE DRIP LINE OF TREES TO REMAIN. NO GUYS SHALL BE ATTACHED TO ANY TREE TO REMAIN. WHEN NECESSARY OR AS DIRECTED BY THE ENGINEER, THE CONTRACTOR SHALL ERECT TEMPORARY BARRIERS FOR THE PROTECTION OF EXISTING TREES DURING CONSTRUCTION.
- 16. TREES AND SHRUBS WITHIN THE LIMITS OF WORK SHALL BE REMOVED ONLY UPON THE APPROVAL OF THE LANDSCAPE ARCHITECT OR AS NOTED ON THE PLANS.
- 17. NO FILLING SHALL OCCUR AROUND EXISTING TREES TO REMAIN WITHOUT THE APPROVAL OF THE OWNER OR OWNER REPRESENTATIVE.
- 18. THE CONTRACTOR SHALL REMOVE ALL SURFACE VEGETATION PRIOR TO GRADING THE SITE. TREES AND STUMPS SHALL BE REMOVED AND DISPOSED COMPLETE BY CONTRACTOR. TEMPORARY EROSION CONTROL MEASURES SHOWN ON THE DRAWINGS (INCLUDING SILT FENCE, STRAW WATTLES, OR SILT SOCKS) SHALL BE INSTALLED BY THE CONTRACTOR. THE CONTRACTOR SHALL BE RESPONSIBLE FOR MAINTAINING THESE TEMPORARY EROSION CONTROL MEASURES THROUGHOUT THE PROJECT WHICH COST SHALL BE INCIDENTAL TO THE PROJECT.
- 20. ALL UNSUITABLE UNCONTAMINATED EXCESS SOIL FROM CONSTRUCTION ACTIVITIES SHALL BE DISPOSED OF BY THE CONTRACTOR AT NO ADDITIONAL COST TO THE CITY. REMOVAL ACTIVITIES SHALL BE IN ACCORDANCE WITH STATE AND LOCAL REGULATIONS AT NO ADDITIONAL COST TO THE CITY. SUITABLE SOIL EXCAVATION AS PART OF THE PROJECT MUST MEET ONE OR MORE OF THE MATERIAL REQUIREMENTS SPECIFIED. ON-SITE FILL MATERIALS, WHICH DO NOT CONFORM TO THE SPECIFICATIONS, SHALL NOT BE USED BELOW ANY STRUCTURES. IF THE CONTRACTOR PROPOSES TO USE THE EXISTING FILL ON SITE BELOW PAVEMENT AREAS, HE MUST DEMONSTRATE THAT THE FILL MEETS THE REQUIREMENTS PER THE SPECIFICATIONS. ALL EXCAVATED FILL MATERIAL WHICH DOES NOT MEET THE REQUIREMENTS OF THE CONTRACT DOCUMENTS SHALL BE REMOVED AND DISPOSED OF OFF-SITE AT NO ADDITIONAL COST.
- 21. CONTRACTOR IS RESPONSIBLE FOR STAKING CONSTRUCTION BASELINES IN FIELD WITH A NEW HAMPSHIRE REGISTERED PROFESSIONAL LAND SURVEYOR. NO CONSTRUCTION WILL BE PERFORMED WITHOUT THE PROPOSED BASELINES AND LAYOUTS APPROVED BY THE ENGINEER.
- 22. NO FILL SHALL CONTAIN HAZARDOUS MATERIALS.
- 23. CONTRACTOR SHALL PROVIDE TEMPORARY FENCING AROUND PERIMETER OF WORK AREA (LIMIT OF WORK). FENCE SHALL NOT IMPEDE TRAVEL WAYS.
- 24. ANY QUANTITIES SHOWN ON PLANS ARE FOR COMPARATIVE BIDDING PURPOSES ONLY. IT IS THE CONTRACTOR'S RESPONSIBILITY TO VISIT THE PROJECT SITE TO VERIFY ALL QUANTITIES AND CONDITIONS PRIOR TO SUBMITTING BID.
- 25. ALL EXISTING DRAINAGE FACILITIES TO REMAIN SHALL BE MAINTAINED FREE OF DEBRIS, SOIL, SEDIMENT, AND FOREIGN MATERIAL AND OPERATIONAL THROUGHOUT THE LIFE OF THE CONTRACT. REMOVE ALL SOIL, SEDIMENT, DEBRIS AND FOREIGN MATERIAL FROM ALL DRAINAGE STRUCTURES, INCLUDING BUT NOT LIMITED TO, DRAINAGE INLETS, MANHOLES AND CATCH BASINS WITHIN THE LIMIT OF WORK AND DRAINAGE STRUCTURES OUTSIDE THE LIMIT OF WORK THAT ARE IMPACTED BY THE WORK FOR THE ENTIRE DURATION OF CONSTRUCTION.
- 26. CONTRACTOR'S STAGING AREA MUST BE WITHIN THE CONTRACT LIMIT LINE AND IN AREAS APPROVED BY OWNER. ANY OTHER AREAS THAT THE CONTRACTOR MAY WISH TO USE FOR STAGING MUST BE COORDINATED WITH THE OWNER.
- 27. THE CONTRACTOR SHALL KEEP ALL STREETS, PARKING LOTS AND WALKS THAT ARE NOT RESTRICTED FROM PUBLIC USE DURING CONSTRUCTION BROOM CLEAN AT ALL TIMES. THE CONTRACTOR SHALL USE ACCEPTABLE METHODS AND MATERIALS TO MAINTAIN ADEQUATE DUST CONTROL THROUGHOUT CONSTRUCTION.
- 28. CONTRACTOR SHALL COORDINATE ALL WORK WITH THE OWNER.
- 29. CONTRACTOR SHALL DEWATER AS NECESSARY TO PERFORM THE PROPOSED WORK. CONTRACTOR SHALL BE AWARE OF ANY
- 30. THE LIMIT OF WORK SHALL BE DELINEATED IN THE FIELD PRIOR TO THE START OF SITE CLEARING OR CONSTRUCTION AND AGREED UPON WITH THE OWNER.
- 31. DEEP SUMP CATCH BASINS AND STORMWATER BASIN SHALL BE CLEANED FOLLOWING CONSTRUCTION AND SHALL FOLLOW THE OPERATION AND MAINTENANCE PLAN THEREAFTER.
- 32. HAULING OF EARTH MATERIALS TO AND FROM THE SITE SHALL BE RESTRICTED TO THE HOURS OF 7 AM TO 5 PM.
- 34. ANY BOULDERS 3 CU. YDS. OR SMALLER SHALL BE CONSIDERED UNDOCUMENTED FILL AND SHALL BE DISPOSED OF AT NO ADDITIONAL COST TO THE CITY.
- 35. WORK ON SATURDAYS SHALL ONLY BE CONDUCTED IF PRIOR WRITTEN PERMISSION IS PROVIDED BY THE CITY.
- 36. NO TRUCKS LEFT IDLING ON CITY STREETS DURING CONSTRUCTION. CONSTRUCTION TRAFFIC AT NO TIME SHALL IMPEDE FLOW OF RESIDENT TRAFFIC.

EROSION AND SEDIMENT CONTROL NOTES

- ALL SEDIMENT AND EROSION CONTROL DEVICES SHALL BE PUT INTO PLACE PRIOR TO BEGINNING ANY CONSTRUCTION OR DEMOLITION. REFER TO PLANS FOR APPROXIMATE LOCATION OF EROSION AND SEDIMENT CONTROL. REFER TO SPECS AND DETAILS FOR TYPE OF EROSION AND SEDIMENT CONTROL.
- 2. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE CONTINUAL MAINTENANCE OF ALL CONTROL DEVICES THROUGHOUT THE
- 3. CONTRACTOR SHALL MEET ALL OF THE STATE OF NEW HAMPSHIRE D.E.P. AND THE CITY OF PORTSMOUTH REGULATIONS FOR SEDIMENT AND EROSION CONTROL
- 4. EXCAVATED MATERIAL STOCKPILED ON THE SITE SHALL BE SURROUNDED BY A RING OF UNBROKEN SEDIMENT AND EROSION CONTROL FENCE. THE LIMITS OF ALL GRADING AND DISTURBANCE SHALL BE KEPT TO A MINIMUM WITHIN THE APPROVED AREA OF CONSTRUCTION. ALL AREAS OUTSIDE OF THE LIMIT OF CONTRACT SHALL REMAIN TOTALLY UNDISTURBED UNLESS OTHERWISE APPROVED BY OWNER'S REPRESENTATIVE.
- ALL CATCH BASINS AND DRAIN GRATES WITHIN LIMIT OF CONTRACT SHALL BE PROTECTED WITH SILT SACKS DURING THE ENTIRE DURATION OF CONSTRUCTION.
- 6. EROSION CONTROL BARRIERS TO BE INSTALLED AT THE TOE OF SLOPES. SEE GRADING & DRAINAGE PLANS, NOTES, DETAILS AND
- 7. THE CONTRACTOR SHALL PROVIDE DUST CONTROL FOR CONSTRUCTION OPERATIONS AS APPROVED BY OWNER.
- 8. ALL POINTS OF CONSTRUCTION EGRESS OR INGRESS SHALL BE MAINTAINED TO PREVENT TRACKING OR FLOWING OF SEDIMENT ON TO PUBLIC/PRIVATE ROADS.

DEMOLITION & SITE PREPARATION NOTES

- 1. REMOVING ANY EXISTING SITE FEATURES AND APPURTENANCES NECESSARY TO ACCOMPLISH THE CONSTRUCTION OF THE PROPOSED SITE IMPROVEMENTS. THE CONTRACTOR SHALL ALSO INCLUDE IN THE BID THE COST NECESSARY TO RESTORE SUCH ITEMS IF THEY ARE SCHEDULED TO REMAIN AS PART OF THE FINAL SITE IMPROVEMENTS. REFER TO PLANS TO DETERMINE EXCAVATION, DEMOLITION AND TO DETERMINE THE LOCATION OF THE PROPOSED SITE IMPROVEMENTS.
- 2. THE OWNER RESERVES THE RIGHT TO REVIEW ALL MATERIALS DESIGNATED FOR REMOVAL AND TO RETAIN OWNERSHIP OF SUCH MATERIALS. IF THE OWNER RETAINS ANY MATERIAL THE CONTRACTOR SHALL MAKE ARRANGEMENTS WITH THE OWNER TO HAVE THOSE MATERIALS REMOVED OFF SITE AT NO ADDITIONAL COST.
- 3. UNLESS SPECIFICALLY NOTED TO BE REMOVED / SALVAGED (R&S), ALL SITE FEATURES CALLED FOR REMOVAL (REM) SHALL BE REMOVED WITH THEIR FOOTINGS, ATTACHMENTS, BASE MATERIAL, ETC, TRANSPORTED FROM THE SITE TO BE DISPOSED OF IN A LAWFUL MANNER AT AN ACCEPTABLE DISPOSAL SITE AND AT NO ADDITIONAL COST TO THE OWNER.
- 4. ALL EXISTING SITE FEATURES TO REMAIN SHALL BE PROTECTED THROUGHOUT THE CONSTRUCTION PERIOD. ANY FEATURES DAMAGED DURING CONSTRUCTION OPERATIONS SHALL BE REPAIRED OR REPLACED TO THE SATISFACTION OF THE OWNER'S REPRESENTATIVE AT NO ADDITIONAL COST.
- 5. DURING EARTHWORK OPERATIONS, CONTRACTOR SHALL TAKE CARE TO NOT DISTURB EXISTING MATERIALS TO REMAIN, OUTSIDE THE LIMITS OF EXCAVATION AND BACKFILL AND SHALL TAKE WHATEVER MEASURES NECESSARY, AT THE CONTRACTOR'S EXPENSE, TO PREVENT ANY EXCAVATED MATERIAL FROM COLLAPSING. ALL BACKFILL MATERIALS SHALL BE PLACED AND COMPACTED AS SPECIFIED TO THE SUBGRADE REQUIRED FOR THE INSTALLATION OF THE REMAINDER OF THE CONTRACT WORK.
- 6. IT SHALL BE THE CONTRACTOR'S OPTION, WITH CONCURRENCE OF THE OWNER, TO REUSE EXISTING GRAVEL IF IT MEETS THE REQUIREMENTS OF THE SPECIFICATIONS FOR GRAVEL BORROW.
- 7. 'CLEAR AND GRUB VEGETATION' SHALL INCLUDE REMOVAL OF GRASS, SHRUBS, UNDERBRUSH, AND ALL VEGETATION, REMOVAL OF ROOTS, ROUGH GRADING, INSTALLATION OF LOAM (IF APPLICABLE), FINE GRADING, SEEDING AND TURF ESTABLISHMENT BY THE CONTRACTOR
- 8. TREES DESIGNATED FOR REMOVAL SHALL BE TAGGED BY CONTRACTOR AND APPROVED BY OWNER'S REPRESENTATIVE PRIOR TO COMMENCEMENT OF CONSTRUCTION.
- 9. THE STORAGE OF MATERIALS AND EQUIPMENT WILL BE PERMITTED AT LOCATIONS DESIGNATED BY OWNER OR OWNER'S REPRESENTATIVE. PROTECTION OF STORED MATERIALS AND EQUIPMENT SHALL BE THE SOLE RESPONSIBILITY OF THE CONTRACTOR
- 10. LOAM / TOP SOIL DESIGNATED FOR REUSE AS GENERAL FILL SHALL BE BLENDED WITH SUITABLE BORROW MATERIAL AS
- 11. THE CONTRACTOR SHALL PROTECT EXISTING TREES TO REMAIN, CONTRACTOR SHALL INSTALL TREE PROTECTION BARRIERS AFTER CLEARING UNDERBRUSH AND TAKE DUE CARE TO PREVENT INJURY TO TREES DURING CLEARING OPERATIONS.

Project Team:

Weston & Sampson Engineers, Inc: 85 Devonshire Street, 3rd Floor

Boston, MA 02109 (617) 412-4480

Project Manager: Brandon Kunkel, RLA Site Designer: Kelly Clifford

Civil Engineer: James Pearson, PE Project Engineer: Aaron Guazzaloca

Geotechnical Engineer: Daniel Dwyer, PE

Licensed Site Professional: Todd Bridgeo, PE, LSP

Environmental Scientist / Permitting: Devin Herrick, CWS

Pillar Design Studios / Pillar Skateparks 1960 W. Hawk Court Chandler, AZ 85286

Brad Siedlecki, Presiden

888.880.5112

LAYOUT & MATERIALS NOTES

- 1. REFER TO EXISTING CONDITIONS PLANS FOR SURVEY INFORMATION (SHEET L1.00).
- COORDINATE ALL LAYOUT ACTIVITIES WITH THE SCOPE OF WORK CALLED FOR BY DEMOLITION, GRADING AND UTILITIES
 OPERATIONS ENCOMPASSED BY THIS CONTRACT. SET, PROTECT AND REPLACE REFERENCE STAKES AS NECESSARY OR AS
 REQUIRED BY THE OWNER'S REPRESENTATIVE.
- 3. ALL WORK SHALL BE PERFORMED BY CONTRACTOR UNLESS SPECIFICALLY INDICATED THAT THE WORK WILL BE PERFORMED "BY OTHERS" OR "UNDER SEPARATE CONTRACT".
- 4. TO FACILITATE LAYOUT OF PROPOSED SITE FEATURES AND FACILITIES, LAYOUT INFORMATION FOR CERTAIN FUTURE WORK, WHICH IS NOT INCLUDED WITHIN THE SCOPE OF THIS CONTRACT HAS BEEN PROVIDED ON THE LAYOUT AND MATERIALS PLAN FOR INFORMATION ONLY. SOME ITEMS ARE "NOT IN CONTRACT" (NIC) AND SHOWN FOR REFERENCE ONLY.
- 5. THE LAYOUT OF SITE AMENITIES AND FENCES MUST BE APPROVED BY THE LANDSCAPE ARCHITECT PRIOR TO INSTALLATION.
- 6. THE LAYOUT OF ALL NEW PATHWAYS / WALKWAYS AND THE GRADING OF ALL SLOPES AND CROSS SLOPES SHALL CONFORM TO THE NEW HAMPSHIRE RULES AND REGULATIONS FOR HANDICAP ACCESS CMR 521, AND THE AMERICANS WITH DISABILITIES ACT (ADA), TITLE 3. THE CONTRACTOR SHALL NOTIFY THE OWNER IMMEDIATELY OF ANY DISCREPANCIES BETWEEN ACTUAL CONDITIONS AND THOSE REQUIRED.
- 7. ALL LAYOUT LINES, OFFSETS, OR REFERENCES TO LOCATING OBJECTS ARE EITHER PARALLEL OR PERPENDICULAR UNLESS OTHERWISE DESIGNATED WITH ANGLE OFFSETS NOTED.
- 8. ALL PROPOSED SITE FEATURES SHALL BE LAID OUT AND STAKED FOR REVIEW AND APPROVAL BY THE OWNER'S REPRESENTATIVE PRIOR TO COMMENCEMENT OF INSTALLATION. ANY REQUIRED ADJUSTMENTS TO THE LAYOUT SHALL BE UNDERTAKEN AS DIRECTED, AT NO ADDITIONAL COST TO THE OWNER. ALL LAYOUT SHALL BE PERFORMED BY A NH. REGISTERED PROFESSIONAL LAND SURVEYOR.
- 9. ALL PROPOSED PAVEMENTS SHALL MEET THE LINE AND GRADE OF EXISTING ADJACENT PAVEMENT SURFACES. ALL BITUMINOUS CONCRETE SHALL BE TREATED WITH AN RS-1 TACK COAT AT POINT OF CONNECTION. ALL PATHWAY WIDTHS SHALL BE AS NOTED ON THE LAYOUT AND MATERIALS PLAN.
- 10. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND GRADES ON THE GROUND AND REPORT ANY DISCREPANCIES IMMEDIATELY TO THE OWNER.
- 11. THE CONTRACTOR SHALL BE RESPONSIBLE FOR FIELD MEASUREMENT OF ALL PROPOSED FENCES AND GATES.
- 12. THE DEPTH OF LOAM BORROW FOR ALL PROPOSED LAWN AREAS SHALL BE 6" MINIMUM. ALL DISTURBED AREAS SHALL BE RESTORED WITH LOAM AND SEED UNLESS OTHERWISE NOTED
- 13. REFER TO DETAIL DRAWINGS FOR CONSTRUCTION DETAILS.
- 14. SURVEY CONTROL POINTS AND COORDINATES ARE INDICATED ON THE PLANS. IT IS THE RESPONSIBILITY OF THE CONTRACTOR TO PROTECT OR CREATE HIS OWN PROTECTED CONTROL POINTS FROM THIS INFORMATION. THE CONTRACTOR IS RESPONSIBLE FOR ENSURING ALL LAYOUT POINTS ARE CONSISTENT WITH CONTROL INFORMATION. RESETTING OF DAMAGED OR MISSING LAYOUT MARKERS AS NECESSARY IS AT NO ADDITIONAL COST TO THE OWNER.

GRADING, UTILITIES & DRAINAGE NOTES

- 1. ALL WORK RELATING TO INSTALLATION, RENOVATION OR MODIFICATION OF WATER, DRAINAGE AND/OR SEWER SERVICES SHALL BE PERFORMED IN ACCORDANCE WITH THE STANDARDS OF THE CITY OF PORTSMOUTH DPW AND SHALL BE INSPECTED BY DPW PRIOR TO BACKFILL.
- 2. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS AND GRADES ON THE GROUND AND REPORT ANY DISCREPANCIES IMMEDIATELY TO THE OWNER.
- 3. ALL GRADING IS TO BE SMOOTH AND CONTINUOUS WHERE PROPOSED SURFACES MEET EXISTING SURFACES, ELIMINATE ROUGH SPOTS AND ABRUPT GRADE CHANGES AND MEET LINE AND GRADE OF EXISTING CONDITIONS WITH NEW IMPROVEMENTS.
- 4. CONTRACTOR SHALL ENSURE ALL AREAS ARE PROPERLY PITCHED TO DRAIN, WITH NO SURFACE WATER PONDING OR PUDDLING.
- 5. MINIMUM CROSS SLOPE ON ALL WALKWAYS WILL BE 1:100 OR A MAXIMUM OF 1.5% TO PROVIDE POSITIVE DRAINAGE. ANY DISCREPANCIES NOT ALLOWING THIS TO OCCUR SHALL BE REPORTED TO THE OWNER PRIOR TO CONTINUING WORK.
- 6. ALL UTILITY GRATES, COVERS OR OTHER SURFACE ELEMENTS INTENDED TO BE EXPOSED AT GRADE SHALL BE FLUSH WITH THE ADJACENT FINISHED GRADE AND ADJUSTED TO PROVIDE A SMOOTH TRANSITION AT ALL EDGES. ALL UTILITY GRATES WITHIN PLAYING FIELDS OR INDICATED TO BE "BURIED" SHALL BE 4" BELOW FINISH GRADE AND COVERED WITH FINISH MATERIAL INDICATED ON PLANS.
- 7. THE CONTRACTOR SHALL SET SUBGRADE ELEVATIONS TO ALLOW FOR POSITIVE DRAINAGE AND PROVIDE EROSION CONTROL DEVICES, STRUCTURES, MATERIALS AND CONSTRUCTION METHODS TO DIRECT SILT MIGRATION AWAY FROM DRAINAGE AND OTHER UTILITY SYSTEMS, PUBLIC/PRIVATE STREETS AND WORK AREAS. CLEAN BASINS REGULARLY AS NEEDED AND AT THE END OF THE PROJECT.
- 8. EXCAVATION REQUIRED WITHIN PROXIMITY OF KNOWN EXISTING UTILITY LINES SHALL BE DONE BY HAND. CONTRACTOR SHALL REPAIR ANY DAMAGE TO EXISTING UTILITY LINES OR STRUCTURES INCURRED DURING CONSTRUCTION OPERATIONS AT NO COST TO THE OWNER
- 9. WHERE NEW EARTHWORK MEETS EXISTING GRADE, CONTRACTOR SHALL BLEND NEW EARTHWORK SMOOTHLY INTO EXISTING, PROVIDING VERTICAL CURVES OR ROUNDS AT ALL TOP AND BOTTOM OF SLOPES.
- 10. WHERE A SPECIFIC LIMIT OF WORK LINE IS NOT OBVIOUS OR IMPLIED, BLEND GRADES TO EXISTING CONDITIONS WITHIN 5 FEET OF PROPOSED CONTOURS.
- 11. RESTORE ALL DISTURBED AREAS AND LIMITS OF ALL REMOVALS TO LOAM AND SEED (L&S) UNLESS OTHERWISE NOTED.
- 12. SEE EARTHWORK SECTION OF SPECIFICATIONS FOR SPECIFIC EXCAVATION AND FILLING PROCEDURES.
- 13. FOR STRUCTURE REMODELING (REMOD), CONSTRUCTION METHODS SHALL FOLLOW NEW HAMPSHIRE DOT STANDARD SPEC.
- 14. CONTRACTOR SHALL COORDINATE ALL ELECTRICAL UTILITY SERVICE CONNECTIONS WITH EVERSOURCE ENERGY, PORTSMOUTH, NH, EASTERN DIVISION (603) 519-0924

SPECIAL NOT

- ALL CONDITIONS ON THESE PLANS SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.
- PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.
 THIS SITE PLAN SHALL BE RECORDED IN THE ROCKINGHAM COUNTY REGISTRY OF DEEDS.
 ALL IMPROVEMENTS SHOW ON THIS SITE PLANS SHALL BE CONSTRUCTED AND
- MAINTAINED IN ACCORDANCE WITH THE PLANS BY THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS.

 NO CHANGES SHALL BE MADE TO THIS PLAN WITHOUT THE EXPRESS APPROVAL OF THE PORTSMOUTH PLANNING DIRECTOR.

PROPOSED
ADJUST
BITUMINOUS CONCRETE
CEMENT CONCRETE
BASELINE
NOT TO SCALE
BLACK VINYL CHAIN LINK
BENCH MARK
ABANDON
MAIL BOX
GRANITE CURB

PEARSON

No. 14212

1/23/2023

BASELINE
NOT TO SCALE
BLACK VINYL CHAIN LINK
BENCH MARK
ABANDON
MAIL BOX
GRANITE CURB

EXISTING
FOLINDATION

PROP

N.T.S.

B.M.

ABAN

FXIST.

(OR F)

P.W.W.

SYEL

SB/DH

L.O.W.

BVW

DS

PVC

RCP

HDPE

CLF

(OR EX.)

GRAN. CURB

BIT. CONC.

CEM. CONC.

EXISTING
FOUNDATION

FLOW LINE
PROPERTY LINE
PAVEMENT
PAVED WATERWAY
REINFORCED CONCRETE
NEW HAMPSHIRE HIGHWAY BOUND

M.H.B.

REM
REMOVE
REMODE
RET
RET
RETAIN
R.O.W.
R&S
REMOVE AND SALVAGE
R,R&S
REMOVE, RELOCATED AND SALVAGE
R&S
REMOVE AND STACK
R&D
REMOVE AND DISPOSE
SB
STONE BOUND
NIC
H.C.
HANDICAP
WCR
WHEFI CHAIR RAMP

REMOVE AND DISPOSE
STONE BOUND
NOT IN CONTRACT
HANDICAP
WHEELCHAIR RAMP
FINISHED FLOOR
HOT MIX ASPHALT
GENERAL CONTRACTOR
ELECTRICAL CONTRACTOR
PLUMBING CONTRACTOR
SOLID WHITE EDGE LINE
BROKEN WHITE LANE LINE
SOLID YELLOW EDGE LINE
STONE BOUND/ DRILL HOLE
CHAIN LINK FENCE
TEMPORARY
TYPICAL

HANDICAP
EDGE OF PAVEMENT
PROTECT
CONNECT TO EXISTING
ROOF LEADER
LIMIT OF WORK
VERIFY IN FIELD
BORDERING VEGETATED WETLAND

EQUIPMENT

<u>UTILITIES</u>

GUTTER INLET W/ CURB INLET
CATCH BASIN W/ CURB INLET
CATCH BASIN
CHANGE IN TYPE
FRAME AND GRATE
FRAME AND COVER
CURB INLET
CAST IRON PIPE
CORRUGATED METAL PIPE
DRAIN INLET
GUTTER INLET
ASPHALT COATED CORRUGATED METAL PIPE

HYD HYDRANT
INV. ELEV. INVERT ELEVATION
UP UTILITY POLE
SMH SEWER MANHOLE
WG WATER GATE

DOWN SPOUT
HIGH DENSITY POLYETHYLENE PIPE
POLYVINYL CHLORIDE
REINFORCED CONCRETE PIPE
DRAIN MANHOLE
LEACHING BASIN
LEACHING GALLEY
CAST IRON
OUTLET CONTROL STRUCTURE
OIL AND GRIT TRAP

VC VITRIFIED CLAY PIPE
LP LIGHT POLE
OHW OVERHEAD WIRE
UPLP UTILITY POLE WITH LIGHT
SWTU STORM WATER TREATMENT UNIT
HH HANDHOLE
GW GARAGE WASTE

LEACHING CHAMBER GATE VALVE CONNECTION UNKNOWN

CLEANOUT

BOTTOM OF WALL

ALIGNMENT/GRADING

BOTTOM OF CURB POINT OF INTERSECTION POINT OF CURVATURE POINT OF TANGENCY POINT OF REVERSE CURVATURE PCC POINT OF COMPOUND CURVATURE POINT OF VERTICAL INTERSECTION POINT OF VERTICAL CURVATURE PVT POINT OF VERTICAL TANGENCY **ELEV ELEVATION** CENTER OF CURVE H.P. HIGH POINT LOW POINT RADIUS OF CURVATURE S.S.D STOPPING SIGHT DISTANCE TOP OF CURB TOP OF WALL

NO THEREOF IS LIMITED
JON, PUBLICATION OR
CONCEPTS BY ANY
ST WITHOUT THE
SENT FROM PILLAR
FROM PILLAR
FROM PILLAR
TYE REMAIN WITH THE
C.L.C. WITHOUT
CT WITH THE PLANS
FACIE EVIDENCE OF THE
STRICTIONS. COPYRIGHT
JDIOS, L.L.C.

PREPARED AND USELICATION THEREOF IN TO SUCH USE. REPRODUCTION, PUBLICA REUSE OF THESE PLANS OR CONCEPTS BE METHOD, IN WHOLE OR PART WITHOUT I EXPRESSED WRITTEN CONSENT FROM PILES PLANS AND CONCEPTS REMAIN WILLAR DESIGN STUDIOS, L.L.C. WITHOUR PREJUDICE. VISUAL CONTACT WITH THE SHALL CONSTITUTE PRIMA FACIE EVIDEN ACCEPTANCE OF THESE PRESTRICTIONS.

Weston(&) Sampson design studio 85 Devonshire Street, 3rd Floor, Boston, MA 02109 617.412.4480 800.SAMPSON www.westonandsampson.com

 REVIEWED BY::
 BK

 APPROVED BY::
 DATE::

RTSMOUTH, NEW HAMPSHIRE

SMOUTH, NEW HAMPSHIRE

ERAL NOTES

PLAN APPLICATION - NOT FOR CONSTRUCT

001 ATE PARK

REPRODUCTION, PUBLICATION OR SEPLANS OR CONCEPTS BY ANY HOLE OR PART WITHOUT THE RITTEN CONSENT FROM PILLAR ON STUDIOS, L.L.C. IS PROHIBITED. TITLE TO AND CONCEPTS REMAIN WITH THE STUDIOS, L.L.C. WITHOUT SULL CONTACT WITH THE PLANS STUDIOS, L.L.C. WITHOUT SULL CONTACT WITH THE PLANS STUDIOS. L.L.C. PUBENCE OF THE OPFINE FACIE EVIDENCE OF THE OPFINE STUDIOS. L.L.C. PUBLICATIONS. COPYRIGHT SUPSIGN STUDIOS. L.L.C.

design studio
85 Devonshire Street,
3rd Floor, Boston, MA 02109
617.412.4480 800.SAMPSON
www.westonandsampson.com

APPROVED BY::

DATE:: 01/23/23

1, INEW HAMPSHIKE PLICATION - NOT FOR CONSTRUCTION

PORTSMOUTH, NEW H
SHEET TITLE::

SITE PLAN

LOO2

LEGEND

LIMIT OF WORK PROPERTY LINE GUARDRAIL EDGE OF WOODS OVERHEAD UTILITIES 1/23/2023 EXISTING CONTOUR EXISTING DRAIN CATCH BASIN UTILITY POLE DRAIN MANHOLE GRAVEL BOOK NO./PAGE NO. BK.2562/PG.2783 CATCH BASIN CORRUGATED PLASTIC PIPE DRAINAGE MANHOLE EDGE OF PAVEMENT FLARED END SECTION HIGH DENSITY POLYETHYLENE INVERT LENGTH OF CURVE NOW OR FORMERLY PUBLIC SERVICE COMPANY OF NEW HAMPSHIRE ROCKINGHAM COUNTY REGISTRY OF

NOTES

1. THE PARCEL IS LOCATED IN THE MUNICIPAL DISTRICT.

THE PARCEL IS SHOWN ON THE CITY OF PORTSMOUTH ASSESSOR'S MAP 241 AS LOT 18. 3. THE PARCEL IS LOCATED IN FLOOD ZONE X AS SHOWN ON FLOOD INSURANCE RATE MAP, ROCKINGHAM COUNTY, NEW HAMPSHIRE, PANEL 270 OF 681, MAP NUMBER 33015C0270E, EFFECTIVE DATE: MAY 17, 2005.

REINFORCED CONCRETE PIPE

SQUARE FEET TEST PIT

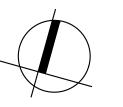
OWNER OF RECORD: CITY OF PORTSMOUTH C/O WATER DEPARTMENT DEPARTMENT OF PUBLIC WORKS PO BOX 628

PORTSMOUTH, NH 03802 ZONING REQUIREMENTS:

LOTS AND BUILDINGS IN THE MUNICIPAL DISTRICT ARE EXEMPT FROM ALL DIMENSIONAL AND INTENSITY REGULATIONS. SEE SECTION 10.560 OF THE CITY OF PORTSMOUTH ZONING ORDINANCE.
6. VERTICAL DATUM IS THE NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88). CONTOUR

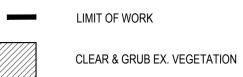
7. HORIZONTAL DATUM IS NORTH AMERICAN DATUM OF 1983 (NAD83). 8. THE UNDERGROUND SYSTEM SHOWN HEREON WAS NOT FIELD LOCATED. LOCATION TAKEN

FROM "GRADING PLAN ROUTE 33 RECREATION AREA" BY UNDERWOOD ENGINEERS, DATED 12/17/2013. THIS LOCATION SHOWN HEREON IS APPROXIMATE ONLY. 9. EXISTING CONDITIONS SURVEY PERFORMED BY _


PLAN REFERENCES:

- 1. "LOT LINE ADJUSTMENT ISLINGTON STREET & GREENLAND ROAD, PORTSMOUTH, NEW HAMPSHIRE FOR CITY OF PORTSMOUTH" BY JAMES VERRA AND ASSOCIATES, INC. DATED 1-30-2002. PLAN NOT RECORDED.
- 2. "RIGHT OF WAY EASEMENT PLAN FOR THE CITY OF PORTSMOUTH, GREENLAND ROAD/MIDDLE ROAD, PORTSMOUTH, NEW HAMPSHIRE" PREPARED BY VANASSE HANGEN BRUSTLIN, INC., DATED SEPTEMBER 28, 2007, REVISED APRIL 28, 2008. RCRD PLAN #D-35481.
- 3. "AS BUILT PLAN OF A PORTION OF NH ROUTE 33, PORTSMOUTH, NEW HAMPSHIRE" BY AMBIT ENGINEERING, INC. DATED AUGUST 2010, REVISED 9/21/10. PLAN NOT RECORDED.
- 4. "EXISTING FEATURES PLAN TAX MAP 241 LOT 18 PROPERTY OF CITY OF PORTSMOUTH 305 GREENLAND ROAD PORTSMOUTH, NEW HAMPSHIRE COUNTY OF ROCKINGHAM" BY MSC CIVIL ENGINEERS & LAND SURVEYORS, DATED NOVEMBER 2, 2012 WITH REVISION 1 DATED 11/05/2012. PLAN IS NOT RECORDED.

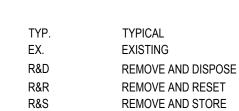
170 Commerce Way, Suite 102 Portsmouth, NH 03801 Phone (603) 431-2222 Fax (603) 431-0910 www.mscengineers.com


SCALE: 1" = 20' - 0"

TING CONDITIONS
PLAN APPLICATION

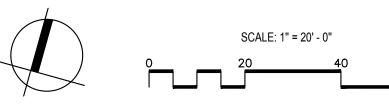
No. 14212

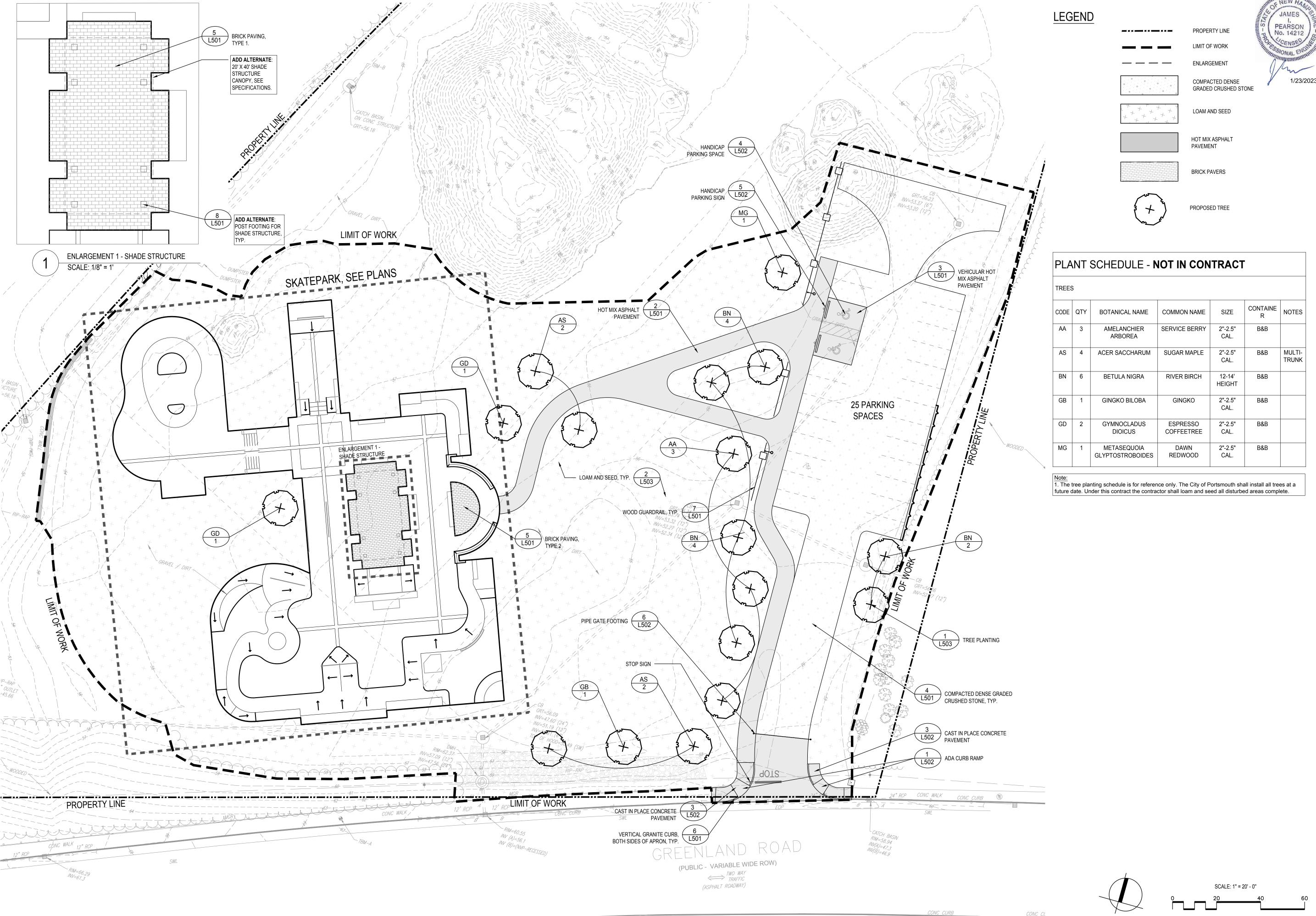
1/23/2023



- 6' HT. CONSTRUCTION FENCE WITH WIND SCREEN, TYP.

CONSTRUCTION ENTRANCE

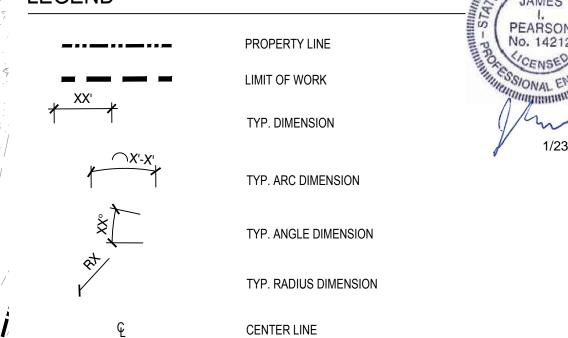



CONTRACTOR SHALL REMOVE ALL ASPHALT, BIT. CONCRETE, RUBLE, DEBRIS, AND ALL MATERIAL WITHIN PHASE 1 LIMIT OF WORK NECESSARY AROUND ENTIRE SITE PRIOR TO CONSTRUCTION.

PROTECT AND SAVE

- 2. REMOVE ALL VEGETATION WITHIN THE ENTIRE CONSTRUCTION SITE AS SHOWN ON THE PLANS. AS DETERMINED BY THE ENGINEER/LANDSCAPE ARCHITECT.
- 3. EX. DRAINAGE SYSTEM CONNECTS TO STORMWATER FROM GREENLAND ROAD, AND MUST BE KEPT CLEAN AND OPERATIONAL THROUGHOUT THE DURATION OF THE PROJECT. PROPOSED BORING LOCATIONS 1-16

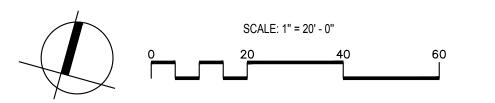
NS SHALL BE RESTRICTED
FOR WHICH THEY WERE
ATION THEREOF IS LIMITED
UCTION, PUBLICATION OR
S OR CONCEPTS BY ANY
PART WITHOUT THE
CONSENT FROM PILLAR
C. IS PROHIBITED. TITLE TO
CEPTS REMAIN WITH THE
SS, L.L.C. WITHOUT
NTACT WITH THE PLANS
IMA FACIE EVIDENCE OF THE
FRESTRICTIONS. COPYRIGHT

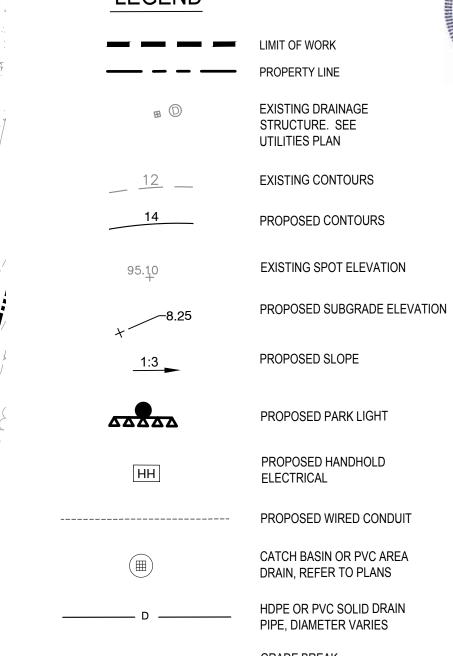

DSOM
STUDIO THE OKIGINAL SITE FOR WHICH THEY
DSOM
TO SUCH USE. REPRODUCTION, PUBLICAT
TO SUCH USE. REPRODUCTION, PUBLICAT
STUDIO
REUSE OF THESE PLANS OR CONCEPTS BY
METHOD, IN WHOLE OR PART WITHOUT T
EXPRESSED WRITTEN CONSENT FROM PII
DESIGN STUDIOS, L.L.C. IS PROHIBITED.
THESE PLANS AND CONCEPTS REMAIN WID
PILLAR DESIGN STUDIOS, L.L.C. WITHOU
PREJUDICE. VISUAL CONTACT WITH THE ISHALL CONSTITUTE PRIMA FACIE EVIDEN
ACCEPTANCE OF THESE RESTRICTIONS. C

Weston (S) Sampsor design studie 85 Devonshire Street, 3rd Floor, Boston, MA 02109 617.412.4480 800.SAMPSON www.westonandsampson.com

NEW HAMPSHIRE

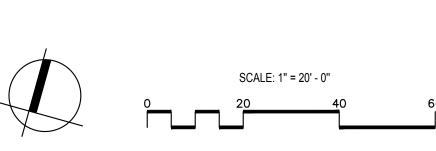
D PLANTING PLAN


L DACK

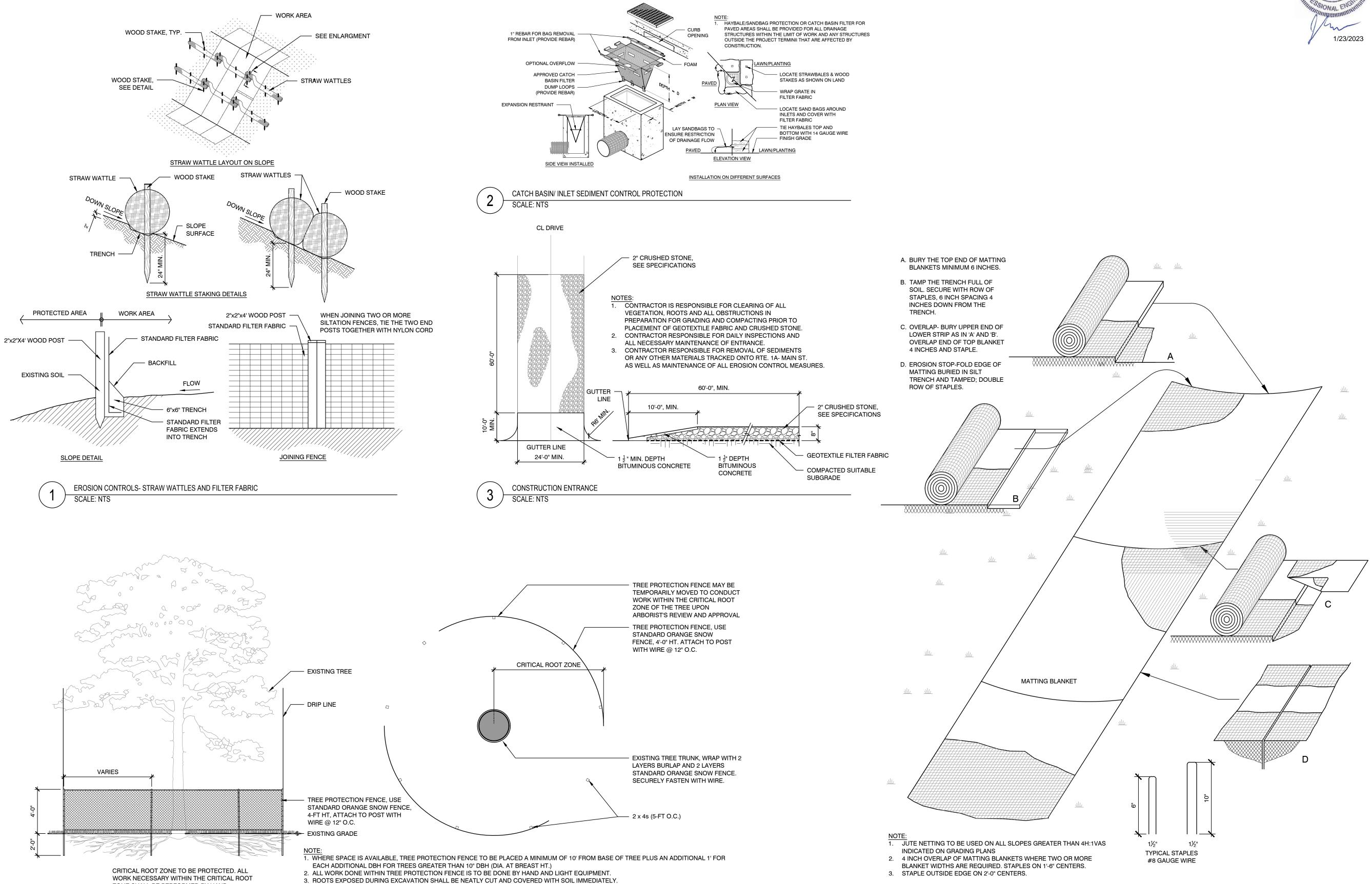


CENTER POINT

- 1. REFER TO EXISTING CONDITIONS PLAN AND SURVEY NOTES FOR SURVEY
- 2. COORDINATE ALL LAYOUT ACTIVITIES WITH THE SCOPE OF WORK CALLED FOR BY ALL OPERATIONS ENCOMPASSED BY THIS CONTRACT SET. PROTECT AND REPLACE REFERENCE STAKES AS NECESSARY OR AS REQUIRED BY THE OWNER'S REPRESENTATIVE.
- 3. THE CONTRACTOR SHALL PERFORM ALL WORK UNLESS SPECIFICALLY INDICATED THAT THE WORK WILL BE PERFORMED "BY OTHERS" OR "OWNER".
- 4. ALL PROPOSED SITE FEATURES SHALL BE LAID OUT AND STAKED FOR REVIEW AND APPROVAL BY THE OWNER'S REPRESENTATIVE PRIOR TO COMMENCEMENT OF INSTALLATION. ANY REQUIRED ADJUSTMENTS TO THE LAYOUT SHALL BE UNDERTAKEN AS DIRECTED, AT NO ADDITIONAL COST TO THE OWNER.
- 5. ALL PROPOSED PAVEMENTS SHALL MEET THE LINE AND GRADE OF EXISTING ADJACENT PAVEMENT SURFACES.
- 6. THE CONTRACTOR SHALL VERIFY ALL DIMENSIONS ON THE GROUND AND REPORT ANY DISCREPANCIES IMMEDIATELY TO THE OWNER'S REPRESENTATIVE.
- 7. THE CONTRACTOR SHALL BE RESPONSIBLE FOR FIELD MEASUREMENT OF ALL PROPOSED SITE IMPROVEMENTS.



HIGH POINT


LOW POINT TOP OF WALL

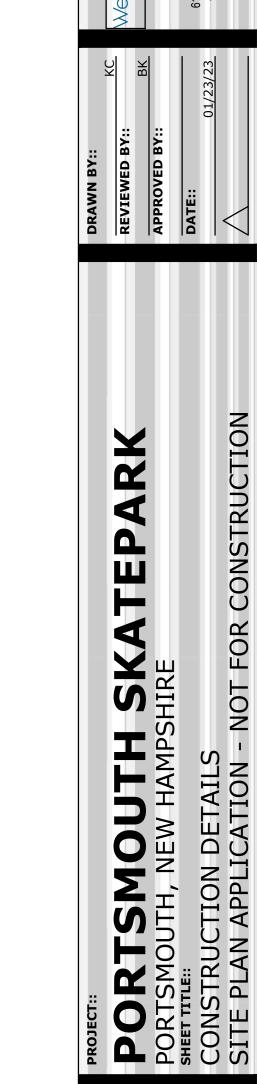
BOTTOM OF WALL

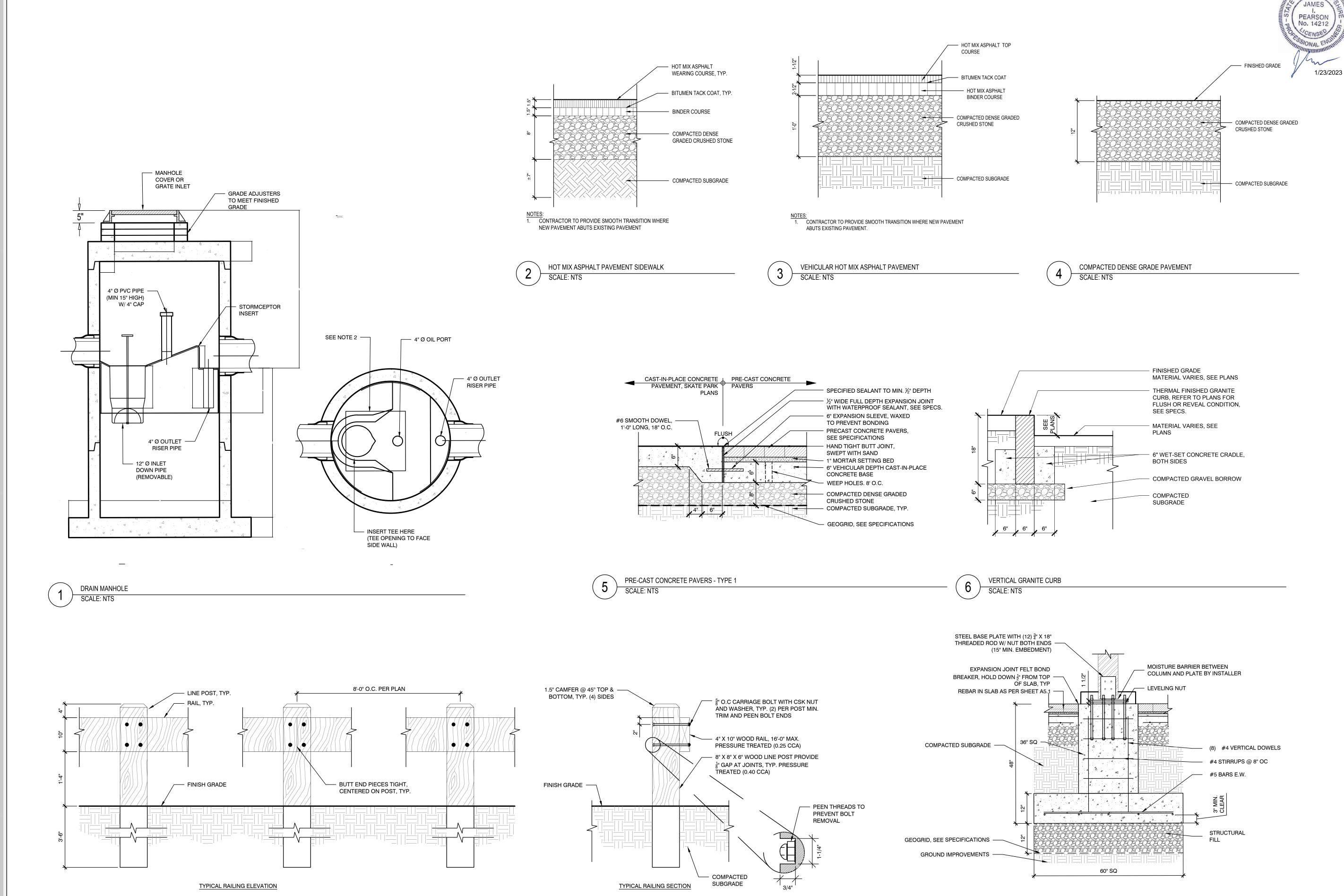
SCALE: 1" = 20' - 0"

CONC. CURB

4. FOR TREES THAT OCCUR IN GROUPS PROVIDE TREE PROTECTION FENCE AROUND ENTIRE AREA. SEE PLAN FOR LOCATIONS.

6. A CERTIFIED ARBORIST SHALL DELINEATE LIMIT OF TREE PROTECTION FENCE AS THEY RELATE TO THE LIMITS OF THE CRITICAL ROOT ZONE.


5. MAINTAIN FENCE PROTECTION IN SOUND CONDITION UNTIL FENCE COMPLETION


ZONE SHALL BE PERFORMED BY HAND.

L500 KATE PARK

STRUCTION DETAILS
PLAN APPLICATION

EROSION CONTROL BLANKET SCALE: NTS

POST FOOTING FOR SHADE STRUCTURE

SCALE: NTS

WOOD GUARDRAIL

1'-0"

PIPE GATE FOOTING

HANDICAP PARKING SIGN

PAINT WHITE (TYP.)

SEE SPECIFICATIONS

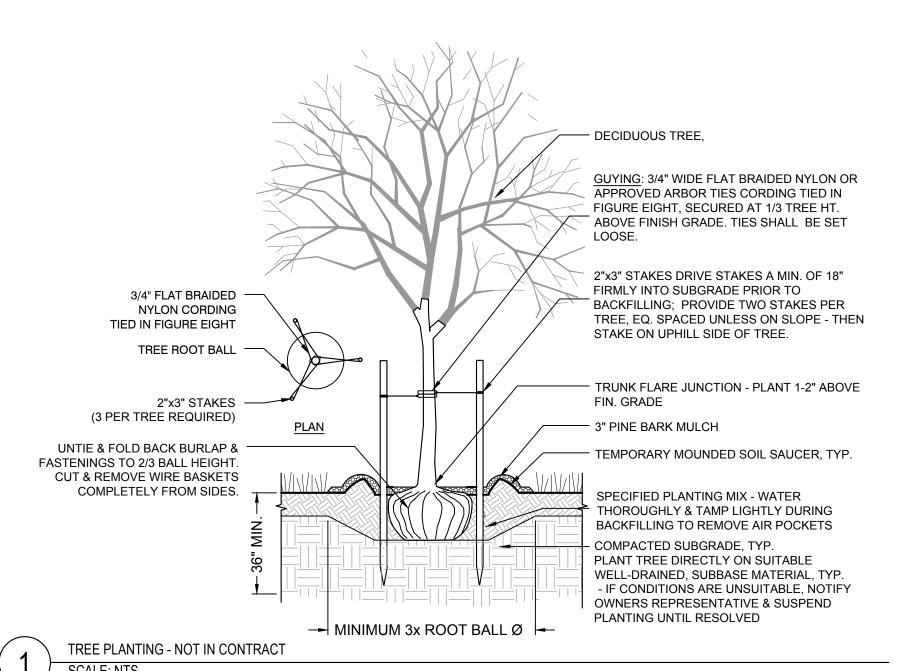
FOR TYPICAL LINE PAINT FOR ALL

PAVEMENT MARKINGS.

HANDICAP PARKING SPACE LAYOUT DETAIL

SCALE: NTS

1/23/2023


JTH SK, HAMPSHIRE PORTSMOUTH, NEW HAMPS SHEET TITLE::
CONSTRUCTION DETAILS SITE PLAN APPLICATION -

BE PLACED WITHIN ALL

WALL.

THE 3:1 GRASSED SLOPES ON OUTSIDE EDGES OF SKATEPARK TURNDOWN

—COMPACTED SUBGRADE

-HYDROMULCH SEED, SEE PLANS AND SPECIFICATIONS AYXXXIN AYXXXIN IKAYXXXIN INAXXXIN INAXXXIN INAXXXIN INAXXXIN INAXXXIN INAXXXIN INAXXXIN INAXXXIN INAXXXIN INA -LOAM TOP SOIL MIX SEE SPECIFICATIONS

LOAM AND SEED SCALE: NTS

PORTSMOUTH, NEW HAMPSHIRE SHEET TITLE:
CONSTRUCTION DETAILS
SITE PLAN APPLICATION - NOT FOR CONSTRU

PORTSMOUTH, NEW HAMPSHIRE

90% SUBMITTAL

GENERAL NOTES

1. NOTIFY THE ACTION SPORTS DESIGNER IMMEDIATELY OF ANY DISCREPANCIES WITHIN TEH CONSTYRUCTION DOCUMENTS AND/OR

2. THE METRIC EQUIVALENT "[]" DIMENSIONS ARE SHOWN FOR REFERNCE ONLY.

3. CONTRACTOR SHALL BE RESPONSIBLE TO VERIFY ALL QUANTITIES.

4. PERFORM ALL WORK IN ACCORDANCE WITH ALL APPLICABLE LOCAL, STATE AND/OR NATIONAL BUILDING CODES AND

5. THE ACTIONS SPORTS DESIGNER SHALL HAVE NO CONTROL OR CHARGE OF, NOR BE RESPONSIBLE FOR THE CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES, OR PROCEDURES, SAFETY PRECAUTIONS OR PROHRAMS IN CONNECTION WITH THE WORK, THE ACTS OR OMISSIONS OF THE CONTRACTOR, SUBCONTRACTOR, OR ANY PERSONS PERFORMING ANY OF THE WORK OR FOR THE FAILURE OF ANY OF THEM TO CARRY OUT THE WORK IN CONFORMANCE WITH THE CONTRACT DOCUMENTS.

6. PROVIDE SPECIAL INSPECTION AS REQUIRED BY BUILDING CODES FOR THE FOLLOWING ITEMS: -TAKING OF TEST SPECIMENS OF ALL CONCRETE AND SHOTCRETE.

7. THE CONTRACTOR SHALL WARRANTY ALL OF THEIR WORK DURING CONSTRUCTION AND A MINIMUM OF ONE YEAR AFTER THE PROJECT IS COMPLETED.

8. CONCRETE MIXES SHALL BE DESIGNED BY A TESTING LABRATORY APPROVED BY THE ACTION SPORTS DESIGNER PRIOR TO USE.

STEEL SHAPES CHART

ROUND			SQUARE		RECTANGULAR		
NOMINAL	HSS	NOMINAL	HSS	NOMINAL	HSS		
0.11	2.375 x 0.1875	211211	2.00 x 2.00 x 0.1875	2" 6"	2.00 x 6.00 x 0.1875		
2"	6.03cm x 4.76mm	2"x2"	5.08cm x 5.08cm x 4.76mm	2"x6"	5.08cm x 15.24cm x 4.76mm		
2 1/2"	2.875 x 0.1875	2 1/2">2 1/2"	2.50 x 2.50 x 0.1875	211-011	2.00 x 8.00 x 0.1875		
2-1/2"	7.30cm x 4.76mm	2-1/2"x2-1/2"	7.30cm x 7.30cm x 4.76mm	2"x8"	5.08cm x 20.32cm x 4.76mm		
-"	3.50 x 0.1875	211211	3.00 x 3.00 x 0.1875	2-1/2"x4"	2.50 x 4.00 x 0.1875		
3"	8.89cm x 4.76mm	3"x3"	7.62cm x 7.62cm x 4.76mm	2-1/2 X4	6.35cm x 10.16cm x 4.76mm		
3-1/2"	4.00 x 0.1875	2 1/2">2 1/2"	3.50 x 3.50 x 0.1875	2-1/2"x5"	2.50 x 5.00 x 0.1875		
3-1/2	10.16cm x 4.76mm	3-1/2"x3-1/2"	8.89cm x 8.89cm x 4.76mm	2-1/2 X3	6.35cm x 12.70cm x 4.76mm		
411	4.50 x 0.1875	411411	4.00 x 4.00 x 0.1875		3.00 x 5.00 x 0.1875		
4"	11.43cm x 4.76mm	4"x4"	10.16cm x 10.16cm x 4.76mm	3"x5"	7.62cm x 12.70cm x 4.76mm		

1. ALL HOLLOW STRUCTURAL SECTIONS (HSS) TO BE ASTM A-500 GRADE B STEEL.

©REBAR DEVELOPMENT LENGTHS

NORMAL WEIGHT CONCRETE								
REBAR	SIZE		3000 P.S.I.			4000 P.S.I.		
ENGLISH	METRIC	TOP BARS	BOT. BARS		TOP BARS	BOT. BARS		
ENGLISH	METRIC	ld	ld	ldh	ld	ld	ldh	
#3	#10	21" [53.34cm]	16" [40.64cm]	8" [20.32cm]	18" [45.72cm]	14" [35.56cm]	7" [17.78cm]	
#4	#13	28" [71.12cm]	22" [55.88cm]	11" [27.94cm]	25" [63.50cm]	19" [48.26cm]	9" [22.86cm]	
#5	#16	36" [91.44cm]	27" [68.58cm]	14" [35.56cm]	31" [78.74cm]	24" [60.96cm]	12" [30.48cm]	
#6	#19	43" [109.22cm]	33" [83.82cm]	16" [40.64cm]	37" [93.98cm]	28" [71.12cm]	14" [35.56cm]	
#7	#22	62" [157.48cm]	48" [121.92cm]	19" [48.26cm]	54" [137.16cm]	42" [106.68cm]	17" [43.18cm]	
#8	#25	71" [180.34cm]	55" [139.70cm]	22" [55.88cm]	62" [157.48cm]	47" [119.38cm]	19" [48.26cm]	
#9	#29	80" [203.20cm]	62" [157.48cm]	25" [63.50cm]	69" [175.26cm]	53" [134.62cm]	21" [53.34cm]	
#10	#32	89" [226.06cm]	68" [172.72cm]	27" [68.58cm]	77" [195.58cm]	59" [149.86cm]	24" [60.96cm]	
#11	#36	98" [248.92cm]	75" [190.50cm]	30" [76.20cm]	85" [215.90cm]	65" [165.10cm]	26" [66.04cm]	

- THESE LENGTHS APPLY TYPICALLY UNLESS OTHERWISE NOTED.
- CLEAR SPACING BETWEEN PARALLEL BARS MUST BE AT LEAST ONE BAR DIAMETER BUT NOT LESS THAN 1" [2.54cm].
- 3. TOP BARS: HORIZONTAL BARS SO PLACED THAT MORE THAN 12" [30.48cm] OF FRESH CONCRETE IS CAST IN THE MEMBER BELOW.
- 4. LIGHTWEIGHT CONCRETE: MULTIPLY VALUES IN TABLE BY 1.3.
- 5. CLASS B SPLICE: LD X 1.3 LAP LENGTH. STAGGER SPLICES MIN. OF 24" [60.96cm]

©CONSTRUCTION DISCLAIMER

ALL MEASUREMENTS, DISTANCES AND RADII TO BE VERIFIED IN THE FIELD.

STRUCTURAL NOTES

REINFORCING STEEL:

- 1. REINFORCING STEEL SHALL CONFORM TO ASTM A615 (Fy = 60 KSI) DEFORMED BARS FOR ALL BARS #3 AND LARGER. ALL REINFORCING TO BE WELDED SHALL BE ASTM A706. WELDED WIRE FABRIC PER ASTM A185, WIRE PER ASTM A82. LATEST ACI CODE AND DETAILING MANUAL APPLY.
- 2. ACCURATELY PLACE OR SUPPORT ALL REINFORCING, INCLUDING WELDED WIRE FABRIC, WITH GALVANIZED METAL CHAIRS, SPACERS OR HANGERS FOR THE FOLLOWING CLEAR

CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH ----- 3" EXPOSED TO EARTH OR WEATHER #5 AND SMALLER COLUMNS (TO TIES) -BEAMS (TO STIRRUPS) -ALL OTHER PER LATEST EDITION OF ACI 318.

3. REINFORCING BAR SPACING GIVEN ARE MAXIMUM ON CENTERS. ALL BARS PER CRSI SPECIFICATIONS AND HANDBOOK. DOWEL ALL VERTICAL REINFORCING TO FOUNDATION WITH STANDARD 90 DEGREE HOOKS UNLESS NOTED OTHERWISE. SKEW HOOKS AS REOUIRED TO MAINTAIN CONCRETE COVER. SECURELY TIE ALL BARS IN LOCATION BEFORE PLACING CONCRETE. CONCRETE COLUMN DOWEL EMBEDMENT SHALL BE A STANDARD COMPRESSION DOWEL WITH EMBEDMENT LENGTH ACCORDING TO THE LATEST EDITION OF THE ACI 318.

STRUCTURAL STEEL

- 1. ALL STEEL CONSTRUCTION SHALL CONFORM WITH THE LATEST AISC HANDBOOK. ALL RECTANGULAR TS/HSS SHALL BE ASTM A500, GRADE B (Fy = 46 KSI) ALL PIPE STEEL SHALL BE ASTM A53, GRADE B (Fy = 35 KSI). ALL OTHER STRUCTURAL SHAPES AND PLATES SHALL BE ASTM A36 (Fy = 36 KSI). PAINT ALL STEEL SURFACES WITH FABRICATOR'S STANDARD RUST-INHIBITING PRIMER EXCEPT AT SURFACES
- 2. ALL WELDING PER LATEST AMERICAN WELDING SOCIETY STANDARDS, (EXCEPT STEEL JOISTS AND JOIST GIRDERS SHALL COMPLY WITH SJI STANDARDS). ALL WELDING DONE BY E70 SERIES LOW HYDROGEN RODS UNLESS NOTED OTHERWISE. FOR GRADE 60 REINFORCING BARS, USE E90 SERIES. THESE DRAWINGS DO NOT DISTINGUISH BETWEEN SHOP AND FIELD WELDS; THE CONTRACTOR MAY SHOP WELD OR FIELD WELD AT HIS
- 3. NON-SHRINK GROUT SHALL BE 5,000 PSI, FIVE STAR, SIKA 212 OR EQUIVALENT. INSTALL NON-SHRINK GROUT UNDER BEARING PLATES BEFORE FRAMING MEMBER IS INSTALLED.

POST-INSTALLED ANCHORS:

1. EPOXY BOLTS OR DOWELS SHALL BE A THREADED ROD OR REINFORCING STEEL INSTALLED WITH THE ONE OF THE FOLLOWING APPROVED PRODUCTS SATISFYING CRACKED CONCRETE REQUIREMENTS IN ACCORDANCE WITH ACI APPENDIX D.

SIMPSON "SET-XP" ICC REPORT ESR-2508 HILTI "RE-500 SD" ICC REPORT ESR-2322 POWERS "PE1000+" ICC REPORT ESR-2583

- 2. THE CONTRACTOR MAY NOT USE SUBSTITUTES FOR EPOXY OR EXPANSION ANCHORS WITHOUT PRIOR APPROVAL OF THE STRUCTURAL ENGINEER.
- 3. FOR MINIMUM EMBEDMENT LENGTH SEE DETAILS. INSTALL ALL BOLTS AS OUTLINED IN MANUFACTURER'S SPECIFICATIONS, UTILIZING PROPER SIZE AND TYPE OF DRILL, CLEANING HOLE, DRIVING AND TIGHTENING BOLT.

©CONSTRUCTION DETAIL NOTES

- "BASE COURSE" SHALL CONSIST OF A 4" [10.16cm] LAYER OF COMPACTED 1" [2.54cm] CRUSHED ROCK; "COMPACTED SUBGRADE" SHALL CONSIST OF THE UPPER MOST 1'-0" [30.48cm] OF NATIVE SOIL AND/OR ENGINEERED FILL COMPACTED TO 95% STANDARD PROCTOR. IF THESE GUIDELINES CONFLICT WITH THE GEO-TECHNICAL REPORT, THE CONTRACTOR TO FOLLOW THE MORE STRINGENT OF THE TWO GUIDELINES
- GRIND SMOOTH ALL EXPOSED COPING AND RAIL WELDS. APPLY END CAPS TO ALL EXPOSED COPING AND RAIL ENDS, OPEN STEEL ENDS OR CONCRETE FILLED CAPS ARE UNACCEPTABLE.
- HOOK ANCHORS OR HEX BOLTS MAY BE USED IN-LIEU OF NELSON STUDS TO SECURE COPING AND PROTECTIVE PLATES IN PLACE PROVIDED THEY ARE THE SAME NOMINAL SIZE.
- ALL RAIL POSTS SHALL BE PLACED 3" [7.62cm] MINIMUM CLEAR OF ALL CONCRETE AND/OR
- SOME REINFORCEMENT MEMBERS MAY BE SHOWN OUT OF SCALE AND/OR POSITION FOR CLARITY ONLY. AT A MINIMUM ALL REINFORCEMENT SHALL BE PLACED CLEAR OF ALL CONCRETE AND/OR SHOTCRETE FACES AS NOTED BELOW:
 - WELDED WIRE FABRIC: 2" [5.08cm]
 - SPEED DOWELS: 3" [7.62cm] REBAR IN FLATWORK, BANKS, BOWLS, WATERFALLS AND TURNDOWN WALLS: 2" [5.08cm] OR
 - 3" [7.62cm] IF PERMANENTLY EXPOSED TO EARTH REBAR IN FORMED LEDGES, EXTENSIONS AND RETAINING WALLS: 3" [7.62cm]
- ALL SHOTCRETE SHALL BE CUT, SCREEDED AND INSPECTED WITH TEMPLATES CUT TO THE SPECIFIED HEIGHT, WIDTH, RADIUS AND/OR ANGLE. THE CONTRACTOR SHALL SUBMIT SHOP DRAWINGS WITH DIMENSIONS, MATERIAL AND LOCATION OF USED FOR ALL TEMPLATES FOR APPROVAL BY THE OWNER'S REPRESENTATIVE AND THE ACTION SPORTS DESIGNER.
- ALL CONCRETE AND SHOTCRETE SHALL HAVE A SMOOTH TROWEL FINISH UNLESS OTHERWISE
- 8. ALL EXPOSED OUTSIDE CONCRETE CORNERS SHALL RECEIVE A 1/2" [12.70mm] CHAMFER UNLESS
- THE FENCE SHALL MATCH THE PROFILE AND CONTOUR OF THE PARK PERIMETER. RAILS SHALL BE ROLLED TO MATCH RADII. CONTRACTOR SHALL SUBMIT SHOP DRAWINGS SHOWING ALL FENCE PROFILES.
- 10. CAP ALL EXPOSED ENDS, FILL ALL VOIDS AND GRIND ALL WELDS SMOOTH.
- 11. ALL FENCE METAL WORK SHALL BE WARRANTED BY THE CONTRACTOR AGAINST DEFECTS, RUST, PAINT CHIPPING, ETC. FOR A PERIOD OF FIVE YEARS.

STRUCTURAL NOTES

1. DESIGN CRITERIA

2015 EDITION OF THE INTERNATIONAL BUILDING CODE, WITH LOCAL AMENDMENTS.

WIND DESIGN: BASIC WIND SPEED = 90 MPH (3 SECOND GUST). IW = 1.0. EXPOSURE C.

SEISMIC DESIGN: Ie = 1.0. Ss = 0.172 S1 = 0.051 SEISMIC SITE CLASS = D. Sds = 0.183 SD1 = 0.081 SEISMIC DESIGN CATEGORY B.

GENERAL:

- 1. WHERE REFERENCE IS MADE TO VARIOUS TEST STANDARDS FOR MATERIALS, SUCH STANDARDS SHALL BE THE LATEST EDITION AND/OR ADDENDA.
- 2. NOTES AND DETAILS ON DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL STRUCTURAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT. FOR BIDDING PURPOSES, WHERE ANY MEMBER IS SHOWN BUT NOT CALLED OUT, THE LARGEST SIMILAR MEMBER SHALL BE
- 3. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL STRUCTURAL NOTES AND SPECIFICATIONS, THE GREATER REQUIREMENTS SHALL GOVERN.
- 4. ANY ENGINEERING DESIGN, PROVIDED BY OTHERS AND SUBMITTED FOR REVIEW, SHALL BEAR THE SEAL OF AN ENGINEER REGISTERED IN THE STATE IN WHICH THE PROJECT OCCURS

CONCRETE AND SHOTCRETE:

1. ALL CONCRETE WORK SHALL CONFORM WITH THE REQUIREMENTS OF ACI 301 AND ACI 318. CEMENT PER ASTM C150, TYPE II. AGGREGATE PER ASTM C33. LIGHTWEIGHT AGGREGATE PER ASTM C330. CONCRETE SHALL BE READY MIXED IN ACCORDANCE WITH ASTM C94 AND SHALL BE DESIGNED FOR A MINIMUM 28 DAY COMPRESSIVE STRENGTH AS FOLLOWS:

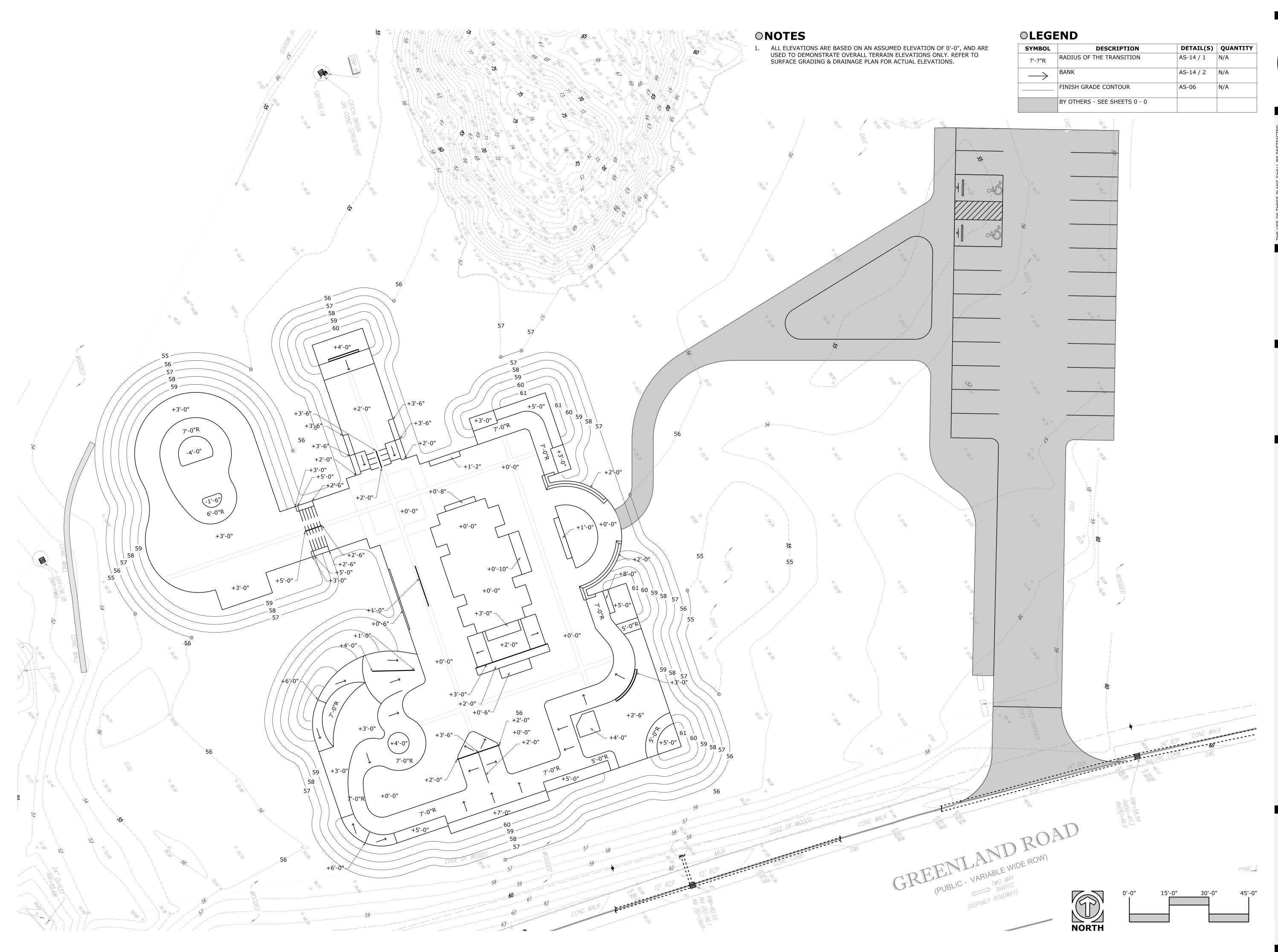
FLAT SLABS, WALLS4,000 PSI	
SLABS ON GRADE4,000 PSI	
FOUNDATIONS4,000 PSI	

- 2. ALL SHOTCRETE WORK SHALL CONFORM WITH THE REQUIREMENTS OF ACI 506, LATEST EDITION, "SPECIFICATION FOR MATERIALS, PROPORTIONING AND APPLICATION OF SHOTCRETE" AND ACI 506.2, LATEST EDITION, "RECOMMENDED PRACTICES FOR SHOTCRETE." AGGREGATE PER ASTM C33.
- 3. SHOTCRETE MIX DESIGNS SHALL BE DESIGNED FOR A MINIMUM 28 DAY COMPRESSIVE STRENGTH AS FOLLOWS:

FLAT SLABS, WALLS ------4,000 PSI --4,000 PSI

- 4. SHOTCRETE SURFACE PREPARATION: EXPOSED EXISTING CONCRETE SHALL BE SANDBLASTED CLEAN. SURFACES SHALL BE FOLLOWED BY WETTING AND DAMP DRYING JUST PRIOR TO SHOTCRETE APPLICATION.
- 5. ANY REBOUND OR ACCUMULATED LOOSE AGGREGATE SHALL BE REMOVED FROM THE SURFACES TO BE SHALL NOT BE REUSED AS AGGREGATE.
- 6. JOINTS IN WALL POURS ARE PERMISSIBLE. AT JOINTS, SHOTCRETE SHALL BE SLOPED TO A THIN EDGE. BEFORE PLACING ADDITIONAL MATERIAL, ALL SURFACES SHALL BE THOROUGHLY CLEANED AND WETTED AND ALL REINFORCING STEEL SHALL BE BRUSHED FREE OF LATENT SHOTCRETE MATERIAL.
- 7. ANY IN-PLACE SHOTCRETE MATERIAL WHICH EXHIBITS SAGS OR SLOUGHS, SEGREGATION, HONEY COMBING, SAND POCKETS OF OTHER OBVIOUS DEFECTS SHALL BE REMOVED AND REPLACED.
- 8. TESTING AND INSPECTION OF IN-PLACE SHOTCRETE SHALL BE IN ACCORDANCE WITH 2015 IBC.
- 9. CONCRETE SHALL BE PLACED WITHIN 90 MINUTES OF BATCHING AND SHALL NOT EXCEED A TEMPERATURE OF 90 DEGREES F UNLESS PRE-APPROVED BY THE ACTION SPORTS DESIGNER.
- 10. DURING THE CURING PERIOD, CONCRETE SHALL BE MAINTAINED AT A TEMPERATURE ABOVE 40 DEGREES F AND IN MOIST CONDITION. FOR INITIAL CURING, CONCRETE SHALL BE KEPT CONTINUOUSLY MOIST FOR 24 HOURS AFTER PLACEMENT IS COMPLETE. FINAL CURING SHALL CONTINUE FOR SEVEN DAYS AFTER PLACEMENT AND SHALL CONSIST OF APPLICATION OF CURING COMPOUND PER ASTM C309. APPLY AT A RATE SUFFICIENT TO RETAIN MOISTURE, BUT NOT LESS THAN 1 GALLON PER 200 SQUARE FEET. COVER CONCRETE WITH POLYETHYLENE PLASTIC TO MAINTAIN TEMPERATURE IF NECESSARY. LAP SEAMS IN THE PLASTIC 6" AND TAPE, WEIGHT DOWN THE PLASTIC AS NEEDED.
- 11. THE CONTRACTOR SHALL FIX ALL CRACKS AND DISPLACEMENTS LARGER THAN 1/8".
- 12. CONDUITS, PIPES, AND SLEEVES EMBEDDED IN CONCRETE SHALL CONFORM TO THE REQUIREMENTS OF IBC SECTION 1906.
- 13. TESTING OF COMPRESSIVE STRENGTH AND SLUMP PER ASTM C31, C39 AND C143. PROVIDE A MINIMUM OF 3 CYLINDERS FOR EACH DAY'S PLACEMENT U.N.O. A QUALIFIED TESTING LABORATORY SHALL TEST ONE CYLINDER AT 7 DAYS AND TWO AT 28 DAYS.

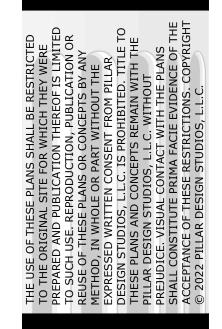
©CONTACTS

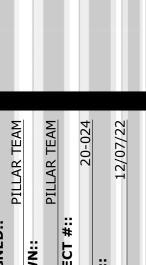

CLIENT	CITY OF PORTSMOUTH PETER RICE, DIRECTOR OF PUBLIC WORKS 680 PEVERLY HILL RD PORTSMOUTH, NH 03801 [t] 603.4276.1530 [f] 603.427.1539
SKATEPARK	PILLAR DESIGN STUDIOS BRAD SIEDLECKI 1960 W. HAWK CT. CHANDLER, ARIZONA 85286 [t] 888.880.5112 [f] 888.841.2569
CIVIL	WESTON & SAMPSON BRANDON KUNKEL, RLA 85 DEVONSHIRE ST, 3RD FLOOR BOSTON, MA 02109 [t] 617.412.4480 X 7705
SPECIALTY	ARTISAN SKATEPARKS ANDY DUCK 4600 TAMARACK DRIVE KITTY HAWK, NORTH CAROLINA 27949 [t] 252.202.1333

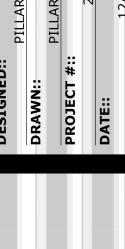
SHEET INDEX

SHEET	DESCRIPTION	
AS-01	COVER SHEET	
AS-02	MASTER PLAN	
AS-03	3 DIMENSIONAL GRAPHIC	
AS-04	HORIZONTAL CONTROL PLAN	
AS-05	HORIZONTAL CONTROL PLAN	
AS-06	SUBSURFACE DRAINAGE PLAN	
AS-07	COPING PLAN	
AS-08	CONCRETE PLAN	
AS-09	JOINTING PLAN	
AS-10	CROSS SECTIONS	
AS-11	CROSS SECTIONS	
AS-12	CROSS SECTIONS	
AS-13	CONSTRUCTION DETAILS	
AS-14	CONSTRUCTION DETAILS	
AS-15	CONSTRUCTION DETAILS	
AS-16	CONSTRUCTION DETAILS	

<


THE USE OF THESE PLANS SHALL BE RESTRICTED TO THE ORIGINAL SITE FOR WHICH THEY WERE PREPARED AND PUBLICATION THEREOF IS LIMITED TO SUCH USE. REPRODUCTION, PUBLICATION OR REUSE OF THESE PLANS OR CONCEPTS BY ANY METHOD, IN WHOLE OR PART WITHOUT THE EXPRESSED WRITTEN CONSENT FROM PILLAR DESIGN STUDIOS, L.L.C. IS PROHIBITED. TITLE TO THESE PLANS AND CONCEPTS REMAIN WITH THE PILLAR DESIGN STUDIOS, L.L.C. WITHOUT PREJUDICE. VISUAL CONTACT WITH THE PLANS SHALL CONSTITUTE PRIMA FACIE EVIDENCE OF THE ACCEPTANCE OF THESE RESTRICTIONS. COPYRIGHT


PILLAR TEAM **DRAWN::**PILLAR TEAM

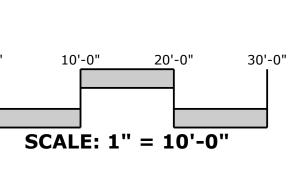

PROJECT #::
20-024 **DATE::**12/07/22

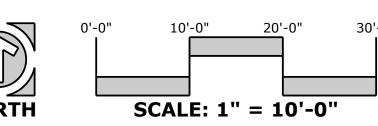
ORTSMOUTH, NEW HAMPSHIRE

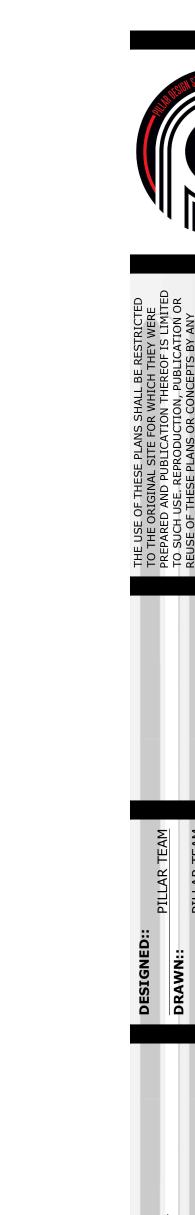
AS-020-16 SKATE PARK

PROGRESS SUBMITTAL

THIS PLAN IS INCOMPLETE AND SHALL BE FINALIZED FOR THE NEXT SUBMITTAL.

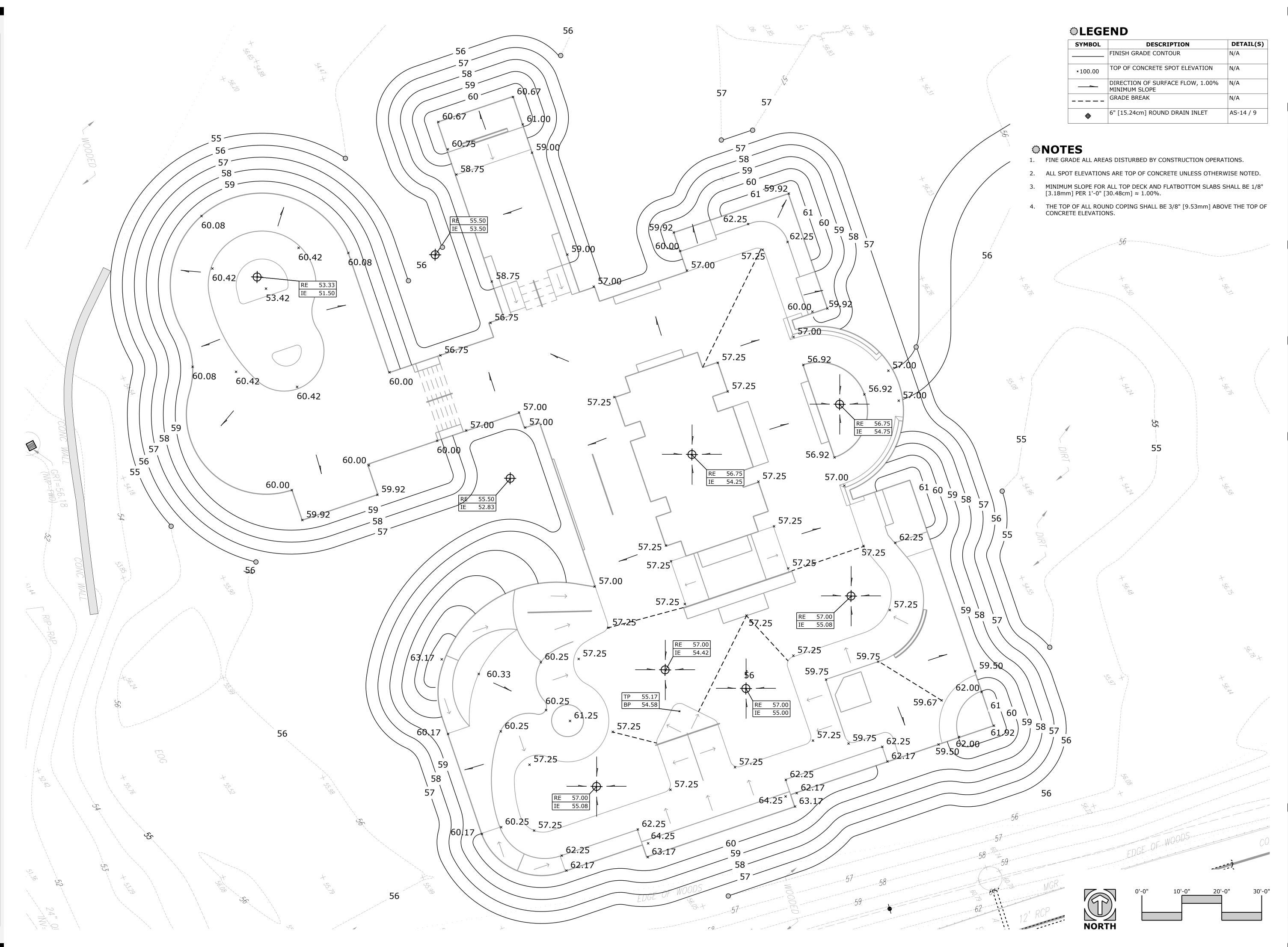

©LEGEND


SYMBOL	DESCRIPTION	DETAIL(
	COLD JOINT (C.J.)	AS-12
\Phi	DRAIN INLET	AS-08


○NOTES

- 1. COORDINATE VALUES SHOWN ARE INTENDED FOR HORIZONTAL POSITIONING AND DIMENSION CLARIFICATION ONLY. ALL POINTS SET IN THE FIELD FROM THESE VALUES SHALL FIRST BE CHECKED BY THE CONTRACTOR TO ENSURE THAT THE LOCATION IS CONSISTENT WITH THE DIMENSIONS AND GRAPHIC LOCATIONS SHOWN WITHIN THE APPROVED CONSTRUCTION DOCUMENTS. IN THE CASE OF A DISCREPANCY WITH ANY COORDINATE VALUE SHOWN, THE CONTRACTOR SHALL BE RESPONSIBLE TO NOTIFY THE ACTION SPORTS DESIGNER PRIOR TO COMMENCING ANY CONSTRUCTION ACTIVITY THAT MAY
- 2. UPON REQUEST PILLAR DESIGN STUDIOS WILL PROVIDE THE CONTRACTOR/ SURVEYOR WITH A DIGITAL FILE CONTAINING THE POINT INFORMATION FOR
- 3. ALL COORDINATES SHOWN AT THE BOTTOM OF ALL BANKS/ TRANSITIONS ARE LOCATED AT THE COLD JOINT.
- 4. BECAUSE OF THE SCALE OF THIS DRAWING AND PROXIMITY OF FEATURES TO EACH OTHER, THE LOCATION OF SOME OF THE POINTS MAY BE OBSCURED. REFER TO THE POINT TABLE(S) FOR THE ACTUAL LOCATIONS FOR ALL POINTS.

ORTSMOUTH, NEW HAMPSHIRE



PROGRESS SUBMITTAL

THIS PLAN IS INCOMPLETE AND SHALL BE FINALIZED FOR THE NEXT SUBMITTAL.

REPRODUCTION, PUBLICATION OR
E PLANS OR CONCEPTS BY ANY
IOLE OR PART WITHOUT THE
ITTEN CONSENT FROM PILLAR
IS, L.L.C. IS PROHIBITED. TITLE TO
ND CONCEPTS REMAIN WITH THE
STUDIOS, L.L.C. WITHOUT
UAL CONTACT WITH THE PLANS
UTE PRIMA FACIE EVIDENCE OF THE
THESE RESTRICTIONS. COPYRIGHT
DESIGN STUDIOS, L.L.C.

PREPARE DAND PUBLICATION THERE
TO SUCH USE. REPRODUCTION, PUBLICATION THERE
REUSE OF THESE PLANS OR CONCEINETHOD, IN WHOLE OR PART WITH
EXPRESSED WRITTEN CONSENT FRO DESIGN STUDIOS, L.L.C. IS PROHIB THESE PLANS AND CONCEPTS REMARILLAR DESIGN STUDIOS, L.L.C. WITH SHALL CONSTITUTE PRIMA FACIE EN ACCEPTANCE OF THESE RESTRICTIONS, L.

DRAWN::
PROJECT #::
20-024

DATE::
12/07/22

PORTSMOUTH, NEW HAMPSHIRE
SURFACE GRADING & DRAINAGE PLAN

AS-06 SP P STE PARK

- ANGLE IRON

2" X 2" SQUARE -

2" ROUND RAIL WITH 2" ROUND LEGS —

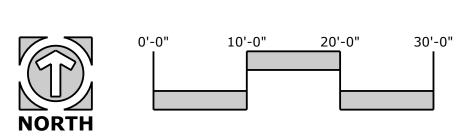
2" X 2" SQUARE $-\!\!\!\!/$

2" ROUND RAIL WITH 2" ROUND LEGS -

2" ROUND -

2" ROUND RAIL WITH 2" ROUND LEGS -

2" ROUND


POOL COPING AND TILE $^{-\!\!/}$

SYMBOL	DESCRIPTION	DETAIL(S)	COLOR	FINISH
	2" [6.03cm] ROUND STEEL PIPE	AS-13 / 1	T.B.D.	PAINTED
	2" [5.08cm] X 2" [5.08cm] SQUARE STEEL TUBE	AS-13 / 3 & 4	T.B.D.	PAINTED
1 1 1 1 1 1 1 1 1 1 1 1	3" X 4" [10.16cm] BENT STEEL PLATE - ANGLE IRON	AS-13 / 9	T.B.D.	PAINTED
	C CHANNEL - C 6 X 8.2	AS-15 / 4	T.B.D.	PAINTED
	POOL COPING, PENROSE BULLNOSE POOL COPING	AS-13 / 8	NATURAL GRAY	N/A
	POOL TILE, 6" [15.24cm] BAND OF 2" [5.08cm] X 2" [5.08cm] TILES	AS-13 / 8	T.B.D.	N/A

1. ALL COPING/RAIL SIZES ARE NOMINAL, REFER TO THE STEEL SHAPES CHART FOR THE ACTUAL DIMENSIONS.

ORTSMOUTH, NEW HAMPSHIRE

©LEGEND

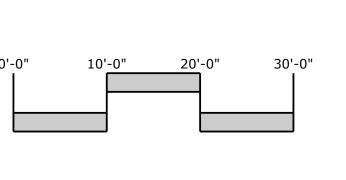
SYMBOL	DESCRIPTION	DETAIL(S)	COLOR	FINISH
· + + + + + + + + + + + + + + + + + + +	4" [10.16cm] CONCRETE TOP DECK	AS-14 / 4	NATURAL GRAY	SMOOTH TROWEL
, , , , , , , , , , , , , , , , , , ,	6" [15.24cm] CONCRETE FLATBOTTOM	AS-14 / 5	NATURAL GRAY	SMOOTH TROWEL
-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	CONCRETE GRIND LEDGES	AS-15 / 2 & 3	DAVIS COLORS - GRAPHITE	SMOOTH TROWEL
	CONCRETE STAIRS	AS-14 / 7	NATURAL GRAY	LIGHT BROOM
******	6" [15.24cm] SHOTCRETE BANKS	AS-14 / 2	DAVIS COLORS - DARK GRAY	SMOOTH TROWEL
1000000	6" [15.24cm] SHOTCRETE BOWLS	AS-14 / 1	DAVIS COLORS - DARK GRAY	SMOOTH TROWEL
	CONCRETE TURNDOWN WALL	AS-15 / 1	NATURAL GRAY	SMOOTH TROWEL
••	BRICK, NOT IN CONTRACT, INSTALLED BY OTHERS	SEE CIVIL PLANS	N/A	N/A
	COLD JOINT (C.J.)	AS-16	N/A	N/A
+ + + +	COLORED CONCRETE	N/A	DAVIS COLORS - GRAPHITE	SMOOTH TROWEL

RTSMOUTH, NEW HAMPSHIRE

OLEGEND

* LLGLIID						
SYMBOL	DESCRIPTION	DETAIL(S)	QUANTIT			
	COLD JOINT (C.J.)	AS-16 / 1, 2, 3 & 4	0 L.F.			
	EXPANSION JOINT (E.J.)	AS-16 / 5 & 6	0 L.F.			
	SAWCUT JOINT (S.J.)	AS-16 / 7 & 8	0 L.F.			
\Phi	DRAIN INLET	AS-06	N/A			

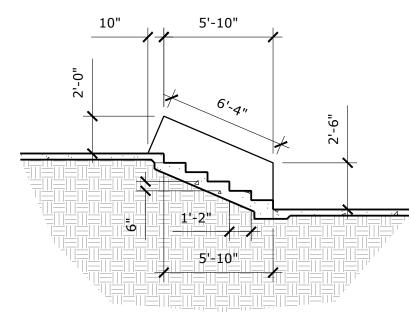
ONOTES

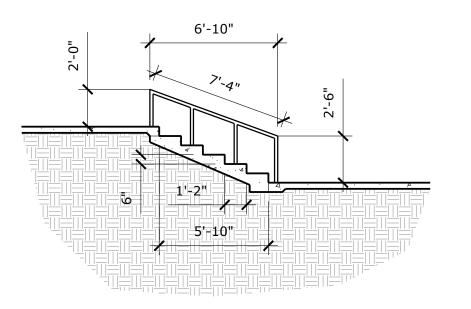

- 1. THE JOINTING PLAN IS DIAGRAMMATIC ONLY.
- CONTRACTOR SHALL SNAP CHALK LINES FOR ALL SAW-CUT JOINTS FOR REVIEW BY THE ACTION SPORTS DESIGNER PRIOR TO CUTTING JOINTS.

THESE PLANS SHALL BE RESTRICTURAL BOOK SHALL BE RESTRICTION THEREOF IS LISTE FOR WHICK THEY WE SEE PLANS OF CONCEPTS BY AN WITTEN CONSENT FROM PILLAF SINS, L.L.C. WITHOUT THE ON STUDIOS, L.L.C. WITHOUT TISUAL CONTACT WITH THE PLATITUTE PRIMA FACIE EVIDENCE OF THESE RESTRICTIONS. COPINAL IN STUDIOS, L.L.C.
--

TO THE ORIGINAL SITE FOR WHICH TH
PREPARED AND PUBLICATION THEREOF
TO SUCH USE. REPRODUCTION, PUBLIC
REUSE OF THESE PLANS OR CONCEPTS
METHOD, IN WHOLE OR PART WITHOUT
EXPRESSED WRITTEN CONSENT FROM I
DESIGN STUDIOS, L.L.C. IS PROHIBITE
THESE PLANS AND CONCEPTS REMAIN
PILLAR DESIGN STUDIOS, L.L.C. WITHO
PREJUDICE, VISUAL CONTACT WITH TH
SHALL CONSTITUTE PRIMA FACIE EVIDI
ACCEPTANCE OF THESE RESTRICTIONS
© 2022 PILLAR DESIGN STUDIOS, L.L.C

	PILLAR TEAM
DRAWN::	
	PILLAR TEAM
PROJECT #::	
	20-024
DATE::	
	12/07/22
<	


ORTSMOUTH, NEW HAMPSHIRE



SECTION 1

SECTION 2

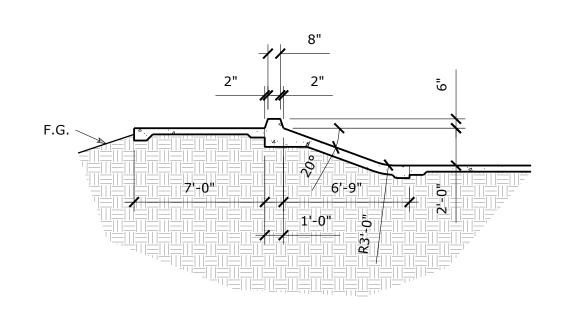
SECTION 4

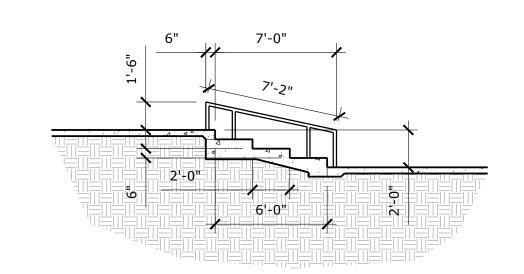
CKEY MAP

OLEGEND

ONOTES

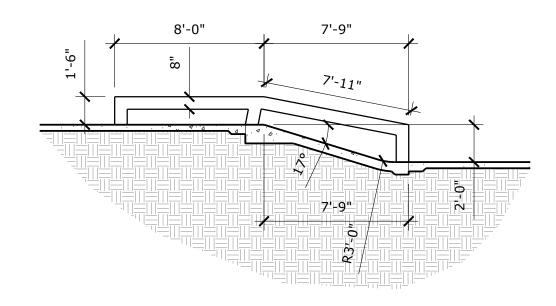
SYMBOL	DESCRIPTION	DETAIL(S
	CONCRETE/SHOTCRETE	N/A
	SUBGRADE	N/A
F.G.	FINISH GRADE	N/A

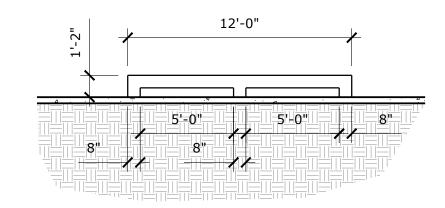

1. REFER TO THE COPING PLAN FOR EDGE TREATMENT LOCATION AND TYPE


3. REFER TO THE SURFACE GRADING AND DRAINAGE PLAN FOR ACTUAL VERTICAL ELEVATIONS.

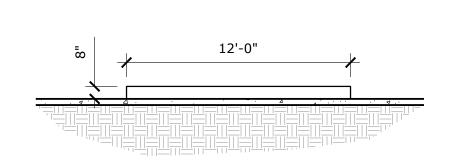
RTSMOUTH, NEW HAMPSHIRE

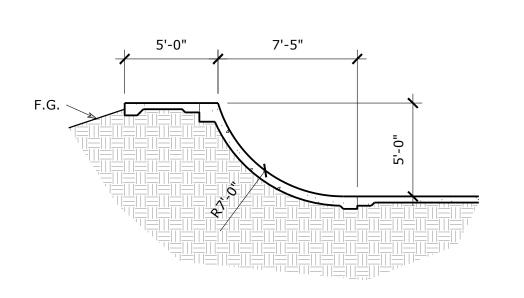
SECTIONS

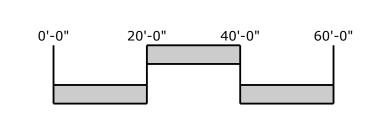


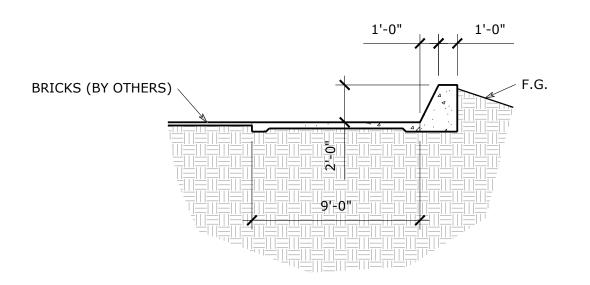


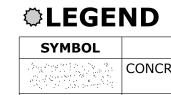
SECTION 5


SECTION 7


SECTION 3

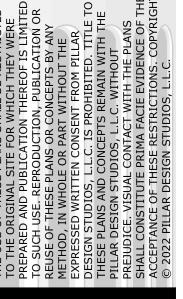



SECTION 6


SECTION 8 SECTION 9 NORTH

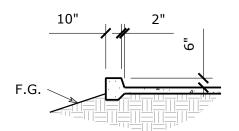
SECTION 10

SECTION 11

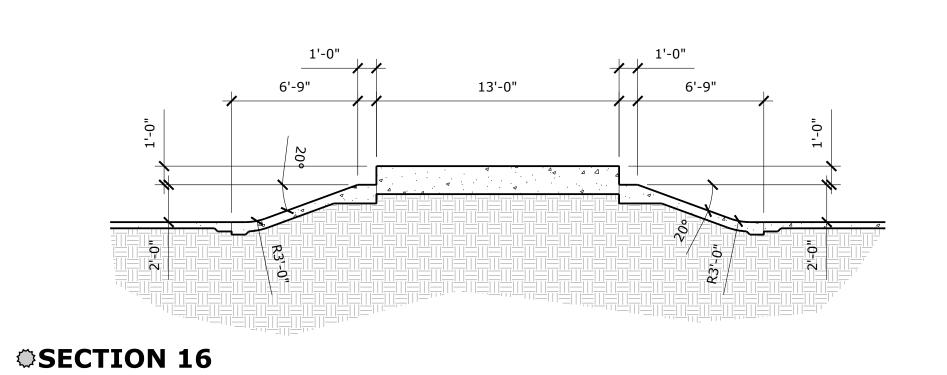

SYMBOL	DESCRIPTION	DETAIL(S)
	CONCRETE/SHOTCRETE	N/A
	SUBGRADE	N/A
F.G.	FINISH GRADE	N/A

ONOTES

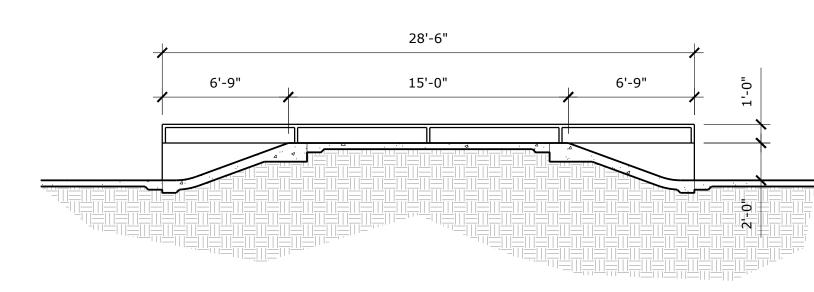
CKEY MAP


- 1. REFER TO THE COPING PLAN FOR EDGE TREATMENT LOCATION AND TYPE
- REFER TO THE HORIZONTAL CONTROL PLAN FOR ACTUAL HORIZONTAL LOCATIONS.
- 3. REFER TO THE SURFACE GRADING AND DRAINAGE PLAN FOR ACTUAL VERTICAL ELEVATIONS.

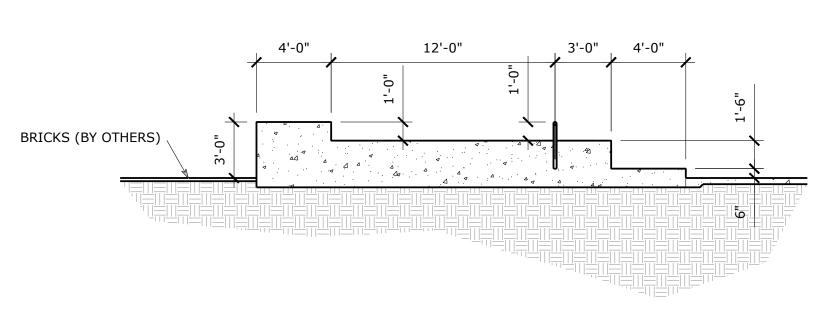
RTSMOUTH SKATEPARK


SECTIONS

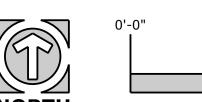
SECTION 13



SECTION 14


SECTION 12

©SECTION 15


SECTION 17

SECTION 19

SECTION 18

ONOTES

CLEGEND

SYMBOL

1. REFER TO THE COPING PLAN FOR EDGE TREATMENT LOCATION AND TYPE

CONCRETE/SHOTCRETE

NORTH

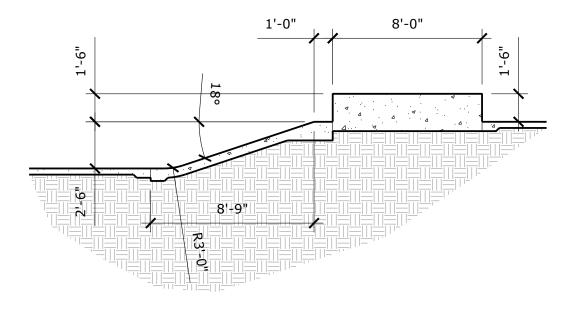
SUBGRADE

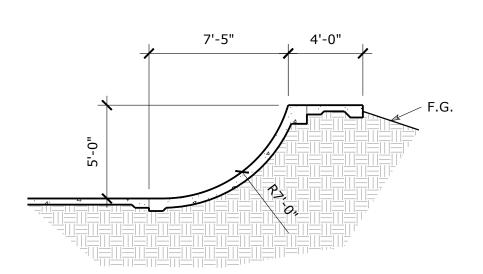
FINISH GRADE

DESCRIPTION

- REFER TO THE HORIZONTAL CONTROL PLAN FOR ACTUAL HORIZONTAL LOCATIONS.
- 3. REFER TO THE SURFACE GRADING AND DRAINAGE PLAN FOR ACTUAL VERTICAL ELEVATIONS.

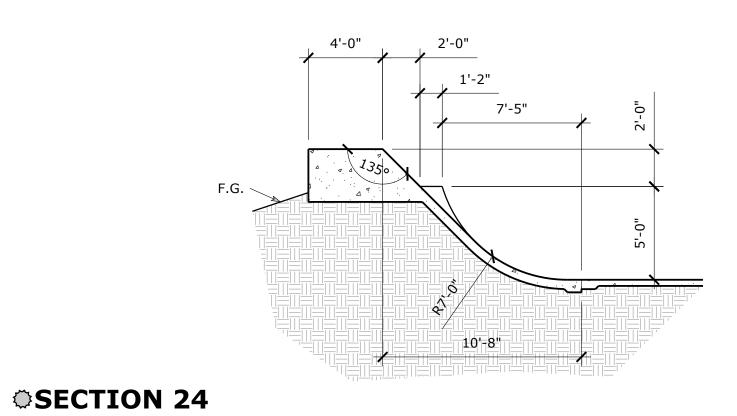
RTSMOUTH SKATEPARK SMOUTH, NEW HAMPSHIRE

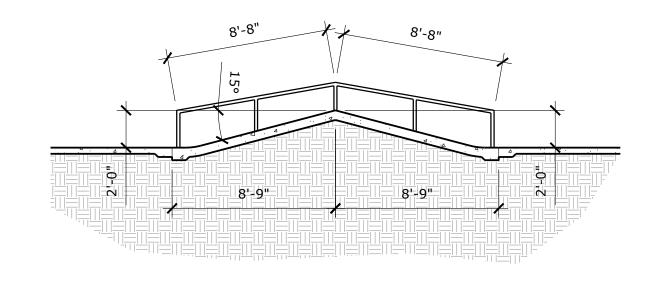

SECTIONS

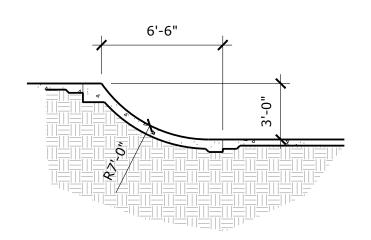

SECTION 20

SECTION 22

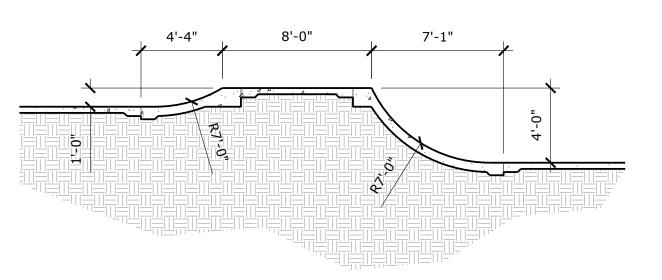
SECTION 26


SECTION 21




CKEY MAP

SECTION 23



SECTION 25

SECTION 27

-	1'-9"	15'-10"	3'-2"
		16'-0"	
7 <u>11</u> = 			
SECTION 28			

SECTION 29

THE USE OF THESE PLANS SHALL BE RESTRICTED
TO THE ORIGINAL SITE FOR WHICH THEY WERE
PREPARED AND PUBLICATION THEREOF IS LIMITED
TO SUCH USE. REPRODUCTION, PUBLICATION OR
REUSE OF THESE PLANS OR CONCEPTS BY ANY
METHOD, IN WHOLE OR PART WITHOUT THE
EXPRESSED WRITTEN CONSENT FROM PILLAR
DESIGN STUDIOS, L.L.C. IS PROHIBITED. TITLE TO
THESE PLANS AND CONCEPTS REMAIN WITH THE
PILLAR DESIGN STUDIOS, L.L.C. WITHOUT
PREJUDICE. VISUAL CONTACT WITH THE PLANS
SHALL CONSTITUTE PRIMA FACIE EVIDENCE OF THE
ACCEPTANCE OF THESE RESTRICTIONS. COPYRIGHT

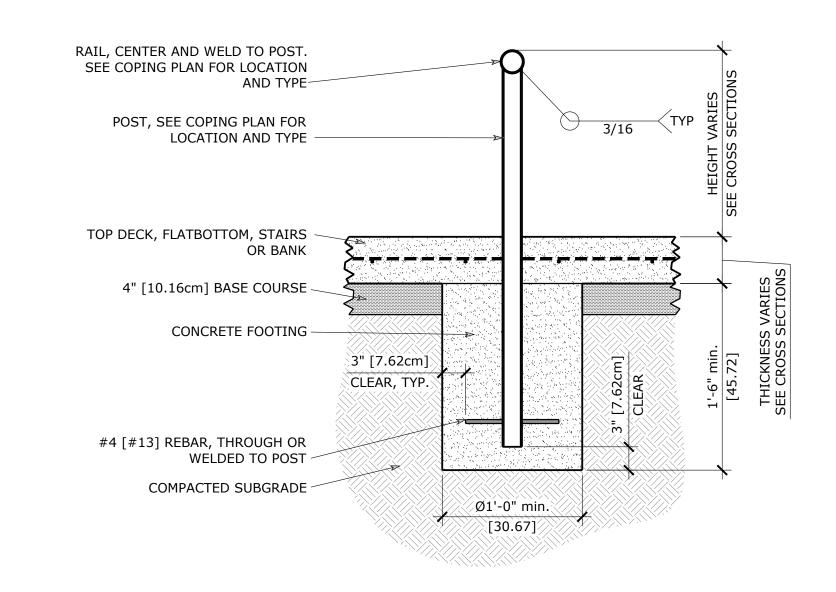
DESIGNED::
PILLAR TEAM
DRAWN::
PILLAR TEAM
PROJECT #::
20-024
DATE::
12/07/22

COPING, SEE COPING PLAN FOR LOCATION AND TYPE -- TOP DECK TOOLED JOINT, 1/4" [6.35mm] CONTINUOUS ALONG TOP AND 1'-0" BOTTOM OF COPING. APPLY [30.48cm] [22.86cm] POLYURETHANE-BASED, NONSAG ELASTOMERIC SEALANT TO JOINT OPENING AND TOOL FLAT -SPEED DOWEL والمنظ المنطار المنظار المنظار المنظار [9.53mm] COPING ANCHOR, 4" [10.16cm] X 3/8" [9.53mm] MIN. NELSON STUD @ 18" [45.72cm] O.C. SPOT WELDED TO COPING AND TIED TO REINFORCEMENT -COLD JOINT AT BOND BEAM -BOND BEAM -REINFORCEMENT, TYP. BASE COURSE -COMPACTED SUBGRADE

COPING, SEE COPING PLAN FOR

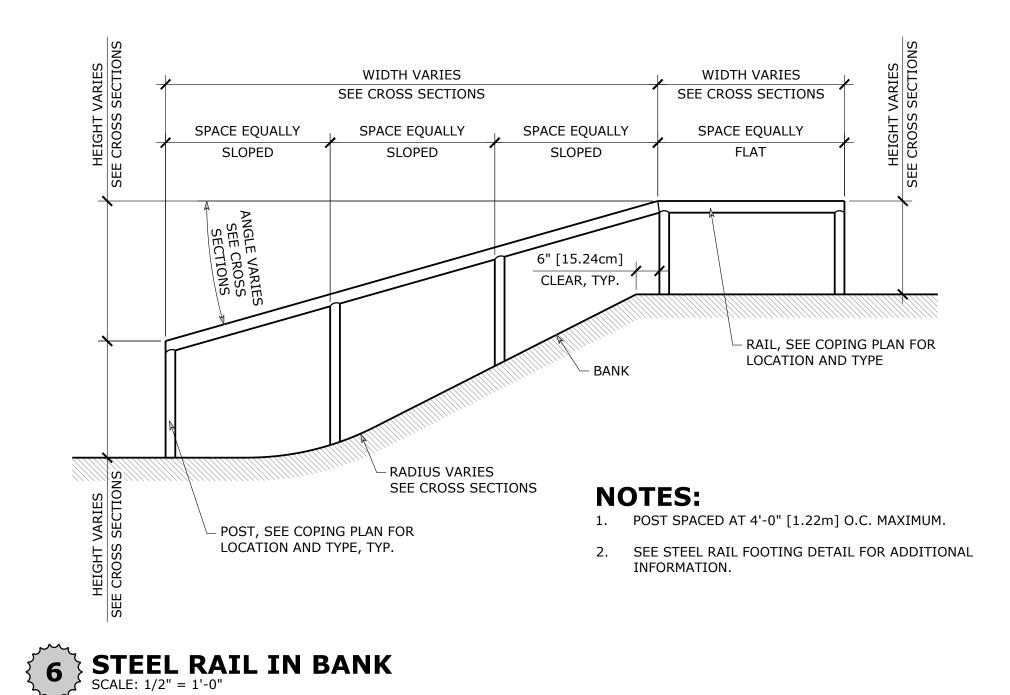
LOCATION AND TYPE

SPEED DOWEL -COPING, SEE COPING PLAN FOR – TOP DECK 🏻 🖔 🗟 [30.48cm] [25.40cm] LOCATION AND TYPE -COLD JOINT AT BOND BEAM SUPPORT, #5 [#16] REBAR BENT AT A 45° ANGLE AND WELDED TO THE COPING AND SUPPORT FOOTING -BOND BEAM -BASE COURSE -REINFORCEMENT, TYP. SUPPORT FOOTING, CONCRETE WITH (2) #4 [#13] REBAR STUBED-UP 1" [2.54cm] -COMPACTED SUBGRADE


TOOLED JOINT, 1/4" [6.35mm] CONTINUOUS ALONG TOP AND BOTTOM OF COPING. APPLY POLYURETHANE-BASED, NONSAG ELASTOMERIC SEALANT TO JOINT OPENING AND TOOL FLAT COPING ANCHOR, 4" [10.16cm] X 3/8" [9.53mm] MIN. NELSON STUD @ 18" [45.72cm] O.C. SPOT WELDED TO COPING AND TIED TO REINFORCEMENT LEDGE OR EXTENSION REINFORCEMENT, TYP.

STEEL COPING - ROUND SCALE: 3" = 1'-0"

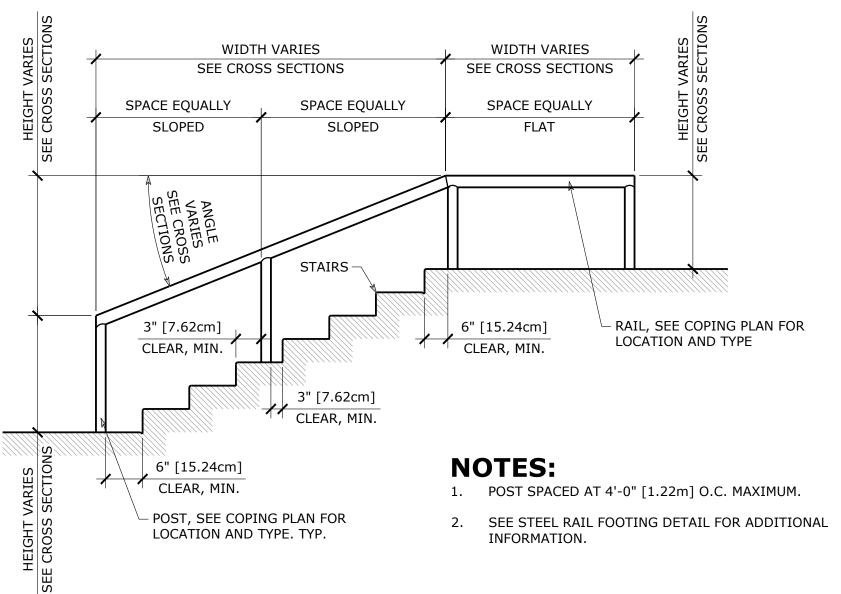
WELD COPING TOGETHER AND


GRIND JOINTS SMOOTH -

COPING CONSTRUCTION SUPPORT SCALE: 1-1/2" = 1'-0"

STEEL COPING - SQUARE SCALE: 3" = 1'-0"

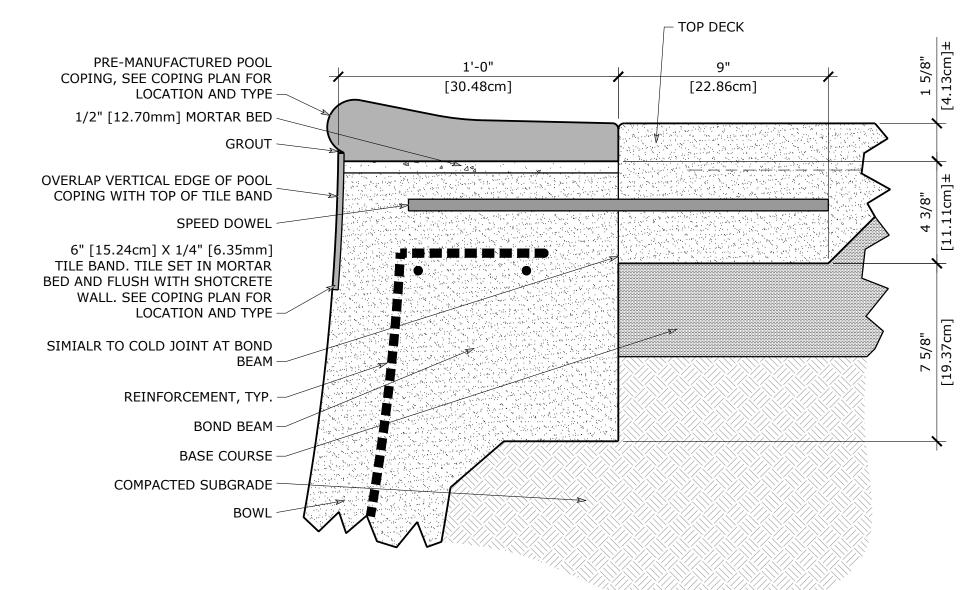
COPING, SEE COPING PLAN FOR


HUBBA LEDGE COPING SCALE: 6" = 1'-0"

TOOLED JOINT, 1/4" [6.35mm]

APPLY POLYURETHANE-BASED,

TO JOINT OPENING AND TOOL


NONSAG ELASTOMERIC SEALANT

STEEL RAIL FOOTING
SCALE: 1" = 1'-0"

PRE-MANUFACTURED POOL

1'-

ANGLE IRON COPING, 3/8" [9.53mm] x 4" [10.16cm] STEEL PLATE BENT TO SIT FLUSH WITH ADJACENT LEDGE OR BANK. SEE COPING PLAN FOR LOCATION AND COPING ANCHOR, 4" [10.16cm] X 3/8" [9.53mm] MIN. NELSON STUD @ 18" [45.72cm] O.C. SPOT WELDED TO COPING AND TIED TO REINFORCEMENT TOOLED JOINT, 1/4" [6.35mm] CONTINUOUS ALONG TOP AND BOTTOM OF COPING. APPLY POLYURETHANE-BASED, NONSAG ELASTOMERIC SEALANT TO JOINT OPENING AND TOOL FLAT, TYP. -LEDGE OR BANK REINFORCEMENT, TYP.

8 POOL COPING AND TILE
SCALE: 3" = 1'-0"

9 COPING - ANGLE IRON SCALE: N.T.S.

The state of the s

SHIRE

RTSMOUTH. NEW HAMPSI CONSTRUCTION DETAILS

1/2" [12.70mm] TOOLED EDGE REBAR, #3 [#10] @ 12" [30.48cm] O.C. BOTH WAYS -[10.16cm] [15.24cm]

WIDTH VARIES

SEE CROSS SECTIONS

- TOP DECK

CLEAR, TYP.

SLOPE TO DRAIN

0.5% MIN. SLOPE TO OUTFALL

FINISH GRADE -

BANK OR BOWL BASE COURSE ~ ackslash SPEED DOWEL COMPACTED SUBGRADE

SHOTCRETE SECTION

SCALE: 1-1/2" = 1'-0"

COPING, SEE COPING PLAN FOR

EXTENSION, SHOTCRETE WITH #4

[#13] REBAR CONTINUOUS @ 12"

[30.48cm] O.C. BOTH WAYS, & #4

[#13] TIES @ 12" [30.48cm] O.C. -

CROSS TIE REBAR AT END FACES

EXPANSION JOINT AT EXTENSION

6 SHOTCRETE EXTENSION

SCALE: 1" = 1'-0"

FLATBOTTOM OR BOWL

REINFORCEMENT, TYP.

RECOMMENDATIONS

BASE COURSE -

DRAINAGE PLAN

FLOOR DRAIN, ZURN Z415-B WITH CAST IRON BODY AND ADJUSTABLE 8" [20.32cm] "TYPE B" STAINLESS STEEL STRAINER.

6" [15.24cm] SDR-35 DRAIN LINE,

PVC DRAINLINE, LARGE RADIUS

INVERT ELEVATION, PER PLANS

ELBOW OR TEE, SIZE PER

COMPACTED SUBGRADE

DRAINLINE INLET
SCALE: 1-1/2" = 1'-0"

INSTALL PER MANUFACTURE'S

RADIUS VARIES SEE CROSS -

SECTIONS

SPEED DOWEL

BASE COURSE -

RIM ELEVATION, PER PLANS -

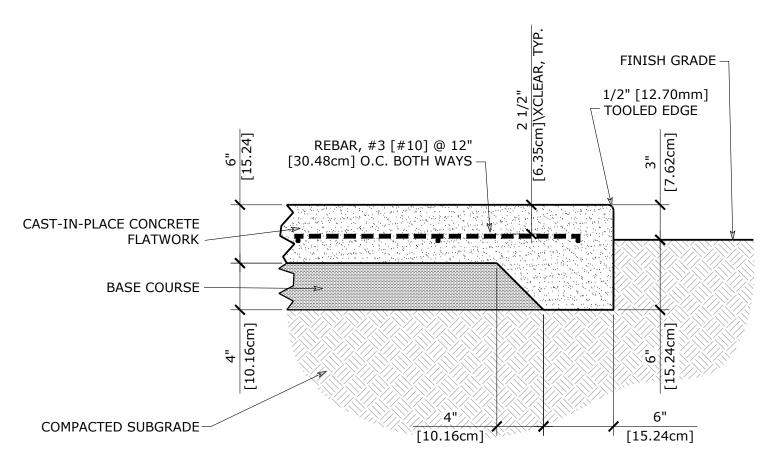
TO DRAIN

COMPACTED SUBGRADE -

LOCATION AND TYPE -

1'-0" [0.30m]

- TOP DECK


- COLD JOINT AT

BOND BEAM

BOND BEAM, SHOTCRETE WITH (2) #3 [#10] REBAR CONTINUOUS _ WIDTH VARIES SEE CROSS SECTIONS FLATBOTTOM -9" [22.86cm] TANGENT RADIUS VARIES BASE COURSE, TYP. SEE CROSS SECTIONS - SHOTCRETE WITH #3 [#10] REBAR @ 12" [30.48cm] O.C. BOTH WAYS, TIED TO BOND BEAM SPEED DOWEL [5.15cm] COLD JOINT AT SHOTCRETE BOTTOM -COMPACTED SUBGRADE -

FINISH GRADE -1/2" [12.70mm] TOOLED EDGE -REBAR, #3 [#10] @ 12" [30.48cm] O.C. BOTH WAYS -CAST-IN-PLACE CONCRETE FLATWORK BASE COURSE -[10.16cm] └─ COMPACTED SUBGRADE

SHOTCRETE BANK SCALE: 1/2" = 1'-0"

SPEED DOWEL -

WIDTH VARIES SEE CROSS SECTIONS

COPING, SEE COPING PLAN FOR

BOND BEAM, SHOTCRETE WITH (2)

6" [15.24cm] SHOTCRETE WITH #3

[#10] REBAR @ 12" [30.48cm] O.C. BOTH WAYS, TIED TO BOND BEAM —

RADIUS VARIES

SEE CROSS SECTIONS

COLD JOINT AT SHOTCRETE BOTTOM -

SPEED DOWEL

BASE COURSE

FLATBOTTOM -

COMPACTED SUBGRADE —

SHOTCRETE BOWL

SCALE: 1/2" = 1'-0"

#3 [#10] REBAR CONTINUOUS

LOCATION AND TYPE -

COLD JOINT AT BOND BEAM - 1'-0" [0.30m]

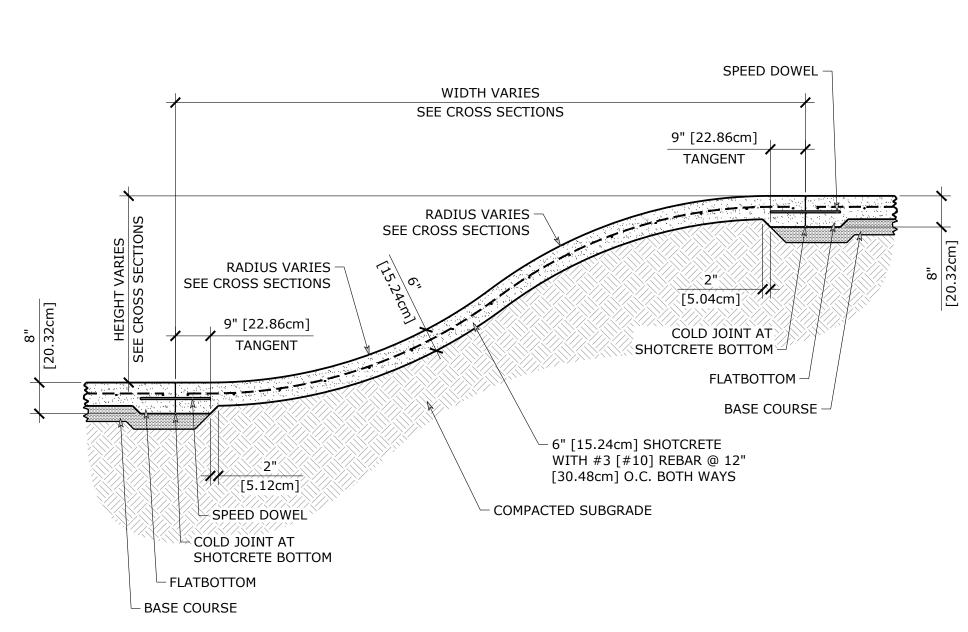
UNDISTURBED SOIL WHERE

CONDITIONING SUBGRADE IS

NOT FEASIBLE DUE TO DEGREE

OF SLOPE AND NATIVE SOIL IS

CAPABLE OF SUPPORTING


PROPOSED STRUCTURE

─ TOP DECK

┌ TOP DECK

[0.61m]

CONCRETE FLATBOTTOM SECTION SCALE: 1-1/2" = 1'-0"

8 SHOTCRETE WATERFALL SCALE: 1" = 1'-0"

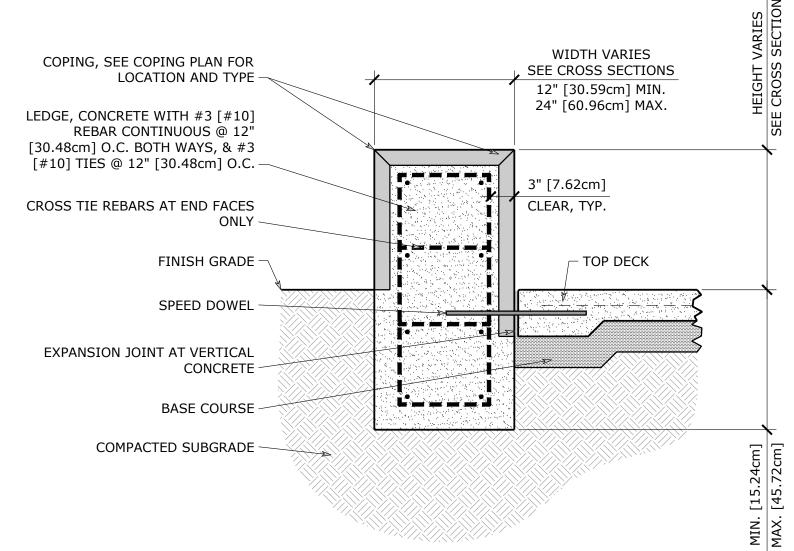
[15.24cm] SPEED DOWEL -FLATBOTTOM -- SIMILAR TO TURNDOWN WALL - SIMILAR TO EXPANSION JOINT AT VERTICAL CONCRETE WITH OUT SPEED DOWELS - CONCRETE WITH #3 [#10] REBAR BOND BEAM, CONCRETE WITH (2) @ 18" [45.72cm] O.C. BOTH WAYS, #3 [#10] REBAR CONTINUOUS 1'-0" [0.30m] TIED TO BOND BEAM COMPACTED - BASE COURSE SUBGRADE -

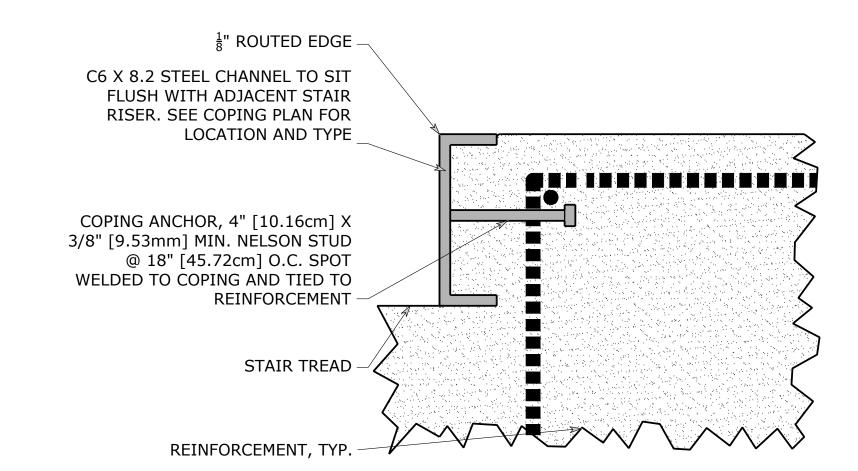
TREAD, LIGHT BROOM FINISH WITH 1/2" [12.70mm] TOOLED RADIUS NOSE AND #4 [#13]

WIDTH VARIES

SEE CROSS SECTIONS

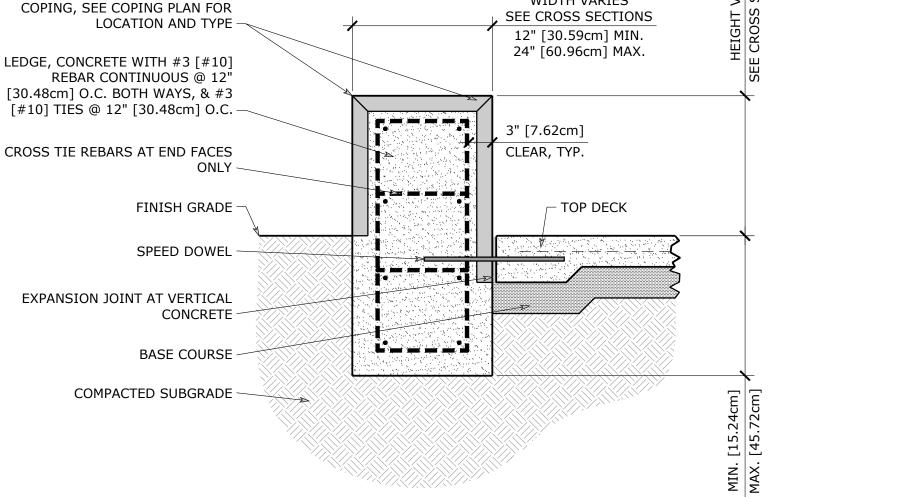
REBAR CONTINUOUS, TYP.


2% MIN.

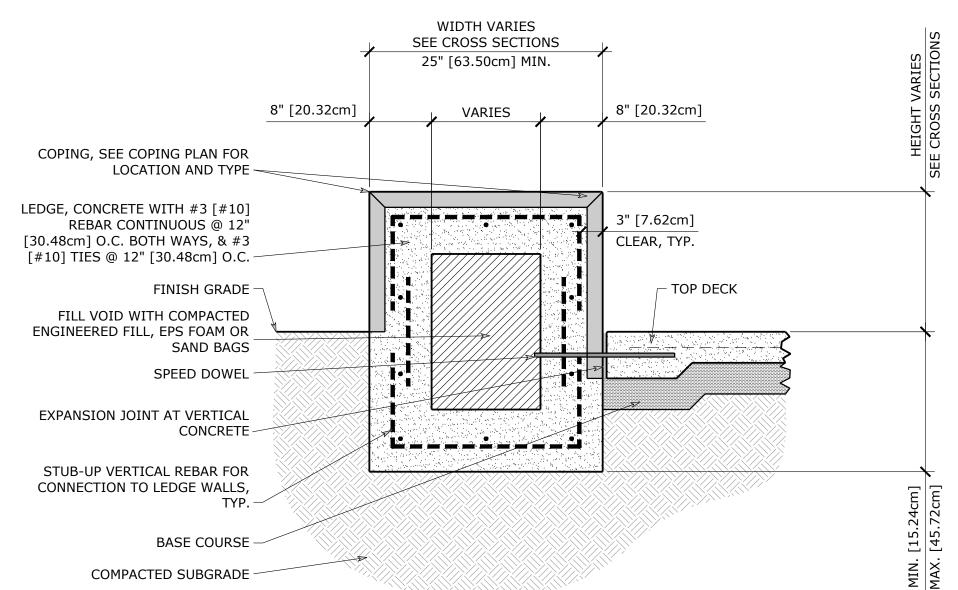

EXPANSION JOINT AT VERTICAL CONCRETE -

CONCRETE TOP DECK SECTION

SCALE: 1-1/2" = 1'-0"



CONCRETE TURNDOWN WALL SCALE: 1-1/2" = 1'-0"


STAIR COPING - C6 X 8.2 STEEL CHANNEL

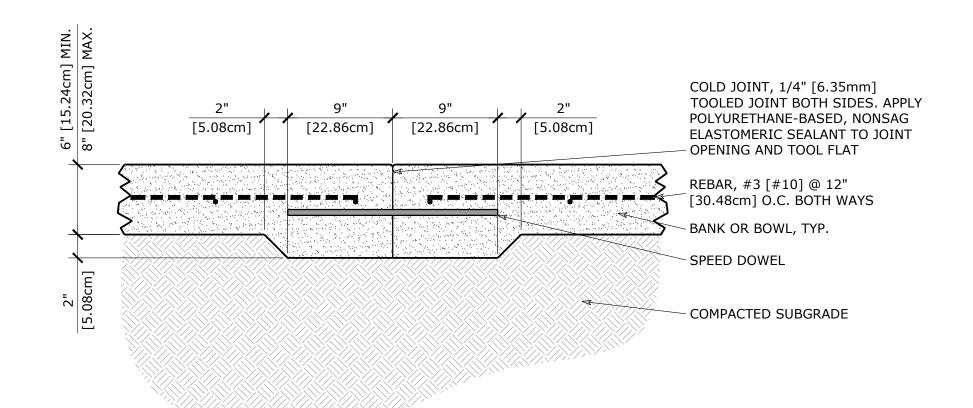
SCALE: 3" = 1'-0"

CONCRETE GRIND LEDGE - MEDIUM

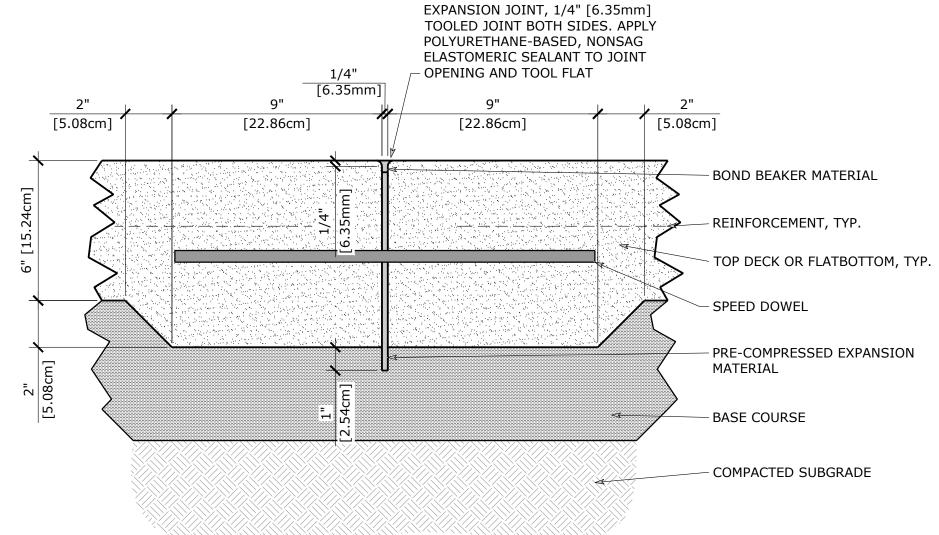
SCALE: 1" = 1'-0"

PORTSMOUTH, NEW HAMPSHIRE CONSTRUCTION DETAILS

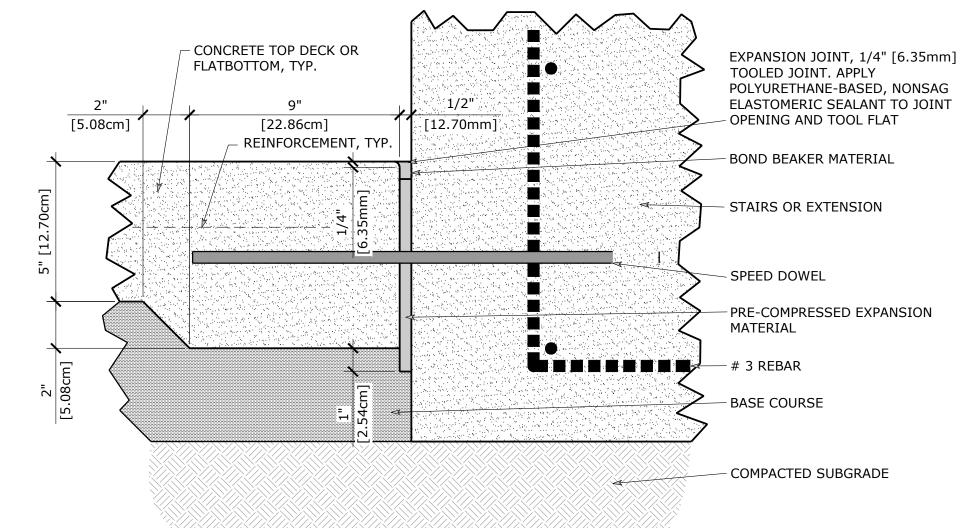
PORTSMOUTH, NEW HAMPSHIRE
CONSTRUCTION DETAILS


COLD JOINT, 1/4" [6.35mm] TOOLED JOINT BOTH SIDES. APPLY POLYURETHANE-BASED, NONSAG [22.86cm] [5.08cm] [30.48cm] ELASTOMERIC SEALANT TO JOINT OPENING AND TOOL FLAT COPING, BOWL ONLY SPEED DOWEL BOND BEAM -BASE COURSE -REINFORCEMENT, TYP. COMPACTED SUBGRADE

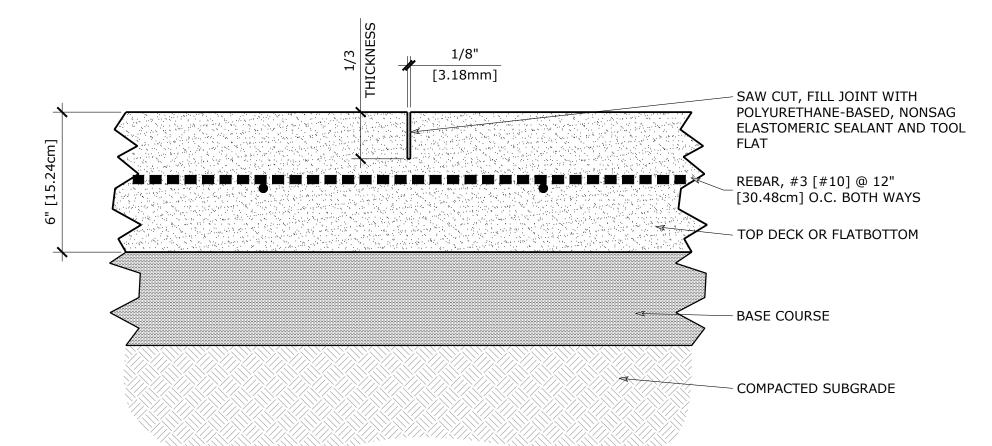
COLD JOINT, 1/4" [6.35mm] TOOLED JOINT BOTH SIDES. APPLY POLYURETHANE-BASED, NONSAG ELASTOMERIC SEALANT TO JOINT OPENING AND TOOL FLAT REINFORCEMENT, TYP. - BANK OR BOWL SPEED DOWEL BASE COURSE COMPACTED SUBGRADE TOP DECK OR FLATBOTTOM

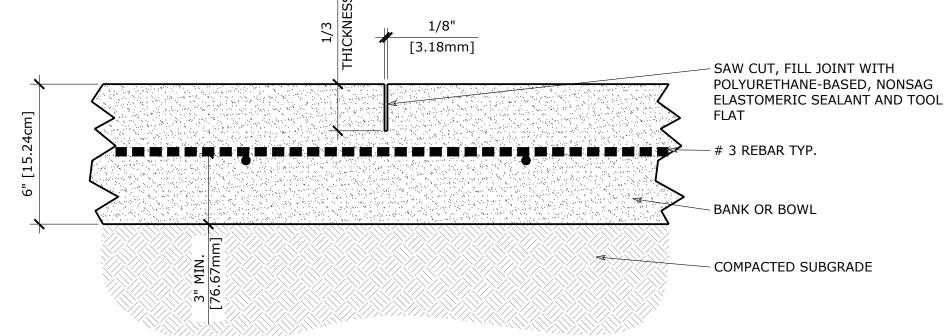

COLD JOINT, 1/4" [6.35mm] TOOLED JOINT BOTH SIDES. APPLY POLYURETHANE-BASED, NONSAG ELASTOMERIC SEALANT TO JOINT OPENING AND TOOL FLAT REBAR, #3 [#10] @ 12" [30.48cm] O.C. BOTH WAYS BANK OR BOWL, TYP. SPEED DOWEL COMPACTED SUBGRADE

COLD JOINT AT BOND BEAM SCALE: 1-1/2" = 1'-0"

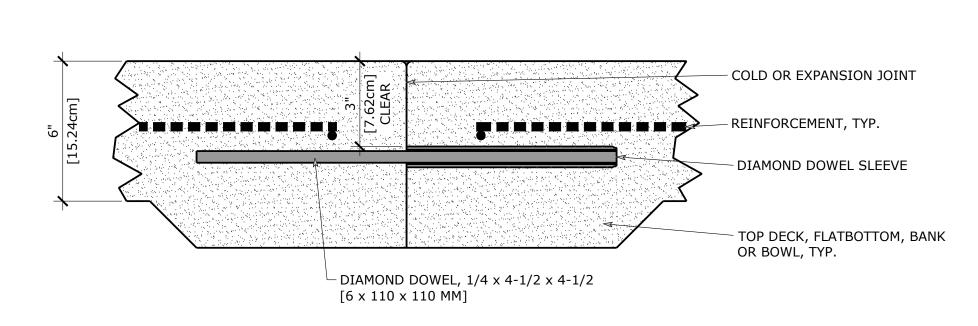

BANK OR BOWL -

COLD JOINT AT SHOTCRETE BOTTOM SCALE: 1-1/2" = 1'-0"


COLD JOINT AT MID CONCRETE SCALE: 1-1/2" = 1'-0"


COLD JOINT AT MID SHOTCRETE SCALE: 1-1/2" = 1'-0"

SAWCUT JOINT AT MID CONCRETE


SCALE: 3" = 1'-0"

NOTES:

SPEED DOWEL
SCALE: 3" = 1'-0"

1. SPEED DOWELS SHALL BE LOCATED AT 1'-6" [0.46m] O.C. ALONG JOINT.

