

April 19, 2022

Mr. Peter Stith, AICP Principal Planner Planning Department City of Portsmouth One Junkins Avenue Portsmouth, NH 03801

RE: Conditional Use Permit approval and Site Plan Review approval for property located at 1400 Lafayette Road, and 951 Peverly Hill Road (PU# LU-20-12)

Subject: Approval Expiration and Extension Request #2

Dear Mr. Stith:

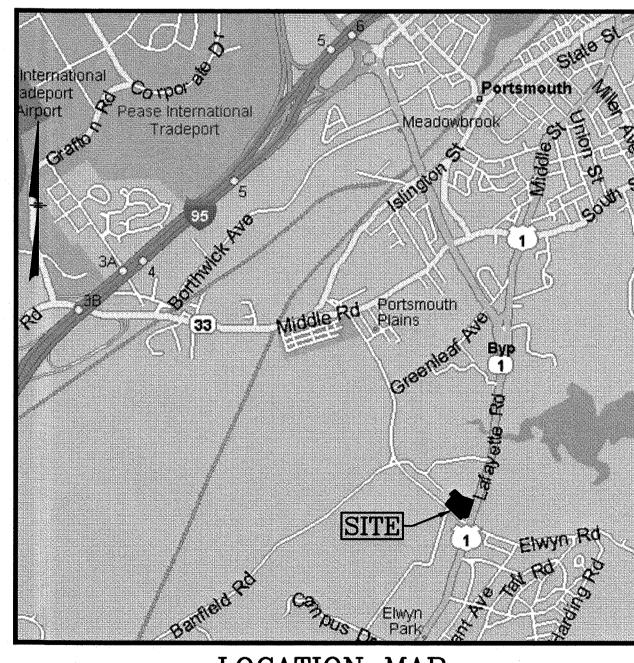
The above referenced project was originally approved by the Planning Board on April 30, 2020 and a 1-year extension was granted by the Planning Board on April 15, 2021. On behalf of the applicant, 4 Amigos, LLC, we hereby request an additional one (1) year extension of said approval in accordance with Section 2.14 of the Site Review Regulations. In accordance with the City requirements as part of the 2nd extension request, we are submitting to TAC and the Planning Board for the upcoming May meetings.

The applicant completed the Conditions (precedent) of Approval in November 2021 and has since recorded the approved Site Plan mylar at the registry of deeds on March 17, 2022. Due to the economic impact associated with the COVID-19 pandemic, as well as the rising construction costs, the applicant has decided to reduce the scale of the proposed development.

The minor changes proposed to the Site Plan consist of removing the two 4-story garden style apartment buildings and replacing those with 3-story townhouse units, resulting in a reduction of total residential units from 53 to 32. Additionally, the proposed parking will be reduced from 106 to 95 spaces resulting in a 2400-sf increase in open space with additional community space. There are no other changes associated with the remaining portions of the site plan and conditions associated with the original site plan approval.

It is our opinion that there is no material change that has taken place at the project site since the original approval which would affect this extension request. Please contact our office if you have any questions or need any additional information in order for the Planning Board to act on this request.

Thank you for your consideration.


Very Truly Yours, GREENMAN-PEDERSEN, INC.

Chris Tymula, PE Senior Project Manager

cc: Mr. Rick Green - 4 Amigos, LLC CR MAX-0458219.00

PROPOSED SUBDIVISION AND AMENDED SITE DEVELOPMENT PLANS for

TAX MAP 252 LOTS 4, 5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD **PORTSMOUTH, NEW HAMPSHIRE 03801**

LOCATION MAP NOT TO SCALE

Copyright © 2020 by Greenman—Pedersen, Inc. All Rights Reserved.

Prepared for: 4 AMIGOS, LLC **321D LAFAYETTE ROAD** HAMPTON, NEW HAMPSHIRE 03842

INDEX TO DRAWINGS

TITLE SHEET	
-------------	--

- **EXISTING CONDITIONS PLAN**
- 3. **DEMOLITION PLAN**
- SITE OVERVIEW PLAN
- SITE PLAN 5. 6.

2.

- **GRADING & DRAINAGE PLAN**
- UTILITY PLAN 7.
- **EROSION & SEDIMENT CONTROL PLAN** 8.
- LANDSCAPE PLAN 9.
- LANDSCAPE DETAILS 10.
- **DETAIL SHEET** 11.
- **DETAIL SHEET** 12. DETAIL SHEET 13.
- DETAIL SHEET 14.
- **DETAIL SHEET** 14A.
- **DETAIL SHEET** 15.
- 1 OF 1. SEWER PLAN & PROFILE (P&P)
- **1 OF 1. COMMUNITY SPACE OVERVIEW PLAN**
- **1 OF 1. SUBDIVISION & LOT CONSOLIDATION PLAN**
- 1 OF 1. LIGHTING PLAN (RL-8016-S1)
- **1 OF 1. BUILDING B TYPICAL UNIT**
- **1 OF 4. TOWNHOUSE COMPLEX TYPICAL UNIT**
- 2 OF 4. TOWNHOUSE COMPLEX TYPICAL UNIT
- **3 OF 4. TOWNHOUSE COMPLEX TYPICAL UNIT 4 OF 4. TOWNHOUSE COMPLEX TYPICAL UNIT**

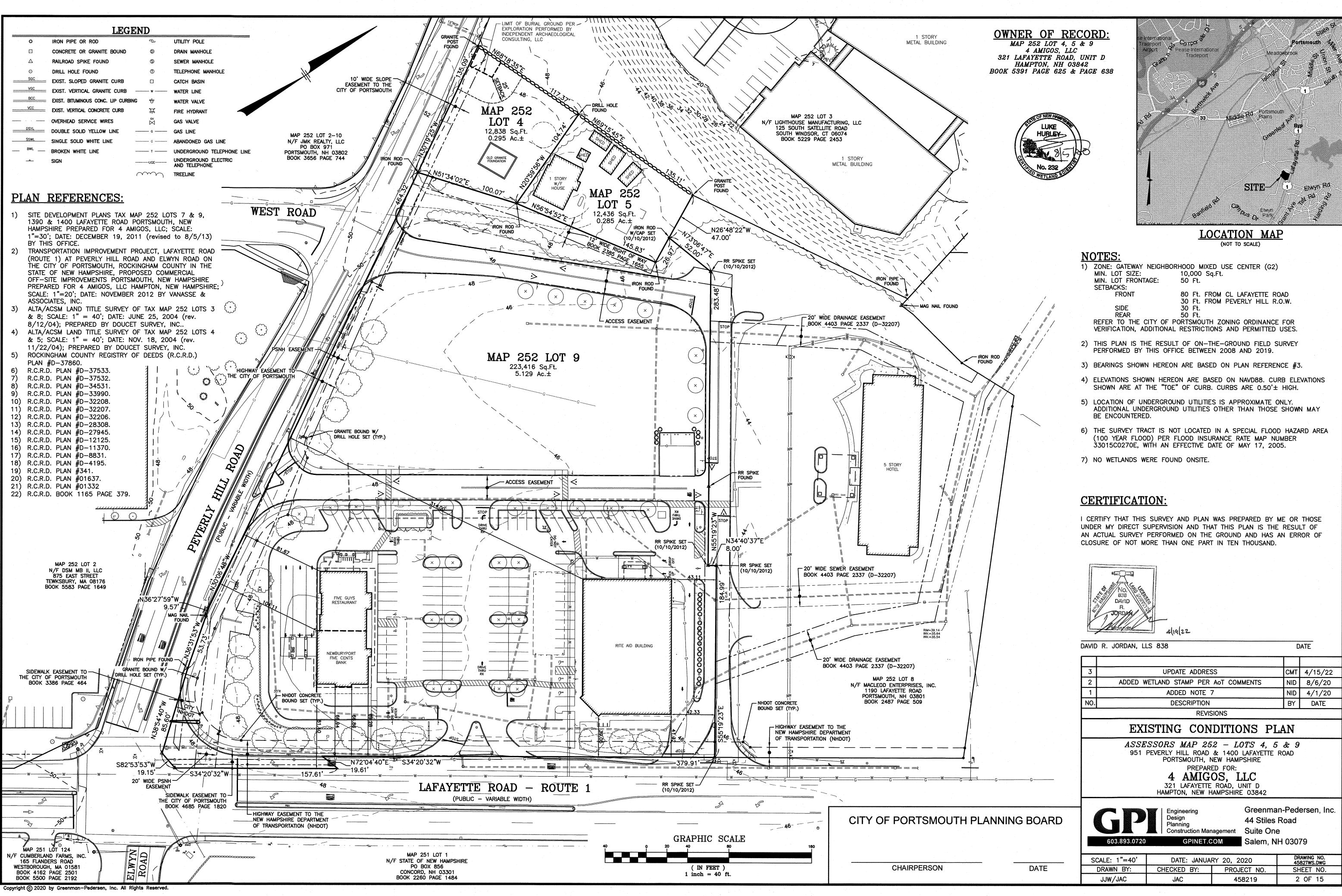
CITY OF PORTSMOUTH PLANNING BOARD

CHAIRPERSON

DATE

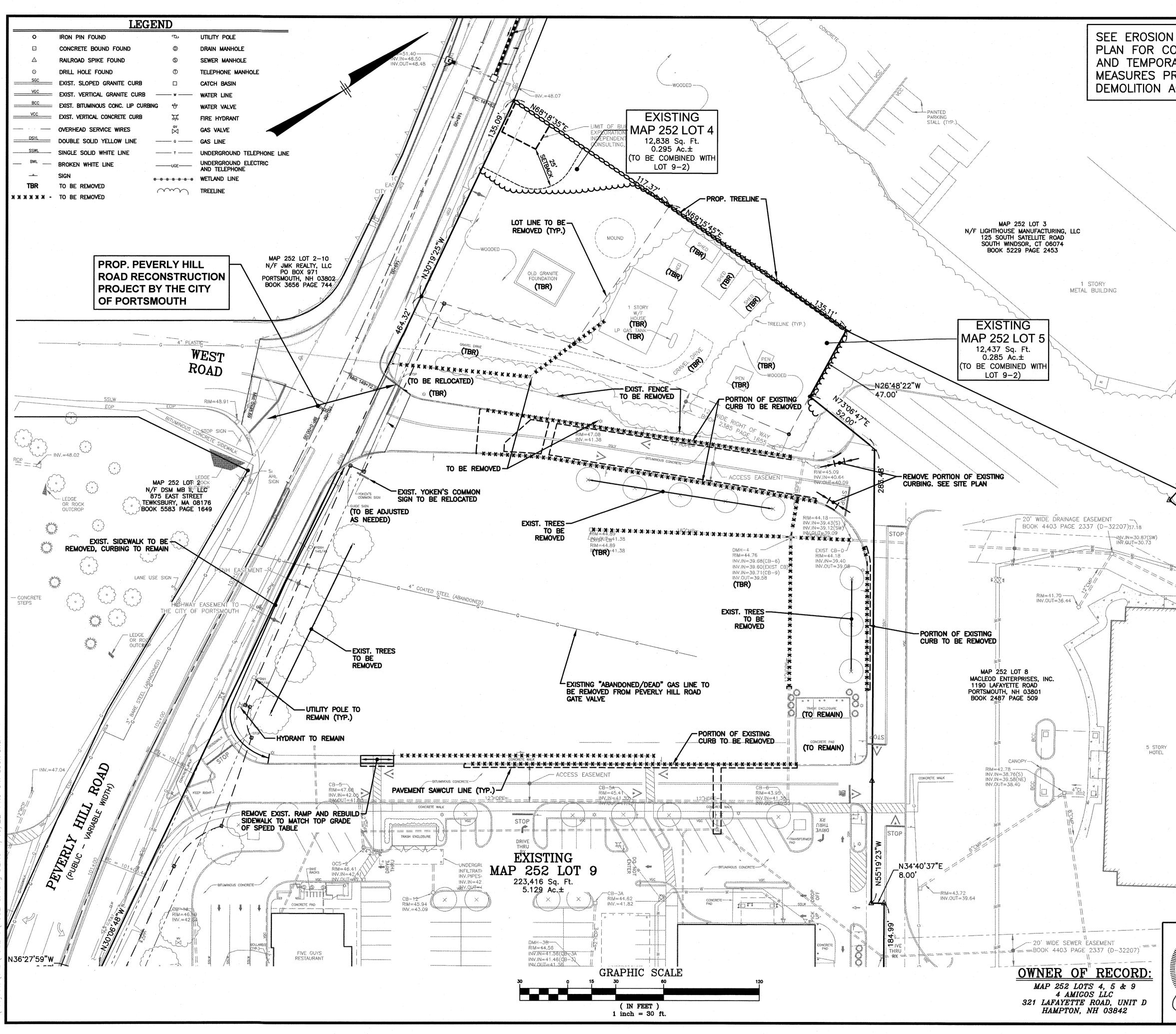
ENGINEER:

GREENMAN-PEDERSEN, INC. (GPI CHRIS TYMULA, PE 44 STILES ROAD, SUITE ONE SALEM, NH 03079 (603) 893-0720

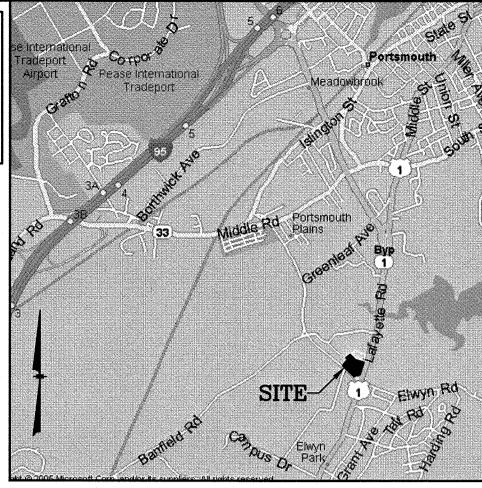

SURVEYOR

GREENMAN-PEDERSEN, INC. (GPI) DAVID R. JORDAN, PE, LLS 44 STILES ROAD, SUITE ONE SALEM. NH 03079 (603) 893-0720

ARCHITECT


MICHAEL J KEANE ARCHITECTS PLLC MICAHEL KEANE 101 KENT PLACE IEWMARKET, NH 03857 (603) 292-1400

	5		REVISE ALL SHEE	ETS	СМТ	4/15/22
	4	REV SHE	ETS 1, 3–9, P&P, A	DD RECORD. SP	СМТ	10/18/21
	3	REV SHEETS	5 2-10, 14-15, P&I	P, ADD SHEET 14A	СМТ	8/6/20
	2	REV	SHEETS 3-11, P&F	° − A−2.C	СМТ	3/9/20
	1	RE	EV SHEETS 3-9, P&	P, A-1.C	СМТ	2/20/20
	NO.		DESCRIPTION		BY	DATE
			REVIS	SIONS		
			TITLE	SHEET		
			PEVERLY HILL ROAD PORTSMOUTH, N PREPARI 4 AMIG	ED FOR: OS, LLC ROAD UNIT D		
CHRISTOPHER M. TYMULA No.17078		GP 603.893.0720		44 Stiles I agement Suite One	Road	ersen, Inc. 79
SS ANST CONT	- S	SCALE: NONE	SEPTEMBER	20, 2021		AWING NO. 82CVR.DWG
JUN 1/ 4/19/22		DRAWN BY:	CHECKED BY:	PROJECT NO.		IEET NO.
- V -		CPS	СМТ	458219	1	OF 15



NG	BOA	RD

· · · · · · · · · · · · · · · · · · ·			
SCALE: 1"=40'	DATE: JANUA	RY 20, 2020	DRAWING NO. 4582TWS.DWG
DRAWN BY:	CHECKED BY:	PROJECT NO.	SHEET NO
JJW/JAC	JAC	458219	2 OF 15

SEE EROSION & SEDIMENT CONTROL PLAN FOR CONSTRUCTION SEQUENCE AND TEMPORARY EROSION CONTROL MEASURES PRIOR TO BEGINNING DEMOLITION ACTIVITIES.

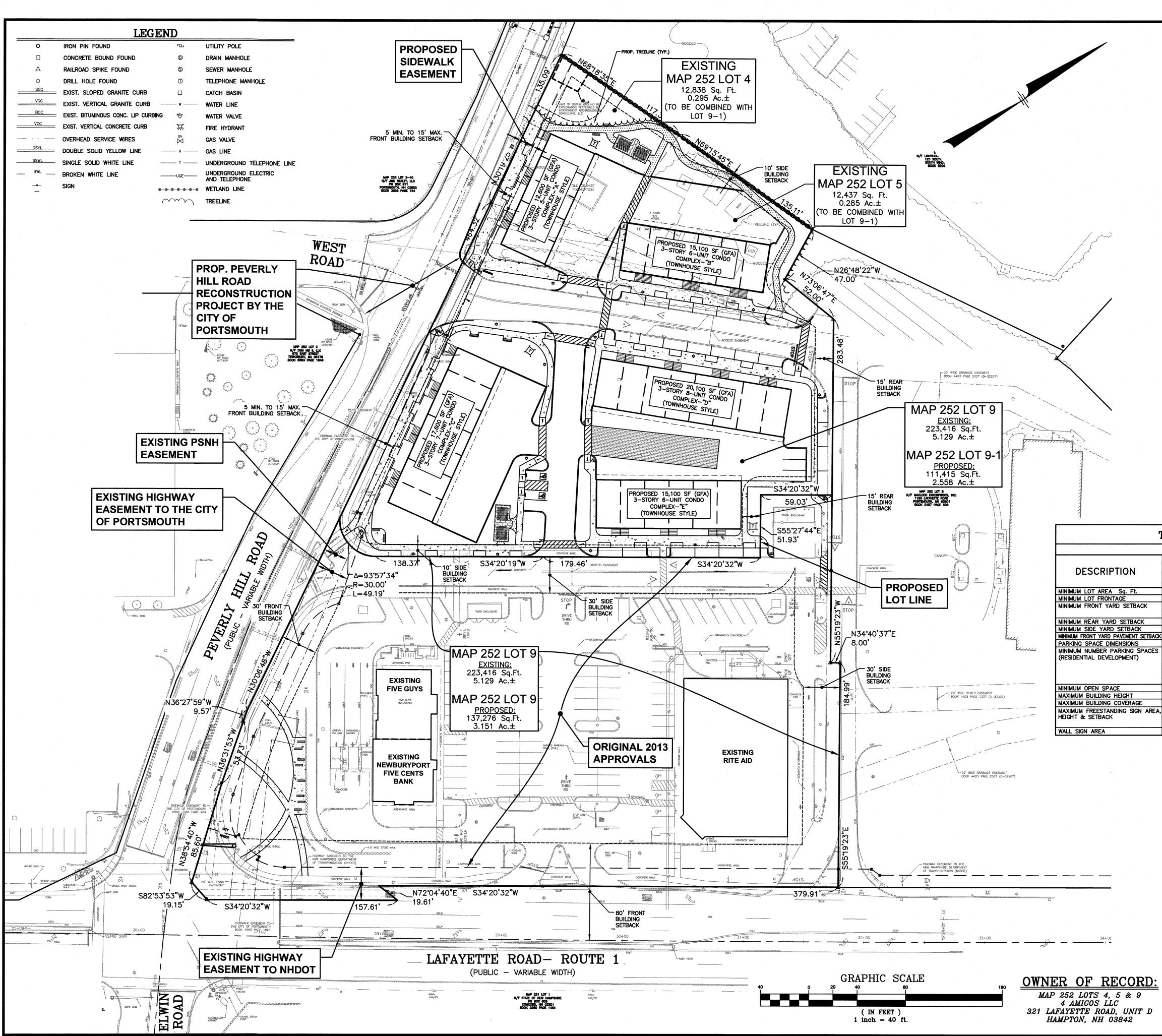
NOTES:

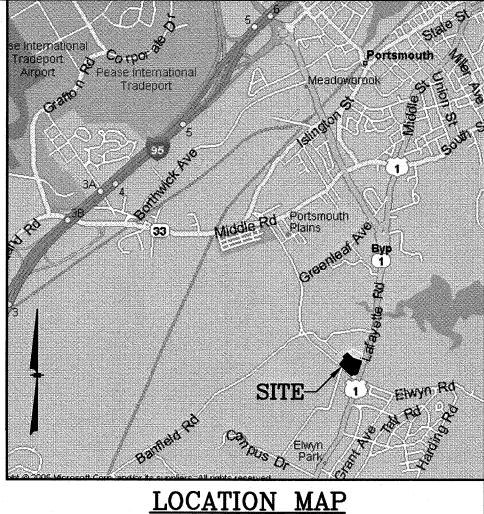
LOCATION MAP (NOT TO SCALE)

- 1) ALL EXISTING UTILITY DISCONNECTIONS MUST BE COORDINATED WITH RESPECTIVE UTILITY COMPANIES PRIOR TO BEGINNING DEMOLITION ACTIVITIES.
- 2) ALL DEMOLITION ACTIVITIES ARE TO BE PERFORMED IN STRICT ADHERENCE TO ALL FEDERAL, STATE AND LOCAL REGULATIONS. CONTRACTOR TO INSTALL EROSION CONTROL DEVICES PRIOR TO BEGINNING DEMOLITION ACTIVITIES.
- 3) CONDUCT ALL DEMOLITION OPERATIONS IN A MANNER THAT WILL PREVENT INJURY, DAMAGE TO STRUCTURES, ADJACENT BUILDINGS AND ALL PERSONS.
- 4) REFRAIN FROM USING EXPLOSIVES WITHOUT PRIOR WRITTEN CONSENT OF THE DEVELOPER AND APPLICABLE GOVERNMENTAL AUTHORITIES.
- CONDUCT DEMOLITION SERVICES IN SUCH A MANNER TO INSURE MINIMUM INTERFERENCE WITH ROADS, STREETS, WALKS AND OTHER ADJACENT FACILITIES. DO NOT CLOSE OR OBSTRUCT STREETS, WALKS OR OTHER OCCUPIED FACILITIES WITHOUT PRIOR WRITTEN PERMISSION OF THE DEVELOPER AND APPLICABLE GOVERNMENTAL AUTHORITIES. PROVIDE ALTERNATIVE ROUTES AROUND CLOSED OR OBSTRUCTED TRAFFIC WAYS IF REQUIRED BY APPLICABLE GOVERNMENTAL REGULATIONS.
- 6) USE WATERING, TEMPORARY ENCLOSURES AND OTHER SUITABLE METHODS, AS NECESSARY TO LIMIT THE AMOUNT OF DUST AND DIRT RISING AND SCATTERING IN THE AIR. CLEAN ADJACENT STRUCTURE AND IMPROVEMENTS OF ALL DUST AND DEBRIS CAUSED BY THE DEMOLITION OPERATIONS. RETURN ALL ADJACENT AREAS TO THE CONDITIONS EXISTING PRIOR TO THE START OF WORK.
- 7) ACCOMPLISH AND PERFORM THE DEMOLITION IN SUCH A MANNER AS TO PREVENT THE UNAUTHORIZED ENTRY OF PERSONS AT ANY TIME.
- 8) COMPLETELY FILL BELOW GRADE AREAS AND VOIDS RESULTING FROM THE DEMOLITION OF STRUCTURES AND FOUNDATIONS WITH SOIL MATERIALS CONSISTING OF STONE, GRAVEL AND SAND, FREE FROM DEBRIS, TRASH, FROZEN MATERIALS, ROOTS AND OTHER ORGANIC MATTER. STONES USED WILL NOT BE LARGER THAT 6 INCHES II DIMENSION. MATERIAL FROM DEMOLITION MAY NOT BE USED AS FILL, PRIOR TO PLACEMENT OF FILL MATERIALS, UNDERTAKE ALL NECESSARY ACTION IN ORDER TO INSURE THAT AREAS TO BE FILLED ARE FREE OF STANDING WATER. FROZEN MATERIAL. TRASH, DEBRIS. PLACE FILL MATERIALS LAYERS NOT EXCEEDING 6 INCHES IN LOOSE DEPTH AND COMPACT EACH LAYER AT PLACEMENT TO 95% OPTIMUM DENSITY, GRADE SURFACE TO MEET ADJACENT CONTOURS AND TO PROVIDE SURFACE DRAINAGE.
- 9) REMOVE FROM THE DESIGNATED SITE, AT THE EARLIEST POSSIBLE TIME, ALL DEBRIS RUBBISH, SALVAGEABLE ITEMS HAZARDOUS AND COMBUSTIBLE SERVICES. REMOVED MATERIALS MAY NOT BE STORED, SOLD OR BURNED ON SITE. REMOVAL OF HAZARDOUS AND COMBUSTIBLE MATERIALS SHALL BE ACCOMPLISHED IN ACCORDANCE WITH THE PROCEDURES AS AUTHORIZED BY THE FIRE DEPARTMENT OR OTHER APPROPRIATE REGULATORY AGENCIES AND DEPARTMENTS.
- 10) PROTECT EXISTING DRAINAGE SYSTEM(S) AS NECESSARY TO PREVENT SEDIMENT FROM ENTERING DURING CONSTRUCTION, SEE EROSION & SEDIMENT CONTROL PLAN.
- 11) ALL WORK WITHIN ROADWAY RIGHT-OF-WAYS TO CONFORM TO CITY AND NHOOT STANDARDS.
- 12) THE LIMITS OF WORK SHALL BE CLEARLY MARKED IN THE FIELD PRIOR TO THE START OF CONSTRUCTION OR SITE CLEARING.
- 13) IT SHALL BE THE CONTRACTORS RESPONSIBILITY TO NOTIFY "DIG SAFE" (1-888-344-7233) 72 HOURS PRIOR TO ANY EXCAVATION ON THIS SITE. CONTRACTOR SHALL ALSO NOTIFY LOCAL WATER DEPARTMENT TO MARK OUT THEIR UTILITIES.
- 14) NOTES ON THIS PLAN THAT READ "TBR" REPRESENT FEATURES TO BE REMOVED. ANY FEATURES NOT LABELED "TBR" OR "TO BE REMOVED" SHALL BE CONSIDERED EXISTING TO REMAIN.
- 15) SEE LANDSCAPE PLAN FOR LIMITS OF CLEARING AND GRUBBING. AFTER CLEARING, STRIP AND STOCKPILE TOP SOIL PER LANDSCAPE PLAN, IF APPLICABLE.
- 16) THE SITE CONTRACTOR SHALL TAKE NOTICE THAT THIS SITE MIGHT CONTAIN AN UNMARKED BURIAL GROUND WHICH IS REGISTERED WITH THE STATE AS AN ARCHAEOLOGICAL SITE KNOWN AS THE "WILLEY/LIGHTFORD" BURIAL GROUND. ACCORDING TO RECORDS FROM THE 1800'S, THIS BURIAL PLOT WAS 10'x10' LOCATED IN THE SOUTHWEST CORNER OF THE LOT NEAR PEVERLY HILL ROAD. IF THE CONTRACTOR ENCOUNTERS ANY REMAINS, HE SHALL CEASE OPERATIONS AND NOTIFY THE CITY AND THE NH DIVISION OF HISTORICAL RESOURCES (603-271-2813).
- 17) THE SITE CONTRACTOR SHALL COORDINATE DEMOLITION ACTIVITIES WITH THE COMFORT INN TO MINIMIZE DISTURBANCE TO THEIR OPERATION.

6	MISC. REVISIONS	СМТ	4/15/22
5	MISC. REVISIONS	СМТ	4/5/21
4	REVISE BUILDING NUMBERS, ADD STREET ADDRESS	СМТ	8/19/20
3	MISC. REVISIONS	СМТ	8/6/20
2	MISC. REVISIONS PER TAC	СМТ	3/9/20
1	MISC. REVISIONS PER TAC	CMT	2/20/20
NO.	DESCRIPTION	BY	DATE
	REVISIONS		· · ·

DEMOLITION PLAN

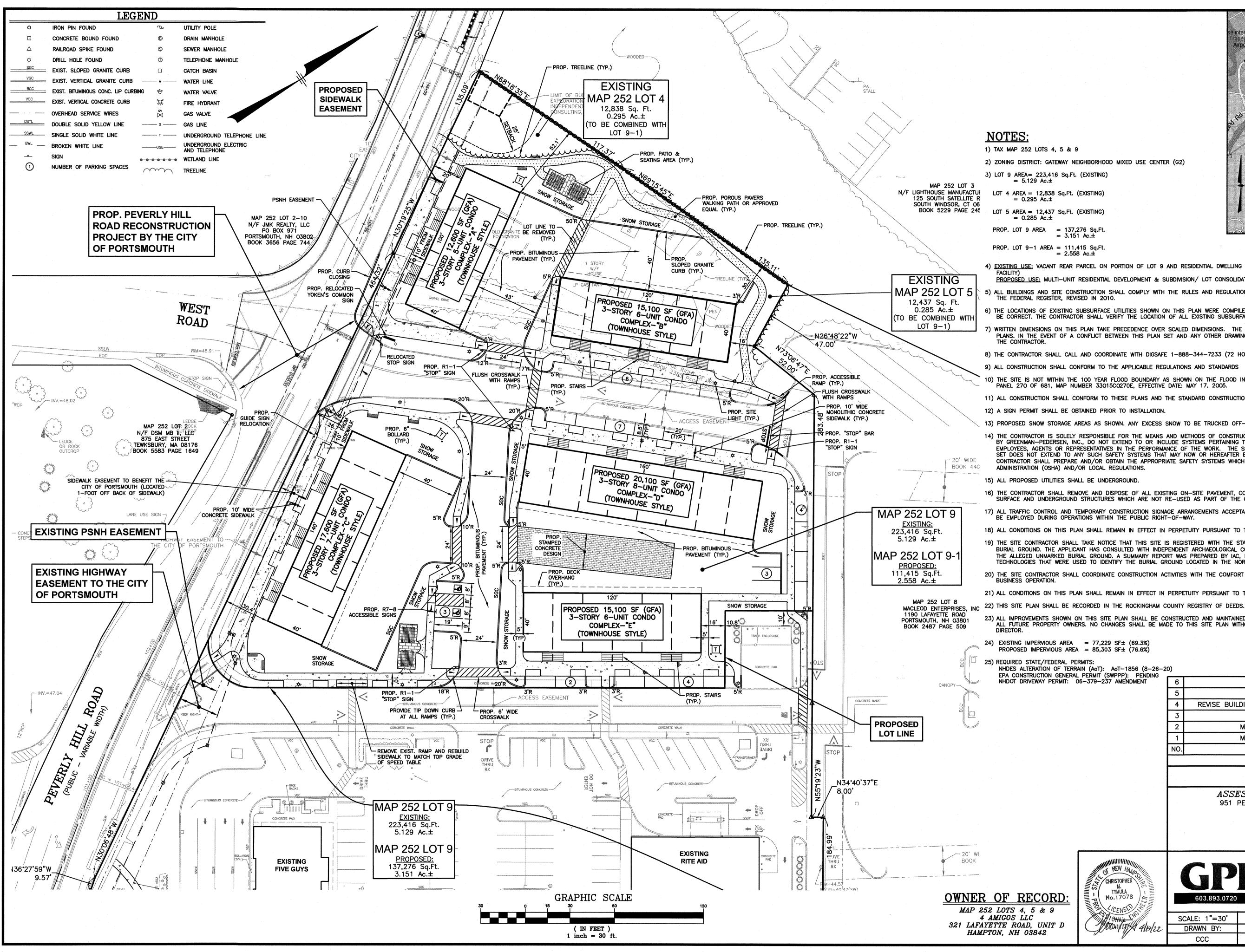

ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE


PREPARED FOR:

4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D

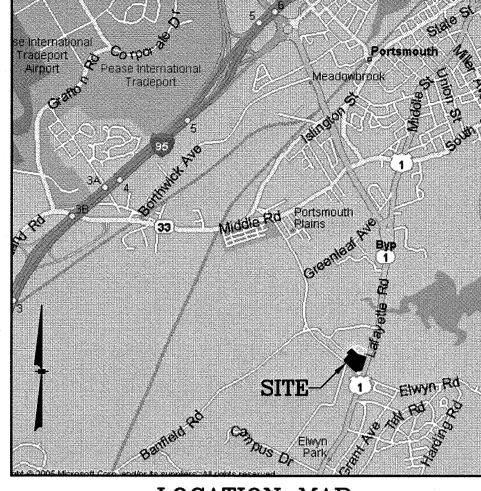
HAMPTON, NEW HAMPSHIRE 03842 Greenman-Pedersen Inc.

CHRISTOPHER TYMULA	GP	Engineering Design Planning Construction Mar	44 Stiles nagement Suite Or	ne
No.17078	603.893.0720	GPINET.C	Salem, I	NH 03079
ONAL ENGLIGHT	SCALE: 1"=30'	DATE: JANUA	RY 20, 2020	DRAWING NO. 4582 SP.DWG
2000 4/19/22	DRAWN BY:	CHECKED BY:	PROJECT NO.	SHEET NO.
10	CCC	CMT	458219	3 OF 15



(NOT TO SCALE)

NOTES:


- 1) CURRENT ZONE IS GATEWAY NEIGHBORHOOD MIXED USE CENTER (G2). REFER TO CITY OF PORTSMOUTH ZONING DISTRICTS AND USE REGULATIONS FOR ADDITIONAL INFORMATION.
- 2) THE PURPOSE OF THIS PLAN IS TO SHOW THE SUBDIVISION OF TWO PARCELS NOTED AS PROPOSED LOTS 9 AND 9-1. LOT 9 WILL CONSIST OF THE EXISTING RETAIL DEVELOPMENT. LOT 9-1 WILL INCLUDE A PROPOSED 32-UNIT TOWNHOUSE STYLE RESIDENTIAL DEVELOPMENT.
- 3) PROPOSED RESIDENTIAL PARKING BREAKDOWN: (32 UNITS) + 64 GARAGE SPACES (TOWNHOUSE STYLE)
 - (INCLUDES 2 GARAGE SPACES/UNIT) + 29 EXTERIOR SPACES
 - = 93 SPACES PROPOSED

T	ABLE OF ZONING	REC	UL	ATIONS	- PORTSMO	DUTH	I, NH	·	-	
	ZONE: GATEWAY NEI	GHB	ORH	IOOD MI.	XED USE CEN	TER	(G2)			
				PRC	POSED LOT 9)	PROPOSE	DL	OT	9-1
	REQUIRED			RETAI	L DEVELOPMEN	NT	GATEWAY	TOW	/NI	HOUSE
					(PROVIDED)		(REQUIRED)	(P	RC	VIDED)
	0,000 SF			137,276 SF			10,000 SF	111,41	5 S	F
	50' _AFAYETTE ROAD — 80 FEET FROM			>200'			<u>20'</u> 5' MIN. TO 15' MAX.	>200'	2011	PROPOSED
	PEVERLY HILL ROAD - 30 FEET			84.1' LAFAYE 81.7' PEVERI				SIDEW	ALK	PROPUSED
	50' 30'			N/A 37.7'			<u>15'</u> 10'	16' 23.5'		
	30' FROM LOT LINE	•		> 30'				> 30'		
	3.5' x 19'		/	9' x 19'		0)/50	40.004050	8.5' x		
ľ	DWELLING UNITS > 750 SF=1.3 S /ISITOR PARKING=1 SPACE/5 DWE REQ. PARKING =32 UNITS $*$ 1.3 S +32 UNITS $*$ 1 SF = <u>48 SPACES REQ</u>	LLING SP/UN P/5 UN	UNITS ITS		TO PREVIOUSLY APPRO 92 SPACES ONSITE		48 SPACES (SEE PARKING BREAKDOWN IN TABLE)	93 SF (SEE BREAF NOTE	PAR (DO)	KING
	20%			31,598/137,2	276=23.0%		20%	26,112	2/11	1,415=23.4%
_	40', 25'-49' FROM ROW - 45 FEET 50%			< 40' 16,389/137,2	76 - 11 09		2.5 STORIES OR 35' 50%	< 35'	0/11	1,415=21.4%
_	00 SF PER SIDE FOR PRIMARY SIGN	1			NAGE TO REMAIN		N/A	N/A	0/11	11,+13-21.+/
	75 SF PER SIDE FOR SECONDARY SI 20' HEIGHT, 10' SETBACK		/A)							
	JP TO 200 SF, CANNOT EXCEED AG	GREGA	TE	EXISTING SIG	NAGE TO REMAIN		N/A	N/A		· · · · · · · · · · · · · · · · · · ·
		6			MISC. REVISION				MT	4/15/22
		5						4/5/21		
		4	R	REVISE BUILDING NUMBERS, ADD STREET ADDRESS CMT 8/19/20				8/19/20		
		3		MISC. REVISIONS CMT 8/6/20					8/6/20	
		2			MISC. REVISIONS	PER T	AC	CI	мΤ	3/9/20
		1			MISC. REVISIONS	PER T	AC	C	ИТ	2/20/20
		NO.			DESCRIPTIO	DN			Y	DATE
					RE	VISION	S		1	
					SITE OVE	RVI	EW PLAN			
						AD & , NEW ARED GOS TTE RO	1400 LAFAYETTE HAMPSHIRE FOR: 5, LLC DAD UNIT D			
=				3.893.0720	Engineering Design Planning Construction M GPINE		44 Stiles	Roa le	Id	ersen, Inc. 79
	OTAL ENGLISH	S	ALE:	1"=40'	DATE: JANI	UARY	20. 2020		DR	AWING NO.
	(19/22			N BY:	CHECKED BY:	<u> </u>	PROJECT NO.		_	<u>82 SP.DWG</u> IEET NO.
					CMT		458219			OF 15
									,	

2) ZONING DISTRICT: GATEWAY NEIGHBORHOOD MIXED USE CENTER (G2)

 $= 2.558 \text{ Ac.} \pm$

LOCATION MAP (NOT TO SCALE)

4) EXISTING USE: VACANT REAR PARCEL ON PORTION OF LOT 9 AND RESIDENTIAL DWELLING ON LOTS 4 & 5. (FORMER YOKEN'S RESTAURANT AND FUNCTION PROPOSED USE: MULTI-UNIT RESIDENTIAL DEVELOPMENT & SUBDIVISION/ LOT CONSOLIDATION OF LOTS 4, 5 & 9

5) ALL BUILDINGS AND SITE CONSTRUCTION SHALL COMPLY WITH THE RULES AND REGULATIONS OF THE AMERICANS WITH DISABILITIES ACT (ADA) AS PUBLISHED IN

6) THE LOCATIONS OF EXISTING SUBSURFACE UTILITIES SHOWN ON THIS PLAN WERE COMPILED FROM AVAILABLE RECORD DRAWINGS AND ARE NOT WARRANTED TO BE CORRECT. THE CONTRACTOR SHALL VERIFY THE LOCATION OF ALL EXISTING SUBSURFACE UTILITIES PRIOR TO PERFORMING ANY WORK.) WRITTEN DIMENSIONS ON THIS PLAN TAKE PRECEDENCE OVER SCALED DIMENSIONS. THE CONTRACTOR SHALL USE CAUTION WHEN SCALING REPRODUCED

PLANS. IN THE EVENT OF A CONFLICT BETWEEN THIS PLAN SET AND ANY OTHER DRAWINGS AND/OR SPECIFICATIONS, THE ENGINEER SHALL BE NOTIFIED BY

8) THE CONTRACTOR SHALL CALL AND COORDINATE WITH DIGSAFE 1-888-344-7233 (72 HOURS PRIOR TO ANY EXCAVATION).

9) ALL CONSTRUCTION SHALL CONFORM TO THE APPLICABLE REGULATIONS AND STANDARDS OF THE CITY OF PORTSMOUTH AND THE STATE OF NEW HAMPSHIRE. 10) THE SITE IS NOT WITHIN THE 100 YEAR FLOOD BOUNDARY AS SHOWN ON THE FLOOD INSURANCE RATE MAP FOR ROCKINGHAM COUNTY, NEW HAMPSHIRE

11) ALL CONSTRUCTION SHALL CONFORM TO THESE PLANS AND THE STANDARD CONSTRUCTION DRAWINGS AS SUPPLIED BY RITE AID CORPORATION.

12) A SIGN PERMIT SHALL BE OBTAINED PRIOR TO INSTALLATION.

13) PROPOSED SNOW STORAGE AREAS AS SHOWN. ANY EXCESS SNOW TO BE TRUCKED OFF-SITE.

14) THE CONTRACTOR IS SOLELY RESPONSIBLE FOR THE MEANS AND METHODS OF CONSTRUCTION AND FOR CONDITIONS AT THE SITE. THESE PLANS, PREPARED BY GREENMAN-PEDERSEN, INC., DO NOT EXTEND TO OR INCLUDE SYSTEMS PERTAINING TO THE SAFETY OF THE CONSTRUCTION CONTRACTOR OR THEIR EMPLOYEES. AGENTS OR REPRESENTATIVES IN THE PERFORMANCE OF THE WORK. THE SEAL OF THE SURVEYOR AND/OR ENGINEER AS INCLUDED IN THE PLAN SET DOES NOT EXTEND TO ANY SUCH SAFETY SYSTEMS THAT MAY NOW OR HEREAFTER BE INCORPORATED INTO THESE PLANS. THE CONSTRUCTION CONTRACTOR SHALL PREPARE AND/OR OBTAIN THE APPROPRIATE SAFETY SYSTEMS WHICH MAY BE REQUIRED BY THE U.S. OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION (OSHA) AND/OR LOCAL REGULATIONS.

16) THE CONTRACTOR SHALL REMOVE AND DISPOSE OF ALL EXISTING ON-SITE PAVEMENT, CONCRETE PADS, BRICKS, FILL PILES, AND ALL OTHER EXISTING SURFACE AND UNDERGROUND STRUCTURES WHICH ARE NOT RE-USED AS PART OF THE CONSTRUCTION. SEE DEMOLITION PLAN.

17) ALL TRAFFIC CONTROL AND TEMPORARY CONSTRUCTION SIGNAGE ARRANGEMENTS ACCEPTABLE TO THE NHDOT AND CITY DEPARTMENT OF PUBLIC WORKS SHALL BE EMPLOYED DURING OPERATIONS WITHIN THE PUBLIC RIGHT-OF-WAY.

18) ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PURSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.

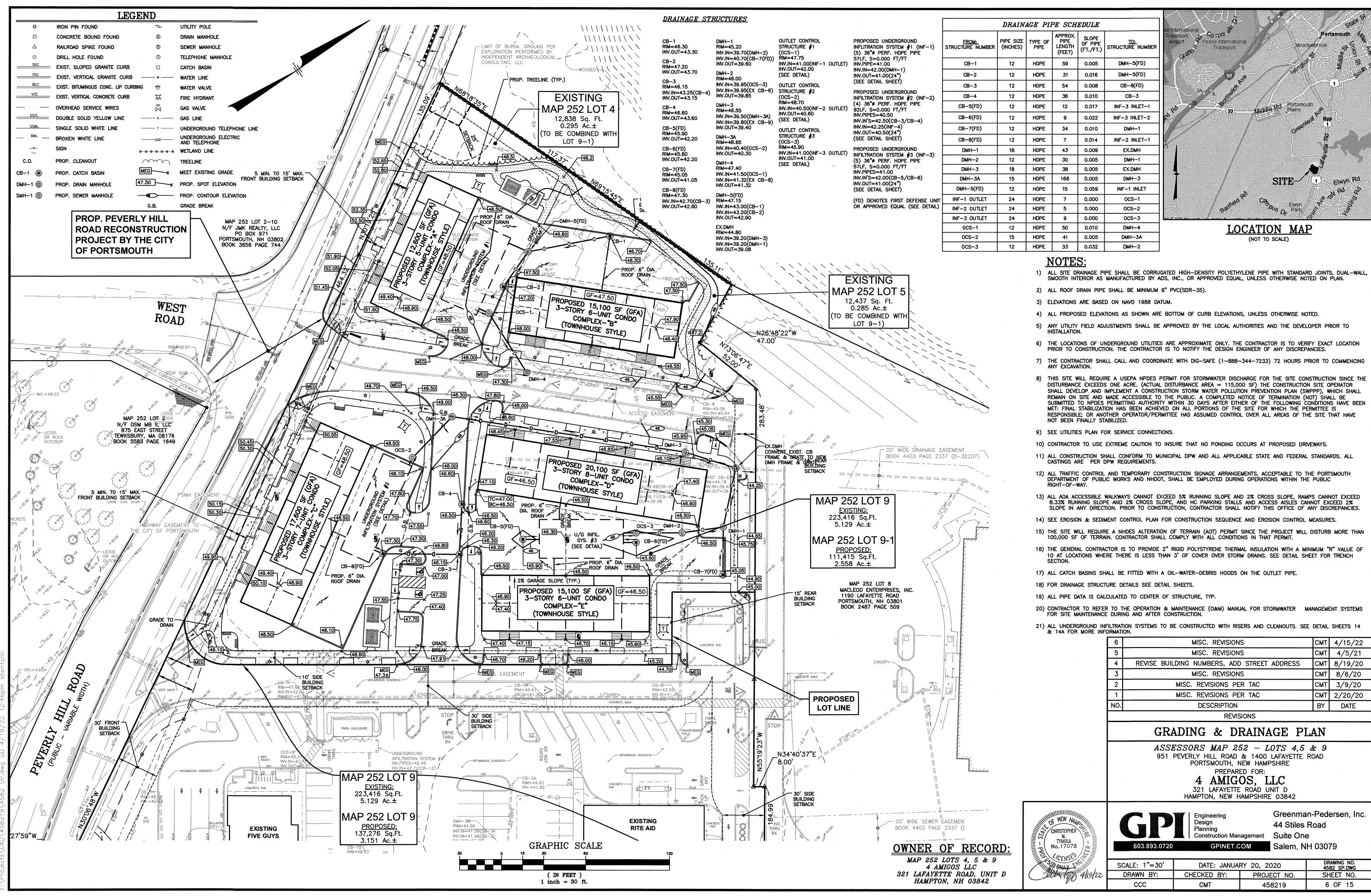
19) THE SITE CONTRACTOR SHALL TAKE NOTICE THAT THIS SITE IS REGISTERED WITH THE STATE AS AN ARCHAEOLOGICAL SITE KNOWN AS THE "WILLEY/LIGHTFORD BURIAL GROUND. THE APPLICANT HAS CONSULTED WITH INDEPENDENT ARCHAEOLOGICAL CONSULTING, LLC (IAC) OF PORTSMOUTH, NH TO FURTHER RESEARCH THE ALLEGED UNMARKED BURIAL GROUND. A SUMMARY REPORT WAS PREPARED BY IAC, DATED 4/27/20, WHICH OUTLINES THE GROUND PENETRATING RADAR TECHNOLOGIES THAT WERE USED TO IDENTIFY THE BURIAL GROUND LOCATED IN THE NORTHWEST CORNER OF MAP 252 LOT 4.

20) THE SITE CONTRACTOR SHALL COORDINATE CONSTRUCTION ACTIVITIES WITH THE COMFORT INN TO MAINTAIN ACCESS AND MINIMIZE DISRUPTION TO THEIR

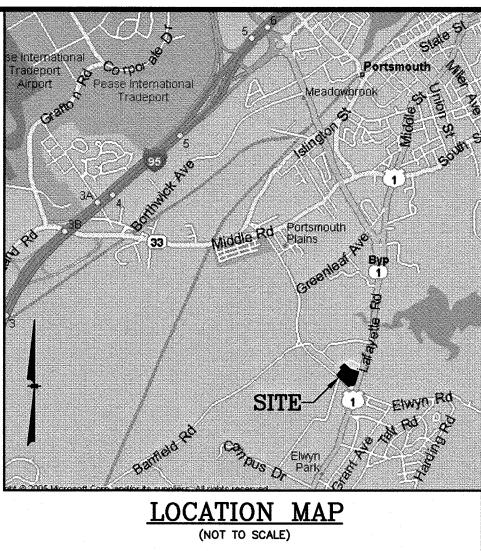
21) ALL CONDITIONS ON THIS PLAN SHALL REMAIN IN EFFECT IN PERPETUITY PERSUANT TO THE REQUIREMENTS OF THE SITE PLAN REVIEW REGULATIONS.

23) ALL IMPROVEMENTS SHOWN ON THIS SITE PLAN SHALL BE CONSTRUCTED AND MAINTAINED IN ACCORDANCE WITH THE PLAN BY THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS. NO CHANGES SHALL BE MADE TO THIS SITE PLAN WITHOUT THE EXPRESS APPROVAL OF THE PORTSMOUTH PLANNING

PROPOSED IMPERVIOUS AREA = 85,303 SF± (76.6%)

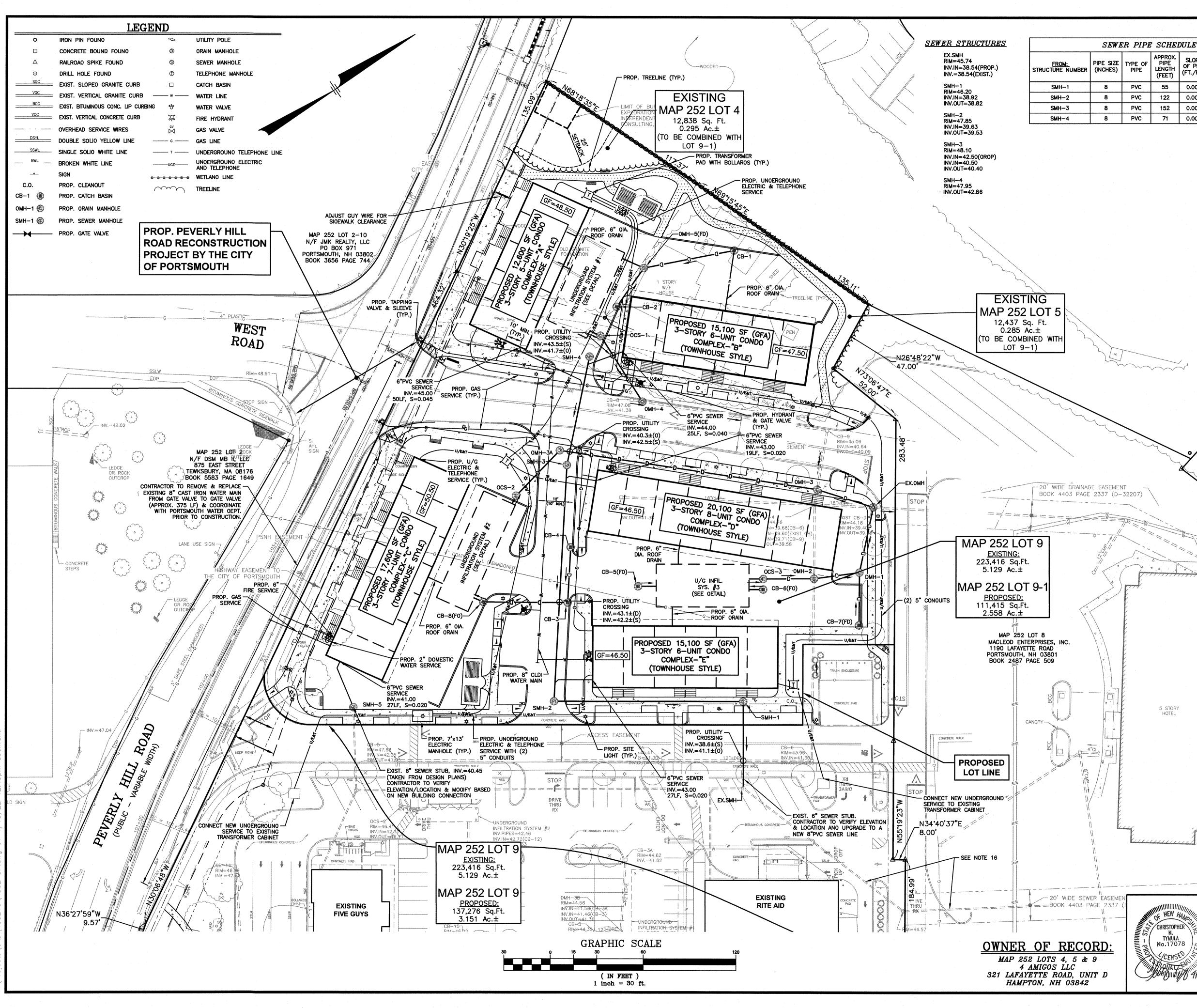

NHDES ALTERATION OF TERRAIN (AoT): AoT-1856 (8-26-20) EPA CONSTRUCTION GENERAL PERMIT (SWPPP): PENDING NHDOT DRIVEWAY PERMIT: 06-379-237 AMENDMENT MISC. REVISIONS CMT 4/15/22 CMT 4/5/21 MISC. REVISIONS REVISE BUILDING NUMBERS, ADD STREET ADDRESS CMT 8/19/20 MISC. REVISIONS CMT 8/6/20 MISC. REVISIONS PER TAC CMT 3/9/20 MISC. REVISIONS PER TAC CMT 2/20/20 BY DATE DESCRIPTION REVISIONS SITE PLAN ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: 4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842 Greenman-Pedersen, Inc. Engineering NEW HAA Design 44 Stiles Road Planning CHRISTOPHER Construction Management Suite One TYMULA No.17078 603.893.0720 GPINET.COM Salem, NH 03079 CENSE! DRAWING NO. 4582 SP.DWG 1910HALE SCALE: 1"=30' DATE: JANUARY 20, 2020 100 Alb/22 DRAWN BY: CHECKED BY: SHEET NO. PROJECT NO.

CMT

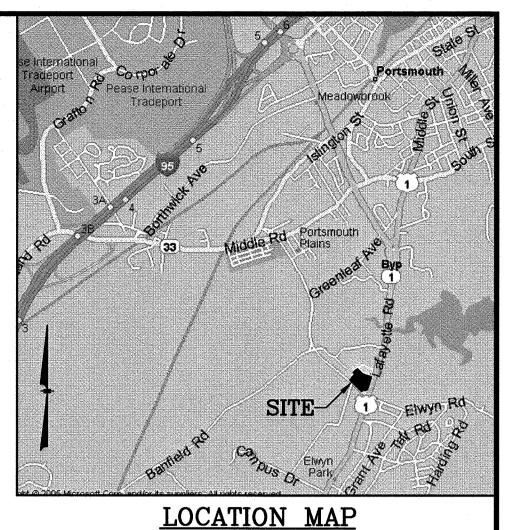

CCC

5 OF 15

458219



4IN	AGE PII	PE SCH	EDULE	
size Es)	type of Pipe	APPROX. PIPE LENGTH (FEET)	SLOPE OF PIPE (FT./FT.)	<u>TO:</u> STRUCTURE NUMBER
2	HDPE	59	0.005	DMH-5(FD)
2	HDPE	31	0.016	DMH5(FD)
	HDPE	54	0.008	CB-8(FD)
2	HDPE	36	0.010	CB-3
	HDPE	12	0.017	INF-3 INLET-1
	HDPE	9	0.022	INF-3 INLET-2
	HDPE	34	0.010	DMH-1
	HDPE	- 7	0.014	INF-2 INLET-1
	HDPE	43	0.009	EX.DMH
	HDPE	30	0.005	DMH-1
	HDPE	38	0.005	EX.DMH
	HDPE	168	0.005	DMH-3
	HDPE	15	0.059	INF-1 INLET
	HDPE	7	0.000	OCS-1
	HDPE	5	0.000	OCS-2
	HDPE	9	0.000	OCS-3
	HDPE	50	0.010	DMH-4
	HDPE	41	0.005	DMH-3A
	HDPE	33	0.032	DMH-2



-6	MISC. REVISIONS	CMT	4/15/22
5	MISC. REVISIONS	CMT	4/5/21
4	REVISE BUILDING NUMBERS, ADD STREET ADDRESS	СМТ	8/19/20
3	MISC. REVISIONS	СМТ	8/6/20
2	MISC. REVISIONS PER TAC	CMT	3/9/20
1	MISC. REVISIONS PER TAC	СМТ	2/20/20
NO.	DESCRIPTION	BY	DATE
	DEVISIONS		

	PREPARED FOR:	
4	AMIGOS, LLC	
	LAFAVETTE DOAD LINIT D	

		•		
ľ	R PIPE	SCHEI	DULE	
E)	type of Pipe	APPROX. PIPE LENGTH (FEET)	SLOPE OF PIPE (FT./FT.)	<u>to:</u> Structure number
	PVC	55	0.005	EX.SMH
	PVC	122	0.005	SMH-1
	PVC	152	0.005	SMH-2
	PVC	71	0.005	SMH-3

(NOT TO SCALE)

NOTES

- 1) ALL SANITARY SEWER PIPE SHALL BE PVC (SDR-35), UNLESS OTHERWISE NOTED.
- 2) ALL WATER PIPE SHALL BE COPPER OR CLDIP, AS NOTED ON PLAN.
- 3) ANY UTILITY FIELD ADJUSTMENTS SHALL BE APPROVED BY THE LOCAL AUTHORITIES AND THE DEVELOPER PRIOR TO INSTALLATION.
- 4) THE LOCATIONS OF UNDERGROUND UTILITIES ARE APPROXIMATE ONLY. THE CONTRACTOR IS TO VERIFY EXACT LOCATION PRIOR TO CONSTRUCTION. THE CONTRACTOR IS TO NOTIFY THE DESIGN ENGINEER OF ANY OISCREPANCIES.
- 5) ALL CONSTRUCTION SHALL CONFORM TO MUNICIPAL DPW AND ALL APPLICABLE STATE AND FEDERAL STANDARDS.
- 6) THE CONTRACTOR SHALL CALL AND COORDINATE WITH DIG-SAFE (1-888-344-7233) PRIOR TO COMMENCING ANY EXCAVATION.
- 7) ALL ELECTRIC, TELEPHONE AND CABLE TV LINES ARE TO BE UNDERGROUND AND INSTALLED IN CONFORMANCE WITH APPLICABLE UTILITY CO. SPECIFICATIONS. ALL BUILDINGS SHALL BE CONNECTED TO THE CITY FIRE ALARM SYSTEM.
- 8) THE CONTRACTOR IS TO COORDINATE WITH THE MUNICIPAL DPW REGARDING WATER PRESSURE AT SERVICE. THE CONTRACTOR IS TO VERIFY IF PRESSURE REDUCING VALVE IS REQUIRED.
- 9) ANY UTILITIES TO BE TAKEN OUT OF SERVICE SHALL BE DISCONNECTED AS DIRECTED BY UTILITY COMPANY ANO LOCAL OPW.
- 10) SEE GRADING & ORAINAGE PLAN FOR ORAINAGE INSTALLATION DETAILS.
- 11) A MINIMUM OF 18" OF VERTICAL SEPARATION SHALL BE MAINTAINED BETWEEN BOTTOM OF WATER MAIN AND TOP OF SEWER, AND AT ALL DRAINAGE PIPE CROSSINGS. A MINIMUM OF 10' HORIZONTAL SEPARATION SHALL BE MAINTAINED BETWEEN ALL WATER AND SEWER MAINS (INCLUDING SERVICE CONNECTIONS), AND ALL ORAIN PIPE AND SEWER MAINS.
- 12) THIS SITE WILL REQUIRE A NHDES WASTEWATER CONNECTION PERMIT. THE CONTRACTOR SHALL COMPLY WITH ALL CONDITIONS IN THAT PERMIT. THE CONTRACTOR SHALL ALSO COMPLY WITH THE TECHNICAL SPECIFICATIONS AS PREPARED BY THIS OFFICE, WHICH ARE PART OF THIS PERMIT.
- 13) ALL WATER LINES SHALL BE INSTALLED IN ACCOROANCE WITH THE CITY OF PORTSMOUTH STANDARDS AND SPECIFICATIONS.
- 14) ALL SEWER LINES SHALL BE INSTALLED IN ACCORDANCE WITH THE CITY OF PORTSMOUTH AND NHDES STANDARDS AND SPECIFICATIONS.
- 15) ALL UTILITY CONSTRUCTION SHALL BE WITNESSED BY A THIRD PARTY INSPECTOR TO BE DETERMINED BY THE CITY OF PORTSMOUTH PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
- 16) MAINTENANCE, REPAIRS & INSPECTIONS OF EXISTING SEWER MAIN TO BE COMPLETED IN ACCORDANCE WITH CITY AGREEMENT & DPW CORRESPONDENCE DATED MAY 2021.

PUBLIC UTILITIES

UTILITIES	AVAILABLE
(SEWER) CITY OF PORTSMOUTH PUBLIC WORKS DEPT., PETER RICE 603-427-1530	YES
(WATER) CITY OF PORTSMOUTH PUBLIC WORKS DEPT., PETER RICE 603-427-1530	YES
(GAS) NORTHERN UTILITIES, DAVID BEAULIEU 603-294-5144	YES
(ELECTRIC) PUBLIC SERVICE OF NEW HAMPSHIRE (PSNH), MARK COLLINS 603-332-4227 x5325	YES
(TELEPHONE) FAIRPOINT COMMUNICATIONS, DAVID KESTNER 603-743-1114	YES

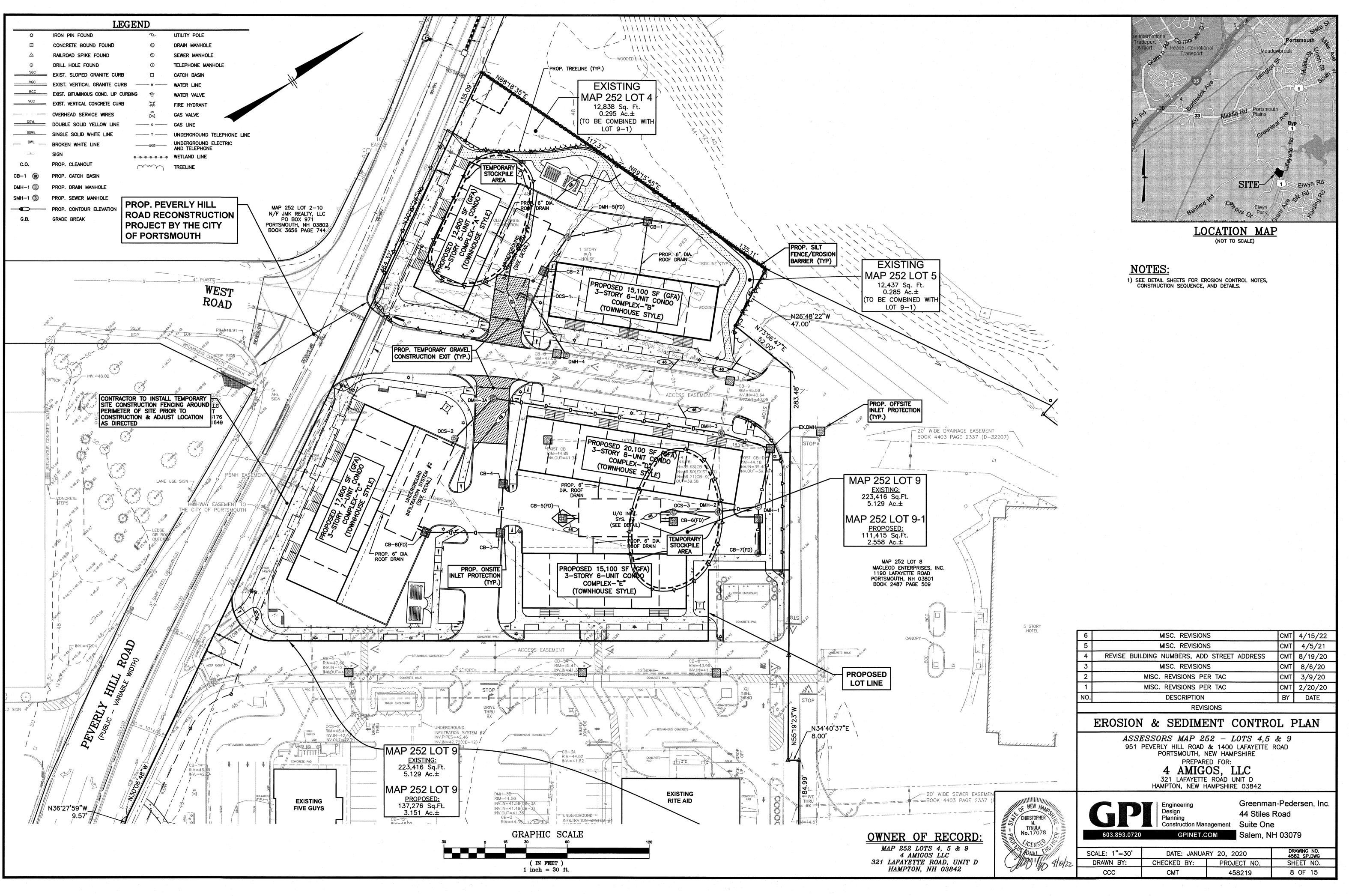
5 STORY HOTEL

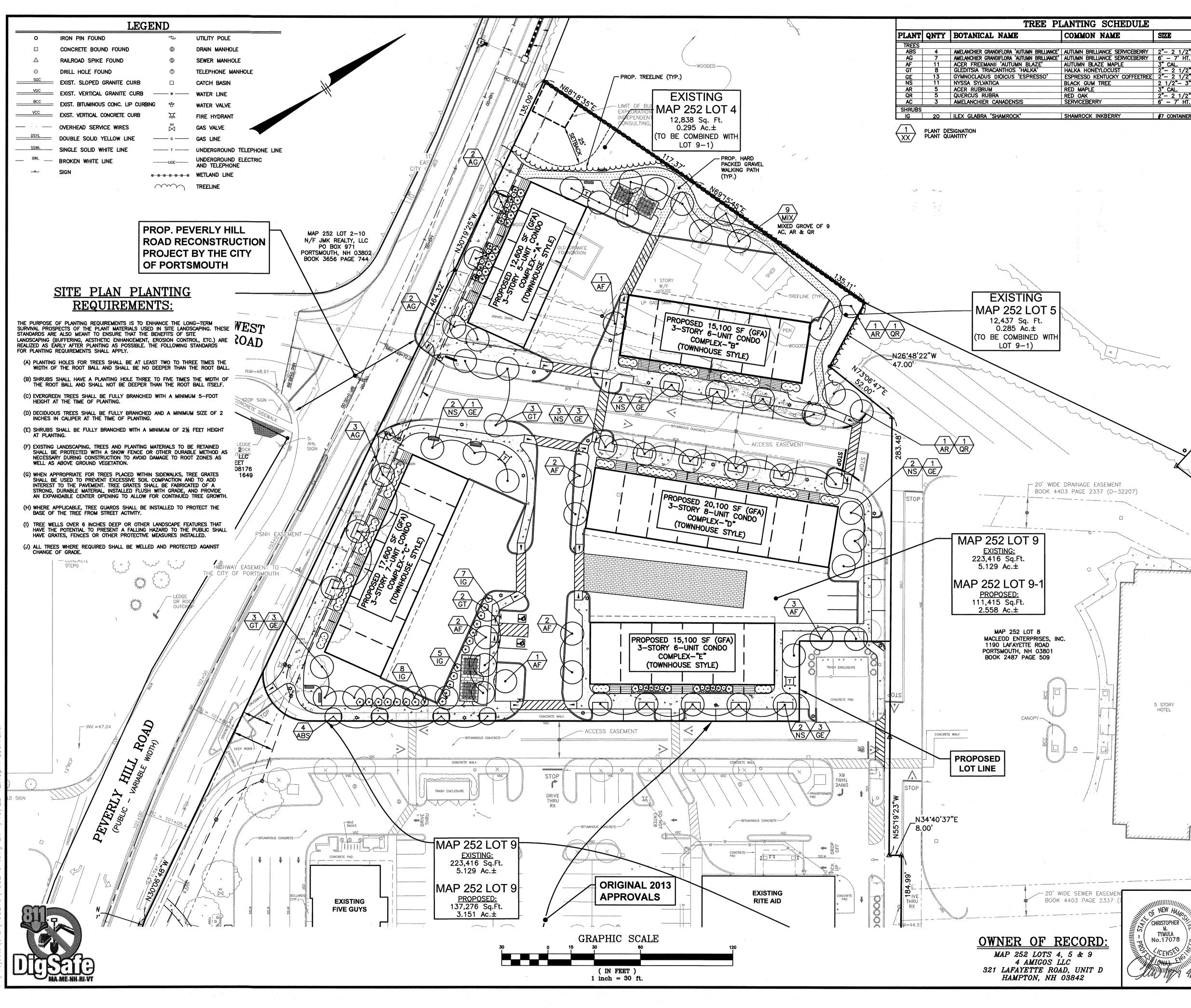
A & A

6	MISC. REVISIONS	СМТ	4/15/22
5	REVISE TRANSFORMER/ELECTRICAL LAYOUT PER EVERSOURCE	СМТ	4/5/21
4	REVISE BUILDING NUMBERS, ADD STREET ADDRESS	СМТ	8/19/20
3	MISC. REVISIONS	СМТ	8/6/20
2	MISC. REVISIONS PER TAC	СМТ	3/9/20
1	MISC. REVISIONS PER TAC	СМТ	2/20/20
NO.	DESCRIPTION	BY	DATE
	REVISIONS		

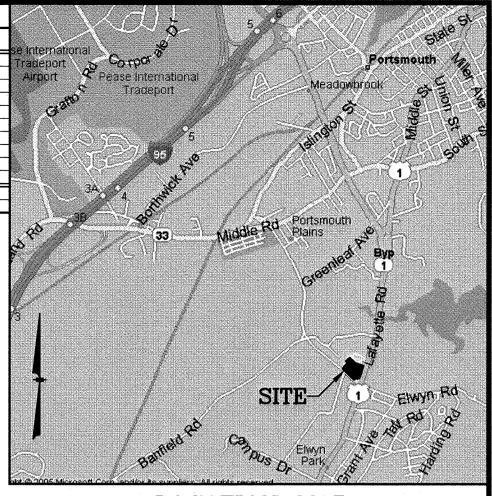
UTILITY PLAN

ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE


PREPARED FOR:


4 AMIGOS, LLC

Greenman-Pedersen, Inc.


- 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842
- Engineering NEW HAA CHRISTOPHER ・5/ M. TYNULA No.17078 YCENSE? JUMONTON 4/10/22

GP	Design Planning Construction Mar	nagement	44 Stiles Suite One	
603.893.0720	GPINET.C	:OM	Salem, N	H 03079
SCALE: 1"=30'	DATE: JANUA	RY 20, 2	020	ORAWING NO. 4582 SP.DWG
DRAWN BY:	CHECKED BY:	PROJ	ECT NO.	SHEET NO.
222	СМТ	45	8219	7 OF 15

CHEDULE						
ME	SIZE	REMARKS				
E SERVICEBERRY	2"- 2 1/2" CAL	•				
E SERVICEBERRY	6' – 7' HT.	MULTI-STEM				
IAPLE	3" CAL.					
UST	2"- 2 1/2" CAL					
CKY COFFEETREE	2"- 2 1/2" CAL					
	2 1/2"- 3" CAL					
	3" CAL.					
	2"- 2 1/2" CAL					
	6' – 7' HT.	MULTI-STEM				
· · · · · · · · · · · · · · · · · · ·						
RRY	#7 CONTAINER	MIN. SIZE 30" HT.				

LOCATION MAP (NOT TO SCALE)

NOTES:

1 4 4

5 STORY HOTEL

- 1) ALL PLANT STOCK SHALL CONFORM TO ANSI Z260.1 NURSERY STOCK, LATEST EDITION (AMERICAN ASSOCIATION OF NURSERYMEN, INC.).
- 2) 4" AGED PINEBARK MULCH AND A WEED BARRIER (TY-PAR FABRIC OR APPROVED EQUAL) SHALL BE APPLIED TO ALL SHRUB AND GROUNDCOVER BEDS. INSTALL WEED BARRIER AS PER MANUFACTURERS **RECOMMENDATIONS.**
- 3) PLANT PIT BACKFILL SHALL BE MIXED AT A RATE OF 7 PARTS OF TOPSOIL TO 2 PART OF DEHYDRATED COW MANURE. SLOW RELEASE FERTILIZER SHALL BE APPLIED AS PER MANUFACTURERS RECOMMENDATIONS. USE EXISTING ON-SITE TOPSOIL AS PART OF BACKFILL WHEN AVAILABLE.
- 4) ALL LANDSCAPED AREAS NOT PLANTED WITH TREES, SHRUBS OR GROUNDCOVER SHALL BE RESTORED WITH SEED OR SOD AS INDICATED ON PLANS.
- ALL SOD, SEED, SHRUB AND TREE AREAS SHALL RECEIVE 6" PH CORRECTED TOPSOIL. AFTER 5) TOPSOIL IS SPREAD EVENLY OVER ENTIRE AREA, ALL CLODS, LUMPS, STONES AND OTHER DELETERIOUS MATERIAL SHALL BE RAKED UP AND REMOVED.
- 6) APPLICATION OF GRASS SEED, FERTILIZERS AND MULCH SHALL BE ACCOMPLISHED BY BROADCAST SEEDING OR HYDROSEEDING AT THE RATES OUTLINED BELOW:

LIMESTONE: 100 LBS./1,000 SQUARE FEET. FERTILIZER: 500 LBS/ACRE OF 10-20-20 OR 1000 LBS/ACRE OF 5-10-10. MULCH: HAY MULCH APPROXIMATELY 3 TONS/ACRE

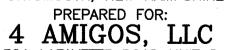
	· · · · · · · · · · · · · · · · · · ·
SEED MIX (SLOPES LESS THAN 4:1)	LBS/ACRE
CREEPING RED FESCUE	20
TALL FESCUE	15
PERENNIAL RYEGRASS	5
REDTOP	2
	42

7) FOR TEMPORARY EROSION CONTROL NOTES, SEE EROSION & SEDIMENT CONTROL PLAN.

8) NEWLY GRADED AREAS REQUIRING SLOPE PROTECTION OUTSIDE OF NORMAL SEEDING SEASON SHALL RECEIVE STRAW MULCH AT THE APPROXIMATE RATE OF NO MORE THAN 3 TONS PER ACRE. ANY CHANGES IN PLANT LOCATIONS OR TYPES SHALL BE APPROVED BY THE DEVELOPER AND CITY 9)

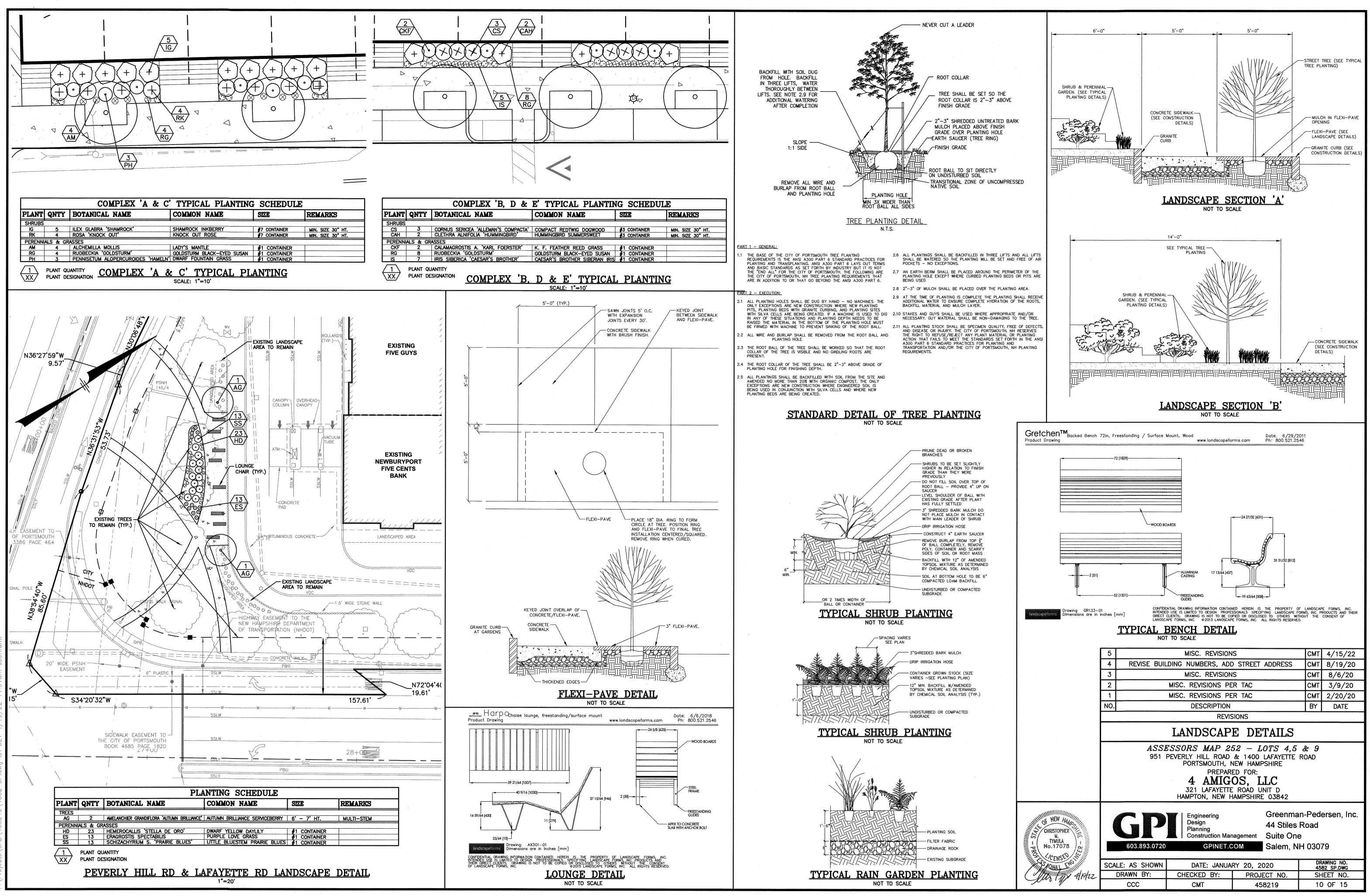
PRIOR TO INSTALLATION. 10) PLANTINGS SHALL BE GUARANTEED BY THE CONTRACTOR FOR ONE YEAR AFTER WRITTEN ACCEPTANCE BY THE DEVELOPER.

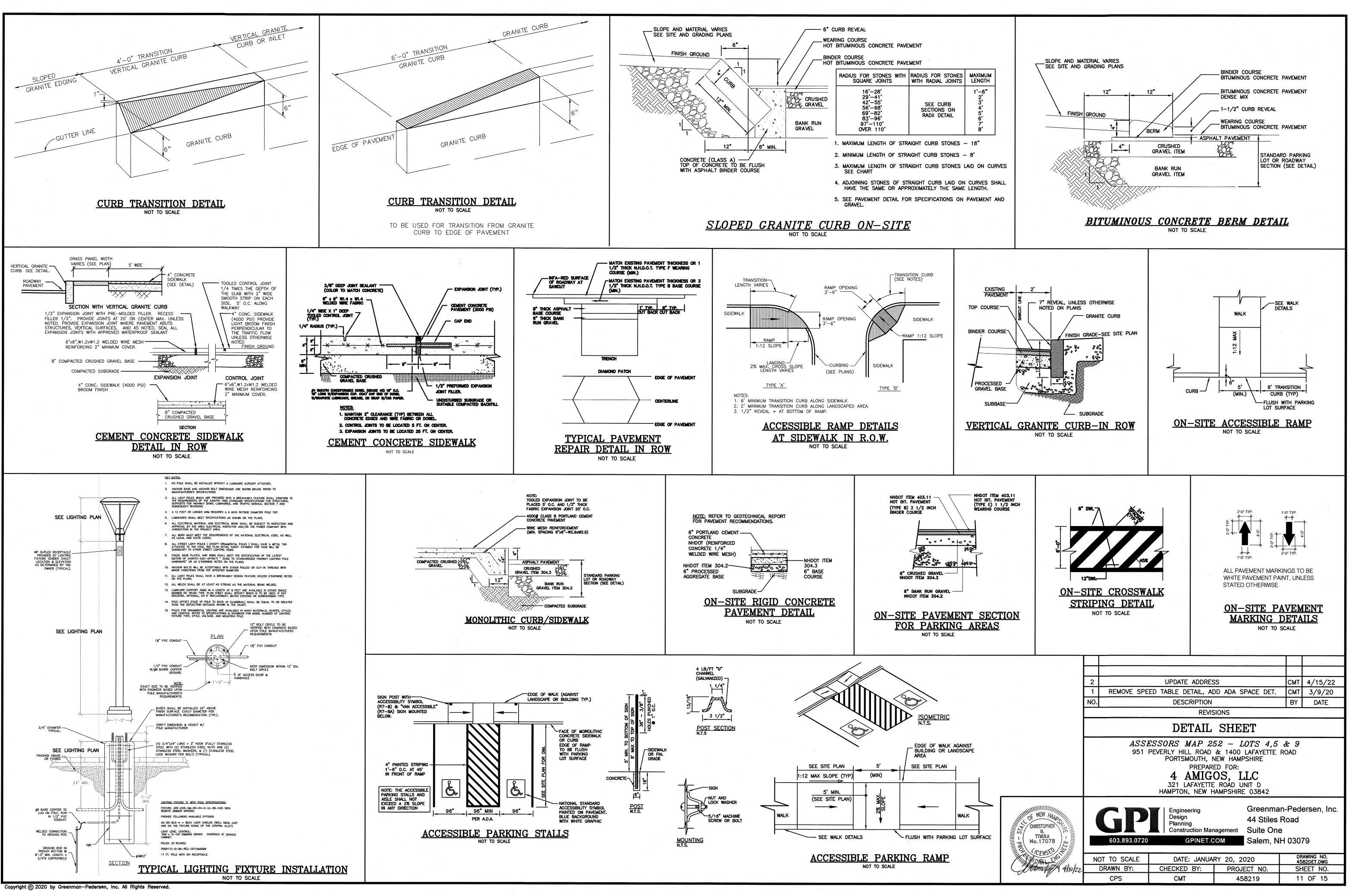
11) EXPOSED SOILS SHALL BE SEEDED OR HAY MULCHED WITHIN 72 HOURS OF FINAL GRADING.

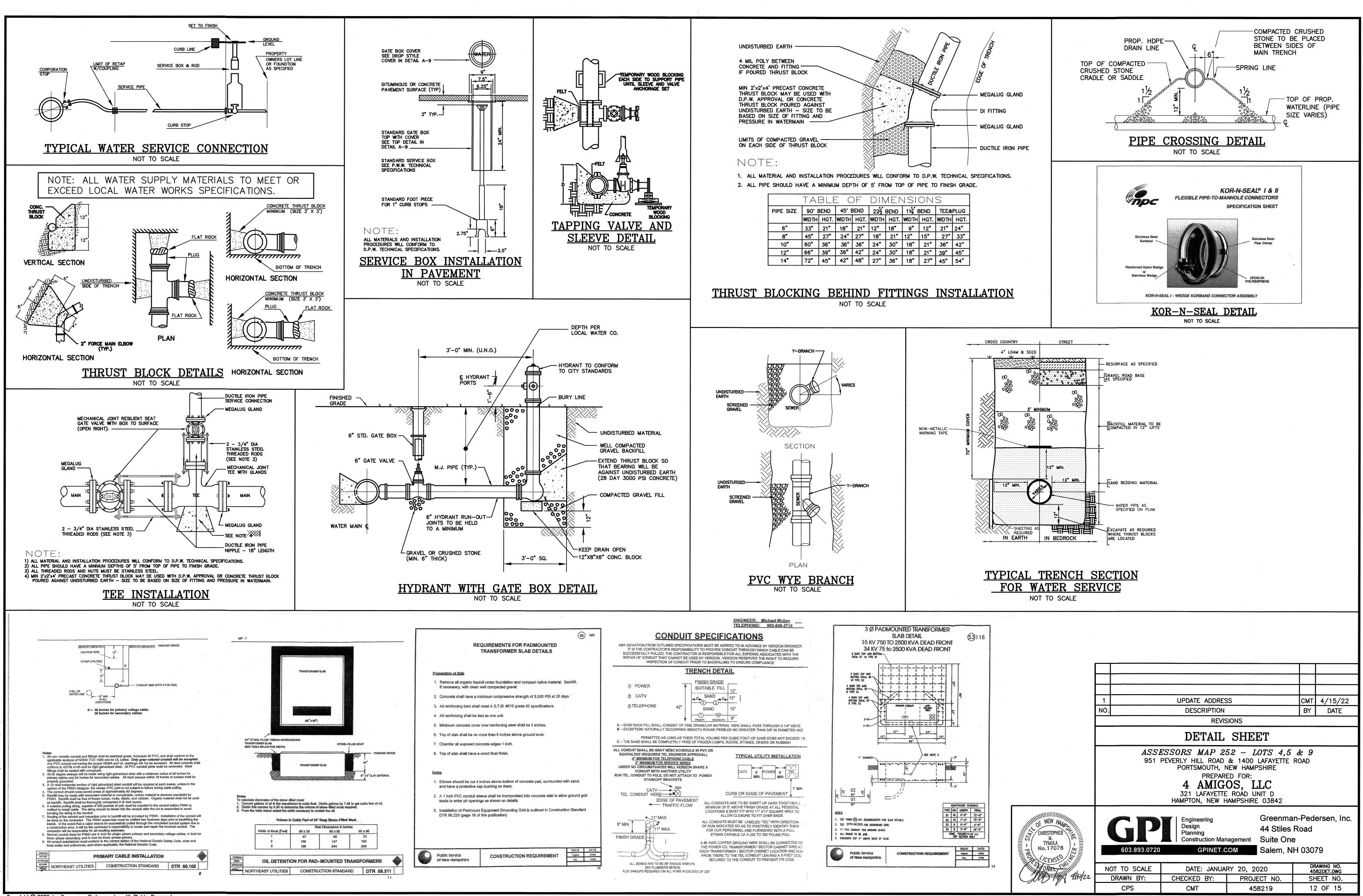

- 12) ALL WORK SHALL BE COORDINATED WITH APPLICABLE EPA NPDES/SWPPP PERMIT WORK AS **REQUIRED.**
 - 13) THE CONTRACTOR SHALL INSTALL AN IRRIGATION SYSTEM TO PROVIDE COMPLETE COVERAGE OF ALL SEED, SOD AREAS AND SHRUB BEDS. THE SYSTEM SHALL INCLUDE A TIMER WITH RAIN SENSOR AND SHALL BE INSTALLED IN ACCORDANCE WITH LOCAL CODES.
 - 14) THE PROPERTY OWNER AND ALL FUTURE PROPERTY OWNERS SHALL BE RESPONSIBLE FOR THE MAINTENANCE, REPAIR AND REPLACEMENT OF ALL REQUIRED SCREENING AND LANDSCAPE MATERIALS.
 - 15) ALL REQUIRED PLANT MATERIALS SHALL BE TENDED AND MAINTAINED IN A HEALTHY GROWING CONDITION, REPLACED WHEN NECESSARY, AND KEPT FREE OF REFUSE AND DEBRIS. ALL REQUIRED FENCES AND WALLS SHALL BE MAINTAINED IN GOOD REPAIR.

16) THE PROPERTY OWNER SHALL BE RESPONSIBLE TO REMOVE AND REPLACE DEAD OR DISEASED PLANT MATERIALS IMMEDIATELY WITH THE SAME TYPE, SIZE AND QUANTITY OF PLANT MATERIALS AS ORIGINALLY INSTALLED, UNLESS ALTERNATIVE PLANTINGS ARE REQUESTED, JUSTIFIED AND APPROVED BY THE PLANNING BOARD OR PLANNING DIRECTOR.

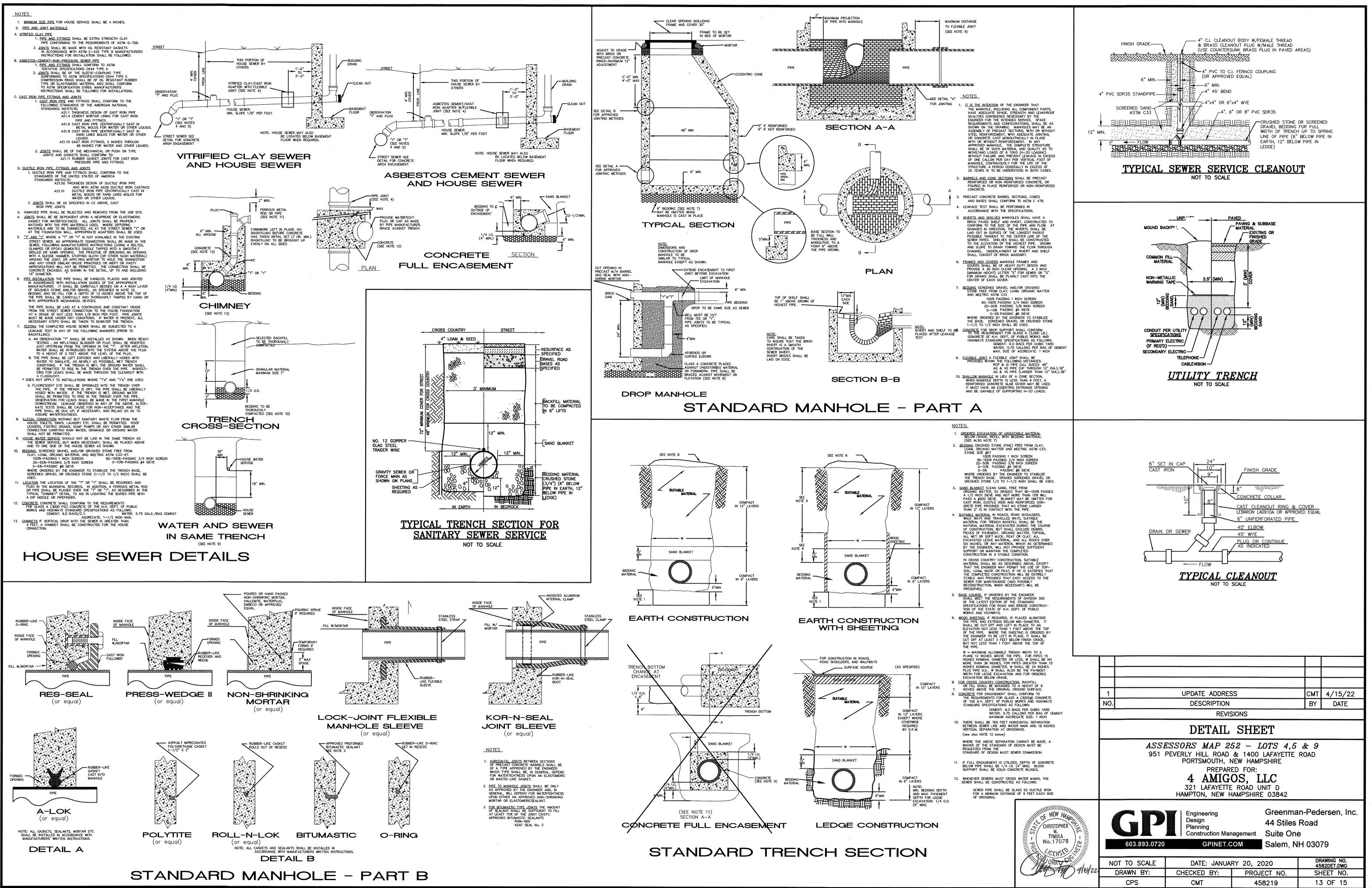
6	MISC. REVISIONS	СМТ	4/15/22
5	MISC. REVISIONS	СМТ	4/5/21
4	REVISE BUILDING NUMBERS, ADD STREET ADDRESS	СМТ	8/19/20
3	MISC. REVISIONS	СМТ	8/6/20
2	MISC. REVISIONS PER TAC	СМТ	3/9/20
1	MISC. REVISIONS PER TAC	СМТ	2/20/20
NO.	DESCRIPTION	BY	DATE
	REVISIONS		

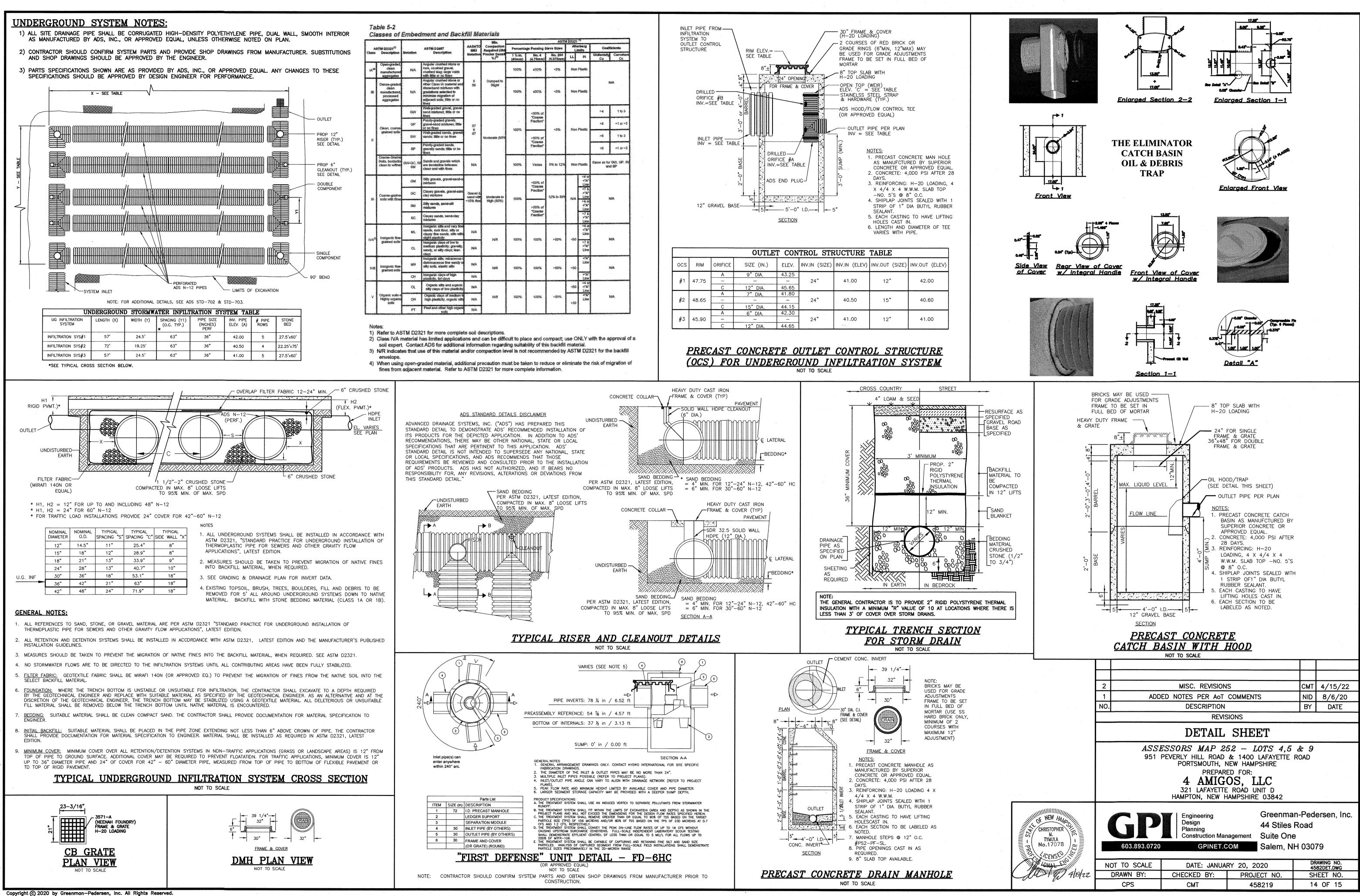

LANDSCAPE PLAN

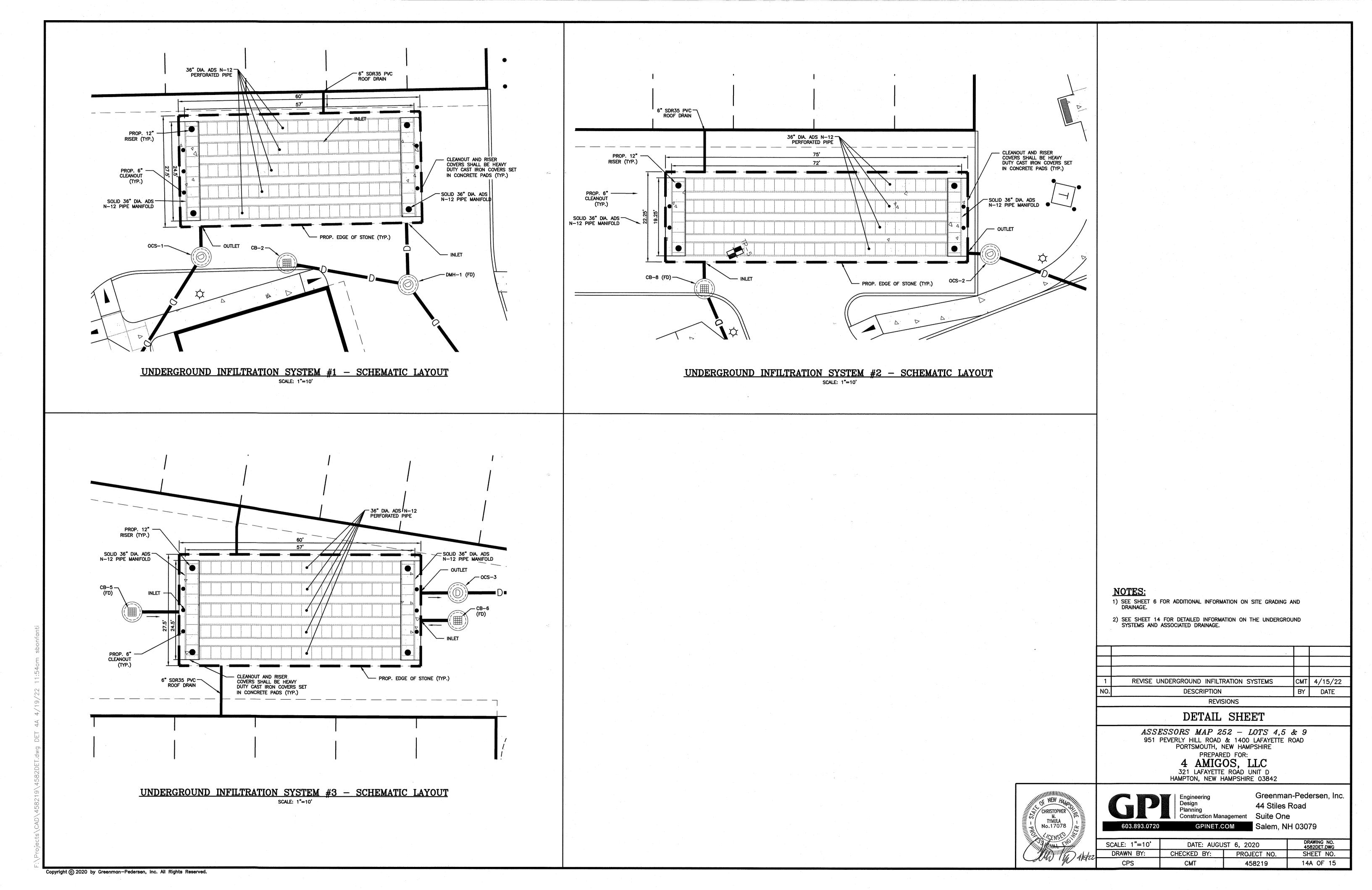

ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE

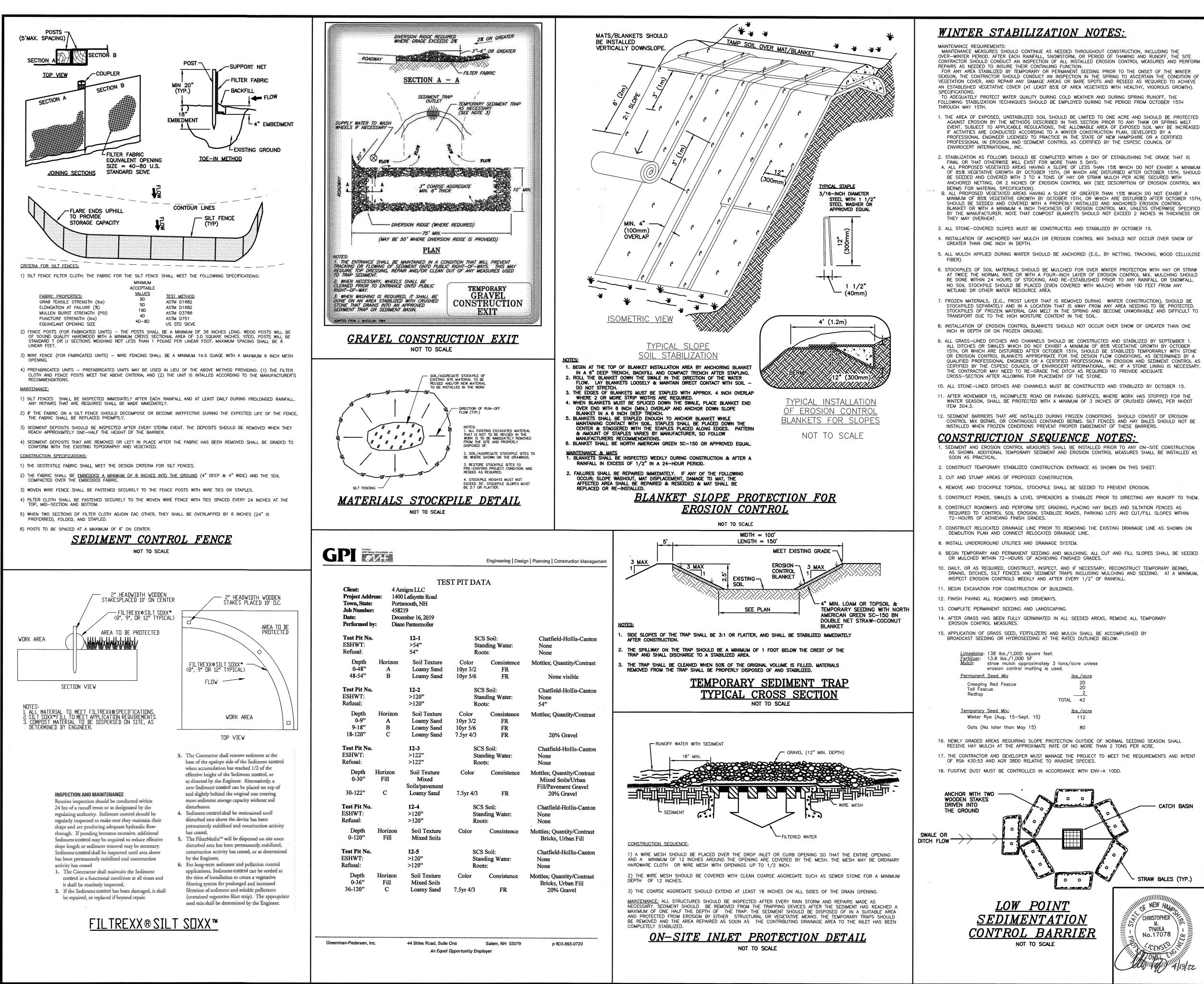


321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842


NEW HAMOS HRISTOPHER M. TYMULA	GP	Engineering Design Planning Construction Mar	nagement	Greenma 44 Stiles Suite One	
lo.17078	603.893.0720	GPINET.C	OM	Salem, N	H 03079
ICENSED 2					
OWAL ENGINI	SCALE: 1"=30'	DATE: JANUA	RY 20, 2	020	DRAWING NO. 4582 SP.DWG
1911 419/22	DRAWN BY:	CHECKED BY:	PROJ	ECT NO.	SHEET NO.
	CCC	CMT	45	8219	9 OF 15




Copyright © 2020 by Greenman-Pedersen, Inc. All Rights Reserved.



Copyright © 2020 by Greenman-Pedersen, Inc. All Rights Reserved.

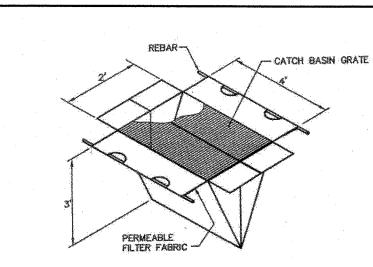
nc. All Rights Reserved.

Copyright © 2020 by Greenman-Pedersen, Inc. All Rights Reserved.

EROSION CONTROL NOTES: THE EROSION CONTROL PROCEDURES SHALL CONFORM TO THE NH STORMWATER MANUAL.

- VOLUME 3, EROSION & SEDIMENT CONTROLS DURING CONSTRUCTION, DECEMBER 2008. 2. DURING CONSTRUCTION AND THEREAFTER, EROSION CONTROL MEASURES ARE TO BE AT ANY ONE TIME DURING DEVELOPMENT. WHEN LAND IS EXPOSED DURING DEVELOPMENT, THE EXPOSURE SHOULD BE KEPT TO THE SHORTEST PRACTICAL PERIOD OF TIME AS APPROVED BY THE ENGINEER. LAND SHOULD NOT BE LEFT EXPOSED DURING THE WINTER
- 3. LIMIT OF MAXIMUM AREA OF EXPOSED SOIL AT ANY ONE TIME TO LESS THAN 5 ACRES. THE EXPOSED AREA THAT IS BEING ACTIVELY WORKED DURING WINTER IS TO BE LESS THAN 1 ACRES DURING THE WINTER SEASON.

4. ALL PERMANENT STORM WATER STRUCTURES SHALL BE STABILIZED PRIOR TO DIRECTING FLOW INTO THEM. AN AREA SHALL BE CONSIDERED STABLE IF ONE OF THE FOLLOWING HAS OCCURRED: A) BASE COURSE GRAVELS HAVE BEEN INSTALLED IN AREAS TO BE PAVED. B) A MINIMUM OF 85 PERCENT VEGETATED GROWTH HAS BEEN ESTABLISHED.


C) A MINIMUM OF 3 INCHES OF NON-EROSIVE MATERIAL SUCH AS STONE OR RIP-RAP HAS BEEN INSTALLED. D) OR, EROSION CONTROL BLANKETS HAVE BEEN PROPERLY INSTALLED.

- 5. SILT FENCE SHALL BE INSTALLED AND MAINTAINED DURING AND AFTER DEVELOPMENT TO REMOVE SEDIMENT FROM RUNOFF WATER AND FROM LAND UNDERGOING DEVELOPMENT. WHERE PDSSIBLE, NATURAL DRAINAGE WAYS SHOULD BE UTILIZED AND LEFT OPEN TO REMOVE EXCESS SURFACE WATER. SILT FENCE TO BE MAINTAINED AND CLEANED UNTIL ALL SLOPES HAVE A HEALTHY STAND OF GRASS.
- 6. ALL DISTURBED AREAS AND SIDE SLOPES WHICH ARE FINISHED GRADED, WITH NO FURTHER CONSTRUCTION TO TAKE PLACE, SHALL BE LOAMED AND SEEDED WITHIN 72 HOURS AFTER FINAL GRADING. A MINIMUM OF 4" OF LOAM SHALL BE INSTALLED WITH NOT LESS THAN ONE POUND OF SEED PER 50 SQUARE YARDS OF AREA. THE SEED MIX SHALL BE AS DESIGNATED BELOW.
- . ANY DISTURBED AREAS WHICH ARE TO BE LEFT TEMPORARILY, AND WHICH WILL BE REGRADED LATER DURING CONSTRUCTION SHALL BE MACHINE HAY MULCHED AND SEEDED WITH RYE GRASS TO PREVENT EROSION. THE MAXIMUM LENGTH OF TIME FOR THE EXPOSURE OF DISTURBED SOILS SHALL BE 45 DAYS. HAY OR STRAW MULCH SHALL BE APPLIED TO ALL FRESHLY SEEDED AREAS AT THE RATE OF 2 TONS PER ACRE. BALES SHALL BE UNSPOILED, AIR DRIED, AND FREE FROM WEED, SEEDS AND ANY COARSE MATERIAL.
- 8. DURING GRADING OPERATIONS INSTALL HAY BALE BARRIERS ALONG TOE OF SLOPE OF FILL AREAS WHERE SHOWN. BARRIERS ARE TO BE MAINTAINED UNTIL DISTURBED AREAS ARE PAVED OR GRASSED.
- 9. THE FILL MATERIAL SHALL BE OF APPROVED SOIL TYPE FREE FROM STUMPS, ROOTS, WOOD, ETC. TO BE PLACED IN 12" LIFTS OR AS SPECIFIED. BULLDOZERS, TRUCKS, TRACTORS, OR ROLLERS MAY BE USED FOR COMPACTION BY ROUTING THE EQUIPMENT TO

ALL AREAS OR EACH LAYER. 1D. AVOID THE USE OF FUTURE OPEN SPACES (LOAM & SEED) WHEREVER POSSIBLE DURING CONSTRUCTION. CONSTRUCTION TRAFFIC SHALL USE THE ROADBEDS OF FUTURE ROADS.

TEMPORARY EROSION CONTROL MEASURES:

- 1. THE SMALLEST PRACTICAL AREA OF LAND SHALL BE EXPOSED AT ANY ONE TIME. ALL AREAS SHALL BE STABILIZED WITHIN 45 DAYS OF INITIAL DISTURBANCE.
- 2. HAY BALE BARRIERS AND SEDIMENT TRAPS SHALL BE INSTALLED AS REQUIRED. BARRIERS AND TRAPS ARE TO BE MAINTAINED AND CLEANED UNTIL ALL SLOPES HAVE A HEALTHY STAND OF GRASS.
- 3. BALED HAY AND MULCH SHALL BE MOWINGS OF ACCEPTABLE HERBACEOUS GROWTH, FREE FROM NOXIOUS WEEDS OR WDODY STEMS, AND SHALL BE DRY. ND SALT HAY SHALL BE USED.
- 4. FILL MATERIAL SHALL BE FREE FROM STUMPS, WOOD, ROOTS, ETC.
- 5. STDCKPILED MATERIALS SHALL BE PLACED ONLY IN AREAS SHOWN ON THE PLANS STOCKPILES SHALL BE PROTECTED BY SILTATION FENCE AND SEEDED TO PREVENT EROSION. THESE MEASURES SHALL REMAIN UNTIL ALL MATERIAL HAS BEEN PLACED OR DISPOSED OFF SITE.
- 6. ALL DISTURBED AREAS SHALL BE LOAMED AND SEEDED. A MINIMUM OF 4 INCHES OF LOAM SHALL BE INSTALLED AND SEEDING AS SPECIFIED.
- 7. AFTER ALL DISTURBED AREAS HAVE BEEN STABILIZED THE TEMPORARY EROSION CONTROL MEASURES ARE TO BE REMOVED.
- 8. PAVED ROADWAYS MUST BE KEPT CLEAN AT ALL TIMES.
- 9. ALL CATCH BASIN INLETS WILL BE PROTECTED WITH LOW PDINT SEDIMENTATION BARRIER. 1D. ALL STORM DRAINAGE OUTLETS WILL BE STABILIZED AND CLEANED AS REQUIRED, BEFORE THE DISCHARGE POINTS BECOME OPERATIONAL.
- 11. ALL DEWATERING OPERATIONS MUST DISCHARGE DIRECTLY INTO A SEDIMENT FILTER
- 12. JUTE MATTING OR APPROVED EQUIVALENT SHALL BE PROVIDED ON ALL SLOPES
- GREATER THAN 3:1. 13. RUNOFF MUST BE DIRECTED TO TEMPORARY PRACTICES UNTIL STORMWATER BMPs ARE STABILIZED.

SILTATION BAG NOT TO SCALE USE "SILTSACK" AS MANUFACTURED BY ATLANTIC CONSTRUCTION FABRICS, INC. OR EQUIVALENT

<u>INLET</u>	PROTECTION	DETAIL
	NOT TO SCALE	

REVISIONS

DETAIL SHEET

ASSESSORS MAP 252 - LOTS 4,5 & 9

UPDATE ADDRESS

ADDED NOTES, SEDIMENT TRAP DETAIL PER AOT COMMENTS

DESCRIPTION

CMT 4/15/22

NID 8/6/20

SHEET NO.

15 OF 15

DATE

BY

2

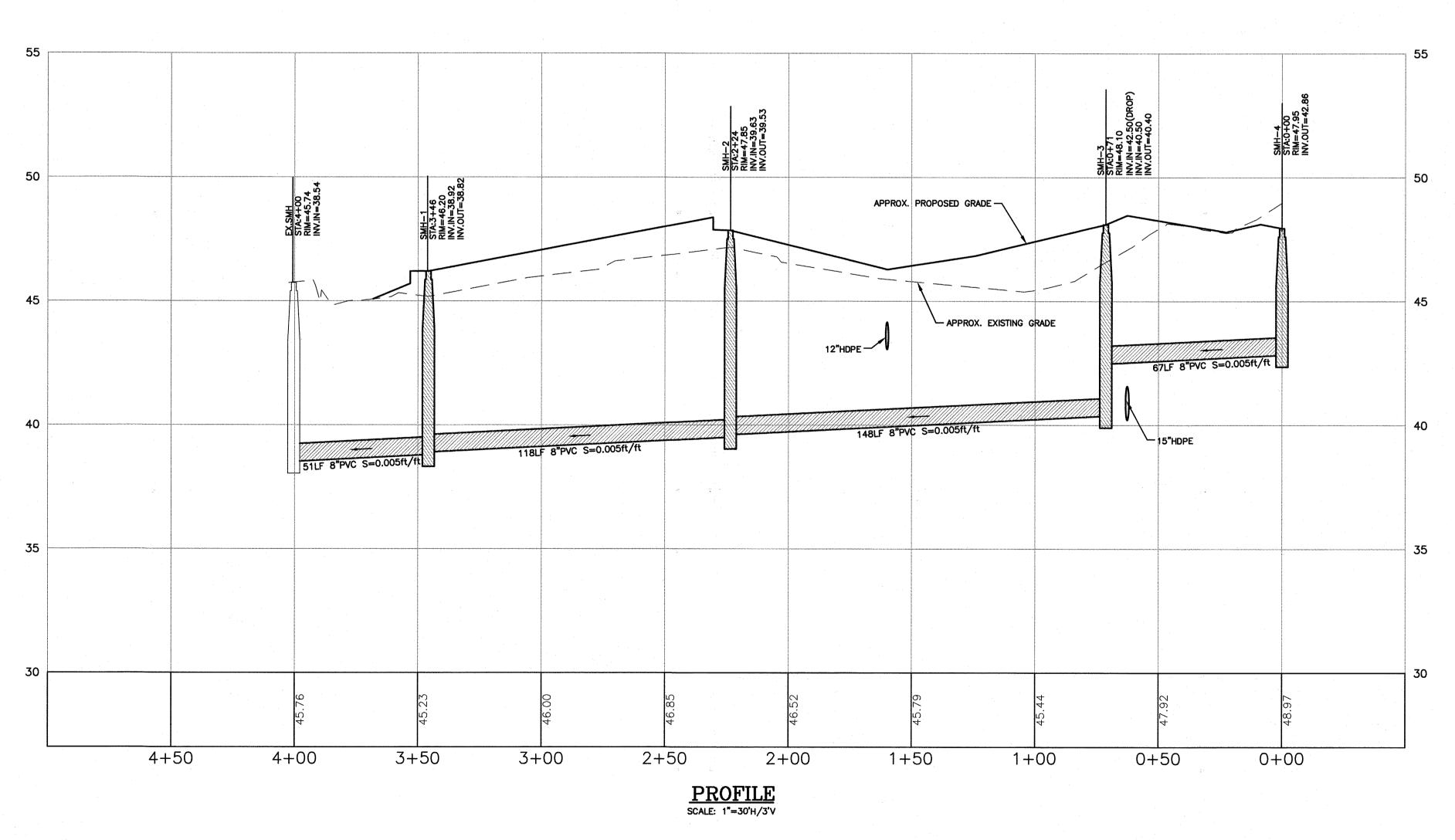
1

NC

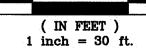
DRAWN BY:

CPS

	RLY HILL ROAD & 1400 PORTSMOUTH, NEW HAMI PREPARED FOR: 4 AMIGOS, I 321 LAFAYETTE ROAD L IAMPTON, NEW HAMPSHIRI	SHIRE	ROAD
GP 603.893.0720	Engineering Design Planning Construction Management GPINET.COM	Greenma 44 Stiles Suite One Salem, N	Э
NOT TO SCALE	DATE: JANUARY 20, 2	020	DRAWING NO. 4582DET.DWG

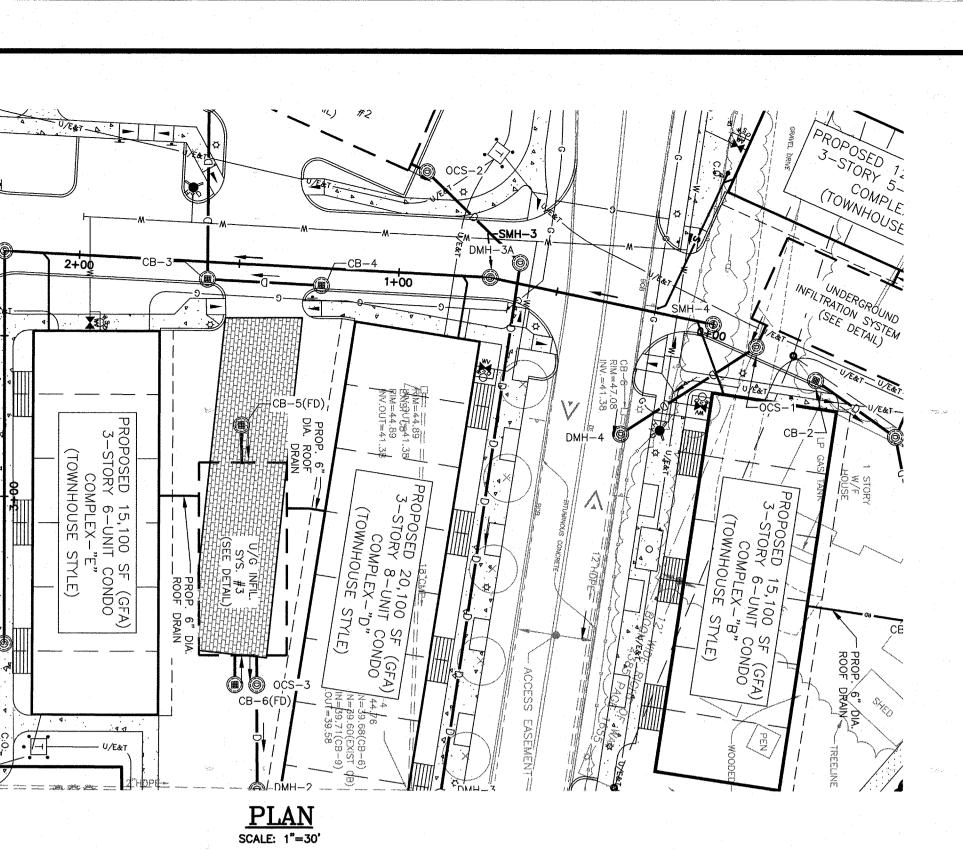

PROJECT NO.

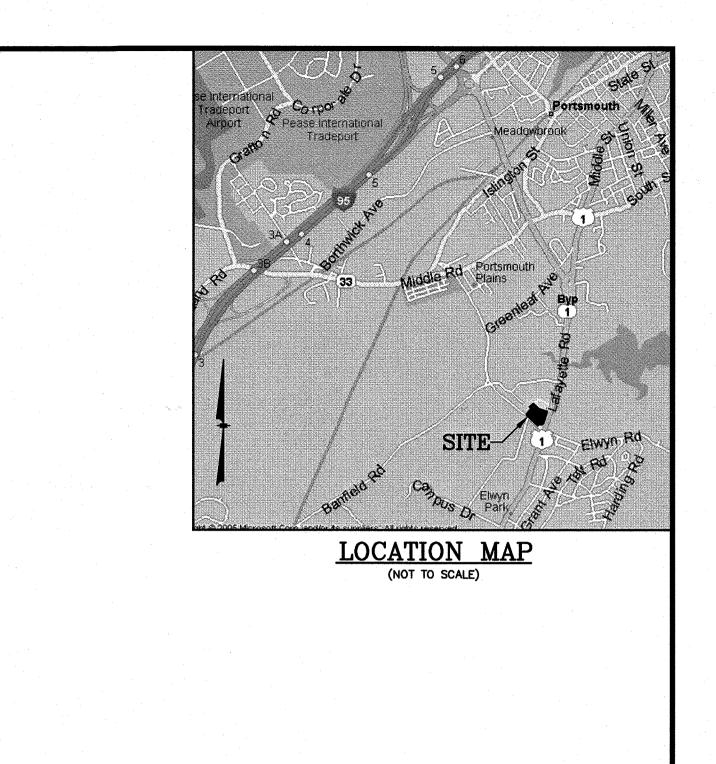
458219

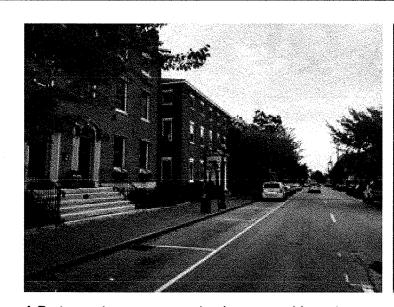

CHECKED BY:

CMT

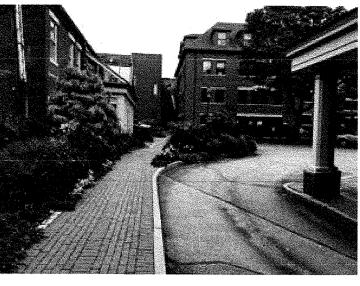
	LEGE	ND	·					
0 1	RON PIN FOUND	ര	UTILITY POLE					
	CONCRETE BOUND FOUND	Ø	DRAIN MANHOLE		\$zzze		CONO	
	RAILROAD SPIKE FOUND	S	SEWER MANHOLE					A . A
• • • •	DRILL HOLE FOUND	Ū ·	TELEPHONE MANHOLE		-UNDERGROUND INFILTRATION SYSTEM INV.PIPES=42.46 INV.IN=42.72(CB-12) JANV.OJJT=42.33			
SGC	EXIST. SLOPED GRANITE CURB		CATCH BASIN		2(CB 33 33		12."HOP	U/E
VGC	EXIST. VERTICAL GRANITE CURB -	w	WATER LINE		-12)		ADD-	&T
BCC	EXIST. BITUMINOUS CONC. LIP CURBING	*а	WATER VALVE		1000		W.	SMH-2 (6
<u>VCC</u>	EXIST. VERTICAL CONCRETE CURB	¥	FIRE HYDRANT			DRIVE STOP		
· · · · · · · · · · · · · · · ·	OVERHEAD SERVICE WIRES	S S S	GAS VALVE		, \			×
<u>DSYL</u>	OUBLE SOLID YELLOW LINE -	G	GAS LINE					
SSWL S	SINGLE SOLID WHITE LINE -	T	UNDERGROUND TELEPHON	E LINE	TUMINO		ACCES	
BWL E	BROKEN WHITE LINE _	UGE	UNDERGROUND ELECTRIC AND TELEPHONE		S SS		ESS	
S	5iGN 💩		WETLAND LINE		/ #		EAS	, P
-	PROP. CLEANOUT PROP. CATCH BASIN	\sim	TREELINE	F ^(*) ÷t		×	CB-5	
H—1 🍥 🛛 F	PROP. DRAIN MANHOLE			्रा कर क्रा क्रा		H H	LEST -	
H—1 🎯 🛛 F	PROP. SEWER MANHOLE				ENTER		F.	
F	PROP. GATE VALVE							
								ja karakara karakara karakara karakara karakara
					W. A	.SMH	12"11	4.




rojects\CAD\458219\4582 SP.dwg SEWER PROF 4/19/22 11:31am


GRAPHIC SCALE

OWNER OF RECORD: MAP 252 LOTS 4, 5 & 9 4 AMIGOS LLC 321 LAFAYETTE ROAD, UNIT D HAMPTON, NH 03842



5 MISC. REVISIONS CMT 4/15/22 4 REVISE BUILDING NUMBERS, ADD STREET ADDRESS CMT 8/19/20 3 MISC. REVISIONS CMT 8/6/20 2 MISC. REVISIONS PER TAC CMT 3/9/20 1 MISC. REVISIONS PER TAC CMT 2/20/20 NO. DESCRIPTION BY DATE REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842					
4 REVISE BUILDING NUMBERS, ADD STREET ADDRESS CMT 8/19/20 3 MISC. REVISIONS CMT 8/6/20 2 MISC. REVISIONS PER TAC CMT 3/9/20 1 MISC. REVISIONS PER TAC CMT 2/20/20 NO. DESCRIPTION BY DATE REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: A AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842			· · · · · · · · · · · · · · · · · · ·		
4 REVISE BUILDING NUMBERS, ADD STREET ADDRESS CMT 8/19/20 3 MISC. REVISIONS CMT 8/6/20 2 MISC. REVISIONS PER TAC CMT 3/9/20 1 MISC. REVISIONS PER TAC CMT 2/20/20 NO. DESCRIPTION BY DATE REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: A AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842		-		-	
3 MISC. REVISIONS CMT 8/6/20 2 MISC. REVISIONS PER TAC CMT 3/9/20 1 MISC. REVISIONS PER TAC CMT 2/20/20 NO. DESCRIPTION BY DATE REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: A AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842 Greenman-Pedersen, Inc.					
2 MISC. REVISIONS PER TAC CMT 3/9/20 1 MISC. REVISIONS PER TAC CMT 2/20/20 NO. DESCRIPTION BY DATE REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: A AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842					
1 MISC. REVISIONS PER TAC CMT 2/20/20 NO. DESCRIPTION BY DATE REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: 4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842 Greenman-Pedersen, Inc. 44 Stiles Road					
NO. DESCRIPTION BY DATE REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: 4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842		2	MISC. REVISIONS PE	R TAC	CMT 3/9/20
REVISIONS SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: 4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842 CODI Engineering Design Blonging Greenman-Pedersen, Inc. 44 Stiles Road		1	MISC. REVISIONS PE	RTAC	CMT 2/20/20
SEWER PLAN/PROFILE ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: 4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842 Greenman-Pedersen, Inc. 44 Stiles Road		NO.	DESCRIPTION		BY DATE
ASSESSORS MAP 252 - LOTS 4,5 & 9 951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: 4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842 Greenman-Pedersen, Inc. 44 Stiles Road			REVIS	IONS	
951 PEVERLY HILL ROAD & 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE PREPARED FOR: 4 AMIGOS, LLC 321 LAFAYETTE ROAD UNIT D HAMPTON, NEW HAMPSHIRE 03842			SEWER PLA	N/PROFILE	
GINING NEW HAMOON CHRISTOPHER CHRISTOPHER CHRISTOPHER			PEVERLY HILL ROAD PORTSMOUTH, N PREPARE 4 AMIG(321 LAFAYETTE	& 1400 LAFAYETTE R IEW HAMPSHIRE ED FOR: OS, LLC ROAD UNIT D	
TYMULA No.17078 603.893.0720 GPINET.COM Salem, NH 03079	CHRISTOPHER HAMOS HEW HAMOS HE CHRISTOPHER M. TYMULA No.17078	GP 603.893.0720	Design Planning Construction Man	44 Stiles R agement Suite One	load
DATE LANULARY 20, 2000 DRAWING NO.	CENSE?	· · · · · · · · · · · · · · · · · · ·			DRAWING NO
SCALE: 1 = 30 DATE: JANUARY 20, 2020 4582 SP.DWG	MININ ONAL SHUTHIN				4582 SP.DWG
Aler DRAWN BY: CHECKED BY: PROJECT NO. SHEET NO.	(115/1/1) 4/19/22				
CCC CMT 458219 1 OF 1		CCC	СМІ	458219	1 OF 1

A Portsmouth street scene that is comparable to the **Wide Sidewalk** community space - 10' wide sidewalk with street trees, the front gardens are set back 6' more.

Cross - block walkways offer pedestrian connectivity and can have attractive gardens.

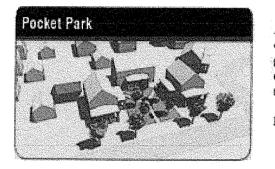
Portsmouth Pocket Park

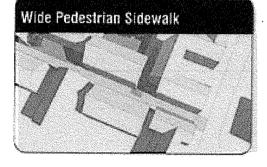
26+00

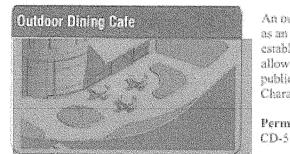
ELWIN

WEST

ROAD


ROAD


PS

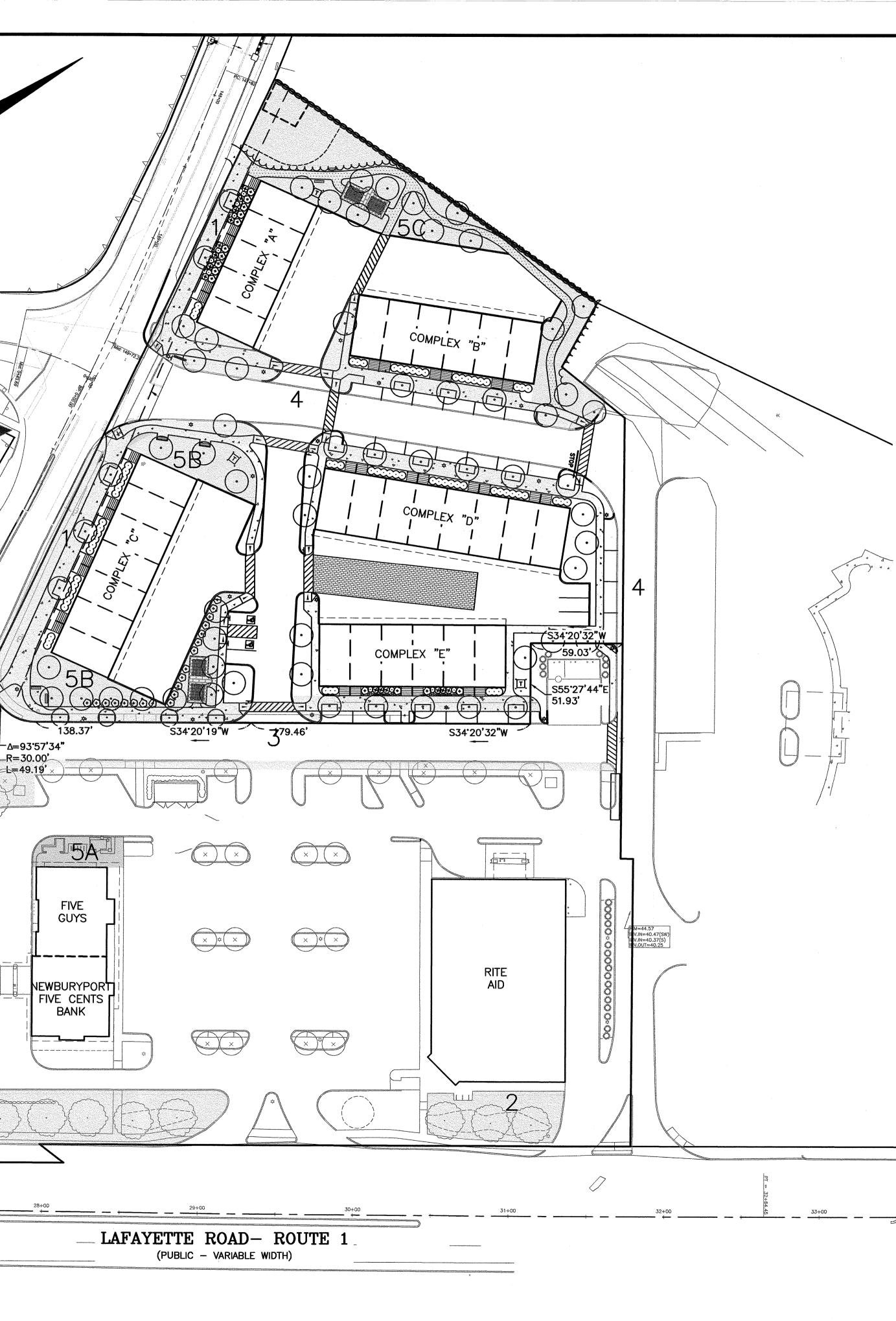

HILL

PEVERLY

Outdoor cafe space in Portsmouth.

Copyright © 2020 by Greenman—Pedersen, Inc. All Rights Reserved

A community space available for informal activities in close proximity to neighborhood residences. A **pocket park** is spatially defined by buildings. Its landscape shall consist of **paths**, lawns and trees, formally disposed. The minimum size shall be 500 sq. ft.


Permitted Districts: All Districts

A wide pedestrian **sidewalk** (a minimum of 10' in width unless otherwise defined by the Ordinance) located between the building façade and the public right of way. Wide pedestrian **sidewalks** provide space between the **façade** and the curbline for comfortable pedestrian movement, **street** trees and **street** furniture.

Permitted Districts: All Districts

An outdoor dining cafe community space is permitted as an ancillary activity of a food and drink establishment where the principal use is otherwise allowed in the district. The area must provide deeded public access to qualify as Community Space in the Character Districts.

Permitted districts: G1, G2, CD4-L2, CD4, CD4-W, CD-5

Defining Community Space:

The gateway zoning district requires a clear definition of community space area as well as the typology of community space, based upon defined types in the Gateway Zoning District in the project's design. There is an overall requirement of 20% open space - which the project complies with a calculation at 24.1% of the total site is proposed as non-paved and non-building space, but there is not an actual numerical value required for community space. At the same time, the community space requirements mandates an acceptable percentage of open space must have a viable function for the aesthetic and social life of the project. The Planning process will make a determination on the appropriateness of the community space, but the objective of the projects design is to maximize that opportunity in balance with the projects density and development pattern.

The approach for community space in the project design is first to make all public street frontages community space in the form of Widened Sidewalks with street trees and sidewalk amenities and street furniture. Additional landscaped areas can have added Community Space values in smaller discrete locales.

1. Frontage on Peverly Hill Road:

We initially considered that we could use this frontage as a Greenway designation, but we perceived that the Greenway typology in the community space assumed something greater in width. Therefore we have used the **Wide Pedestrian Sidewalk**. The current plan shows 25 feet from the right of way to the face of the building, so the 10 foot sidewalk and landscaping along the building more than adequately fits. Entrances to the building doorways are shown on each of the corners. Wide Pedestrian Sidewalks can have parallel garden spaces as linear rain gardens to capture, detain, and treat roof runoff from the buildings and the sidewalks. Street tree plantings in the 10 foot sidewalk can use Flexi pave, a pervious surfacing material that also functions to protect the tree roots.

The city has planned a sidewalk and striped bicycle lanes along this whole frontage. It's assumed that the city will basically require the project to build this sidewalk and it is proposed to be done at 10'. There are questions if the widened sidewalk should be within or outside of the city right of way.

2. Frontage on Lafayette Road to Rite Aid / Five Guys and Newburyport Bank property:

We are not anxious to make major changes to the parking areas because of lease requirements for Rite Aid. The percentage of building and parking is at somewhat a disadvantage except for the frontage along Lafayette Road because of the high percentage of building and parking coverage and the layout. Nevertheless, the project must integrate the entire property area for open space and community space.

The landscape frontage on Lafayette Road around the corner onto Peverly Hill Road has opportunities for landscaping to activate the space for social uses. The plan shows the corner area incorporating the attractive stone wall with a patio and walkway for seating areas. Designated as a **Pocket Park** the prominent street frontage location is a landmark public space location.

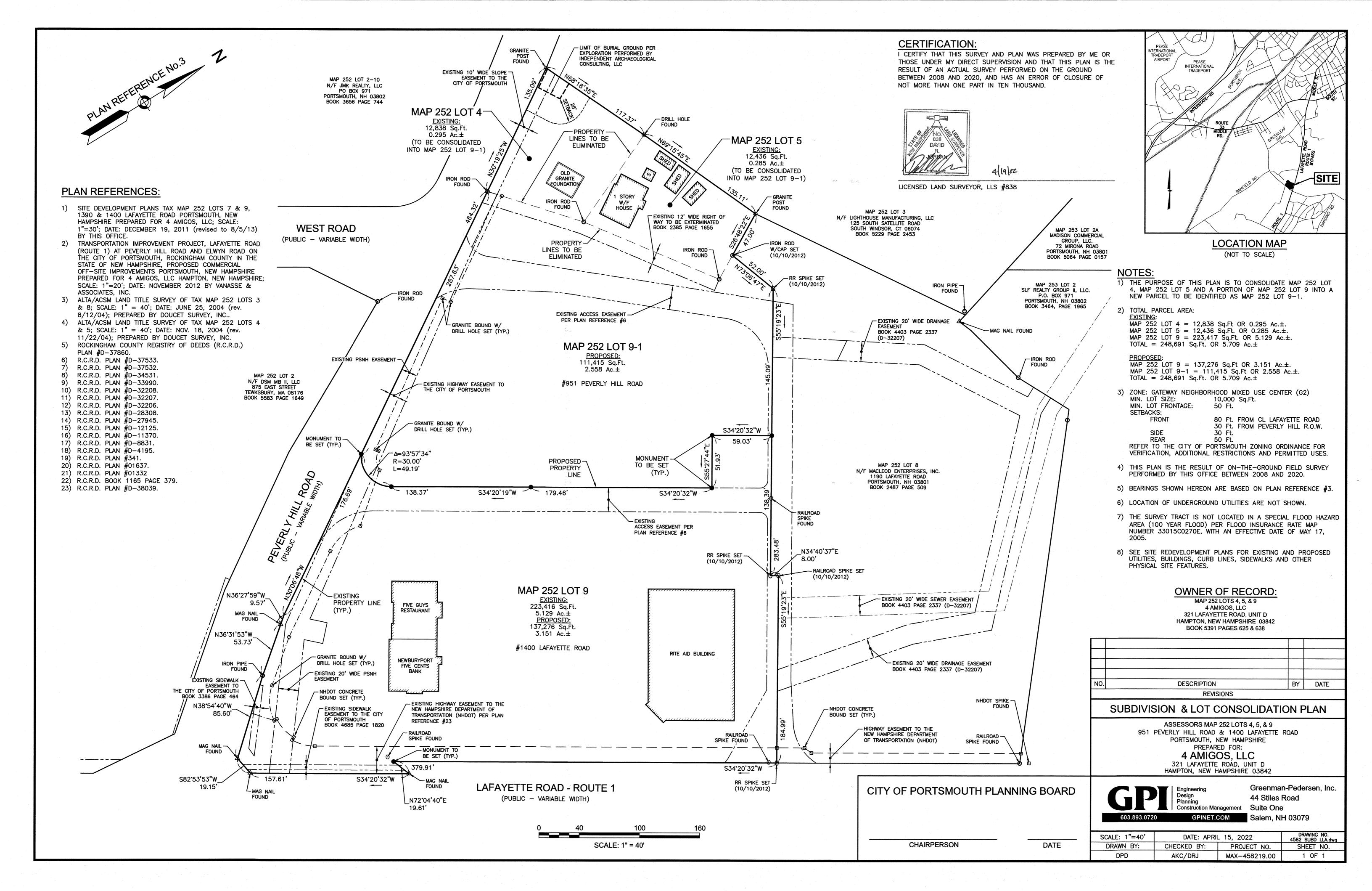
3. Frontage Road facing Rite Aid and Five Guys:

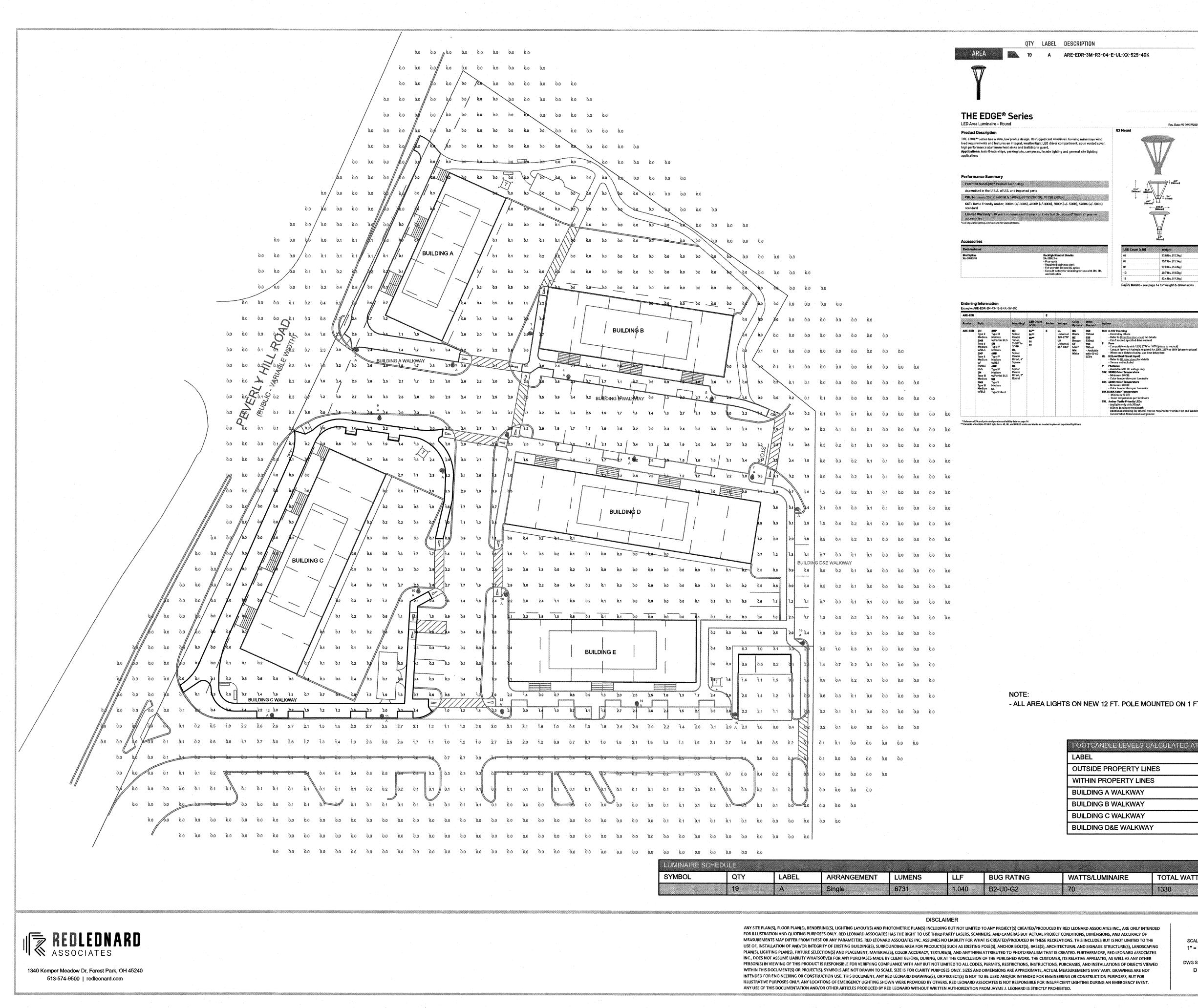
This is the project's principal view from Lafayette Road and represents the transition from the commercial frontage to the residential neighborhood development as proposed. The previous project layout had 10 feet from the curb to the face of the buildings. In recognition that the entrance stairs for each of the townhouse unit pairs are not public space - the plan has been revised to set the bottom stair at the 10' edge, and to position the frontage gardens as 6' of additional streetscape space. Parallel on - street parking has also been located along this frontage for visitor parking.

The most appropriate community space for this street frontage is the **Wide Pedestrian Sidewalk**. That requires a minimum 10 foot space for widened paved sidewalk with street trees and street furniture. It's kind of a downtown street like experience and there are plenty of examples of this scale and character throughout the city in attractive neighborhoods. Wide Pedestrian Sidewalks can have parallel garden spaces as linear rain gardens to capture, detain, and treat roof runoff from the buildings and the sidewalks. Street tree plantings in the 10 foot sidewalk can use Flexi pave, a pervious surfacing material that also functions to protect the tree roots.

4. Side connecting streets:

The street frontage connecting Peverly Hill Road and the frontage to the hotel have a similar condition of being a pre-existing condition to which we must adapt the neighborhood design. On the frontage between Complexes "B" & "D", the use of the **Wide Pedestrian Sidewalk** is the best and most efficient community space because it is the front door to all the new housing and a public streetscape. The hotel facing directional only has room for a 5' widewalk but it is a lesser perspective.


5. Within the project itself there are also some additional community spaces:


A. Outdoor dining patio for Five Guys fits into a community space category of Outdoor Dining Cafe.

B. The north and south ends of Complex 'C' contain green space, trees and benches and are classified as Pocket Parks.

C. The northern portion of the site behind Complexes 'A' and 'B' is a natural woodland area of native trees and ground covers is also best designated as a Pocket Park.

2		MISC. REVISION	IS		СМТ	4/15/22
1		MISC. REVISION	IS		СМТ	3/9/20
NO.		DESCRIPTION			BY	DATE
		REVIS	SIONS			
	COMMU	NITY SPAC	E OV	ERVIEV	V PI	LAN
			& 1400 NEW HAMF ED FOR: OS, L E ROAD U	LAFAYETTE PSHIRE LC		
	GP	Engineering Design Planning Construction Ma	nagement	Greenma 44 Stiles Suite One	Road	ersen, Inc.
	603.893.0720	GPINET.0	COM	Salem, N	H 030	79
	SCALE: NTS	DATE: JANUA	RY 20, 2	020	DR 4582C	AWING NO. OM-SPACE.DWG
	DRAWN BY:	CHECKED BY:	PROJ	ECT NO.		IEET NO.
	CCC	СМТ	45	8219		1 OF 1

THE EDGE® LED Area Luminaire - Round Product Specifications

Rev. Oate: V9 09/07/2021

33.8 lbs. [15.3kg]

35.2 lbs. [15.9kg]

37.0 lbs. (16.8kg)

40.7 lbs. (18.5kg) 42.4 lbs. (19.3kg)

be required for Florida Fish and Wildli

- **CONSTRUCTION & MATERIALS** Slim, low profile, minimizing wind load requirements Luminaire sides are rugged die cast aluminum with integral, weathertight LED driver compartment, spun vented cover, and high performance aluminum heat sinks R3 spider mount hub slip-fits over a 2.375" (60mm) to 3" (76mm) 0.0. minimum 4" (102mm) H steel or aluminum tenon or pole and secures with eight set screws R4 spide mount fits directly inside 4" (102mm) square pole and secures to pole with four set screws R5 spider mount fits directly inside of a 5" [127mm] round pole to provide a clean hardware-less outer appearance Includes leaf/debris guard
- Exclusive Colorfast DeltaGuard® finish features an E-Coat epoxy primer with an ultra-durable powder topcoat, providing excellent resistance to corrosion, ultraviolet degradation and abrasion. 8lack, bronze, silver, and white are available • Weight: See Oimensions and Weight charts on pages 1 and 14
- ELECTRICAL SYSTEM Input Voltage: 120-277V or 347-480V, 50/60Hz, Class 1 drivers
 Power Factor: > 0.9 at full load
- Total Harmonic Distortion: < 20% at full load • 10V Source Current; 40-80 LEDs: 0,15mA; 100-120 LEDs: 0.30mA Integral 10kV surge suppression protection standard
- When code dictates fusing, a slow blow fuse or type C/0 breaker should be used to address inrush current REGULATORY & VOLUNTARY QUALIFICATIONS cULus Listed
- Suitable for wet locations
- · Meets FCC Part 15, Subpart B, Class A limits for conducted and radiated Enclosure meets IP66 requirements per IEC 60529 when ordered without
 P option Certified to ANSI C136.31-2001, 1.56 normal vibration standards when ordered with R3, R4 and R5 mounts
- ANSI C136.2 10KV surge protection, tested in accordance with IEEE/ANSI C62.41.2
- Luminaire and finish endurance tested to withstand 5,000 hours of elevated ambient salt fog conditions as defined in ASTM Standard B 111 OLC qualified with select SKUs, Refer to <u>https://www.designilights.org/search/</u> for most current information
 Meets Buy American requirements within ARRA

CA RESIDENTS WARNING: Cancer and Reproductive Harm –
 www.passwarnings.ca.csv

Total Current (A) System Watts LED Count CCT 120V 208V 240V 277V 347V 480 30K, 40K, 50K, 57K 44 0.36 0.23 0.21 0.20 0.15 0.12 04 35 0.29 0.17 0.15 0.13 0.10 0.07 30K, 40K, 50K, 57K 66 0.52 0.31 0.28 0.26 0.20 0.15 0.41 0.24 0.21 0.18 0.14 0.10 TRL 30K, 40K, 50K, 57K 90 0.75 0.44 0.38 0.34 0.26 0.20 TRL 68 0.57 0.33 0.28 0.25 0.20 0.14 30K, 40K, 50K, 57K 110 0.92 0.53 0.47 0.41 0.32 0.24 TRL 83 0.69 0.40 0.35 0.30 0.24 0.17 30K, 40K, 50K, 57K 130 1.10 0.63 0.55 0.48 0.38 0.28 TRL 99 0.82 0.48 0.41 0.36 0.28 0.21 525mA 30K, 40K, 50K, 57K 70 0.58 0.34 0.31 0.28 0.21 0.16 30K, 40K, 50K, 57K 101 0.84 0.49 0.43 0.38 0.30 0.22 30K, 40K, 50K, 57K 133 1.13 0.66 0.58 0.51 0.39 0.28 30K, 49K, 50K, 57K 171 1.43 0.83 0.74 0.66 0.50 0.38 30K, 40K, 50K, 57K 202 1.69 0.98 0.86 0.77 0.59 0.44 790mA
 30K, 40K, 50K, 57K
 93
 0.78
 0.46
 0.40
 0.36
 0.27
 0.20

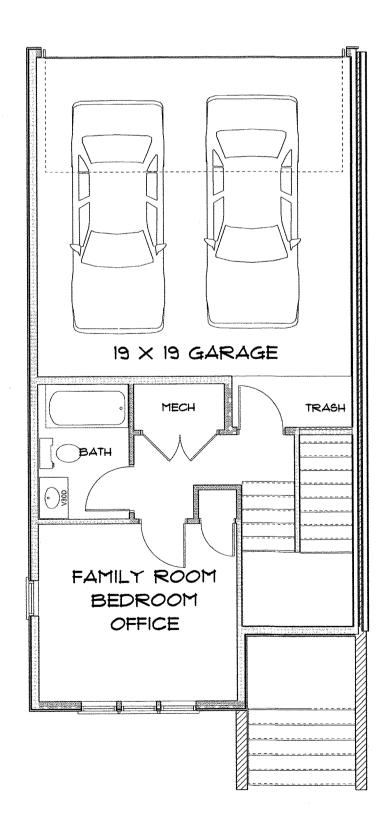
 30K, 40K, 50K, 57K
 134
 1.14
 0.65
 0.57
 0.50
 0.39
 0.29
 04 06 Electrical data at 25°C (77°F). Actual wattage may differ by +/- 10% when operating between 120-277V or 347-480V +/- 10%

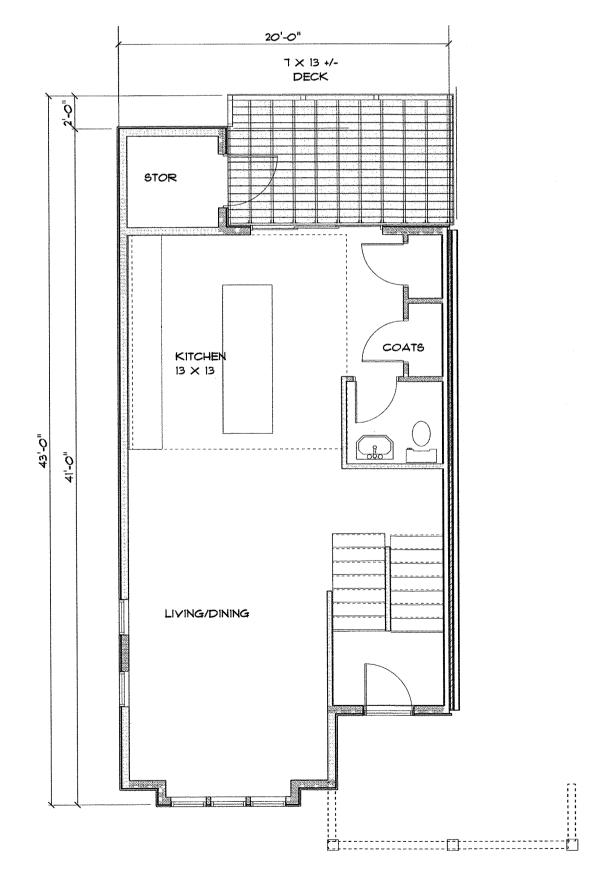
Ambient	ССТ	Initial LMF	25K hr Reported ^a LMF	50K hr Reported ² LMF	75K hr Reported²/ Estimated³ LMF	100K hr Estimated LMF
5°C (41°F)	30K/40K/50K/57K	1.04	1,03	1.03	1.03²	1.03
	TRL	1.06	1.06	1.06	1.063	1.06
10°C (50°F)	30K/40K/50K/57K	1.03	1.02	1.02	1.02 ²	1.02
	TRL	1.04	1.04	1.04	1.043	1.04
	30K/40K/50K/57K	1.02	1.01	1.01	1.012	1.01
5°C (59°F)	TRL	1.03	1.03	1.03	1.033	1.03
0°C (68°F)	30K/40K/50K/57K	1.01	0.99	0.99	0.99²	0.99
0 0 168 FI	TRL	1.01	1,01	1.01	1.013	1.01
rto (992 r)	30K/40K/50K/57K	1.00	0.98	0.98	0.98²	0.98
5°C (77°F)	TRL	1.00	1.00	1.00	1.00°	1,00

² In accordance with IES TM-21, Reported values represent interpol up to 6x the tested duration in the IES LM-80 report for the LED.

LUMINAIRE LOC	ATION SUMMARY	
LUM NO.	LABEL	MTG. HT.
1	А	15
2	А	15
3	A	15
4	А	15
5	А	15
6	Α	15
7	А	15
8	А	15
9	Α	15
10	Α	15
11	А	15
12	Α	15
13	Α	15
. 14	Α	15
15	А	15
16	Α	15
17	Α	15
18	А	15
19	А	15

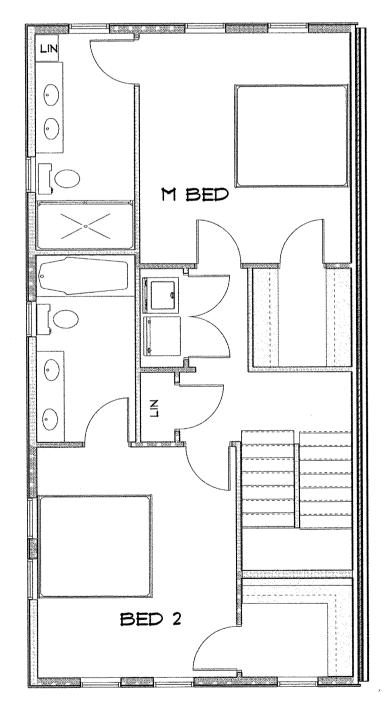
he 6x test duration of the LED.

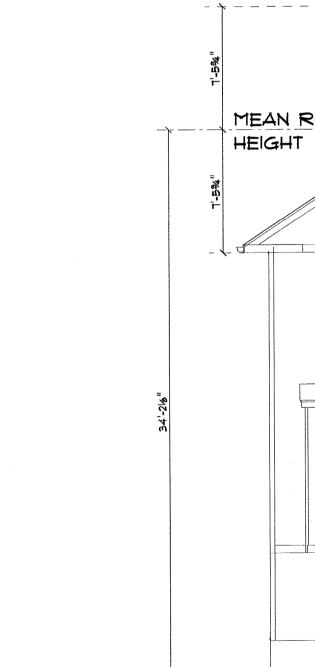

- ALL AREA LIGHTS ON NEW 12 FT. POLE MOUNTED ON 1 FT. CONCRETE BASE + 1.8' SPIDER MOUNTING = 15' NOMINAL OVERALL MOUNTING HEIGHT


	AVG	MAX	MIN	AVG/MIN	MAX/MIN
IES	0.29	3.3	0.0	N.A.	N.A.
S	1.10	4.1	0.0	N.A.	N.A.
	1.15	3.4	0.0	N.A.	N.A.
	2.11	4.0	0.6	3.52	6.67
	0.99	2.8	0.0	N.A.	N.A.
Y	1.74	4.0	0.4	4.35	10.00

TOTAL WATTS	MANUFACTURER	CATALOG LOGIC
1330	Cree Lighting	ARE-EDR-3M-R3-04-E-UL-XX-525-40K

LY INTENDED CY OF ID TO THE INDSCAPING ISSOCIATES Y OTHER CTS VIEWED RE NOT FOR EVENT.	SCALE: 1" = 30' DWG SIZE: D	LAYOUT BY: JSG DATE: 4/6/22	PROJECT NAME: 4 AMIGOS PORTSMOUTH, NH DRAWING NUMBER: RL-8016-S1			
CTS VIEWED RE NOT FOR			DRAWING NUMBER:		·	

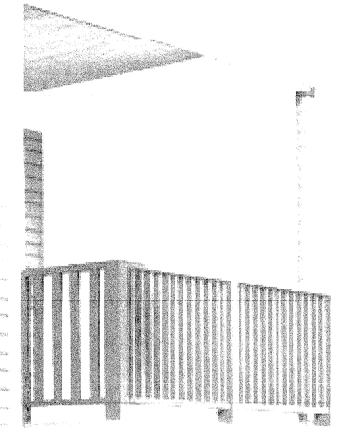



TYPICAL GARAGE LEVEL PLAN SCALE: 3/16" = 1'-0"

TYPICAL SECOND FLOOR PLAN SCALE: 3/16" = 1'-0"

TYPICAL THIRD FLOOR PLAN SCALE: 3/16" = 1'-0"

	Michael J. Keane
	Architects, PLLC ARCHITECTURE PLANNING DESIGN 101 Kent Place Newmarket, NH 03857
	603-292-1400 mjkarchitects.com All drawings and written materials appearing herein constitute
	original unpublished work of Michael J. Keane Architects, PLLC and may not be duplicated, used, or disclosed without the written consent of Michael J. Keane Architects, PLLC, Newmarket, NH. © 2018
	REVISIONS
	APPROVALS
	CONCEPT NOT FOR CONSTRUCTION 1/19/2020
MEAN ROOF 8 HEIGHT	Accept only origianl stamp and signature copies may contain unauthorized modifications
	project MAP 252- LOTS 4,5 &9 1400 LAFAYETTE ROAD PORTSMOUTH NH
	FOR 4 AMIGOS, LLC 321 LAFAYETTE ROAD HAMPTON NH 03842,
	TITLE BUILDING B TYPICAL UNIT
ASSUMED AVERAGE GRADE TO BE VERIFIED FACADE MODULATION WHERE REQUIRED IS PROPOSED TO BE ACHIEVED BY MATERIAL CHANGES ROOF, DORMERS AND FENESTRATION VARIATIONS	DRAWN BY: CHECKED BY:
ONT ELEVATION DIMENSION E: 3/16" = 1'-0"	DATE: SCALE: AS NOTED DRAWING NO.
	1 OF 1
GPI PI	ROJECT NO. 458219 SHEET 1 OF 1



STORMWATER MANAGEMENT REPORT

SITE DEVELOPMENT PLANS 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE

44 Stiles Road, Suite One Salem, NH 03079 (603) 893-0720

Prepared For:

4 Amigos, LLC 321D Lafayette Road Hampton, NH 03842

January 21, 2020

Revised: April 15, 2022

4 Amigos, LLC Site Development Plans Stormwater Management Report

TABLE OF CONTENTS

Executive Summary	Section 1
Existing Conditions	Section 2
Proposed Conditions	Section 3
Stormwater Modeling Methodology	Section 4
USGS Map	Appendix A
NRCS Soil Information	Appendix B
Test Pit Logs	Appendix C
Pre-Development HydroCAD Printouts	Appendix D
Post-Development HydroCAD Printouts	Appendix E
Supplemental Calculations and Backup Data	Appendix F
NRCC Extreme Precipitation Tables	
BMP Worksheets	
Underground Infiltration System Stage-Storage	Tables
72-hour Drawdown Calculations	
BMP Pollutant Removal Efficiency	
Drainage Areas Plans	Inside Back Cover
Inspection & Maintenance Manual (I&M)	Inside Back Cover

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 1

EXECUTIVE SUMMARY

This report contains the stormwater management analysis for the proposed site development at 1400 Lafayette Road in Portsmouth, New Hampshire. The analysis includes both pre- and postdrain calculations of stormwater runoff rates from the project site. This analysis has been prepared in accordance with both the City of Portsmouth requirements and the New Hampshire Department of Environmental Services (NHDES) Stormwater Manual, Volume 2.

The project site consists of three parcels of land identified as Tax Map 252 Lots 4, 5 & 9 with a combined size of 5.71 acres located north of the intersection of Lafayette Road & Peverly Hill Road.

This vacant pad site is part of the former Yoken's Restaurant and Function Facility which was partially redeveloped in 2013 to include the adjacent pharmacy, bank & restaurant development. Lots 4 & 5 are residential lots which are now proposed to be combined with the new residential development.

The applicant is proposing a multi-unit residential condo development which includes five 3-story Townhouse Style buildings. Access is provided from both Lafayette Road & Peverly Hill Road. Onsite parking includes a combination of street parking and individual townhouse garages.

A new stormwater management system has been designed as part of the proposed development to collect and treat the runoff from the new impervious surface areas. Several stormwater best management practices will be implemented as part of this project. These include deep-sump, hooded catch basins, First Defense hydrodynamic separators, and three underground infiltration systems. The proposed closed drainage system within the site will discharge treated water to the existing closed drainage system that discharges to the north which ultimately flows to Sagamore Creek.

The study watershed area is approximately 6.0-acres that primarily drains northerly across the site towards an existing onsite drainage system. For analysis purposes, the site was modeled with multiple design points as described in the Drainage Summary (Table 1) of this report.

As outlined by NHDES AoT there is a 10-year window for phased developments. Since this current phase of the overall development is within the 10-year window the stormwater analysis, post-development conditions described herein are compared with pre-development conditions prior to the 2013 redevelopment phase, with some adjustments made to current storm/rainfall intensities. Refer to Table 1 and associated notes.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

Design Storm	Pre circa 2013 ¹ (cfs)	Adjusted pre circa 2013 ² (cfs)	Post circa 2013 ¹ (cfs)	Adjusted Post circa 2013 ² (cfs)	Proposed ³ (cfs)	Change ⁵ (cfs)	
	D	ESIGN POINT	Г #1 (Existing C	Catch Basin 3A)4		
2-year	-	-	1.1	1.4	1.4	0.0	
10-year	-	-	1.7	2.2	2.2	0.0	
25-year	-	-	2.0	2.8	2.8	0.0	
50-year	-	-	2.2	3.4	3.3	-0.1	
		DESIGN POI	NT #3 (Existing	g Catch Basin)			
2-year	7.0	8.8	2.7	3.9	5.1	-3.7	
10-year	10.3	13.7	5.0	9.8	10.4	-3.3	
25-year	12.6	17.6	7.2	13.1	15.4	-2.2	
50-year	13.9	21.1	8.7	16.3	17.5	-3.6	
	DESIGN POINT #4 (Hotel Property)						
2-year	2.4	2.9	1.3	1.6	1.7	-1.2	
10-year	3.4	4.5	1.8	2.4	2.8	-1.7	
25-year	4.2	5.8	2.2	3.1	3.6	-2.2	
50-year	4.6	6.9	2.5	3.7	4.3	-2.6	

TABLE 1: PEAK RATE ANALYSIS SUMMARY

(All values shown are peak rates in CFS)

Lots 4 & 5 which drain towards Design Point #2 were not part of the original study area; therefore, the pre-development for this design point is based on current site conditions.

Design Storm	Pre- development (cfs)	Post- development (cfs)	Change (cfs)			
DESIGN POINT #2 (Lot 3)						
2-year	0.8	0.3	-0.5			
10-year	2.1	0.7	-1.4			
25-year	3.3	1.1	-2.2			
50-year	4.5	1.5	-3.0			

(All values shown are peak rates in CFS)

¹ Previous analysis used the SCS Soil Distribution Map rainfall data in accordance with 2013 regulations.

² Previous analysis adjusted to use current "Extreme Precipitation" data plus 15% coastal increase per current NHDES requirements.

³ Uses current "Extreme Precipitation" plus 15% coastal increase per current NHDES requirements.

⁴ Existing catch basin 3A was a proposed catch basin in the 2013 post-development and was therefore not present for the 2013 predevelopment.

⁵ Change values for Design Point #1 reported as difference between Adjusted Post circa 2013 and Proposed columns. Change values for Design Points #3 and #4 reported as difference between Adjusted Pre circa 2013 and Proposed Columns.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

In conclusion, by incorporating a new on-site drainage system that includes provisions for stormwater treatment and infiltration, there will be a decrease in the peak rate of runoff as a result of this project.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 2

EXISTING CONDITIONS

As previously stated, the existing conditions used for this stormwater analysis date back to the condition prior to the 2013 redevelopment project. Accordingly, the below description is consistent with the description provided in the previous stormwater report submitted at that time with the exception of Lots 4 & 5 which were not part of the original analysis. These two residential lots contain a small house, some grass areas, a few sheds and about 50 wooded coverage, all of which drains overland towards the rear of the property onto adjacent Lot 3.

Portsmouth Tax Map 252 Lot 9 is a 5.1-acre parcel of land located in the Gateway District (GW) in Portsmouth, NH. The parcel of land is the location of the former Yoken's Restaurant and Function Facility. The site is bounded by Lafayette Road to the east, Peverly Road to the south, residential property to the west and the Comfort Inn to the north. Onsite topography ranges from 1-5% and slopes towards the Comfort Inn along the north.

The Yoken's building has been razed, but for analysis purposes the former building and impervious area has been modeled in the existing conditions as if it were still existing. The remainder of the site is mostly paved, occupying approximately 93% of the site, with limited green space.

The existing drainage system consists of a series of catch basins and manholes which ultimately discharge north of the site boundary towards a drainage swale north of the Comfort Inn. This ultimately flows to Sagamore Creek. For analysis purposes, the existing catch basin, labeled CB D and the Hotel Property have been labeled as the design points. These areas represent the runoff discharging from the site as either shallow concentrated flows or flows into the existing drainage system via pipe flow.

The existing onsite catch basins consist of shallow structures with varying pipe sizes and material type. Based on the shallow flat pipes, along the front of the site near Lafayette Road, the existing conditions HydroCAD model indicated several existing catch basins overtopping for even the more frequent less intense design storms. In order to check the runoff results for accuracy due to any modeling limitations in the software, we modeled this portion of the existing site as one subcatchment to compare the results with the individually modeled areas. This "check" is shown in the HydroCAD model as subcatchment "Check". The results of this analysis indicate a level of precision of approximately 10% which indicates predevelopment runoff rates appear to be reasonable for comparison to the post development design points. Ultimately any runoff will drain northerly across the site as overland flow and eventually towards the drainage swale located north of the existing Comfort Inn property.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

The existing soils are also classified by the Soil Survey of Rockingham County (NRCS Manual) as 140C "Chatfield-Hollis-Canton Complex", 299 "Udorthents" and 699 "Urban Land" (see soil map), and described by NRCS as follows:

140C - Chatfield-Hollis-Canton complex (SCS Classification "B") consists of 8 to 15 percent slopes and are very stony. These gently sloping soils occur as areas so intermingled that mapping them separately was not practical. They are on low, knobby hills and ridges that in most places have a northeast orientation. Areas are irregularly shaped and are 4 to 400 acres in size. They are about 35 percent Chatfield soil, 20 percent Hollis soil, 20 percent Canton soil, and 25 percent other soils. Stones cover 0.01 to 3 percent of the surface.

299 - Udorthents (SCS Classification "Unknown") consists of areas of soils formed by cutting or filling for construction projects. Udorthents are near or adjacent to most of the soils of the survey area. Because of the extreme variability of Udorthents, a reference pedon is not given.

699 - Urban Land (SCS Classification "Unknown") consists of land that is covered by streets, parking lots and buildings. Areas are rectangular or irregularly shaped and are 4 to 250 acres in size. Inclusions make up 15 percent or less of the map unit. They consist of scattered areas of soil throughout the map unit.

Based on the majority of the site consisting of Udorthents and Urban land having no known hydrologic soil classification, the analysis used the hydrologic soil group classification B consistent with Chatfield-Hollis-Canton complex present onsite. Additionally test pits were performed onsite indicating loamy sand and sands consistent with a "B" soil.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 3

PROPOSED CONDITIONS

The applicant is proposing a multi-unit residential condo development which includes five 3-story Townhouse Style buildings. Access is provided from both Lafayette Road & Peverly Hill Road. Onsite parking includes a combination of street parking and individual townhouse garages.

A new stormwater management system has been designed as part of the proposed development to collect and treat the runoff from the new impervious surface areas. Several stormwater best management practices will be implemented as part of this project. These include deep-sump, hooded catch basins, First Defense hydrodynamic separators, and three underground infiltration systems. The proposed closed drainage system within the site will discharge treated water to the existing closed drainage system that discharges to the north which ultimately flows to Sagamore Creek.

In order to safeguard against oil or gas introduction into the drainage system, stormwater runoff from parking areas and driveways will be collected in hooded catch basins with deep sumps and routed to a First Defense hydrodynamic separator. Such pretreatment of stormwater reduces both suspended solids and oils in the drainage system and is recommended by NHDES.

Another safeguard against future intrusion of contaminants into the groundwater is the implementation of an Inspection & Maintenance Manual (I&M), which will assure proper function of drainage components and reduce sediment entering the system. To prevent erosion and sedimentation during construction, Best Management Practices including stabilized construction exits, silt fence, catch basin inserts, and temporary and permanent seeding have been incorporated into the construction sequence.

The total area of disturbance related to the proposed construction on this property is approximately 115,000 square feet; therefore the project is subject to US EPA Construction General Permit requirements.

Due to disturbing more than 15,000 sf of area, the City of Portsmouth requires Enhanced Stormwater Treatment Standards to be followed. Per the NHDES "BMP Pollutant Removal Efficiency" table contained within the New Hampshire Stormwater Manual, the underground infiltration systems have a Total Suspended Soils (TSS) Removal Rate of 90% and a Total Nitrogen (TN) Removal Rate of 60%. This satisfies the requirements of §7.6.2-1(a) of the Site Plan Review Regulations (See Appendix F). In addition to these enhanced requirements, following approval from the City, relevant information will need to be submitted to the Pollutant Tracking and Accounting Program (PTAP) online data portal managed by the UNH Stormwater Center. The Planning Department will be notified of the PTAP data submittal.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 4 STORMWATER MODELING METHODOLOGY

The drainage system for this project was modeled using HydroCAD, a stormwater modeling computer program that analyzes the hydrology, and hydraulics of stormwater runoff. HydroCAD is based largely on the hydrology techniques developed by the Soil Conservation Service (SCS/NRCS), combined with other hydrology and hydraulics calculations. For a given rainfall event, these techniques are used to generate hydrographs throughout a watershed. This provides verification that a given drainage system is adequate for the area under consideration, or to predict where flooding or erosion is likely to occur.

In HydroCAD, each watershed is modeled as a Subcatchment, streams and culverts as a Reach (or Pond, depending on available storage capacity), and large wetlands and other natural or artificial storage areas as a Pond. SCS hydrograph generation and routing procedures were used to model both Pre-development and Post-development runoff conditions.

The Pre-development and Post-development watershed limits and the subcatchment characteristics were determined using both USGS and on-the-ground topographic survey information and through visual, on-site inspection. Conservative estimates were used at all times in estimating the hydrologic characteristics of each watershed or subcatchment.

STORMWATER MANAGEMENT REPORT

SITE DEVELOPMENT PLANS 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE

44 Stiles Road, Suite One Salem, NH 03079 (603) 893-0720

Prepared For:

4 Amigos, LLC 321D Lafayette Road Hampton, NH 03842

January 21, 2020

Revised: April 15, 2022

4 Amigos, LLC Site Development Plans Stormwater Management Report

TABLE OF CONTENTS

Executive Summary	Section 1					
Existing Conditions	Section 2					
Proposed Conditions	Section 3					
Stormwater Modeling Methodology	Section 4					
USGS Map	Appendix A					
NRCS Soil Information	Appendix B					
Test Pit Logs	Appendix C					
Pre-Development HydroCAD Printouts App						
Post-Development HydroCAD PrintoutsApper						
Supplemental Calculations and Backup Data	Appendix F					
NRCC Extreme Precipitation Tables						
BMP Worksheets						
Underground Infiltration System Stage-Storage	Tables					
72-hour Drawdown Calculations						
BMP Pollutant Removal Efficiency						
Drainage Areas Plans	Inside Back Cover					
Inspection & Maintenance Manual (I&M)	Inside Back Cover					

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 1

EXECUTIVE SUMMARY

This report contains the stormwater management analysis for the proposed site development at 1400 Lafayette Road in Portsmouth, New Hampshire. The analysis includes both pre- and postdrain calculations of stormwater runoff rates from the project site. This analysis has been prepared in accordance with both the City of Portsmouth requirements and the New Hampshire Department of Environmental Services (NHDES) Stormwater Manual, Volume 2.

The project site consists of three parcels of land identified as Tax Map 252 Lots 4, 5 & 9 with a combined size of 5.71 acres located north of the intersection of Lafayette Road & Peverly Hill Road.

This vacant pad site is part of the former Yoken's Restaurant and Function Facility which was partially redeveloped in 2013 to include the adjacent pharmacy, bank & restaurant development. Lots 4 & 5 are residential lots which are now proposed to be combined with the new residential development.

The applicant is proposing a multi-unit residential condo development which includes five 3-story Townhouse Style buildings. Access is provided from both Lafayette Road & Peverly Hill Road. Onsite parking includes a combination of street parking and individual townhouse garages.

A new stormwater management system has been designed as part of the proposed development to collect and treat the runoff from the new impervious surface areas. Several stormwater best management practices will be implemented as part of this project. These include deep-sump, hooded catch basins, First Defense hydrodynamic separators, and three underground infiltration systems. The proposed closed drainage system within the site will discharge treated water to the existing closed drainage system that discharges to the north which ultimately flows to Sagamore Creek.

The study watershed area is approximately 6.0-acres that primarily drains northerly across the site towards an existing onsite drainage system. For analysis purposes, the site was modeled with multiple design points as described in the Drainage Summary (Table 1) of this report.

As outlined by NHDES AoT there is a 10-year window for phased developments. Since this current phase of the overall development is within the 10-year window the stormwater analysis, post-development conditions described herein are compared with pre-development conditions prior to the 2013 redevelopment phase, with some adjustments made to current storm/rainfall intensities. Refer to Table 1 and associated notes.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

Design Storm	Pre circa 2013 ¹ (cfs)	Adjusted pre circa 2013 ² (cfs)	Post circa 2013 ¹ (cfs)	Adjusted Post circa 2013 ² (cfs)	Proposed ³ (cfs)	Change ⁵ (cfs)					
DESIGN POINT #1 (Existing Catch Basin 3A) ⁴											
2-year	-	-	1.1	1.4	1.4	0.0					
10-year	-	-	1.7	2.2	2.2	0.0					
25-year	-	-	2.0	2.8	2.8	0.0					
50-year	-	-	2.2	3.4	3.3	-0.1					
		DESIGN POI	NT #3 (Existing	g Catch Basin)							
2-year	7.0	8.8	2.7	3.9	5.1	-3.7					
10-year	10.3	13.7	5.0	9.8	10.4	-3.3					
25-year	12.6	17.6	7.2	13.1	15.4	-2.2					
50-year	13.9	21.1	8.7	16.3	17.5	-3.6					
DESIGN POINT #4 (Hotel Property)											
2-year	2.4	2.9	1.3	1.6	1.7	-1.2					
10-year	3.4	4.5	1.8	2.4	2.8	-1.7					
25-year	4.2	5.8	2.2	3.1	3.6	-2.2					
50-year	4.6	6.9	2.5	3.7	4.3	-2.6					

TABLE 1: PEAK RATE ANALYSIS SUMMARY

(All values shown are peak rates in CFS)

Lots 4 & 5 which drain towards Design Point #2 were not part of the original study area; therefore, the pre-development for this design point is based on current site conditions.

Design Storm	Pre- development (cfs)	Post- development (cfs)	Change (cfs)							
	DESIGN POINT #2 (Lot 3)									
2-year	0.8	0.3	-0.5							
10-year	2.1	0.7	-1.4							
25-year	3.3	1.1	-2.2							
50-year	4.5	1.5	-3.0							

(All values shown are peak rates in CFS)

¹ Previous analysis used the SCS Soil Distribution Map rainfall data in accordance with 2013 regulations.

² Previous analysis adjusted to use current "Extreme Precipitation" data plus 15% coastal increase per current NHDES requirements.

³ Uses current "Extreme Precipitation" plus 15% coastal increase per current NHDES requirements.

⁴ Existing catch basin 3A was a proposed catch basin in the 2013 post-development and was therefore not present for the 2013 predevelopment.

⁵ Change values for Design Point #1 reported as difference between Adjusted Post circa 2013 and Proposed columns. Change values for Design Points #3 and #4 reported as difference between Adjusted Pre circa 2013 and Proposed Columns.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

In conclusion, by incorporating a new on-site drainage system that includes provisions for stormwater treatment and infiltration, there will be a decrease in the peak rate of runoff as a result of this project.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 2

EXISTING CONDITIONS

As previously stated, the existing conditions used for this stormwater analysis date back to the condition prior to the 2013 redevelopment project. Accordingly, the below description is consistent with the description provided in the previous stormwater report submitted at that time with the exception of Lots 4 & 5 which were not part of the original analysis. These two residential lots contain a small house, some grass areas, a few sheds and about 50 wooded coverage, all of which drains overland towards the rear of the property onto adjacent Lot 3.

Portsmouth Tax Map 252 Lot 9 is a 5.1-acre parcel of land located in the Gateway District (GW) in Portsmouth, NH. The parcel of land is the location of the former Yoken's Restaurant and Function Facility. The site is bounded by Lafayette Road to the east, Peverly Road to the south, residential property to the west and the Comfort Inn to the north. Onsite topography ranges from 1-5% and slopes towards the Comfort Inn along the north.

The Yoken's building has been razed, but for analysis purposes the former building and impervious area has been modeled in the existing conditions as if it were still existing. The remainder of the site is mostly paved, occupying approximately 93% of the site, with limited green space.

The existing drainage system consists of a series of catch basins and manholes which ultimately discharge north of the site boundary towards a drainage swale north of the Comfort Inn. This ultimately flows to Sagamore Creek. For analysis purposes, the existing catch basin, labeled CB D and the Hotel Property have been labeled as the design points. These areas represent the runoff discharging from the site as either shallow concentrated flows or flows into the existing drainage system via pipe flow.

The existing onsite catch basins consist of shallow structures with varying pipe sizes and material type. Based on the shallow flat pipes, along the front of the site near Lafayette Road, the existing conditions HydroCAD model indicated several existing catch basins overtopping for even the more frequent less intense design storms. In order to check the runoff results for accuracy due to any modeling limitations in the software, we modeled this portion of the existing site as one subcatchment to compare the results with the individually modeled areas. This "check" is shown in the HydroCAD model as subcatchment "Check". The results of this analysis indicate a level of precision of approximately 10% which indicates predevelopment runoff rates appear to be reasonable for comparison to the post development design points. Ultimately any runoff will drain northerly across the site as overland flow and eventually towards the drainage swale located north of the existing Comfort Inn property.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

The existing soils are also classified by the Soil Survey of Rockingham County (NRCS Manual) as 140C "Chatfield-Hollis-Canton Complex", 299 "Udorthents" and 699 "Urban Land" (see soil map), and described by NRCS as follows:

140C - Chatfield-Hollis-Canton complex (SCS Classification "B") consists of 8 to 15 percent slopes and are very stony. These gently sloping soils occur as areas so intermingled that mapping them separately was not practical. They are on low, knobby hills and ridges that in most places have a northeast orientation. Areas are irregularly shaped and are 4 to 400 acres in size. They are about 35 percent Chatfield soil, 20 percent Hollis soil, 20 percent Canton soil, and 25 percent other soils. Stones cover 0.01 to 3 percent of the surface.

299 - Udorthents (SCS Classification "Unknown") consists of areas of soils formed by cutting or filling for construction projects. Udorthents are near or adjacent to most of the soils of the survey area. Because of the extreme variability of Udorthents, a reference pedon is not given.

699 - Urban Land (SCS Classification "Unknown") consists of land that is covered by streets, parking lots and buildings. Areas are rectangular or irregularly shaped and are 4 to 250 acres in size. Inclusions make up 15 percent or less of the map unit. They consist of scattered areas of soil throughout the map unit.

Based on the majority of the site consisting of Udorthents and Urban land having no known hydrologic soil classification, the analysis used the hydrologic soil group classification B consistent with Chatfield-Hollis-Canton complex present onsite. Additionally test pits were performed onsite indicating loamy sand and sands consistent with a "B" soil.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 3

PROPOSED CONDITIONS

The applicant is proposing a multi-unit residential condo development which includes five 3-story Townhouse Style buildings. Access is provided from both Lafayette Road & Peverly Hill Road. Onsite parking includes a combination of street parking and individual townhouse garages.

A new stormwater management system has been designed as part of the proposed development to collect and treat the runoff from the new impervious surface areas. Several stormwater best management practices will be implemented as part of this project. These include deep-sump, hooded catch basins, First Defense hydrodynamic separators, and three underground infiltration systems. The proposed closed drainage system within the site will discharge treated water to the existing closed drainage system that discharges to the north which ultimately flows to Sagamore Creek.

In order to safeguard against oil or gas introduction into the drainage system, stormwater runoff from parking areas and driveways will be collected in hooded catch basins with deep sumps and routed to a First Defense hydrodynamic separator. Such pretreatment of stormwater reduces both suspended solids and oils in the drainage system and is recommended by NHDES.

Another safeguard against future intrusion of contaminants into the groundwater is the implementation of an Inspection & Maintenance Manual (I&M), which will assure proper function of drainage components and reduce sediment entering the system. To prevent erosion and sedimentation during construction, Best Management Practices including stabilized construction exits, silt fence, catch basin inserts, and temporary and permanent seeding have been incorporated into the construction sequence.

The total area of disturbance related to the proposed construction on this property is approximately 115,000 square feet; therefore the project is subject to US EPA Construction General Permit requirements.

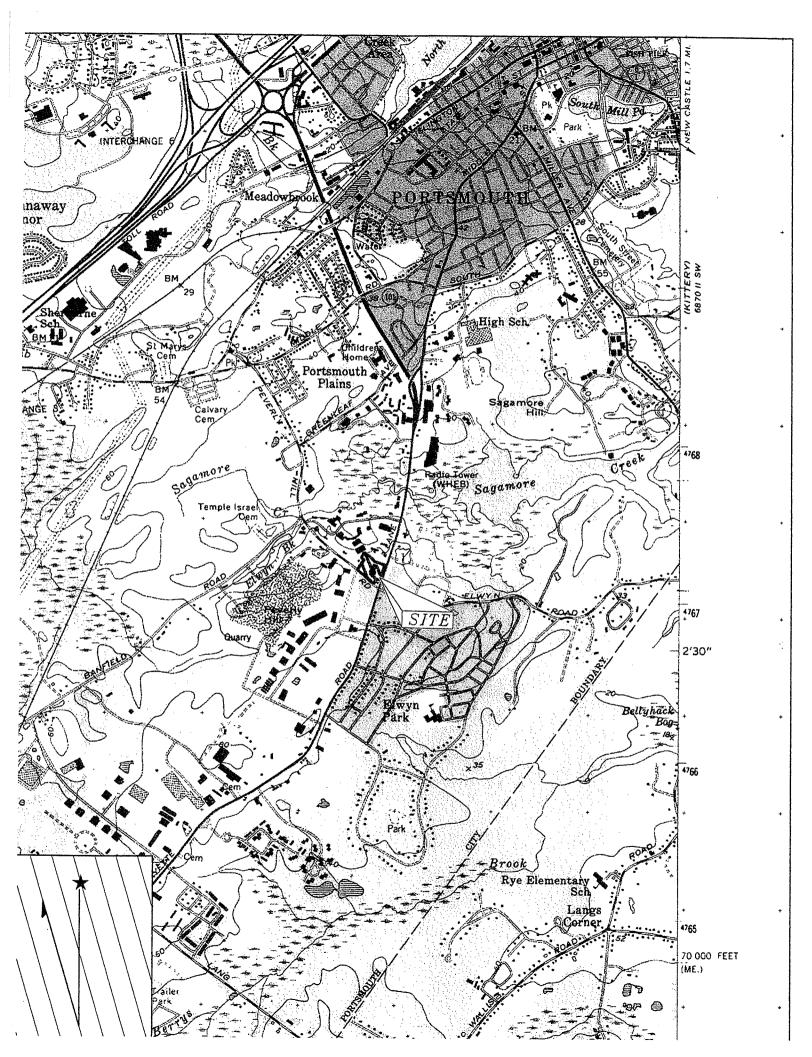
Due to disturbing more than 15,000 sf of area, the City of Portsmouth requires Enhanced Stormwater Treatment Standards to be followed. Per the NHDES "BMP Pollutant Removal Efficiency" table contained within the New Hampshire Stormwater Manual, the underground infiltration systems have a Total Suspended Soils (TSS) Removal Rate of 90% and a Total Nitrogen (TN) Removal Rate of 60%. This satisfies the requirements of §7.6.2-1(a) of the Site Plan Review Regulations (See Appendix F). In addition to these enhanced requirements, following approval from the City, relevant information will need to be submitted to the Pollutant Tracking and Accounting Program (PTAP) online data portal managed by the UNH Stormwater Center. The Planning Department will be notified of the PTAP data submittal.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

SECTION 4 STORMWATER MODELING METHODOLOGY

The drainage system for this project was modeled using HydroCAD, a stormwater modeling computer program that analyzes the hydrology, and hydraulics of stormwater runoff. HydroCAD is based largely on the hydrology techniques developed by the Soil Conservation Service (SCS/NRCS), combined with other hydrology and hydraulics calculations. For a given rainfall event, these techniques are used to generate hydrographs throughout a watershed. This provides verification that a given drainage system is adequate for the area under consideration, or to predict where flooding or erosion is likely to occur.

In HydroCAD, each watershed is modeled as a Subcatchment, streams and culverts as a Reach (or Pond, depending on available storage capacity), and large wetlands and other natural or artificial storage areas as a Pond. SCS hydrograph generation and routing procedures were used to model both Pre-development and Post-development runoff conditions.


The Pre-development and Post-development watershed limits and the subcatchment characteristics were determined using both USGS and on-the-ground topographic survey information and through visual, on-site inspection. Conservative estimates were used at all times in estimating the hydrologic characteristics of each watershed or subcatchment.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 January 21, 2020

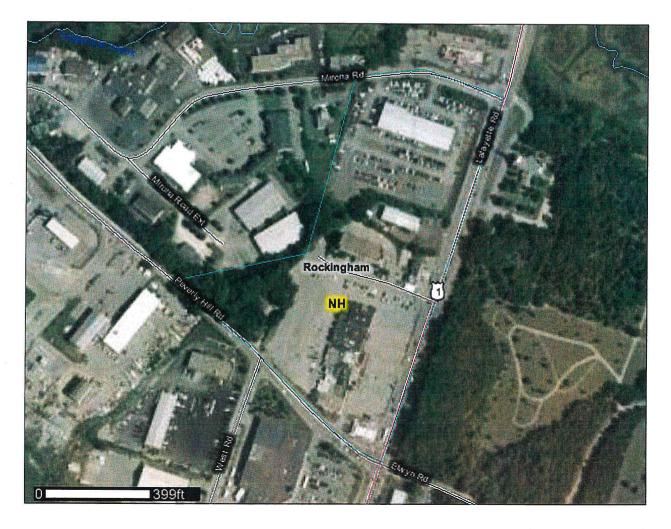
.

APPENDIX A

USGS Map

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 January 21, 2020

APPENDIX B


NRCS Soil Information

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Rockingham County, New Hampshire

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://soils.usda.gov/sqi/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (http://offices.sc.egov.usda.gov/locator/app? agency=nrcs) or your NRCS State Soil Scientist (http://soils.usda.gov/contact/ state_offices/).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Soil Data Mart Web site or the NRCS Web Soil Survey. The Soil Data Mart is the data storage site for the official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	7
Soil Map	8
Legend	9
Map Unit Legend	10
Map Unit Descriptions	10
Rockingham County, New Hampshire	12
140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very	
stony	12
299—Udorthents, smoothed	14
699—Urban land	14
Soil Information for All Uses	15
Soil Properties and Qualities	15
Soil Qualities and Features	15
Hydrologic Soil Group	15
References	20

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the

individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soillandscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

Stony Spot	📰 Spoil Area	عر Sodic Spot	Slide or Slip	Sinkhole	😑 Severely Eroded Spot	Sandy Spot	+ Saline Spot	Rock Outcrop	Perennial Water	Ø Miscellaneous Water	🛠 Mine or Quarry	Marsh or swamp	A Lava Flow	😰 Landfill	Gravelly Spot	🗙 Gravel Pit			※ Clay Spot	🗙 Borrow Pit	 Blowout 	Special Point Features	Soil Map Units	Soils	Area of Interest (AOI)	Area of Interest (AOI)	MAP L	
									Local Roads	Major Roads		Interstate Highways	Rails	Transportation	Streams and Canals	Water Features	Cities	Political Features	Other		-	Ē	► Other			Very Stony Spot	MAP LEGEND	
				imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	compiled and digitized probably differs from the background	The orthonhoto or other base man on which the soil lines were	Date(s) aerial images were photographed: 8/23/2003	Survey Area Data: Version 11, Oct 27, 2009		ure versioni uate(s) listed below.	This product is generated from the USDA-NRCS certified data as of the version detector interdisciplination	Coordinate System. OT M ZOTIE TSN NAD83	ţ, ĸ	Source of Map: Natural Resources Conservation Service	nieasurements.	Please rely on the bar scale on each map sheet for accurate map		soils that could have been shown at a more detailed scale.	placement. The maps do not show the small areas of contrasting	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line	1	Warning: Soil Map may not be valid at this scale.		The soil surveys that comprise your AOI were mapped at 1:24,000.		Map Scale: 1:2,940 if printed on A size (8.5" × 11") sheet.	MAP INFORMATION	

.

Map Unit Legend

Rockingham County, New Hampshire (NH015)						
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI			
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony	3.8	20.2%			
299	Udorthents, smoothed	4.1	22.1%			
699	Urban land	10.7	57.7%			
Totals for Area of Intere	st	18.6	100.0%			

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic classes rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

11

Rockingham County, New Hampshire

140C—Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony

Map Unit Setting

Elevation: 0 to 2,100 feet *Mean annual precipitation:* 28 to 46 inches *Mean annual air temperature:* 39 to 55 degrees F *Frost-free period:* 60 to 195 days

Map Unit Composition

Chatfield and similar soils: 35 percent Canton and similar soils: 20 percent Hollis and similar soils: 20 percent Minor components: 25 percent

Description of Chatfield

Setting

Parent material: Till

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 20 to 40 inches to lithic bedrock
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 20 inches: Fine sandy loam 20 to 31 inches: Cobbly fine sandy loam 31 to 35 inches: Unweathered bedrock

Description of Hollis

Setting

Parent material: Till

Properties and qualities

Slope: 8 to 15 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 10 to 20 inches to lithic bedrock Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): Low to high (0.01 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Very low (about 1.6 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 2 inches: Fine sandy loam 2 to 13 inches: Cobbly fine sandy loam 13 to 17 inches: Unweathered bedrock

Description of Canton

Setting

Parent material: Till

Properties and qualities

Slope: 8 to 15 percent Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 5.3 inches)

Interpretive groups

Land capability (nonirrigated): 6s

Typical profile

0 to 5 inches: Gravelly fine sandy loam 5 to 21 inches: Gravelly fine sandy loam 21 to 60 inches: Loamy sand

Minor Components

Not named

Percent of map unit: 7 percent

Newfields

Percent of map unit: 5 percent

Ossipee and greenwood

Percent of map unit: 5 percent Landform: Bogs

Scarboro

Percent of map unit: 3 percent Landform: Depressions

Walpole

Percent of map unit: 3 percent Landform: Depressions

Rock outcrop

Percent of map unit: 2 percent

299-Udorthents, smoothed

Map Unit Composition Udorthents and similar soils: 100 percent

Description of Udorthents

Properties and qualities

Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None

699—Urban land

Map Unit Composition

Urban land: 85 percent *Minor components:* 15 percent

Minor Components

Not named

Percent of map unit: 15 percent

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

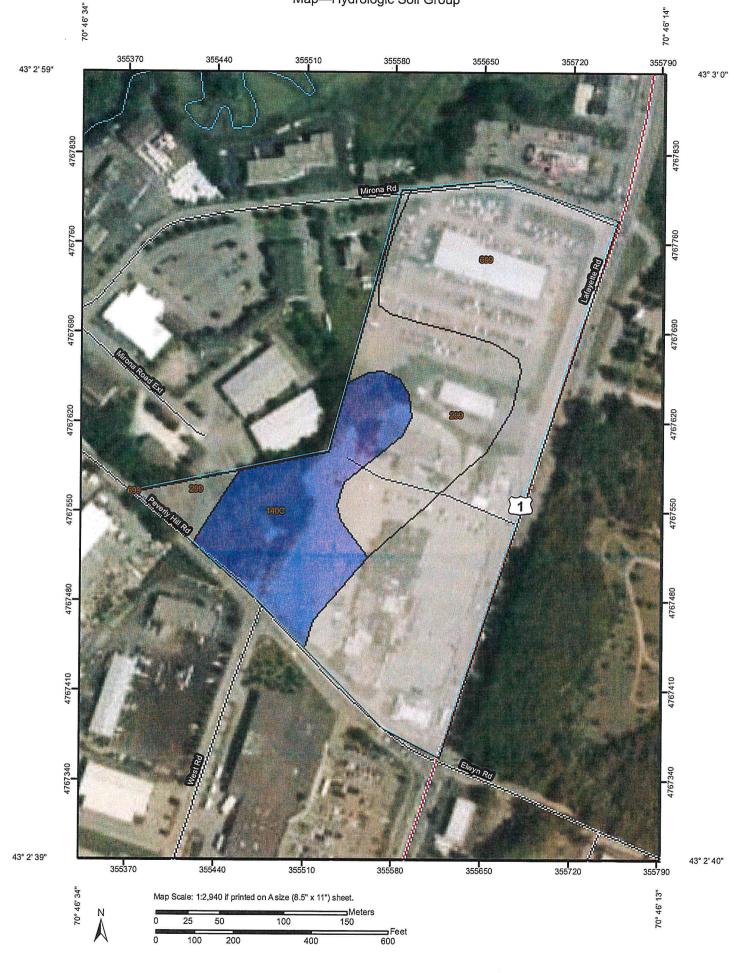
Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

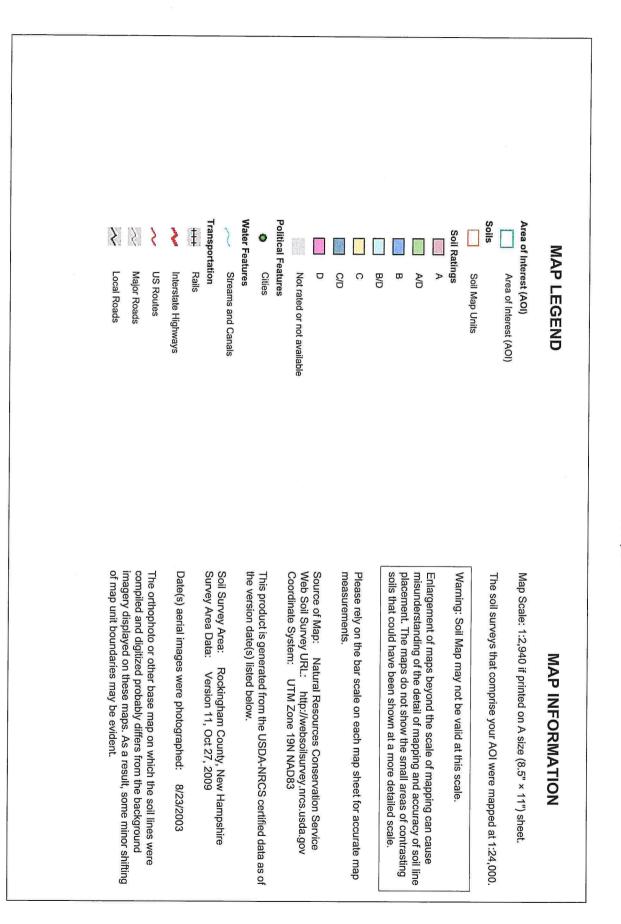
Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.


Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Custom Soil Resource Report Map—Hydrologic Soil Group

Table—Hydrologic Soil Group

Hydro	logic Soil Group— Summary by Map Unit	— Rockingham C	ounty, New Hampshire	(NH015)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
140C	Chatfield-Hollis-Canton complex, 8 to 15 percent slopes, very stony	B	3.8	20.2%
299	Udorthents, smoothed		4.1	22.1%
699	Urban land		10.7	57.7%
Totals for Area of In	terest		18.6	100.0%

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://soils.usda.gov/

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://soils.usda.gov/

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://soils.usda.gov/

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.glti.nrcs.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://soils.usda.gov/

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://soils.usda.gov/ United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210.

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

APPENDIX C

Test Pit Logs

			SI PII DA	A	
Client: Project Add Town, State: Job Number Date: Performed b	ress: 1400 Ports : 4582 Dece	nigos LLC Lafayette Road mouth, NH 19 mber 16, 2019 e Pantermoller			
Test Pit No. ESHWT: Refusal:		12-1 >54" 54"		S Soil: nding Water: ots:	Chatfield-Hollis-Canton None None
Depth 0-48" 48-54"	Horizon A B	Soil Texture Loamy Sand Loamy Sand	Color 10yr 3/2 10yr 5/6	Consistence FR FR	Mottles; Quantity/Contrast None visible
Test Pit No. ESHWT: Refusal:		12-2 >120" >120"		Soil: nding Water: ts:	Chatfield-Hollis-Canton None 54"
Depth 0-9" 9-18" 18-120"	Horizon A B C	Soil Texture Loamy Sand Loamy Sand Loamy Sand	Color 10yr 3/2 10yr 5/6 7.5yr 4/3	Consistence FR FR FR FR	Mottles; Quantity/Contrast
Test Pit No. ESHWT: Refusal:		12-3 >122" >122"	SCS	Soil: ding Water:	20% Gravel Chatfield-Hollis-Canton None None
Depth 0-30" 30-122"	Horizon Fill C	Soil Texture Mixed Soils/pavement Loamy Sand	Color 7.5yr 4/3	Consistence FR	Mottles; Quantity/Contrast Mixed Soils/Urban Fill/Pavement Gravel 20% Gravel
Test Pit No. ESHWT: Refusal:		12-4 >120" >120"		Soil: ding Water: ts:	Chatfield-Hollis-Canton None None
Depth 0-120"	Horizon Fill	Soil Texture Mixed Soils	Color	Consistence	Mottles; Quantity/Contrast Bricks, Urban Fill
Test Pit No. ESHWT: Refusal:		12-5 >120" >120"		Soil: ding Water: ts:	Chatfield-Hollis-Canton None None
Depth 0-36"	Horizon Fill	Soil Texture Mixed Soils	Color	Consistence	Mottles; Quantity/Contrast Bricks, Urban Fill

TEST PIT DATA

36-120"

С

7.5yr 4/3

Loamy Sand

FR

20% Gravel

4 Amigos LLC December 16, 2019 Page 2

Test Pit No.	12-6			Soil:	Chatfield-Hollis-Canton
ESHWT:	>120"			ding Water:	None
Refusal:	>120"			ts:	None
Depth	Horizon	Soil Texture	Color	Consistence	Mottles; Quantity/Contrast
0-12"	A	Loamy Sand	10yr 3/2	FR	
12-34"	B	Loamy Sand	10yr 5/6	FR	
34-120"	C	Medium Sand	2.5y 7/4	FR	

NEN HAMPS Designer of Subsurface Disposal Systems Diane M. Pantermoller No. 1665 12/16/19 E

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 January 21, 2020

APPENDIX D

.

Pre-Development HydroCAD Printouts

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: RUNOFF TO EXIST CB Runoff Area=51,345 sf 0.00% Impervious Runoff Depth=0.67" Flow Length=415' Tc=6.7 min CN=61 Runoff=0.68 cfs 2,846 cf
Subcatchment 2S: RUNOFF TO EXIST CB Flow Length=180' Tc=5.4 min CN=61 Runoff=0.17 cfs 690 cf
Subcatchment 100S: RUNOFF TO CB3Runoff Area=15,623 sf92.95% ImperviousRunoff Depth=3.14"Flow Length=100'Tc=2.2 minCN=95Runoff=1.42 cfs4,082 cf
Subcatchment 200S: RUNOFF TO LOT 3 Runoff Area=34,976 sf 20.22% Impervious Runoff Depth=0.86" Flow Length=183' Tc=3.2 min CN=65 Runoff=0.77 cfs 2,504 cf
Subcatchment 300S: RUNOFF TO CB8Runoff Area=10,218 sf64.84% ImperviousRunoff Depth=2.19"Flow Length=160'Tc=3.2 minCN=85Runoff=0.67 cfs1,866 cf
Subcatchment 301S: RUNOFF TO CB9Runoff Area=3,956 sf67.62% ImperviousRunoff Depth=2.19"Flow Length=126'Tc=1.8 minCN=85Runoff=0.27 cfs722 cf
Subcatchment 302S: RUNOFF TO CB6Runoff Area=11,791 sf86.68% ImperviousRunoff Depth=2.93"Flow Length=122'Slope=0.0100 '/'Tc=2.6 minCN=93Runoff=1.01 cfs2,877 cf
Subcatchment 303S: RUNOFF TO CB 5A Runoff Area=3,507 sf 92.02% Impervious Runoff Depth=3.14" Flow Length=105' Tc=0.8 min CN=95 Runoff=0.33 cfs 916 cf
Subcatchment 304S: RUNOFF TO CB5 Runoff Area=12,564 sf 93.01% Impervious Runoff Depth=3.14" Flow Length=336' Tc=3.2 min CN=95 Runoff=1.10 cfs 3,283 cf
Subcatchment 305S: RUNOFF TO CB12 Runoff Area=8,890 sf 80.99% Impervious Runoff Depth=2.73" Flow Length=109' Tc=1.0 min CN=91 Runoff=0.76 cfs 2,023 cf
Subcatchment 400S: RUNOFF TO HOTEL Runoff Area=17,525 sf 96.44% Impervious Runoff Depth=3.35" Flow Length=168' Tc=3.4 min CN=97 Runoff=1.57 cfs 4,897 cf
Pond 12: EXIST. CB12 (STORMCEPTOR) Peak Elev=44.14' Inflow=0.76 cfs 2,023 cf 12.0" Round Culvert n=0.013 L=16.0' S=0.0231 '/' Outflow=0.76 cfs 2,023 cf
Pond DP3: EXIST CB-D (DESIGN POINT #3) Inflow=3.86 cfs 13,456 cf Primary=3.86 cfs 13,456 cf
Pond EX. CB3A: EX. CB-3A - DESIGN POINT #1 Peak Elev=42.56' Inflow=1.42 cfs 4,082 cf 12.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' Outflow=1.42 cfs 4,082 cf
Pond EX. CB5: EX. CB-5 Peak Elev=42.71' Inflow=1.10 cfs 3,538 cf 12.0" Round Culvert n=0.013 L=170.0' S=0.0025 '/' Outflow=1.10 cfs 3,538 cf
Pond EX. CB5A: EX. CB-5A Peak Elev=42.20' Inflow=1.38 cfs 4,454 cf 12.0" Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Outflow=1.38 cfs 4,454 cf

Type III 24-hr 2-Year Rainfall=3.70" Printed 1/21/2020

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC

Pond EX. CB6: EX. CB-6 (STORMCEPTOR) Peak Elev=41.64' Inflow=2.39 cfs 7,331 cf 12.0" Round Culvert n=0.013 L=165.0' S=0.0053 '/' Outflow=2.39 cfs 7,331 cf Pond EX. CB8: EX. CB-8 Peak Elev=41.84' Inflow=0.67 cfs 1.866 cf 12.0" Round Culvert n=0.013 L=128.0' S=0.0058 '/' Outflow=0.67 cfs 1.866 cf Pond EX. CB9; EX. CB-9 Peak Elev=40.80' Inflow=0.93 cfs 2,589 cf 12.0" Round Culvert n=0.013 L=30.0' S=0.0230 '/' Outflow=0.93 cfs 2,589 cf Pond EX. DMH4: EXIST. DMH4 Peak Elev=40.63' Inflow=3.43 cfs 10.610 cf 18.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/' Outflow=3.43 cfs 10,610 cf Pond EX.CB: EXISTING CB Peak Elev=41.64' Inflow=0.17 cfs 690 cf 18.0" Round Culvert n=0.025 L=132.0' S=0.0135 1/ Outflow=0.17 cfs 690 cf Pond EX.INF2: EXIST. INFILTRATION SYSTEM Peak Elev=44.13' Storage=684 cf Inflow=0.76 cfs 2,023 cf Discarded=0.04 cfs 1,769 cf Primary=0.15 cfs 255 cf Outflow=0.19 cfs 2,024 cf

> Total Runoff Area = 182,849 sf Runoff Volume = 26,708 cf Average Runoff Depth = 1.75" 56.18% Pervious = 102,721 sf 43.82% Impervious = 80,128 sf

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1S: RUNOFF TO EXIST CB Runoff Area=51,345 sf 0.00% Impervious Runoff Depth=1.75" Flow Length=415' Tc=6.7 min CN=61 Runoff=2.22 cfs 7,485 cf
Subcatchment 2S: RUNOFF TO EXIST CB Runoff Area=12,454 sf 0.00% Impervious Runoff Depth=1.75" Flow Length=180' Tc=5.4 min CN=61 Runoff=0.56 cfs 1,815 cf
Subcatchment 100S: RUNOFF TO CB3Runoff Area=15,623 sf92.95% ImperviousRunoff Depth=5.02"Flow Length=100'Tc=2.2 minCN=95Runoff=2.21 cfs6,541 cf
Subcatchment 200S: RUNOFF TO LOT 3 Runoff Area=34,976 sf 20.22% Impervious Runoff Depth=2.07" Flow Length=183' Tc=3.2 min CN=65 Runoff=2.10 cfs 6,039 cf
Subcatchment 300S: RUNOFF TO CB8Runoff Area=10,218 sf64.84% ImperviousRunoff Depth=3.94"Flow Length=160'Tc=3.2 minCN=85Runoff=1.18 cfs3,351 cf
Subcatchment 301S: RUNOFF TO CB9Runoff Area=3,956 sf67.62% ImperviousRunoff Depth=3.94"Flow Length=126'Tc=1.8 minCN=85Runoff=0.48 cfs1,298 cf
Subcatchment 302S: RUNOFF TO CB6 Runoff Area=11,791 sf 86.68% Impervious Runoff Depth=4.80" Flow Length=122' Slope=0.0100 '/' Tc=2.6 min CN=93 Runoff=1.60 cfs 4,714 cf
Subcatchment 303S: RUNOFF TO CB 5A Runoff Area=3,507 sf 92.02% Impervious Runoff Depth=5.02" Flow Length=105' Tc=0.8 min CN=95 Runoff=0.52 cfs 1,468 cf
Subcatchment 304S: RUNOFF TO CB5Runoff Area=12,564 sf93.01% ImperviousRunoff Depth=5.02"Flow Length=336'Tc=3.2 minCN=95Runoff=1.71 cfs5,260 cf
Subcatchment 305S: RUNOFF TO CB12 Flow Length=109' Tc=1.0 min CN=91 Runoff=1.24 cfs 3,390 cf
Subcatchment 400S: RUNOFF TO HOTEL Runoff Area=17,525 sf 96.44% Impervious Runoff Depth=5.26" Flow Length=168' Tc=3.4 min CN=97 Runoff=2.41 cfs 7,675 cf
Pond 12: EXIST. CB12 (STORMCEPTOR) Peak Elev=45.06' Inflow=1.24 cfs 3,390 cf 12.0'' Round Culvert n=0.013 L=16.0' S=0.0231 '/' Outflow=1.24 cfs 3,390 cf
Pond DP3: EXIST CB-D (DESIGN POINT #3) Inflow=9.80 cfs 26,537 cf Primary=9.80 cfs 26,537 cf
Pond EX. CB3A: EX. CB-3A - DESIGN POINT #1 Peak Elev=42.81' Inflow=2.21 cfs 6,541 cf 12.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' Outflow=2.21 cfs 6,541 cf
Pond EX. CB5: EX. CB-5 Peak Elev=47.39' Inflow=4.34 cfs 6,406 cf 12.0" Round Culvert n=0.013 L=170.0' S=0.0025 '/' Outflow=4.34 cfs 6,406 cf
Pond EX. CB5A: EX. CB-5A Peak Elev=47.03' Inflow=4.56 cfs 7,874 cf 12.0" Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Outflow=4.56 cfs 7,874 cf

Type III 24-hr 10-Year Rainfall=5.61" Printed 1/21/2020

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC

Pond EX. CB6: EX. CB-6 (STORMCEPTOR) Peak Elev=46.56' Inflow=5.74 cfs 12,588 cf 12.0" Round Culvert n=0.013 L=165.0' S=0.0053 '/' Outflow=5.74 cfs 12,588 cf Pond EX. CB8: EX. CB-8 Peak Elev=42.08' Inflow=1.18 cfs 3.351 cf 12.0" Round Culvert n=0.013 L=128.0' S=0.0058 '/' Outflow=1.18 cfs 3,351 cf Pond EX. CB9: EX. CB-9 Peak Elev=41.60' Inflow=1.64 cfs 4,649 cf 12.0" Round Culvert n=0.013 L=30.0' S=0.0230 '/' Outflow=1.64 cfs 4,649 cf Pond EX. DMH4: EXIST, DMH4 Peak Elev=41.46' Inflow=7.80 cfs 19.053 cf 18.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/' Outflow=7.80 cfs 19,053 cf Pond EX.CB: EXISTING CB Peak Elev=41.95' Inflow=0.56 cfs 1.815 cf 18.0" Round Culvert n=0.025 L=132.0' S=0.0135 '/' Outflow=0.56 cfs 1,815 cf Pond EX.INF2: EXIST. INFILTRATION SYSTEM Peak Elev=45.04' Storage=931 cf Inflow=1.24 cfs 3,390 cf Discarded=0.04 cfs 2,245 cf Primary=3.13 cfs 1,145 cf Outflow=3.18 cfs 3,390 cf

> Total Runoff Area = 182,849 sf Runoff Volume = 49,037 cf Average Runoff Depth = 3.22" 56.18% Pervious = 102,721 sf 43.82% Impervious = 80,128 sf

Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020

4582-PredrainTypePrepared by Greenman-Pedersen, Inc.HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC

Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

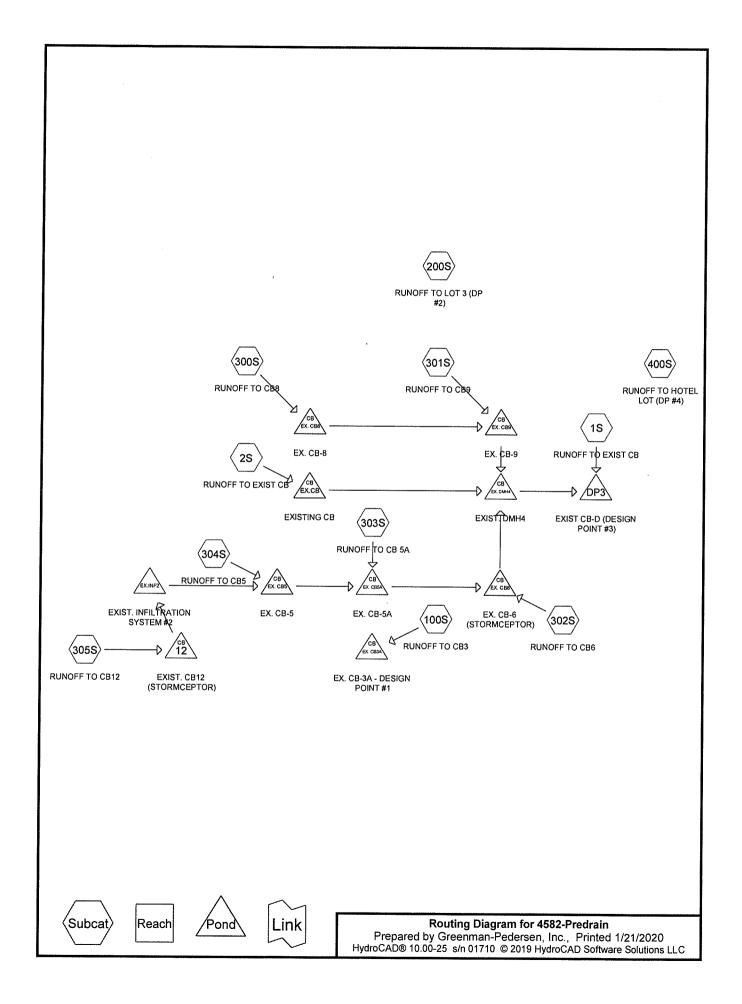
Subcatchment 1S: RUNOFF TO EXIST CB Runoff Area=51,345 sf 0.00% Impervious Runoff Depth=2.79" Flow Length=415' Tc=6.7 min CN=61 Runoff=3.68 cfs 11,933 cf
Subcatchment 2S: RUNOFF TO EXIST CB Runoff Area=12,454 sf 0.00% Impervious Runoff Depth=2.79" Flow Length=180' Tc=5.4 min CN=61 Runoff=0.93 cfs 2,894 cf
Subcatchment 100S: RUNOFF TO CB3Runoff Area=15,623 sf92.95% ImperviousRunoff Depth=6.53"Flow Length=100'Tc=2.2 minCN=95Runoff=2.83 cfs8,495 cf
Subcatchment 200S: RUNOFF TO LOT 3 Runoff Area=34,976 sf 20.22% Impervious Runoff Depth=3.20" Flow Length=183' Tc=3.2 min CN=65 Runoff=3.30 cfs 9,314 cf
Subcatchment 300S: RUNOFF TO CB8Runoff Area=10,218 sf64.84% ImperviousRunoff Depth=5.37"Flow Length=160'Tc=3.2 minCN=85Runoff=1.59 cfs4,570 cf
Subcatchment 301S: RUNOFF TO CB9 Runoff Area=3,956 sf 67.62% Impervious Runoff Depth=5.37" Flow Length=126' Tc=1.8 min CN=85 Runoff=0.65 cfs 1,769 cf
Subcatchment 302S: RUNOFF TO CB6Runoff Area=11,791 sf86.68% ImperviousRunoff Depth=6.29"Flow Length=122'Slope=0.0100 '/'Tc=2.6 minCN=93Runoff=2.07 cfs6,181 cf
Subcatchment 303S: RUNOFF TO CB 5A Runoff Area=3,507 sf 92.02% Impervious Runoff Depth=6.53" Flow Length=105' Tc=0.8 min CN=95 Runoff=0.67 cfs 1,907 cf
Subcatchment 304S: RUNOFF TO CB5Runoff Area=12,564 sf93.01% ImperviousRunoff Depth=6.53"Flow Length=336'Tc=3.2 minCN=95Runoff=2.19 cfs6,832 cf
Subcatchment 305S: RUNOFF TO CB12 Runoff Area=8,890 sf 80.99% Impervious Runoff Depth=6.06" Flow Length=109' Tc=1.0 min CN=91 Runoff=1.62 cfs 4,487 cf
Subcatchment 400S: RUNOFF TO HOTEL Runoff Area=17,525 sf 96.44% Impervious Runoff Depth=6.76" Flow Length=168' Tc=3.4 min CN=97 Runoff=3.07 cfs 9,875 cf
Pond 12: EXIST. CB12 (STORMCEPTOR) Peak Elev=54.99' Inflow=1.62 cfs 4,487 cf 12.0" Round Culvert n=0.013 L=16.0' S=0.0231 '/' Outflow=1.62 cfs 4,487 cf
Pond DP3: EXIST CB-D (DESIGN POINT #3) Inflow=13.05 cfs 38,038 cf Primary=13.05 cfs 38,038 cf
Pond EX. CB3A: EX. CB-3A - DESIGN POINT #1 Peak Elev=43.07' Inflow=2.83 cfs 8,495 cf 12.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' Outflow=2.83 cfs 8,495 cf
Pond EX. CB5: EX. CB-5 Peak Elev=54.90' Inflow=4.81 cfs 8,784 cf 12.0" Round Culvert n=0.013 L=170.0' S=0.0025 '/' Outflow=4.81 cfs 8,784 cf
Pond EX. CB5A: EX. CB-5A 12.0" Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Outflow=5.24 cfs 10,691 cf

Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC

Pond EX. CB6: EX. CB-6 (STORMCEPTOR) Peak Elev=50.32' Inflow=7.30 cfs 16.871 cf 12.0" Round Culvert n=0.013 L=165.0' S=0.0053 '/' Outflow=7.30 cfs 16,871 cf Pond EX. CB8: EX. CB-8 Peak Elev=42.67' Inflow=1.59 cfs 4.570 cf 12.0" Round Culvert n=0.013 L=128.0' S=0.0058 '/' Outflow=1.59 cfs 4,570 cf Pond EX, CB9: EX, CB-9 Peak Elev=42.36' Inflow=2.20 cfs 6.340 cf 12.0" Round Culvert n=0.013 L=30.0' S=0.0230 '/' Outflow=2.20 cfs 6,340 cf Pond EX. DMH4: EXIST, DMH4 Peak Elev=42.01' Inflow=10.18 cfs 26.105 cf 18.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/' Outflow=10.18 cfs 26,105 cf Pond EX.CB: EXISTING CB Peak Elev=42.25' Inflow=0.93 cfs 2.894 cf 18.0" Round Culvert n=0.025 L=132.0' S=0.0135 1/ Outflow=0.93 cfs 2,894 cf Pond EX.INF2: EXIST, INFILTRATION Peak Elev=54.90' Storage=1,000 cf Inflow=1.62 cfs 4,487 cf Discarded=0.05 cfs 2,535 cf Primary=3.73 cfs 1,952 cf Outflow=3.78 cfs 4,487 cf

Total Runoff Area = 182,849 sf Runoff Volume = 68,258 cf Average Runoff Depth = 4.48" 56.18% Pervious = 102,721 sf 43.82% Impervious = 80,128 sf Time span=0.00-30.00 hrs, dt=0.01 hrs, 3001 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method


Subcatchment 1S: RUNOFF TO EXIST CB Runoff Area=51,345 sf 0.00% Impervious Runoff Depth=3.85" Flow Length=415' Tc=6.7 min CN=61 Runoff=5.15 cfs 16,455 cf
Subcatchment 2S: RUNOFF TO EXIST CB Runoff Area=12,454 sf 0.00% Impervious Runoff Depth=3.85" Flow Length=180' Tc=5.4 min CN=61 Runoff=1.31 cfs 3,991 cf
Subcatchment 100S: RUNOFF TO CB3 Runoff Area=15,623 sf 92.95% Impervious Runoff Depth=7.92" Flow Length=100' Tc=2.2 min CN=95 Runoff=3.40 cfs 10,310 cf
Subcatchment 200S: RUNOFF TO LOT 3 Runoff Area=34,976 sf 20.22% Impervious Runoff Depth=4.32" Flow Length=183' Tc=3.2 min CN=65 Runoff=4.50 cfs 12,588 cf
Subcatchment 300S: RUNOFF TO CB8Runoff Area=10,218 sf64.84% ImperviousRunoff Depth=6.72"Flow Length=160'Tc=3.2 minCN=85Runoff=1.96 cfs5,719 cf
Subcatchment 301S: RUNOFF TO CB9 Runoff Area=3,956 sf 67.62% Impervious Runoff Depth=6.72" Flow Length=126' Tc=1.8 min CN=85 Runoff=0.80 cfs 2,214 cf
Subcatchment 302S: RUNOFF TO CB6Runoff Area=11,791 sf86.68% ImperviousRunoff Depth=7.68"Flow Length=122'Slope=0.0100 '/'Tc=2.6 minCN=93Runoff=2.50 cfs7,545 cf
Subcatchment 303S: RUNOFF TO CB 5A Runoff Area=3,507 sf 92.02% Impervious Runoff Depth=7.92" Flow Length=105' Tc=0.8 min CN=95 Runoff=0.80 cfs 2,314 cf
Subcatchment 304S: RUNOFF TO CB5Runoff Area=12,564 sf93.01% ImperviousRunoff Depth=7.92"Flow Length=336'Tc=3.2 minCN=95Runoff=2.64 cfs8,292 cf
Subcatchment 305S: RUNOFF TO CB12 Runoff Area=8,890 sf 80.99% Impervious Runoff Depth=7.44" Flow Length=109' Tc=1.0 min CN=91 Runoff=1.96 cfs 5,510 cf
Subcatchment 400S: RUNOFF TO HOTEL Runoff Area=17,525 sf 96.44% Impervious Runoff Depth=8.16" Flow Length=168' Tc=3.4 min CN=97 Runoff=3.68 cfs 11,917 cf
Pond 12: EXIST. CB12 (STORMCEPTOR) Peak Elev=60.70' Inflow=1.96 cfs 5,510 cf 12.0" Round Culvert n=0.013 L=16.0' S=0.0231 '/' Outflow=1.96 cfs 5,510 cf
Pond DP3: EXIST CB-D (DESIGN POINT #3) Inflow=16.28 cfs 49,277 cf Primary=16.28 cfs 49,277 cf
Pond EX. CB3A: EX. CB-3A - DESIGN POINT #1 Peak Elev=43.42' Inflow=3.40 cfs 10,310 cf 12.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' Outflow=3.40 cfs 10,310 cf
Pond EX. CB5: EX. CB-5 Peak Elev=60.52' Inflow=5.25 cfs 11,038 cf 12.0" Round Culvert n=0.013 L=170.0' S=0.0025 '/' Outflow=5.25 cfs 11,038 cf
Pond EX. CB5A: EX. CB-5A Peak Elev=55.76' Inflow=6.03 cfs 13,353 cf 12.0" Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Outflow=6.03 cfs 13,353 cf

Type III 24-hr 50-Year Rainfall=8.52" Printed 1/21/2020

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC

Pond EX. CB6: EX. CB-6 (STORMCEPTOR) Peak Elev=54.03' Inflow=8.44 cfs 20,898 cf 12.0" Round Culvert n=0.013 L=165.0' S=0.0053 '/' Outflow=8.44 cfs 20,898 cf Pond EX. CB8: EX. CB-8 Peak Elev=43.54' Inflow=1.96 cfs 5.719 cf 12.0" Round Culvert n=0.013 L=128.0' S=0.0058 '/' Outflow=1.96 cfs 5,719 cf Pond EX, CB9; EX, CB-9 Peak Elev=43.02' Inflow=2.72 cfs 7,933 cf 12.0" Round Culvert n=0.013 L=30.0' S=0.0230 '/' Outflow=2.72 cfs 7,933 cf Pond EX. DMH4: EXIST. DMH4 Peak Elev=42.52' Inflow=12.27 cfs 32,822 cf 18.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/' Outflow=12.27 cfs 32,822 cf Pond EX.CB: EXISTING CB Peak Elev=42.66' Inflow=1.31 cfs 3,991 cf 18.0" Round Culvert n=0.025 L=132.0' S=0.0135 '/' Outflow=1.31 cfs 3,991 cf Pond EX.INF2: EXIST. INFILTRATION Peak Elev=60.55' Storage=1,000 cf Inflow=1.96 cfs 5.510 cf Discarded=0.06 cfs 2,764 cf Primary=3.72 cfs 2,747 cf Outflow=3.76 cfs 5,511 cf

Total Runoff Area = 182,849 sf Runoff Volume = 86,856 cf Average Runoff Depth = 5.70" 56.18% Pervious = 102,721 sf 43.82% Impervious = 80,128 sf

Area Listing (all nodes)

Ai	ea CN	Description
(sq	-ft)	(subcatchment-numbers)
80,8	30 61	>75% Grass cover, Good, HSG B (1S, 2S, 100S, 200S, 300S, 301S, 302S, 303S, 304S, 305S, 400S)
77,6	98 98	Paved parking, HSG B(100S, 200S, 300S, 301S, 302S, 303S, 304S, 305S, 400S)
2,4	30 98	Roofs, HSG B (200S)
21,8	91 55	Woods, Good, HSG B (200S, 300S, 301S, 400S)
182,8	49 76	TOTAL AREA

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
182,849	HSG B	1S, 2S, 100S, 200S, 300S, 301S, 302S, 303S, 304S, 305S, 400S
0	HSG C	
0	HSG D	
0	Other	
182,849		TOTAL AREA

Prepared by Greenman-Pedersen, Inc.	
HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC	

Printed 1/21/2020 Page 4

HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover
0	80,830	0	0	0	80,830	>75% Grass
						cover, Good
0	77,698	0	0	0	77,698	Paved parking
0	2,430	0	0	0	2,430	Roofs
0	21,891	0	0	0	21,891	Woods, Good
0	182,849	0	0	0	182,849	TOTAL AREA

Ground Covers (all nodes)

Prepared by Green	man-Pede	rsen, Inc.	
HydroCAD® 10.00-25	s/n 01710 @	© 2019 HydroCAD	Software Solutions LLC

Printed 1/21/2020 Page 5

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	12	43.09	42.72	16.0	0.0231	0.013	12.0	0.0	0.0
2	EX. CB3A	41.82	41.56	46.0	0.0057	0.013	12.0	0.0	0.0
3	EX. CB5	41.93	41.50	170.0	0.0025	0.013	12.0	0.0	0.0
4	EX. CB5A	41.15	41.30	98.0	-0.0015	0.013	12.0	0.0	0.0
5	EX. CB6	40.55	39.68	165.0	0.0053	0.013	12.0	0.0	0.0
6	EX. CB8	41.38	40.64	128.0	0.0058	0.013	12.0	0.0	0.0
7	EX. CB9	40.09	39.40	30.0	0.0230	0.013	12.0	0.0	0.0
8	EX. DMH4	39.58	39.40	36.0	0.0050	0.013	18.0	0.0	0.0
9	EX.CB	41.38	39.60	132.0	0.0135	0.025	18.0	0.0	0.0
10	EX.INF2	42.50	42.34	32.0	0.0050	0.013	12.0	0.0	0.0

Pipe Listing (all nodes)

Notes Listing (all nodes)

Line	# Node Number	Notes
	1 Project	Rainfall events imported from "4582-Postdrain.hcp"
	2 EX.INF2	The soils present in the area of the infiltration system consist of Urban Land (NRCS classification 699). Due to the limited information provided for this soil type, 140C Chatfield-Hollis-Canton Complex was used as the closest soil present within the site.
	3	The bottom of the stone in the infiltration system is approximately 6' below existing grade. Per USDA Soil Data Mart, the lowest value for the Saturated Ksat Value for this soil at a depth of 21-60''' +/- is 42.33 micrometers/second.
	4	Per NHDES Stormwater Manual: Vol. 2, pages 16-17 using a factor of safety of 2, the infiltration rate for this system is as follows:
	5	42.33/2 (FS) = 21.17 micro/sec.
	6	Converting to inches/hr with a conversion factor of 0.1417 = (21.17 * 0.1417 = 3.00 in/hr)

4582-Predrain Prepared by Greenman-Pedersen, Inc. <u>HydroCAD® 10.00-25_s/n 01710_© 2019 HydroCAD Software Solution</u>	Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020 hs LLC Page 7
Time span=0.00-30.00 hrs, dt=0.01 hrs Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routin	, Weighted-CN
	sf 0.00% Impervious Runoff Depth=2.79" .7 min CN=61 Runoff=3.68 cfs 11,933 cf
	sf 0.00% Impervious Runoff Depth=2.79" 5.4 min CN=61 Runoff=0.93 cfs 2,894 cf
	f 92.95% Impervious Runoff Depth=6.53" 2.2 min CN=95 Runoff=2.83 cfs 8,495 cf
	20.22% Impervious Runoff Depth=3.20" 3.2 min CN=65 Runoff=3.30 cfs 9,314 cf
	64.84% Impervious Runoff Depth=5.37" 3.2 min CN=85 Runoff=1.59 cfs 4,570 cf
	[*] 67.62% Impervious Runoff Depth=5.37" 1.8 min CN=85 Runoff=0.65 cfs 1,769 cf
	86.68% Impervious Runoff Depth=6.29" 2.6 min CN=93 Runoff=2.07 cfs 6,181 cf
	92.02% Impervious Runoff Depth=6.53" 0.8 min CN=95 Runoff=0.67 cfs 1,907 cf
	93.01% Impervious Runoff Depth=6.53" 3.2 min CN=95 Runoff=2.19 cfs 6,832 cf
	80.99% Impervious Runoff Depth=6.06" I.0 min CN=91 Runoff=1.62 cfs 4,487 cf
Subcatchment 400S: RUNOFF TO HOTEL Runoff Area=17,525 sf Flow Length=168' Tc=3	96.44% Impervious Runoff Depth=6.76" 3.4 min CN=97 Runoff=3.07 cfs 9,875 cf
	'eak Elev=54.99' Inflow=1.62 cfs 4,487 cf 0' S=0.0231 '/' Outflow=1.62 cfs 4,487 cf
Pond DP3: EXIST CB-D (DESIGN POINT #3)	Inflow=13.05 cfs 38,038 cf Primary=13.05 cfs 38,038 cf
	eak Elev=43.07' Inflow=2.83 cfs 8,495 cf 0' S=0.0057 '/' Outflow=2.83 cfs 8,495 cf
	eak Elev=54.90' Inflow=4.81 cfs 8,784 cf)' S=0.0025 '/' Outflow=4.81 cfs 8,784 cf
	ak Elev=51.46' Inflow=5.24 cfs 10,691 cf S=-0.0015 '/' Outflow=5.24 cfs 10,691 cf

.

4582-Predrain Prepared by Greenman-Pedersen, Inc. <u>HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutio</u>	Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020 ns LLC Page 8
	Peak Elev=50.32' Inflow=7.30 cfs 16,871 cf 0' S=0.0053 '/' Outflow=7.30 cfs 16,871 cf
Pond EX. CB8: EX. CB-8 12.0" Round Culvert n=0.013 L=128	Peak Elev=42.67' Inflow=1.59 cfs 4,570 cf 3.0' S=0.0058 '/' Outflow=1.59 cfs 4,570 cf
	Peak Elev=42.36' Inflow=2.20 cfs 6,340 cf 0.0' S=0.0230 '/' Outflow=2.20 cfs 6,340 cf
	eak Elev=42.01' Inflow=10.18 cfs 26,105 cf ' S=0.0050 '/' Outflow=10.18 cfs 26,105 cf
	Peak Elev=42.25' Inflow=0.93 cfs 2,894 cf 2.0' S=0.0135 '/' Outflow=0.93 cfs 2,894 cf
	Storage=1,000 cf Inflow=1.62 cfs 4,487 cf .73 cfs 1,952 cf Outflow=3.78 cfs 4,487 cf

Total Runoff Area = 182,849 sfRunoff Volume = 68,258 cfAverage Runoff Depth = 4.48"56.18% Pervious = 102,721 sf43.82% Impervious = 80,128 sf

.

Summary for Subcatchment 1S: RUNOFF TO EXIST CB

	Runoff	=	3.68 cfs @	12.10 hrs,	Volume=	11,933 cf, Depth= 2.79"
--	--------	---	------------	------------	---------	-------------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

_	A	rea (sf)	CN E	Description		
_		51,345	61 >	>75% Gras	s cover, Go	bod, HSG B
	51,345 100.00% Pervious Area					a
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.4	25	0.0400	0.17		Sheet Flow,
	4.3	390	0.0100	1.50		Grass: Short n= 0.150 P2= 3.22" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	6.7	415	Total			

Summary for Subcatchment 2S: RUNOFF TO EXIST CB

Runoff = 0.93 cfs @ 12.08 hrs, Volume= 2,894 cf, Depth= 2.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN E	Description					
	12,454 61 >75% Grass cover, Good, HSG B							
	12,454	1	00.00% Pe	ervious Are	a			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
4.3	25	0.0100	0.10	**************************************	Sheet Flow,			
1.1	155	0.0250	2.37		Grass: Short n= 0.150 P2= 3.22" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps			
5.4	180	Total						

Summary for Subcatchment 100S: RUNOFF TO CB3

Runoff = 2.83 cfs @ 12.03 hrs, Volume= 8,495 cf, Depth= 6.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020 Page 10

Prepared by Greenman-Pedersen, Inc.	F
HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC	

_	A	rea (sf)	CN E	Description						
		1,102	61 >	•75% Gras	s cover, Go	bod, HSG B				
-		14,521	98 F							
		15,623	95 V	Veighted A	verage					
		1,102	7	'.05% Perv	ious Area					
		14,521	ç	2.95% Imp	pervious Ar	ea				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
-	1.5	10	0.0200	0.11		Sheet Flow,				
_	0.7	90	0.0120	2.22		Grass: Short n= 0.150 P2= 3.22" Shallow Concentrated Flow, Paved Kv= 20.3 fps				
	2.2	100	Total							

Summary for Subcatchment 200S: RUNOFF TO LOT 3 (DP #2)

Runoff	=	3.30 cfs @	12.05 hrs,	Volume=	9,314 cf, Depth=	3.20"
--------	---	------------	------------	---------	------------------	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN E	Description		
	20,275	55 V	Voods, Go	od, HSG B	
	4,643			ing, HSG E	
	7,628			,	bod, HSG B
	2,430	<u>98</u> F	Roofs, HSC	B	
	34,976		Veighted A		
	27,903			vious Area	
	7,073	2	20.22% Imp	pervious Ar	ea
-				. .	
, Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.2	25	0.0500	0.19		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
0.3	30	0.0500	1.57		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.7	128	0.0250	3.21		Shallow Concentrated Flow,
			·····		Paved Kv= 20.3 fps
3.2	183	Total			

Summary for Subcatchment 300S: RUNOFF TO CB8

Runoff 1.59 cfs @ 12.05 hrs, Volume= = 4,570 cf, Depth= 5.37"

.

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

4582-Predrain

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC

<i>F</i>	Area (sf)	CN [Description		
	2,960	61 >	75% Gras	s cover, Go	bod, HSG B
	633	55 V	Voods, Go	od, HSG B	
	6,625	<u>98</u> F	Paved park	ing, HSG E	8
	10,218	85 V	Veighted A	verage	
	3,593	3	35.16% Per	vious Area	
	6,625	6	64.84% Imp	pervious Ar	ea
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.2	35	0.1000	0.26		Sheet Flow,
					Grass: Short
1.0	125	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps

Summary for Subcatchment 301S: RUNOFF TO CB9

1,769 cf, Depth= 5.37"

Runoff	=	0.65 cfs @	12.03 hrs,	Volume=	
--------	---	------------	------------	---------	--

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN [Description							
	492	61 >	61 >75% Grass cover, Good, HSG B							
	789	55 V	Noods, Go	od, HSG B						
	2,675	98 F	Paved park	ing, HSG E	3					
	3,956	85 V								
	1,281	3	32.38% Per	vious Area						
	2,675	6	67.62% Imp	ervious Ar	ea					
Tc	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
1.0	10	0.0500	0.17		Sheet Flow,					
					Range n= 0.130 P2= 3.22"					
0.1	6	0.0500	1.57		Shallow Concentrated Flow,					
~					Short Grass Pasture Kv= 7.0 fps					
0.7	110	0.0170	2.65		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
1.8	126	Total								

Summary for Subcatchment 302S: RUNOFF TO CB6

Runoff = 2.07 cfs @ 12.04 hrs, Volume= 6,181 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020 ions LLC Page 12

	- ypo m 2+ m	20-100
Prepared by Greenman-Pedersen, Inc.		Р
HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solution	sIIC	

_	A	rea (sf)	<u>CN</u>	Description			
		1,571	1,571 61 >75% Grass cover, Good, HSG B				
_		10,220	98 F	aved park	ing, HSG B	3	
		11,791	93 V	Veighted A	verage		
1,571 13.32% Pervious Area							
10,220 86.68% Impervious Area				ea			
	Tc	Length	Slope	Velocity	Capacity	Description	
•••••	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	1.7	8	0.0100	0.08		Sheet Flow,	
						Grass: Short	
	0.9	114	0.0100	2.03		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	2.6	122	Total				

Summary for Subcatchment 303S: RUNOFF TO CB 5A

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.67 cfs @ 12.01 hrs, Volume= 1,907 cf, Depth= 6.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

Area (sf)	CN E	escription		
2	80	61 >	75% Gras	s cover, Go	bod, HSG B
3,2	27	98 P	aved park	ing, HSG E	3
3,5	07	95 Weighted Average			·
2	280 7.98% Pervious Area			ious Area	
3,2	227 92.02% Impervious Ar			ervious Ar	ea
Tc Len	•	Slope	Velocity	Capacity	Description
<u>(min)</u> (fe	eet)	(ft/ft)	(ft/sec)	(cfs)	
0.2	10	0.0200	0.87		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.22"
0.6	95	0.0150	2.49		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
0.8	105	Total			

Summary for Subcatchment 304S: RUNOFF TO CB5

Runoff = 2.19 cfs @ 12.05 hrs, Volume= 6,832 cf, Depth= 6.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

4582-Predrain

Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020 ons LLC Page 13

		20 100111
Prepared by Greenman-Pedersen, Inc.		Printe
HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solution	ns LLC	

	A	rea (sf)	CN E	Description		
878 61 >75% Grass cover, Good, HSG B						
_		11,686	98 F	aved park	ing, HSG E	}
		12,564	95 V	Veighted A	verage	
		878		.99% Perv		1
		11,686	g	3.01% Imp	pervious Ar	ea
				•		
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.3	16	0.0200	0.96		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 3.22"
	2.9	320	0.0080	1.82		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	3.2	336	Total			
	J .2	000	rotar			

Summary for Subcatchment 305S: RUNOFF TO CB12

[49] Hint: Tc<2dt may require smaller dt

4582-Predrain

Runoff = 1.62 cfs @ 12.01 hrs, Volume= 4,487 cf, Depth= 6.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN D	escription		
	1,690				bod, HSG B
	7,200	<u>98</u> F	aved park	ing, HSG E	
	8,890	91 V	Veighted A	verage	
	1,690	1	9.01% Per	vious Area	
	7,200	8	0.99% Imp	ervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.2	10	0.0200	0.87		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.22"
0.1	11	0.0100	1.50		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
0.7	88	0.0100	2.03		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
1.0	109	Total			

Summary for Subcatchment 400S: RUNOFF TO HOTEL LOT (DP #4)

Runoff = 3.07 cfs @ 12.05 hrs, Volume= 9,875 cf, Depth= 6.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020 <u>s LLC Page 14</u>

4582-Predrain

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.00-25 s/n 01710 © 2019 HydroCAD Software Solutions LLC

_	Α	rea (sf)	CN E	Description		
		194	55 V	Voods, Go	od, HSG B	
		16,901			ing, HSG E	
		430	61 >	75% Gras	s cover, Go	bod, HSG B
		17,525		Veighted A		
		624		.56% Perv	<u> </u>	
		16,901	9	6.44% Imp	ervious Ar	еа
				•		
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.4	10	0.0500	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.22"
	0.3	30	0.0500	1.57		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	0.7	128	0.0250	3.21		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	3.4	168	Total			

Summary for Pond 12: EXIST. CB12 (STORMCEPTOR)

[58] Hint: Peaked 9.05' above defined flood level

Inflow Area	a =	8,890 sf, 80.99% Impervious	, Inflow Depth = 6.06" for 25-Year event
Inflow	=	1.62 cfs @ 12.01 hrs, Volume=	
Outflow	=	1.62 cfs @ 12.01 hrs, Volume=	4,487 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.62 cfs @ 12.01 hrs, Volume=	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 54.99' @ 12.07 hrs Elood Elev= 45.94'

Flood Elev= 45.94'	
--------------------	--

Device	Routing	Invert	Outlet Devices
#1	Primary	43.09'	12.0" Round Culvert L= 16.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.09' / 42.72' S= 0.0231 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.01 hrs HW=45.11' TW=45.16' (Dynamic Tailwater)

Summary for Pond DP3: EXIST CB-D (DESIGN POINT #3)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =		114,725 sf, 36.29% Impervious,	Inflow Depth = 3.98"	for 25-Year event
Inflow	=	13.05 cfs @ 12.05 hrs, Volume=		
Primary	=	13.05 cfs @ 12.05 hrs, Volume=	38,038 cf, Atter	n= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Pond EX. CB3A: EX. CB-3A - DESIGN POINT #1

Inflow Area =	15,623 sf, 92.95% Impervious,	Inflow Depth = 6.53" for 25-Year event	
Inflow =	2.83 cfs @ 12.03 hrs, Volume=		
Outflow =	2.83 cfs @ 12.03 hrs, Volume=	8,495 cf, Atten= 0%, Lag= 0.0 min	
Primary =	2.83 cfs @ 12.03 hrs, Volume=		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.07' @ 12.03 hrs Flood Elev= 44.62'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.82'	12.0" Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.82' / 41.56' S= 0.0057 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.82 cfs @ 12.03 hrs HW=43.06' (Free Discharge) **1=Culvert** (Barrel Controls 2.82 cfs @ 3.71 fps)

Summary for Pond EX. CB5: EX. CB-5

[58] Hint: Peaked 7.22' above defined flood level[80] Warning: Exceeded Pond EX.INF2 by 5.37' @ 12.05 hrs (8.77 cfs 3,014 cf)

Inflow Are	a =	21,454 sf, 88.03% Impervious, Inflow Depth = 4.91"	for 25-Year event
Inflow	=	4.81 cfs @ 12.15 hrs, Volume= 8,784 cf	
Outflow	=	4.81 cfs @ 12.15 hrs, Volume= 8,784 cf, Atten	= 0%, Lag= 0.0 min
Primary	=	4.81 cfs @ 12.15 hrs, Volume= 8,784 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 54.90' @ 12.05 hrs Flood Elev= 47.68'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.93'	12.0" Round Culvert L= 170.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.93' / 41.50' S= 0.0025 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=4.23 cfs @ 12.15 hrs HW=48.17' TW=45.09' (Dynamic Tailwater) -1=Culvert (Outlet Controls 4.23 cfs @ 5.39 fps)

Summary for Pond EX. CB5A: EX. CB-5A

[58] Hint: Peaked 6.05' above defined flood level

[80] Warning: Exceeded Pond EX. CB5 by 2.27' @ 12.04 hrs (3.63 cfs 469 cf)

	enman-Pedersen, Inc.	Type III 24-hr 25-Year Rainfall=7.12" Printed 1/21/2020
HydroCAD® 10.00-	25 s/n 01710 © 2019 HydroCAD Software Soluti	tions LLC Page 16
Inflow Area = Inflow =	24,961 sf, 88.59% Impervious, Inflow De 5.24 cfs @ 12.03 hrs, Volume= 10,	

 Outflow
 =
 5.24 cfs @
 12.03 hrs, Volume=
 10,691 cf, Atten= 0%, Lag= 0.0 min

 Primary
 =
 5.24 cfs @
 12.03 hrs, Volume=
 10,691 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 51.46' @ 12.04 hrs Flood Elev= 45.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.30'	12.0" Round Culvert L= 98.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.15' / 41.30' S= -0.0015 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.03 hrs HW=48.19' TW=50.10' (Dynamic Tailwater)

Summary for Pond EX. CB6: EX. CB-6 (STORMCEPTOR)

[58] Hint: Peaked 6.42' above defined flood level[80] Warning: Exceeded Pond EX. CB5A by 2.27' @ 12.03 hrs (4.44 cfs 583 cf)

Inflow Are	ea =	36,752 sf, 87.98% Impervious,	Inflow Depth = 5.51" for 25-Year event
Inflow	=		16,871 cf
Outflow	=	7.30 cfs @ 12.03 hrs, Volume=	16,871 cf, Atten= 0%, Lag= 0.0 min
Primary	=	7.30 cfs @ 12.03 hrs, Volume=	16,871 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 50.32' @ 12.03 hrs Flood Elev= 43.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	40.55'	12.0" Round Culvert L= 165.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 40.55' / 39.68' S= 0.0053 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=6.93 cfs @ 12.03 hrs HW=50.06' TW=41.99' (Dynamic Tailwater) -1=Culvert (Outlet Controls 6.93 cfs @ 8.82 fps)

Summary for Pond EX. CB8: EX. CB-8

Inflow Area =	=	10,218 sf,	64.84% Impervious	Inflow Depth = 5.37"	for 25-Year event
Inflow =		1.59 cfs @	12.05 hrs, Volume=	4,570 cf	
Outflow =		1.59 cfs @	12.05 hrs, Volume=	4,570 cf, Atte	n= 0%, Lag= 0.0 min
Primary =		1.59 cfs @	12.05 hrs, Volume=	4,570 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Peak Elev= 42.67' @ 12.05 hrs Flood Elev= 47.08'

Device	Routing	Invert	Outlet Devices
#1	Primary		12.0'' Round Culvert L= 128.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.38' / 40.64' S= 0.0058 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.85 cfs @ 12.05 hrs HW=42.54' TW=42.08' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.85 cfs @ 2.55 fps)

Summary for Pond EX. CB9: EX. CB-9

[80] Warning: Exceeded Pond EX. CB8 by 0.08' @ 12.04 hrs (0.65 cfs 23 cf)

Inflow Area =	14,174 sf, 65.61% Impervious,	Inflow Depth = 5.37" for 25-Year event
Inflow =	2.20 cfs @ 12.04 hrs, Volume=	
Outflow =	2.20 cfs @ 12.04 hrs, Volume=	6,340 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.20 cfs @ 12.04 hrs, Volume=	6,340 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 42.36' @ 12.04 hrs Flood Elev= 45.09'

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 40.09'
 12.0'' Round Culvert L= 30.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 40.09' / 39.40' S= 0.0230 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.11 cfs @ 12.04 hrs HW=42.32' TW=41.65' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.11 cfs @ 3.96 fps)

Summary for Pond EX. DMH4: EXIST. DMH4

[80] Warning: Exceeded Pond EX. CB9 by 0.52' @ 12.15 hrs (2.72 cfs 452 cf) [80] Warning: Exceeded Pond EX.CB by 0.03' @ 12.03 hrs (0.16 cfs 6 cf)

Inflow Area =	63,380 sf, 65.69% Impervious,	Inflow Depth = 4.94" for 25-Year event
inflow =	10.18 cfs @ 12.03 hrs, Volume=	26,105 cf
Outflow =	10.18 cfs @ 12.03 hrs, Volume=	26,105 cf, Atten= 0%, Lag= 0.0 min
Primary =	10.18 cfs @ 12.03 hrs, Volume=	26,105 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 42.01' @ 12.03 hrs Flood Elev= 44.76'

Device	Routing	Invert	Outlet Devices
#1	Primary	39.58'	18.0" Round Culvert
			L= 36.0' RCP, sq.cut end projecting, Ke= 0.500

Inlet / Outlet Invert= 39.58' / 39.40' S= 0.0050 '/' Cc= 0.900 n= 0.013 Concrete pipe, bends & connections, Flow Area= 1.77 sf

Primary OutFlow Max=10.18 cfs @ 12.03 hrs HW=42.01' TW=0.00' (Dynamic Tailwater) -1=Culvert (Barrel Controls 10.18 cfs @ 5.76 fps)

Summary for Pond EX.CB: EXISTING CB

Inflow Area =	12,454 sf, 0.00% Impervious,	Inflow Depth = 2.79" for 25-Year event
Inflow =	0.93 cfs @ 12.08 hrs, Volume=	2,894 cf
Outflow =	0.93 cfs @ 12.08 hrs, Volume=	2,894 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.93 cfs @ 12.08 hrs, Volume=	2,894 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 42.25' @ 12.06 hrs Flood Elev= 44.89'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.38'	18.0" Round Culvert L= 132.0' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.38' / 39.60' S= 0.0135 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.77 sf

Primary OutFlow Max=1.10 cfs @ 12.08 hrs HW=42.12' TW=41.43' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.10 cfs @ 1.83 fps)

Summary for Pond EX.INF2: EXIST. INFILTRATION SYSTEM #2

The soils present in the area of the infiltration system consist of Urban Land (NRCS classification 699). Due to the limited information provided for this soil type, 140C Chatfield-Hollis-Canton Complex was used as the closest soil present within the site.

The bottom of the stone in the infiltration system is approximately 6' below existing grade. Per USDA Soil Data Mart, the lowest value for the Saturated Ksat Value for this soil at a depth of 21-60''' +/- is 42.33 micrometers/second.

Per NHDES Stormwater Manual: Vol. 2, pages 16-17 using a factor of safety of 2, the infiltration rate for this system is as follows:

42.33/2 (FS) = 21.17 micro/sec. Converting to inches/hr with a conversion factor of 0.1417 = (21.17 * 0.1417 = 3.00 in/hr)

- [93] Warning: Storage range exceeded by 9.57'
- [58] Hint: Peaked 9.90' above defined flood level
- [90] Warning: Qout>Qin may require smaller dt or Finer Routing
- [87] Warning: Oscillations may require smaller dt or Finer Routing (severity=8)
- [80] Warning: Exceeded Pond 12 by 5.27' @ 12.06 hrs (8.68 cfs 1,614 cf)

4582-Pre Prepared HydroCADo	by Greenr	nan-Pedersen, I s/n 01710 © 2019	Type III 24-hr 25-Year Rainfall=7.12" nc. Printed 1/21/2020 HydroCAD Software Solutions LLC Page 19	
Inflow Area Inflow Outflow Discarded Primary	= 1.6 = 3.7 = 0.0	8,890 sf, 80.99 62 cfs @ 12.01 k 78 cfs @ 12.15 k 05 cfs @ 12.06 k 73 cfs @ 12.15 k	nrs, Volume= 4,487 cf, Atten= 0%, Lag= 8.1 min nrs, Volume= 2,535 cf	
Peak Elev Flood Elev	Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 54.90' @ 12.06 hrs Surf.Area= 582 sf Storage= 1,000 cf Flood Elev= 45.00' Surf.Area= 582 sf Storage= 922 cf Plug-Flow detention time= (not calculated: outflow precedes inflow)			
Center-of-I	Mass det. tii	me= 78.7 min(8	50.0 - 771.3)	
Volume	Invert	Avail.Storage	Storage Description	
#1A	42.00'		13.23'W x 44.00'L x 3.33'H Field A	
#2A	42.50'	372 cf	1,941 cf Overall - 484 cf Embedded = 1,457 cf x 40.0% Voids ADS N-12 24'' x 6 Inside #1 Inside= 23.8''W x 23.8''H => 3.10 sf x 20.00'L = 62.0 cf Outside= 28.0''W x 28.0''H => 3.92 sf x 20.00'L = 78.4 cf 6 Chambers in 3 Rows	
#3	42.50'	14 cf		
#4	42.50'	31 cf		
		1,000 cf	Total Available Storage	

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	42.50'	12.0" Round Culvert
			L= 32.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 42.50' / 42.34' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	43.90'	6.0" Vert. Orifice/Grate C= 0.600
#3	Device 1	44.50'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Discarded	42.00'	3.000 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 0.00'

Discarded OutFlow Max=0.05 cfs @ 12.06 hrs HW=54.63' (Free Discharge) **4=Exfiltration** (Controls 0.05 cfs)

Primary OutFlow Max=0.00 cfs @ 12.15 hrs HW=45.06' TW=48.21' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs) -2=Orifice/Grate (Controls 0.00 cfs) -3=Orifice/Grate (Controls 0.00 cfs)

Stormwater Management Report

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

APPENDIX E

Post-Development HydroCAD Printouts

4582-PostdrainRev1 Prepared by Greenman-Pedersen, Inc. <u>HydroCAD® 10.10-7a_s/n 01710_© 2021 Hydro</u>	Type III 24-hr 2-Year Rainfall=3.70" Printed 4/18/2022 OCAD Software Solutions LLC Page 7
Runoff by SCS TR	30.00 hrs, dt=0.01 hrs, 3001 points -20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: DRAINS TO CB-1 Flow Length=51'	Runoff Area=4,516 sf 100.00% Impervious Runoff Depth=3.47" Slope=0.0240 '/' Tc=0.5 min CN=98 Runoff=0.45 cfs 1,304 cf
Subcatchment2S: DRAINS TO CB-2 Flow Length=85'	Runoff Area=5,065 sf 94.14% Impervious Runoff Depth=3.24" Slope=0.0160 '/' Tc=0.8 min CN=96 Runoff=0.49 cfs 1,369 cf
Subcatchment3S: DRAINS TO CB-3	Runoff Area=7,497 sf 72.05% Impervious Runoff Depth=2.45" Flow Length=98' Tc=3.8 min CN=88 Runoff=0.53 cfs 1,532 cf
Subcatchment4S: DRAINS TO CB-4	Runoff Area=2,857 sf 62.60% Impervious Runoff Depth=2.11" Flow Length=71' Tc=3.5 min CN=84 Runoff=0.18 cfs 502 cf
Subcatchment5S: DRAINS TO CB-5 Flow Length=47'	Runoff Area=3,924 sf 100.00% Impervious Runoff Depth=3.47" Slope=0.0130 '/' Tc=0.7 min CN=98 Runoff=0.39 cfs 1,133 cf
Subcatchment6S: DRAINS TO CB-6 Flow Length=60'	Runoff Area=3,628 sf 100.00% Impervious Runoff Depth=3.47" Slope=0.0150 '/' Tc=4.0 min CN=98 Runoff=0.32 cfs 1,048 cf
Subcatchment7S: Subcat7S	Runoff Area=1,293 sf 98.96% Impervious Runoff Depth=3.47" Tc=0.0 min CN=98 Runoff=0.13 cfs 373 cf
Subcatchment8S: DRAINS TO CB-8 Flow Length=80'	Runoff Area=5,929 sf 100.00% Impervious Runoff Depth=3.47" Slope=0.0150 '/' Tc=0.8 min CN=98 Runoff=0.59 cfs 1,712 cf
Subcatchment9S: ROOF D	Runoff Area=6,400 sf 100.00% Impervious Runoff Depth=3.47" Tc=1.0 min CN=98 Runoff=0.63 cfs 1,848 cf
Subcatchment10S: ROOF B	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=3.47" Tc=1.0 min CN=98 Runoff=0.47 cfs 1,386 cf
Subcatchment11S: ROOF A	Runoff Area=5,600 sf 100.00% Impervious Runoff Depth=3.47" Tc=1.0 min CN=98 Runoff=0.55 cfs 1,617 cf
Subcatchment12S: ROOF E	Runoff Area=4,000 sf 100.00% Impervious Runoff Depth=3.47" Tc=1.0 min CN=98 Runoff=0.39 cfs 1,155 cf
Subcatchment13S: ROOF F	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=3.47" Tc=1.0 min CN=98 Runoff=0.47 cfs 1,386 cf
Subcatchment100S: RUNOFF TO EX.	Runoff Area=16,015 sf 91.98% Impervious Runoff Depth=3.14" Flow Length=182' Tc=3.5 min CN=95 Runoff=1.38 cfs 4,185 cf
Subcatchment200S: Drains to Northern	Runoff Area=11,417 sf 19.04% Impervious Runoff Depth=1.02" 2' Slope=0.0200 '/' Tc=5.2 min CN=68 Runoff=0.29 cfs 970 cf
Subcatchment300S: DRAINS TO EX. CB-8	Runoff Area=16,949 sf 77.39% Impervious Runoff Depth=2.64" Slope=0.0180 '/' Tc=2.0 min CN=90 Runoff=1.36 cfs 3,723 cf

4582-PostdrainRev1Type III 24-hr2-Year Rainfall=3.70"Prepared by Greenman-Pedersen, Inc.Printed 4/18/2022HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLCPage 8		
		82.02% Impervious Runoff Depth=2.73" 2 min CN=91 Runoff=0.70 cfs 2,015 cf
		82.88% Impervious Runoff Depth=2.83" 9 min CN=92 Runoff=1.19 cfs 3,407 cf
Subcatchment303S: RUNOF		86.65% Impervious Runoff Depth=2.93" 9 min CN=93 Runoff=0.45 cfs 1,200 cf
Subcatchment304S: RUNOF		75.73% Impervious Runoff Depth=2.54" 3 min CN=89 Runoff=1.42 cfs 4,040 cf
Subcatchment305S: RUNOF		82.86% Impervious Runoff Depth=2.83") min CN=92 Runoff=0.78 cfs 2,095 cf
		86.10% Impervious Runoff Depth=2.93" 9 min CN=93 Runoff=1.73 cfs 5,364 cf
Pond CB1: PROP. CB-1		eak Elev=43.88' Inflow=0.92 cfs 2,691 cf S=0.0051 '/' Outflow=0.92 cfs 2,691 cf
Pond CB2: PROP. CB-2		eak Elev=44.05' Inflow=0.49 cfs 1,369 cf S=0.0161 '/' Outflow=0.49 cfs 1,369 cf
Pond CB3: PROP. CB-3		eak Elev=43.65' Inflow=0.71 cfs 2,034 cf S=0.0083 '/' Outflow=0.71 cfs 2,034 cf
Pond CB4: PROP. CB-4		Peak Elev=43.86' Inflow=0.18 cfs 502 cf 0' S=0.0097 '/' Outflow=0.18 cfs 502 cf
Pond CB5: PROP. CB-5		eak Elev=42.51' Inflow=0.39 cfs 1,133 cf S=0.0167 '/' Outflow=0.39 cfs 1,133 cf
Pond CB6: PROP. CB-6		eak Elev=42.48' Inflow=0.32 cfs 1,048 cf S=0.0222 '/' Outflow=0.32 cfs 1,048 cf
Pond CB7: PROP. CB-7		Peak Elev=41.23' Inflow=0.13 cfs 373 cf 0' S=0.0103 '/' Outflow=0.13 cfs 373 cf
Pond CB8: PROP. CB-8		eak Elev=43.25' Inflow=1.20 cfs 3,746 cf S=0.0143 '/' Outflow=1.20 cfs 3,746 cf
Pond DMH1: PROP. DMH-1		eak Elev=40.62' Inflow=3.09 cfs 9,420 cf S=0.0093 '/' Outflow=3.09 cfs 9,420 cf
Pond DMH2: PROP. DMH-2		eak Elev=40.92' Inflow=2.99 cfs 9,046 cf S=0.0050 '/' Outflow=2.99 cfs 9,046 cf
Pond DMH3: PROP. DMH-3		ak Elev=40.39' Inflow=2.05 cfs 5,987 cf S=0.0053 '/' Outflow=2.05 cfs 5,987 cf

4582-PostdrainRev1 Prepared by Greenman-Pe HydroCAD® 10.10-7a s/n 017	<i>Type III 24-hr 2-Year Rainfall=3.70</i> edersen, Inc. Printed 4/18/2022 0 © 2021 HydroCAD Software Solutions LLC Page 9
Pond DMH3A: PROP. DMH-	Peak Elev=40.48' Inflow=0.10 cfs 134 cf 15.0" Round Culvert n=0.013 L=168.0' S=0.0048 '/' Outflow=0.10 cfs 134 cf
Pond DMH4: PROP DMH-4	Peak Elev=42.02' Inflow=1.36 cfs 3,839 cf 12.0" Round Culvert n=0.013 L=118.0' S=0.0058 '/' Outflow=1.36 cfs 3,839 cf
Pond DMH5: PROP. DMH-1	Peak Elev=43.41' Inflow=1.41 cfs 4,060 cf 12.0" Round Culvert n=0.013 L=11.0' S=0.0227 '/' Outflow=1.41 cfs 4,060 cf
Pond EX CB12: EXIST. CB1	2 (STORMCEPTOR) Peak Elev=44.15' Inflow=0.78 cfs 2,095 cf 12.0" Round Culvert n=0.013 L=16.0' S=0.0231 '/' Outflow=0.78 cfs 2,095 cf
Pond EX. CB-D: EX. DMH - I	DESIGN POINT #3 Peak Elev=40.21' Inflow=5.13 cfs 15,407 cf 18.0" Round Culvert n=0.013 L=164.0' S=0.0399 '/' Outflow=5.13 cfs 15,407 cf
Pond EX. CB3A: EX. CB-3A	- DESIGN POINT #1 Peak Elev=42.55' Inflow=1.38 cfs 4,185 cf 12.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' Outflow=1.38 cfs 4,185 cf
Pond EX. CB5: EX. CB-5	Peak Elev=42.95' Inflow=1.42 cfs 4,330 cf 12.0" Round Culvert n=0.013 L=170.0' S=0.0025 '/' Outflow=1.42 cfs 4,330 cf
Pond EX. CB5A: EX. CB-5A	Peak Elev=42.52' Inflow=1.80 cfs 5,530 cf 12.0" Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Outflow=1.80 cfs 5,530 cf
Pond EX. CB6: EX. CB-6 (ST	FORMCEPTOR) Peak Elev=42.12' Inflow=2.99 cfs 8,937 cf 12.0" Round Culvert n=0.013 L=118.0' S=0.0051 '/' Outflow=2.99 cfs 8,937 cf
Pond EX. CB8: EX. CB-8	Peak Elev=42.21' Inflow=1.36 cfs 3,723 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0060 '/' Outflow=1.36 cfs 3,723 cf
Pond EX. CB9: EX. CB-9	Peak Elev=40.96' Inflow=2.05 cfs 5,853 cf 12.0" Round Culvert n=0.013 L=30.0' S=0.0097 '/' Outflow=2.05 cfs 5,853 cf
	TRATIONSYSTEM Peak Elev=44.15' Storage=690 cf Inflow=0.78 cfs 2,095 cf Discarded=0.04 cfs 1,806 cf Primary=0.17 cfs 290 cf Outflow=0.21 cfs 2,096 cf
Pond INF-1: U/G INF-1	Peak Elev=43.41' Storage=1,615 cf Inflow=1.80 cfs 5,215 cf Discarded=0.22 cfs 5,099 cf Primary=0.09 cfs 116 cf Outflow=0.31 cfs 5,215 cf
Pond INF-2: U/G INF-2	Peak Elev=41.98' Storage=1,709 cf Inflow=1.73 cfs 5,364 cf Discarded=0.23 cfs 5,230 cf Primary=0.10 cfs 134 cf Outflow=0.32 cfs 5,365 cf
Pond INF-3: U/G INF-3	Peak Elev=42.47' Storage=1,685 cf Inflow=1.76 cfs 5,416 cf Discarded=0.22 cfs 5,307 cf Primary=0.08 cfs 109 cf Outflow=0.30 cfs 5,417 cf
Total Runoff A	rea = 182,849 sf Runoff Volume = 43,366 cf Average Runoff Depth = 2.8 17,37% Pervious = 31,764 sf 82,63% Impervious = 151,085

17.37% Pervious = 31,764 sf 82.63% Impervious = 151,085 sf

4582-PostdrainRev1 Prepared by Greenman-Pedersen, Inc. <u>HydroCAD® 10.10-7a_s/n 01710_© 2021 Hydro</u>	Type III 24-hr 10-Year Rainfall=5.61" Printed 4/18/2022 DCAD Software Solutions LLC Page 10
Runoff by SCS TR	30.00 hrs, dt=0.01 hrs, 3001 points -20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: DRAINS TO CB-1 Flow Length=51'	Runoff Area=4,516 sf 100.00% Impervious Runoff Depth=5.37" Slope=0.0240 '/' Tc=0.5 min CN=98 Runoff=0.69 cfs 2,022 cf
Subcatchment2S: DRAINS TO CB-2 Flow Length=85'	Runoff Area=5,065 sf 94.14% Impervious Runoff Depth=5.14" Slope=0.0160 '/' Tc=0.8 min CN=96 Runoff=0.76 cfs 2,169 cf
Subcatchment3S: DRAINS TO CB-3	Runoff Area=7,497 sf 72.05% Impervious Runoff Depth=4.25" Flow Length=98' Tc=3.8 min CN=88 Runoff=0.90 cfs 2,656 cf
Subcatchment4S: DRAINS TO CB-4	Runoff Area=2,857 sf 62.60% Impervious Runoff Depth=3.83" Flow Length=71' Tc=3.5 min CN=84 Runoff=0.32 cfs 913 cf
Subcatchment5S: DRAINS TO CB-5 Flow Length=47'	Runoff Area=3,924 sf 100.00% Impervious Runoff Depth=5.37" Slope=0.0130 '/' Tc=0.7 min CN=98 Runoff=0.60 cfs 1,757 cf
Subcatchment6S: DRAINS TO CB-6 Flow Length=60'	Runoff Area=3,628 sf 100.00% Impervious Runoff Depth=5.37" Slope=0.0150 '/' Tc=4.0 min CN=98 Runoff=0.49 cfs 1,624 cf
Subcatchment7S: Subcat7S	Runoff Area=1,293 sf 98.96% Impervious Runoff Depth=5.37" Tc=0.0 min CN=98 Runoff=0.20 cfs 579 cf
Subcatchment8S: DRAINS TO CB-8 Flow Length=80'	Runoff Area=5,929 sf 100.00% Impervious Runoff Depth=5.37" Slope=0.0150 '/' Tc=0.8 min CN=98 Runoff=0.90 cfs 2,654 cf
Subcatchment9S: ROOF D	Runoff Area=6,400 sf 100.00% Impervious Runoff Depth=5.37" Tc=1.0 min CN=98 Runoff=0.96 cfs 2,865 cf
Subcatchment10S: ROOF B	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=5.37" Tc=1.0 min CN=98 Runoff=0.72 cfs 2,149 cf
Subcatchment11S: ROOF A	Runoff Area=5,600 sf 100.00% Impervious Runoff Depth=5.37" Tc=1.0 min CN=98 Runoff=0.84 cfs 2,507 cf
Subcatchment12S: ROOF E	Runoff Area=4,000 sf 100.00% Impervious Runoff Depth=5.37" Tc=1.0 min CN=98 Runoff=0.60 cfs 1,791 cf
Subcatchment13S: ROOF F	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=5.37" Tc=1.0 min CN=98 Runoff=0.72 cfs 2,149 cf
Subcatchment100S: RUNOFF TO EX.	Runoff Area=16,015 sf 91.98% Impervious Runoff Depth=5.02" Flow Length=182' Tc=3.5 min CN=95 Runoff=2.16 cfs 6,705 cf
Subcatchment200S: Drains to Northern Flow Length=132'	Runoff Area=11,417 sf 19.04% Impervious Runoff Depth=2.33" Slope=0.0200 '/' Tc=5.2 min CN=68 Runoff=0.72 cfs 2,212 cf
Subcatchment300S: DRAINS TO EX. CB-8	Runoff Area=16,949 sf 77.39% Impervious Runoff Depth=4.47" Slope=0.0180 '/' Tc=2.0 min CN=90 Runoff=2.25 cfs 6,309 cf

4582-PostdrainRev1 Type III 24-hr10-Year Rainfall=5.61"Prepared by Greenman-Pedersen, Inc.Printed 4/18/2022HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLCPage 11		
	TO EX. CB-9 Runoff Area=8,852 sf 82.02% Impervious Runoff Depth=4.58" v Length=127' Slope=0.0230 '/' Tc=3.2 min CN=91 Runoff=1.14 cfs 3,376 cf	
	TO EX. CB6 Runoff Area=14,456 sf 82.88% Impervious Runoff Depth=4.69" v Length=122' Slope=0.0100 '/' Tc=2.9 min CN=92 Runoff=1.92 cfs 5,645 cf	
Subcatchment303S: RUNOF	TO EX. CB 5A Runoff Area=4,916 sf 86.65% Impervious Runoff Depth=4.80" Flow Length=106' Tc=0.9 min CN=93 Runoff=0.71 cfs 1,966 cf	
Subcatchment304S: RUNOF	TO EX. CB5 Runoff Area=19,066 sf 75.73% Impervious Runoff Depth=4.36" Flow Length=336' Tc=3.3 min CN=89 Runoff=2.38 cfs 6,925 cf	
Subcatchment305S: RUNOF	TO CB12 Runoff Area=8,890 sf 82.86% Impervious Runoff Depth=4.69" Flow Length=109' Tc=1.0 min CN=92 Runoff=1.26 cfs 3,472 cf	
	b Hotel Lot - Runoff Area=21,981 sf 86.10% Impervious Runoff Depth=4.80" v Length=255' Slope=0.0200 '/' Tc=4.9 min CN=93 Runoff=2.75 cfs 8,789 cf	
Pond CB1: PROP. CB-1	Peak Elev=44.09' Inflow=1.41 cfs 4,171 cf 12.0" Round Culvert n=0.013 L=59.0' S=0.0051 '/' Outflow=1.41 cfs 4,171 cf	
Pond CB2: PROP. CB-2	Peak Elev=44.15' Inflow=0.76 cfs 2,169 cf 12.0" Round Culvert n=0.013 L=31.0' S=0.0161 '/' Outflow=0.76 cfs 2,169 cf	
Pond CB3: PROP. CB-3	Peak Elev=43.87' Inflow=1.22 cfs 3,568 cf 12.0" Round Culvert n=0.013 L=54.0' S=0.0083 '/' Outflow=1.22 cfs 3,568 cf	
Pond CB4: PROP. CB-4	Peak Elev=44.00' Inflow=0.32 cfs 913 cf 12.0" Round Culvert n=0.013 L=36.0' S=0.0097 '/' Outflow=0.32 cfs 913 cf	
Pond CB5: PROP. CB-5	Peak Elev=42.99' Inflow=0.60 cfs 1,757 cf 12.0" Round Culvert n=0.013 L=12.0' S=0.0167 '/' Outflow=0.60 cfs 1,757 cf	
Pond CB6: PROP. CB-6	Peak Elev=42.99' Inflow=0.49 cfs 1,624 cf 12.0" Round Culvert n=0.013 L=9.0' S=0.0222 '/' Outflow=0.49 cfs 1,624 cf	
Pond CB7: PROP. CB-7	Peak Elev=41.65' Inflow=0.20 cfs 579 cf 12.0" Round Culvert n=0.013 L=34.0' S=0.0103 '/' Outflow=0.20 cfs 579 cf	
Pond CB8: PROP. CB-8	Peak Elev=43.49' Inflow=1.96 cfs 6,223 cf 12.0" Round Culvert n=0.013 L=7.0' S=0.0143 '/' Outflow=1.96 cfs 6,223 cf	
Pond DMH1: PROP. DMH-1	Peak Elev=41.65' Inflow=6.24 cfs 17,752 cf 18.0" Round Culvert n=0.013 L=43.0' S=0.0093 '/' Outflow=6.24 cfs 17,752 cf	
Pond DMH2: PROP. DMH-2	Peak Elev=42.05' Inflow=6.13 cfs 17,173 cf 18.0" Round Culvert n=0.013 L=30.0' S=0.0050 '/' Outflow=6.13 cfs 17,173 cf	
Pond DMH3: PROP. DMH-3	Peak Elev=41.57' Inflow=4.27 cfs 12,896 cf 18.0" Round Culvert n=0.013 L=38.0' S=0.0053 '/' Outflow=4.27 cfs 12,896 cf	

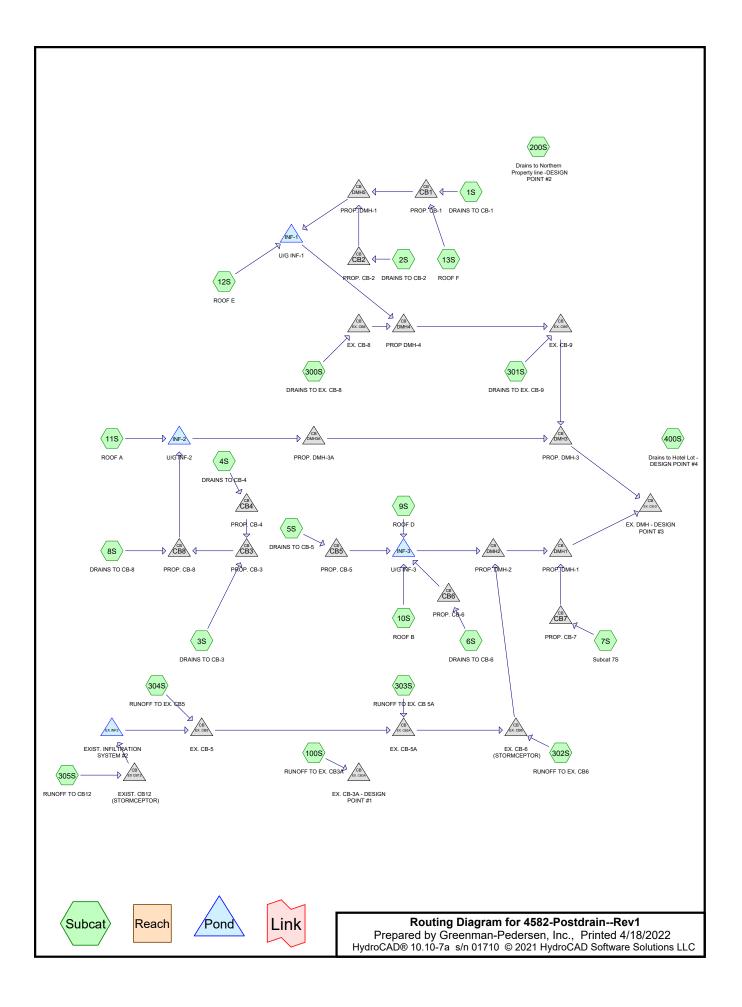
4582-PostdrainRev1 Prepared by Greenman- HydroCAD® 10.10-7a s/n 01	• •
Pond DMH3A: PROP. DM	H-3A Peak Elev=41.60' Inflow=0.83 cfs 1,750 cf 15.0" Round Culvert n=0.013 L=168.0' S=0.0048 '/' Outflow=0.83 cfs 1,750 cf
Pond DMH4: PROP DMH-	4 Peak Elev=43.19' Inflow=2.68 cfs 7,770 cf 12.0" Round Culvert n=0.013 L=118.0' S=0.0058 '/' Outflow=2.68 cfs 7,770 cf
Pond DMH5: PROP. DMH	-1 Peak Elev=43.87' Inflow=2.16 cfs 6,340 cf 12.0" Round Culvert n=0.013 L=11.0' S=0.0227 '/' Outflow=2.16 cfs 6,340 cf
Pond EX CB12: EXIST. CB	B12 (STORMCEPTOR) Peak Elev=47.71' Inflow=1.26 cfs 3,472 cf 12.0" Round Culvert n=0.013 L=16.0' S=0.0231 '/' Outflow=1.26 cfs 3,472 cf
Pond EX. CB-D: EX. DMH	- DESIGN POINT #3 Peak Elev=41.34' Inflow=10.42 cfs 30,648 cf 18.0" Round Culvert n=0.013 L=164.0' S=0.0399 '/' Outflow=10.42 cfs 30,648 cf
Pond EX. CB3A: EX. CB-3	A - DESIGN POINT #1 Peak Elev=42.79' Inflow=2.16 cfs 6,705 cf 12.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' Outflow=2.16 cfs 6,705 cf
Pond EX. CB5: EX. CB-5	Peak Elev=48.37' Inflow=3.91 cfs 8,114 cf 12.0" Round Culvert n=0.013 L=170.0' S=0.0025 '/' Outflow=3.91 cfs 8,114 cf
Pond EX. CB5A: EX. CB-5	Peak Elev=46.72' Inflow=4.19 cfs 10,079 cf 12.0" Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Outflow=4.19 cfs 10,079 cf
Pond EX. CB6: EX. CB-6 (STORMCEPTOR) Peak Elev=45.98' Inflow=5.65 cfs 15,725 cf 12.0" Round Culvert n=0.013 L=118.0' S=0.0051 '/' Outflow=5.65 cfs 15,725 cf
Pond EX. CB8: EX. CB-8	Peak Elev=43.41' Inflow=2.25 cfs 6,309 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0060 '/' Outflow=2.25 cfs 6,309 cf
Pond EX. CB9: EX. CB-9	Peak Elev=42.31' Inflow=3.83 cfs 11,146 cf 12.0" Round Culvert n=0.013 L=30.0' S=0.0097 '/' Outflow=3.83 cfs 11,146 cf
Pond EX.INF2: EXIST. INF	ILTRATION Peak Elev=47.68' Storage=1,000 cf Inflow=1.26 cfs 3,472 cf Discarded=0.05 cfs 2,282 cf Primary=2.70 cfs 1,189 cf Outflow=2.75 cfs 3,472 cf
Pond INF-1: U/G INF-1	Peak Elev=43.80' Storage=2,077 cf Inflow=2.76 cfs 8,131 cf Discarded=0.24 cfs 6,670 cf Primary=0.88 cfs 1,461 cf Outflow=1.12 cfs 8,132 cf
Pond INF-2: U/G INF-2	Peak Elev=42.51' Storage=2,335 cf Inflow=2.77 cfs 8,730 cf Discarded=0.26 cfs 6,980 cf Primary=0.83 cfs 1,750 cf Outflow=1.09 cfs 8,731 cf
Pond INF-3: U/G INF-3	Peak Elev=42.99' Storage=2,294 cf Inflow=2.68 cfs 8,395 cf Discarded=0.25 cfs 6,948 cf Primary=0.63 cfs 1,448 cf Outflow=0.87 cfs 8,396 cf
Total Runoff	Area = 182,849 sf Runoff Volume = 71,232 cf Average Runoff Depth = 4.67" 17.37% Pervious = 31,764 sf 82.63% Impervious = 151.085 sf

17.37% Pervious = 31,764 sf 82.63% Impervious = 151,085 sf

4582-PostdrainRev1 Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 Hydro	Type III 24-hr 25-Year Rainfall=7.12" Printed 4/18/2022 OCAD Software Solutions LLC Page 13
Runoff by SCS TR	30.00 hrs, dt=0.01 hrs, 3001 points -20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: DRAINS TO CB-1 Flow Length=51'	Runoff Area=4,516 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0240 '/' Tc=0.5 min CN=98 Runoff=0.88 cfs 2,590 cf
Subcatchment2S: DRAINS TO CB-2 Flow Length=85'	Runoff Area=5,065 sf 94.14% Impervious Runoff Depth=6.64" Slope=0.0160 '/' Tc=0.8 min CN=96 Runoff=0.97 cfs 2,804 cf
Subcatchment3S: DRAINS TO CB-3	Runoff Area=7,497 sf 72.05% Impervious Runoff Depth=5.71" Flow Length=98' Tc=3.8 min CN=88 Runoff=1.19 cfs 3,567 cf
Subcatchment4S: DRAINS TO CB-4	Runoff Area=2,857 sf 62.60% Impervious Runoff Depth=5.25" Flow Length=71' Tc=3.5 min CN=84 Runoff=0.43 cfs 1,251 cf
Subcatchment5S: DRAINS TO CB-5 Flow Length=47'	Runoff Area=3,924 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0130 '/' Tc=0.7 min CN=98 Runoff=0.76 cfs 2,250 cf
Subcatchment6S: DRAINS TO CB-6 Flow Length=60'	Runoff Area=3,628 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0150 '/' Tc=4.0 min CN=98 Runoff=0.62 cfs 2,081 cf
Subcatchment7S: Subcat7S	Runoff Area=1,293 sf 98.96% Impervious Runoff Depth=6.88" Tc=0.0 min CN=98 Runoff=0.25 cfs 741 cf
Subcatchment8S: DRAINS TO CB-8 Flow Length=80'	Runoff Area=5,929 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0150 '/' Tc=0.8 min CN=98 Runoff=1.14 cfs 3,400 cf
Subcatchment9S: ROOF D	Runoff Area=6,400 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=1.22 cfs 3,670 cf
Subcatchment10S: ROOF B	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=0.92 cfs 2,752 cf
Subcatchment11S: ROOF A	Runoff Area=5,600 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=1.07 cfs 3,211 cf
Subcatchment12S: ROOF E	Runoff Area=4,000 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=0.76 cfs 2,293 cf
Subcatchment13S: ROOF F	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=0.92 cfs 2,752 cf
Subcatchment100S: RUNOFF TO EX.	Runoff Area=16,015 sf 91.98% Impervious Runoff Depth=6.53" Flow Length=182' Tc=3.5 min CN=95 Runoff=2.77 cfs 8,708 cf
Subcatchment200S: Drains to Northern Flow Length=132'	Runoff Area=11,417 sf 19.04% Impervious Runoff Depth=3.51" Slope=0.0200 '/' Tc=5.2 min CN=68 Runoff=1.11 cfs 3,337 cf
	Runoff Area=16,949 sf 77.39% Impervious Runoff Depth=5.94" Slope=0.0180 '/' Tc=2.0 min CN=90 Runoff=2.95 cfs 8,391 cf

4582-PostdrainRev1 Type III 24-hr25-Year Rainfall=7.12"Prepared by Greenman-Pedersen, Inc.Printed 4/18/2022HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLCPage 14		
	STOEX.CB-9 Runoff Area=8,852 sf 82.02% Impervious Runoff Depth=6.06" w Length=127' Slope=0.0230 '/' Tc=3.2 min CN=91 Runoff=1.49 cfs 4,468 cf	
	FTOEX.CB6 Runoff Area=14,456 sf 82.88% Impervious Runoff Depth=6.17" w Length=122' Slope=0.0100 '/' Tc=2.9 min CN=92 Runoff=2.49 cfs 7,437 cf	
Subcatchment303S: RUNOF	FTO EX. CB 5ARunoff Area=4,916 sf 86.65% Impervious Runoff Depth=6.29" Flow Length=106' Tc=0.9 min CN=93 Runoff=0.91 cfs 2,577 cf	
Subcatchment304S: RUNOF	FTOEX.CB5 Runoff Area=19,066 sf 75.73% Impervious Runoff Depth=5.83" Flow Length=336' Tc=3.3 min CN=89 Runoff=3.13 cfs 9,255 cf	
Subcatchment305S: RUNOF	FTO CB12 Runoff Area=8,890 sf 82.86% Impervious Runoff Depth=6.17" Flow Length=109' Tc=1.0 min CN=92 Runoff=1.63 cfs 4,573 cf	
	to Hotel Lot - Runoff Area=21,981 sf 86.10% Impervious Runoff Depth=6.29" v Length=255' Slope=0.0200 '/' Tc=4.9 min CN=93 Runoff=3.55 cfs 11,522 cf	
Pond CB1: PROP. CB-1	Peak Elev=44.67' Inflow=1.79 cfs 5,342 cf 12.0" Round Culvert n=0.013 L=59.0' S=0.0051 '/' Outflow=1.79 cfs 5,342 cf	
Pond CB2: PROP. CB-2	Peak Elev=44.63' Inflow=0.97 cfs 2,804 cf 12.0" Round Culvert n=0.013 L=31.0' S=0.0161 '/' Outflow=0.97 cfs 2,804 cf	
Pond CB3: PROP. CB-3	Peak Elev=44.05' Inflow=1.62 cfs 4,818 cf 12.0" Round Culvert n=0.013 L=54.0' S=0.0083 '/' Outflow=1.62 cfs 4,818 cf	
Pond CB4: PROP. CB-4	Peak Elev=44.14' Inflow=0.43 cfs 1,251 cf 12.0" Round Culvert n=0.013 L=36.0' S=0.0097 '/' Outflow=0.43 cfs 1,251 cf	
Pond CB5: PROP. CB-5	Peak Elev=43.67' Inflow=0.76 cfs 2,250 cf 12.0" Round Culvert n=0.013 L=12.0' S=0.0167 '/' Outflow=0.76 cfs 2,250 cf	
Pond CB6: PROP. CB-6	Peak Elev=43.67' Inflow=0.62 cfs 2,081 cf 12.0" Round Culvert n=0.013 L=9.0' S=0.0222 '/' Outflow=0.62 cfs 2,081 cf	
Pond CB7: PROP. CB-7	Peak Elev=43.80' Inflow=0.25 cfs 741 cf 12.0" Round Culvert n=0.013 L=34.0' S=0.0103 '/' Outflow=0.25 cfs 741 cf	
Pond CB8: PROP. CB-8	Peak Elev=43.68' Inflow=2.57 cfs 8,218 cf 12.0" Round Culvert n=0.013 L=7.0' S=0.0143 '/' Outflow=2.57 cfs 8,218 cf	
Pond DMH1: PROP. DMH-1	Peak Elev=43.80' Inflow=9.35 cfs 24,654 cf 18.0" Round Culvert n=0.013 L=43.0' S=0.0093 '/' Outflow=9.35 cfs 24,654 cf	
Pond DMH2: PROP. DMH-2	Peak Elev=44.84' Inflow=9.13 cfs 23,913 cf 18.0" Round Culvert n=0.013 L=30.0' S=0.0050 '/' Outflow=9.13 cfs 23,913 cf	
Pond DMH3: PROP. DMH-3	Peak Elev=43.49' Inflow=6.03 cfs 18,756 cf 18.0" Round Culvert n=0.013 L=38.0' S=0.0053 '/' Outflow=6.03 cfs 18,756 cf	

4582-PostdrainRev1 Prepared by Greenman- HydroCAD® 10.10-7a s/n 07	•••
Pond DMH3A: PROP. DM	H-3A Peak Elev=43.64' Inflow=1.32 cfs 3,224 cf 15.0" Round Culvert n=0.013 L=168.0' S=0.0048 '/' Outflow=1.32 cfs 3,224 cf
Pond DMH4: PROP DMH-	4 Peak Elev=45.82' Inflow=4.01 cfs 11,064 cf 12.0" Round Culvert n=0.013 L=118.0' S=0.0058 '/' Outflow=4.01 cfs 11,064 cf
Pond DMH5: PROP. DMH	-1 Peak Elev=44.61' Inflow=2.75 cfs 8,146 cf 12.0" Round Culvert n=0.013 L=11.0' S=0.0227 '/' Outflow=2.75 cfs 8,146 cf
Pond EX CB12: EXIST. CB	B12 (STORMCEPTOR) Peak Elev=60.24' Inflow=1.63 cfs 4,573 cf 12.0" Round Culvert n=0.013 L=16.0' S=0.0231 '/' Outflow=1.63 cfs 4,573 cf
Pond EX. CB-D: EX. DMH	- DESIGN POINT #3 Peak Elev=43.10' Inflow=15.37 cfs 43,411 cf 18.0" Round Culvert n=0.013 L=164.0' S=0.0399 '/' Outflow=15.37 cfs 43,411 cf
Pond EX. CB3A: EX. CB-3	A - DESIGN POINT #1 Peak Elev=43.03' Inflow=2.77 cfs 8,708 cf 12.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' Outflow=2.77 cfs 8,708 cf
Pond EX. CB5: EX. CB-5	Peak Elev=60.16' Inflow=5.37 cfs 11,254 cf 12.0" Round Culvert n=0.013 L=170.0' S=0.0025 '/' Outflow=5.37 cfs 11,254 cf
Pond EX. CB5A: EX. CB-5	A Peak Elev=55.64' Inflow=6.18 cfs 13,831 cf 12.0" Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Outflow=6.18 cfs 13,831 cf
Pond EX. CB6: EX. CB-6 (STORMCEPTOR) Peak Elev=53.54' Inflow=8.66 cfs 21,267 cf 12.0" Round Culvert n=0.013 L=118.0' S=0.0051 '/' Outflow=8.66 cfs 21,267 cf
Pond EX. CB8: EX. CB-8	Peak Elev=46.30' Inflow=2.95 cfs 8,391 cf 12.0" Round Culvert n=0.013 L=10.0' S=0.0060 '/' Outflow=2.95 cfs 8,391 cf
Pond EX. CB9: EX. CB-9	Peak Elev=44.82' Inflow=5.26 cfs 15,532 cf 12.0" Round Culvert n=0.013 L=30.0' S=0.0097 '/' Outflow=5.26 cfs 15,532 cf
Pond EX.INF2: EXIST. INF	ILTRATION Peak Elev=60.16' Storage=1,000 cf Inflow=1.63 cfs 4,573 cf Discarded=0.06 cfs 2,574 cf Primary=3.54 cfs 1,999 cf Outflow=3.59 cfs 4,573 cf
Pond INF-1: U/G INF-1	Peak Elev=44.53' Storage=2,912 cf Inflow=3.52 cfs 10,440 cf Discarded=0.28 cfs 7,767 cf Primary=2.14 cfs 2,673 cf Outflow=2.42 cfs 10,440 cf
Pond INF-2: U/G INF-2	Peak Elev=43.15' Storage=3,054 cf Inflow=3.60 cfs 11,429 cf Discarded=0.30 cfs 8,205 cf Primary=1.32 cfs 3,224 cf Outflow=1.62 cfs 11,429 cf
Pond INF-3: U/G INF-3	Peak Elev=43.67' Storage=3,057 cf Inflow=3.41 cfs 10,753 cf Discarded=0.29 cfs 8,107 cf Primary=1.00 cfs 2,646 cf Outflow=1.29 cfs 10,753 cf
Total Runoff	Area = 182,849 sf Runoff Volume = 93,630 cf Average Runoff Depth = 6.14"


17.37% Pervious = 31,764 sf 82.63% Impervious = 151,085 sf

4582-PostdrainRev1 Prepared by Greenman-Pedersen, Inc. <u>HydroCAD® 10.10-7a_s/n 01710_© 2021 Hydro</u>	<i>Type III 24-hr 50-Year Rainfall=8.52"</i> Printed 4/18/2022 OCAD Software Solutions LLC Page 16
Runoff by SCS TR	30.00 hrs, dt=0.01 hrs, 3001 points -20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: DRAINS TO CB-1 Flow Length=51'	Runoff Area=4,516 sf 100.00% Impervious Runoff Depth=8.28" Slope=0.0240 '/' Tc=0.5 min CN=98 Runoff=1.05 cfs 3,116 cf
Subcatchment2S: DRAINS TO CB-2 Flow Length=85'	Runoff Area=5,065 sf 94.14% Impervious Runoff Depth=8.04" Slope=0.0160 '/' Tc=0.8 min CN=96 Runoff=1.16 cfs 3,393 cf
Subcatchment3S: DRAINS TO CB-3	Runoff Area=7,497 sf 72.05% Impervious Runoff Depth=7.08" Flow Length=98' Tc=3.8 min CN=88 Runoff=1.46 cfs 4,421 cf
Subcatchment4S: DRAINS TO CB-4	Runoff Area=2,857 sf 62.60% Impervious Runoff Depth=6.60" Flow Length=71' Tc=3.5 min CN=84 Runoff=0.54 cfs 1,570 cf
Subcatchment5S: DRAINS TO CB-5 Flow Length=47'	Runoff Area=3,924 sf 100.00% Impervious Runoff Depth=8.28" Slope=0.0130 '/' Tc=0.7 min CN=98 Runoff=0.91 cfs 2,708 cf
Subcatchment6S: DRAINS TO CB-6 Flow Length=60'	Runoff Area=3,628 sf 100.00% Impervious Runoff Depth=8.28" Slope=0.0150 '/' Tc=4.0 min CN=98 Runoff=0.75 cfs 2,504 cf
Subcatchment7S: Subcat7S	Runoff Area=1,293 sf 98.96% Impervious Runoff Depth=8.28" Tc=0.0 min CN=98 Runoff=0.30 cfs 892 cf
Subcatchment8S: DRAINS TO CB-8 Flow Length=80'	Runoff Area=5,929 sf 100.00% Impervious Runoff Depth=8.28" Slope=0.0150 '/' Tc=0.8 min CN=98 Runoff=1.37 cfs 4,091 cf
Subcatchment9S: ROOF D	Runoff Area=6,400 sf 100.00% Impervious Runoff Depth=8.28" Tc=1.0 min CN=98 Runoff=1.46 cfs 4,416 cf
Subcatchment10S: ROOF B	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=8.28" Tc=1.0 min CN=98 Runoff=1.10 cfs 3,312 cf
Subcatchment11S: ROOF A	Runoff Area=5,600 sf 100.00% Impervious Runoff Depth=8.28" Tc=1.0 min CN=98 Runoff=1.28 cfs 3,864 cf
Subcatchment12S: ROOF E	Runoff Area=4,000 sf 100.00% Impervious Runoff Depth=8.28" Tc=1.0 min CN=98 Runoff=0.92 cfs 2,760 cf
Subcatchment13S: ROOF F	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=8.28" Tc=1.0 min CN=98 Runoff=1.10 cfs 3,312 cf
Subcatchment100S: RUNOFF TO EX.	Runoff Area=16,015 sf 91.98% Impervious Runoff Depth=7.92" low Length=182' Tc=3.5 min CN=95 Runoff=3.33 cfs 10,569 cf
Subcatchment200S: Drains to Northern Flow Length=132'	Runoff Area=11,417 sf 19.04% Impervious Runoff Depth=4.68" Slope=0.0200 '/' Tc=5.2 min CN=68 Runoff=1.48 cfs 4,448 cf
	Runoff Area=16,949 sf 77.39% Impervious Runoff Depth=7.32" Slope=0.0180 '/' Tc=2.0 min CN=90 Runoff=3.59 cfs 10,336 cf

4582-PostdrainRev1	Type III 24-hr 50-Year Rainfall=8.52"
Prepared by Greenman-Pedersen, Inc.	Printed 4/18/2022
HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software	Solutions LLC Page 17
Subcatchment301S: DRAINS TO EX. CB-9 Runoff Area	a=8,852 sf 82.02% Impervious Runoff Depth=7.44"
Flow Length=127' Slope=0.023	0 '/' Tc=3.2 min CN=91 Runoff=1.81 cfs 5,487 cf
Subcatchment302S: RUNOFF TO EX. CB6 Runoff Area=	=14,456 sf 82.88% Impervious Runoff Depth=7.56"
Flow Length=122' Slope=0.010	0 '/' Tc=2.9 min CN=92 Runoff=3.01 cfs 9,105 cf
Subcatchment303S: RUNOFF TO EX. CB 5ARunoff Area	a=4,916 sf 86.65% Impervious Runoff Depth=7.68"
Flow Length=*	106' Tc=0.9 min CN=93 Runoff=1.10 cfs 3,146 cf
Subcatchment304S: RUNOFF TO EX. CB5 Runoff Area=	=19,066 sf 75.73% Impervious Runoff Depth=7.20"
Flow Length=33	36' Tc=3.3 min CN=89 Runoff=3.81 cfs 11,435 cf
	a=8,890 sf 82.86% Impervious Runoff Depth=7.56" 109' Tc=1.0 min CN=92 Runoff=1.98 cfs 5,599 cf
Subcatchment400S: Drains to Hotel Lot - Runoff Area=	=21,981 sf 86.10% Impervious Runoff Depth=7.68"
Flow Length=255' Slope=0.0200	'/' Tc=4.9 min CN=93 Runoff=4.29 cfs 14,066 cf
Pond CB1: PROP. CB-1	Peak Elev=45.56' Inflow=2.14 cfs 6,428 cf
12.0" Round Culvert n=0.0	013 L=59.0' S=0.0051 '/' Outflow=2.14 cfs 6,428 cf
Pond CB2: PROP. CB-2	Peak Elev=45.52' Inflow=1.16 cfs 3,393 cf
12.0" Round Culvert n=0.0	013 L=31.0' S=0.0161 '/' Outflow=1.16 cfs 3,393 cf
Pond CB3: PROP. CB-3	Peak Elev=44.39' Inflow=1.99 cfs 5,992 cf
12.0" Round Culvert n=0.0	013 L=54.0' S=0.0083 '/' Outflow=1.99 cfs 5,992 cf
Pond CB4: PROP. CB-4	Peak Elev=44.40' Inflow=0.54 cfs 1,570 cf
12.0" Round Culvert n=0.0	013 L=36.0' S=0.0097 '/' Outflow=0.54 cfs 1,570 cf
Pond CB5: PROP. CB-5	Peak Elev=44.67' Inflow=0.91 cfs 2,708 cf
12.0" Round Culvert n=0.0	013 L=12.0' S=0.0167 '/' Outflow=0.91 cfs 2,708 cf
Pond CB6: PROP. CB-6	Peak Elev=44.67' Inflow=0.75 cfs 2,504 cf
12.0" Round Culvert n=0	.013 L=9.0' S=0.0222 '/' Outflow=0.75 cfs 2,504 cf
Pond CB7: PROP. CB-7	Peak Elev=45.01' Inflow=0.30 cfs 892 cf
12.0" Round Culvert n=0	0.013 L=34.0' S=0.0103 '/' Outflow=0.30 cfs 892 cf
Pond CB8: PROP. CB-8	Peak Elev=44.28' Inflow=3.13 cfs 10,082 cf
12.0" Round Culvert n=0.0	013 L=7.0' S=0.0143 '/' Outflow=3.13 cfs 10,082 cf
Pond DMH1: PROP. DMH-1	Peak Elev=45.01' Inflow=11.19 cfs 31,190 cf
18.0" Round Culvert n=0.013	3 L=43.0' S=0.0093 '/' Outflow=11.19 cfs 31,190 cf
Pond DMH2: PROP. DMH-2	Peak Elev=46.60' Inflow=10.94 cfs 30,298 cf
18.0" Round Culvert n=0.013	3 L=30.0' S=0.0050 '/' Outflow=10.94 cfs 30,298 cf
Pond DMH3: PROP. DMH-3	Peak Elev=44.47' Inflow=6.33 cfs 24,350 cf
18.0" Round Culvert n=0.01	3 L=38.0' S=0.0053 '/' Outflow=6.33 cfs 24,350 cf

4582-PostdrainRev1	Type III 24-hr 50-Year Rainfall=8.52"
Prepared by Greenman-Pedersen, Inc.	Printed 4/18/2022
<u>HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software</u>	Solutions LLC Page 18
Pond DMH3A: PROP. DMH-3A	Peak Elev=44.51' Inflow=1.85 cfs 4,675 cf
15.0" Round Culvert n=0.013	3 L=168.0' S=0.0048 '/' Outflow=1.85 cfs 4,675 cf
Pond DMH4: PROP DMH-4	Peak Elev=47.63' Inflow=4.02 cfs 14,188 cf
12.0" Round Culvert n=0.013	L=118.0' S=0.0058 '/' Outflow=4.02 cfs 14,188 cf
Pond DMH5: PROP. DMH-1	Peak Elev=45.50' Inflow=3.30 cfs 9,822 cf
12.0" Round Culvert n=0.0	13 L=11.0' S=0.0227 '/' Outflow=3.30 cfs 9,822 cf
Pond EX CB12: EXIST. CB12 (STORMCEPTOR)	Peak Elev=69.07' Inflow=1.98 cfs 5,599 cf
12.0" Round Culvert n=0.0	13 L=16.0' S=0.0231 '/' Outflow=1.98 cfs 5,600 cf
Pond EX. CB-D: EX. DMH - DESIGN POINT #3	Peak Elev=44.08' Inflow=17.52 cfs 55,540 cf
18.0" Round Culvert n=0.013	L=164.0' S=0.0399 '/' Outflow=17.52 cfs 55,540 cf
Pond EX. CB3A: EX. CB-3A - DESIGN POINT #1	Peak Elev=43.38' Inflow=3.33 cfs 10,569 cf
12.0" Round Culvert n=0.013	3 L=46.0' S=0.0057 '/' Outflow=3.33 cfs 10,569 cf
Pond EX. CB5: EX. CB-5	Peak Elev=71.03' Inflow=6.95 cfs 14,231 cf
12.0" Round Culvert n=0.013	L=170.0' S=0.0025 '/' Outflow=6.95 cfs 14,231 cf
Pond EX. CB5A: EX. CB-5A	Peak Elev=62.95' Inflow=7.98 cfs 17,377 cf
12.0" Round Culvert n=0.013	L=98.0' S=-0.0015 '/' Outflow=7.98 cfs 17,377 cf
Pond EX. CB6: EX. CB-6 (STORMCEPTOR)	Peak Elev=60.11' Inflow=10.94 cfs 26,483 cf
12.0" Round Culvert n=0.013	L=118.0' S=0.0051 '/' Outflow=10.94 cfs 26,483 cf
Pond EX. CB8: EX. CB-8	Peak Elev=48.41' Inflow=3.59 cfs 10,336 cf
12.0" Round Culvert n=0.013	3 L=10.0' S=0.0060 '/' Outflow=3.59 cfs 10,336 cf
Pond EX. CB9: EX. CB-9	Peak Elev=46.33' Inflow=5.42 cfs 19,675 cf
12.0" Round Culvert n=0.013	3 L=30.0' S=0.0097 '/' Outflow=5.42 cfs 19,675 cf
	=68.89' Storage=1,000 cf Inflow=1.98 cfs 5,600 cf imary=3.39 cfs 2,796 cf Outflow=3.45 cfs 5,600 cf
	45.40' Storage=3,644 cf Inflow=4.21 cfs 12,581 cf nary=2.48 cfs 3,852 cf Outflow=2.79 cfs 12,582 cf
	44.10' Storage=3,799 cf Inflow=4.36 cfs 13,946 cf nary=1.85 cfs 4,675 cf Outflow=2.20 cfs 13,947 cf
	44.66' Storage=3,812 cf Inflow=4.08 cfs 12,939 cf nary=1.37 cfs 3,815 cf Outflow=1.72 cfs 12,939 cf
	ume = 114,550 cf Average Runoff Depth = 7.52"

17.37% Pervious = 31,764 sf 82.63% Impervious = 151,085 sf

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
31,764	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 100S, 200S,
		300S, 301S, 302S, 303S, 304S, 305S, 400S)
125,486	98	Paved parking, HSG B (1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 100S, 200S, 300S,
		301S, 302S, 303S, 304S, 305S, 400S)
25,599	98	Roofs, HSG B (9S, 10S, 11S, 12S, 13S)
182,849	92	TOTAL AREA

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
182,849	HSG B	1S, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, 11S, 12S, 13S, 100S, 200S, 300S, 301S, 302S, 303S, 304S, 305S, 400S
0	HSG C	
0	HSG D	
0	Other	
182,849		TOTAL AREA

Prepared by Greenman-Pedersen, Inc.	
HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC	

Printed 4/18/2022 Page 4

HSG-A (sq-ft)	HSG-B (sq-ft)	HSG-C (sq-ft)	HSG-D (sq-ft)	Other (sq-ft)	Total (sq-ft)	Ground Cover	Su Nu
0	31,764	0	0	0	31,764	>75% Grass	_
						cover, Good	
0	125,486	0	0	0	125,486	Paved parking	
0	25,599	0	0	0	25,599	Roofs	
0	182,849	0	0	0	182,849	TOTAL AREA	

Ground Covers (all nodes)

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Printed 4/18/2022 Page 5

Pipe Listing (all nodes)

Line#	Node	In-Invert	Out-Invert	Length	Slope	n	Width	Diam/Height	Inside-Fill
	Number	(feet)	(feet)	(feet)	(ft/ft)		(inches)	(inches)	(inches)
1	CB1	43.30	43.00	59.0	0.0051	0.013	0.0	12.0	0.0
2	CB2	43.70	43.20	31.0	0.0161	0.013	0.0	12.0	0.0
3	CB3	43.15	42.70	54.0	0.0083	0.013	0.0	12.0	0.0
4	CB4	43.60	43.25	36.0	0.0097	0.013	0.0	12.0	0.0
5	CB5	42.20	42.00	12.0	0.0167	0.013	0.0	12.0	0.0
6	CB6	42.20	42.00	9.0	0.0222	0.013	0.0	12.0	0.0
7	CB7	41.05	40.70	34.0	0.0103	0.013	0.0	12.0	0.0
8	CB8	42.60	42.50	7.0	0.0143	0.013	0.0	12.0	0.0
9	DMH1	39.60	39.20	43.0	0.0093	0.013	0.0	18.0	0.0
10	DMH2	39.85	39.70	30.0	0.0050	0.013	0.0	18.0	0.0
11	DMH3	39.40	39.20	38.0	0.0053	0.013	0.0	18.0	0.0
12	DMH3A	40.30	39.50	168.0	0.0048	0.013	0.0	15.0	0.0
13	DMH4	41.32	40.64	118.0	0.0058	0.013	0.0	12.0	0.0
14	DMH5	42.00	41.75	11.0	0.0227	0.013	0.0	12.0	0.0
15	EX CB12	43.09	42.72	16.0	0.0231	0.013	0.0	12.0	0.0
16	EX. CB-D	39.09	32.55	164.0	0.0399	0.013	0.0	18.0	0.0
17	EX. CB3A	41.82	41.56	46.0	0.0057	0.013	0.0	12.0	0.0
18	EX. CB5	41.93	41.50	170.0	0.0025	0.013	0.0	12.0	0.0
19	EX. CB5A	41.15	41.30	98.0	-0.0015	0.013	0.0	12.0	0.0
20	EX. CB6	40.55	39.95	118.0	0.0051	0.013	0.0	12.0	0.0
21	EX. CB8	41.38	41.32	10.0	0.0060	0.013	0.0	12.0	0.0
22	EX. CB9	40.09	39.80	30.0	0.0097	0.013	0.0	12.0	0.0
23	EX.INF2	42.50	42.34	32.0	0.0050	0.013	0.0	12.0	0.0
24	INF-1	42.00	41.50	50.0	0.0100	0.013	0.0	12.0	0.0
25	INF-2	40.60	40.40	41.0	0.0049	0.013	0.0	15.0	0.0
26	INF-3	41.00	39.95	33.0	0.0318	0.013	0.0	12.0	0.0

Line# Node Notes Number 1 EX.INF2 The soils present in the area of the infiltration system consist of Urban Land (NRCS classification 699). Due to the limited information provided for this soil type, 140C Chatfield-Hollis-Canton Complex was used as the closest soil present within the site. 2 The bottom of the stone in the infiltration system is approximately 6' below existing grade. Per USDA Soil Data Mart, the lowest value for the Saturated Ksat Value for this soil at a depth of 21-60" +/- is 42.33 micrometers/second. 3 Per NHDES Stormwater Manual: Vol. 2, pages 16-17 using a factor of safety of 2, the infiltration rate for this system is as follows: 4 42.33/2 (FS) = 21.17 micro/sec. 5 Converting to inches/hr with a conversion factor of 0.1417 = (21.17 * 0.1417 = 3.00 in/hr)

Notes Listing (all nodes)

4582-PostdrainRev1 Prepared by Greenman-Pedersen, Inc. <u>HydroCAD® 10.10-7a_s/n 01710_© 2021 Hydro</u>	Type III 24-hr 25-Year Rainfall=7.12" Printed 4/18/2022 OCAD Software Solutions LLC Page 7
Runoff by SCS TR	30.00 hrs, dt=0.01 hrs, 3001 points -20 method, UH=SCS, Weighted-CN method - Pond routing by Dyn-Stor-Ind method
Subcatchment1S: DRAINS TO CB-1 Flow Length=51'	Runoff Area=4,516 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0240 '/' Tc=0.5 min CN=98 Runoff=0.88 cfs 2,590 cf
Subcatchment2S: DRAINS TO CB-2 Flow Length=85'	Runoff Area=5,065 sf 94.14% Impervious Runoff Depth=6.64" Slope=0.0160 '/' Tc=0.8 min CN=96 Runoff=0.97 cfs 2,804 cf
Subcatchment3S: DRAINS TO CB-3	Runoff Area=7,497 sf 72.05% Impervious Runoff Depth=5.71" Flow Length=98' Tc=3.8 min CN=88 Runoff=1.19 cfs 3,567 cf
Subcatchment4S: DRAINS TO CB-4	Runoff Area=2,857 sf 62.60% Impervious Runoff Depth=5.25" Flow Length=71' Tc=3.5 min CN=84 Runoff=0.43 cfs 1,251 cf
Subcatchment5S: DRAINS TO CB-5 Flow Length=47'	Runoff Area=3,924 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0130 '/' Tc=0.7 min CN=98 Runoff=0.76 cfs 2,250 cf
Subcatchment6S: DRAINS TO CB-6 Flow Length=60'	Runoff Area=3,628 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0150 '/' Tc=4.0 min CN=98 Runoff=0.62 cfs 2,081 cf
Subcatchment7S: Subcat7S	Runoff Area=1,293 sf 98.96% Impervious Runoff Depth=6.88" Tc=0.0 min CN=98 Runoff=0.25 cfs 741 cf
Subcatchment8S: DRAINS TO CB-8 Flow Length=80'	Runoff Area=5,929 sf 100.00% Impervious Runoff Depth=6.88" Slope=0.0150 '/' Tc=0.8 min CN=98 Runoff=1.14 cfs 3,400 cf
Subcatchment9S: ROOF D	Runoff Area=6,400 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=1.22 cfs 3,670 cf
Subcatchment10S: ROOF B	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=0.92 cfs 2,752 cf
Subcatchment11S: ROOF A	Runoff Area=5,600 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=1.07 cfs 3,211 cf
Subcatchment12S: ROOF E	Runoff Area=4,000 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=0.76 cfs 2,293 cf
Subcatchment13S: ROOF F	Runoff Area=4,800 sf 100.00% Impervious Runoff Depth=6.88" Tc=1.0 min CN=98 Runoff=0.92 cfs 2,752 cf
Subcatchment100S: RUNOFF TO EX.	Runoff Area=16,015 sf 91.98% Impervious Runoff Depth=6.53" Flow Length=182' Tc=3.5 min CN=95 Runoff=2.77 cfs 8,708 cf
Subcatchment200S: Drains to Northern Flow Length=132'	Runoff Area=11,417 sf 19.04% Impervious Runoff Depth=3.51" Slope=0.0200 '/' Tc=5.2 min CN=68 Runoff=1.11 cfs 3,337 cf
	Runoff Area=16,949 sf 77.39% Impervious Runoff Depth=5.94" Slope=0.0180 '/' Tc=2.0 min CN=90 Runoff=2.95 cfs 8,391 cf

4582-PostdrainRev1 Prepared by Greenman-Peo HydroCAD® 10.10-7a s/n 0171	Type III 24-hr 25-Year Rainfall=7.12"dersen, Inc.Printed 4/18/2022© © 2021 HydroCAD Software Solutions LLCPage 8
	STOEX.CB-9 Runoff Area=8,852 sf 82.02% Impervious Runoff Depth=6.06" w Length=127' Slope=0.0230 '/' Tc=3.2 min CN=91 Runoff=1.49 cfs 4,468 cf
	FTOEX.CB6 Runoff Area=14,456 sf 82.88% Impervious Runoff Depth=6.17" w Length=122' Slope=0.0100 '/' Tc=2.9 min CN=92 Runoff=2.49 cfs 7,437 cf
Subcatchment303S: RUNOF	FTO EX. CB 5A Runoff Area=4,916 sf 86.65% Impervious Runoff Depth=6.29" Flow Length=106' Tc=0.9 min CN=93 Runoff=0.91 cfs 2,577 cf
Subcatchment304S: RUNOF	FTOEX.CB5 Runoff Area=19,066 sf 75.73% Impervious Runoff Depth=5.83" Flow Length=336' Tc=3.3 min CN=89 Runoff=3.13 cfs 9,255 cf
Subcatchment305S: RUNOF	FTO CB12 Runoff Area=8,890 sf 82.86% Impervious Runoff Depth=6.17" Flow Length=109' Tc=1.0 min CN=92 Runoff=1.63 cfs 4,573 cf
	to Hotel Lot - Runoff Area=21,981 sf 86.10% Impervious Runoff Depth=6.29" v Length=255' Slope=0.0200 '/' Tc=4.9 min CN=93 Runoff=3.55 cfs 11,522 cf
Pond CB1: PROP. CB-1	Peak Elev=44.67' Inflow=1.79 cfs 5,342 cf 12.0" Round Culvert n=0.013 L=59.0' S=0.0051 '/' Outflow=1.79 cfs 5,342 cf
Pond CB2: PROP. CB-2	Peak Elev=44.63' Inflow=0.97 cfs 2,804 cf 12.0" Round Culvert n=0.013 L=31.0' S=0.0161 '/' Outflow=0.97 cfs 2,804 cf
Pond CB3: PROP. CB-3	Peak Elev=44.05' Inflow=1.62 cfs 4,818 cf 12.0" Round Culvert n=0.013 L=54.0' S=0.0083 '/' Outflow=1.62 cfs 4,818 cf
Pond CB4: PROP. CB-4	Peak Elev=44.14' Inflow=0.43 cfs 1,251 cf 12.0" Round Culvert n=0.013 L=36.0' S=0.0097 '/' Outflow=0.43 cfs 1,251 cf
Pond CB5: PROP. CB-5	Peak Elev=43.67' Inflow=0.76 cfs 2,250 cf 12.0" Round Culvert n=0.013 L=12.0' S=0.0167 '/' Outflow=0.76 cfs 2,250 cf
Pond CB6: PROP. CB-6	Peak Elev=43.67' Inflow=0.62 cfs 2,081 cf 12.0" Round Culvert n=0.013 L=9.0' S=0.0222 '/' Outflow=0.62 cfs 2,081 cf
Pond CB7: PROP. CB-7	Peak Elev=43.80' Inflow=0.25 cfs 741 cf 12.0" Round Culvert n=0.013 L=34.0' S=0.0103 '/' Outflow=0.25 cfs 741 cf
Pond CB8: PROP. CB-8	Peak Elev=43.68' Inflow=2.57 cfs 8,218 cf 12.0" Round Culvert n=0.013 L=7.0' S=0.0143 '/' Outflow=2.57 cfs 8,218 cf
Pond DMH1: PROP. DMH-1	Peak Elev=43.80' Inflow=9.35 cfs 24,654 cf 18.0" Round Culvert n=0.013 L=43.0' S=0.0093 '/' Outflow=9.35 cfs 24,654 cf
Pond DMH2: PROP. DMH-2	Peak Elev=44.84' Inflow=9.13 cfs 23,913 cf 18.0" Round Culvert n=0.013 L=30.0' S=0.0050 '/' Outflow=9.13 cfs 23,913 cf
Pond DMH3: PROP. DMH-3	Peak Elev=43.49' Inflow=6.03 cfs 18,756 cf 18.0" Round Culvert n=0.013 L=38.0' S=0.0053 '/' Outflow=6.03 cfs 18,756 cf

4582-PostdrainRev1 Prepared by Greenman-Peders HydroCAD® 10.10-7a s/n 01710 ©		2 5-Year Rainfall=7.12 " Printed 4/18/2022 Page 9
Pond DMH3A: PROP. DMH-3A 15.0	Peak Elev=43.64' 0" Round Culvert_n=0.013_L=168.0' S=0.0048 '/'_O	Inflow=1.32 cfs 3,224 cf utflow=1.32 cfs 3,224 cf
Pond DMH4: PROP DMH-4 12.0'	Peak Elev=45.82' Ir Round Culvert_n=0.013_L=118.0' S=0.0058 '/' Ou	nflow=4.01 cfs 11,064 cf tflow=4.01 cfs 11,064 cf
Pond DMH5: PROP. DMH-1 12	Peak Elev=44.61' 2.0" Round Culvert n=0.013 L=11.0' S=0.0227 '/' O	Inflow=2.75 cfs 8,146 cf utflow=2.75 cfs 8,146 cf
Pond EX CB12: EXIST. CB12 (ST 12	ORMCEPTOR) Peak Elev=60.24' 2.0" Round Culvert n=0.013 L=16.0' S=0.0231 '/' O	Inflow=1.63 cfs
	GN POINT #3 Peak Elev=43.10' Inf Round Culvert n=0.013 L=164.0' S=0.0399 '/' Outf	
Pond EX. CB3A: EX. CB-3A - DES 12	SIGN POINT #1 Peak Elev=43.03' 2.0" Round Culvert n=0.013 L=46.0' S=0.0057 '/' O	Inflow=2.77 cfs 8,708 cf utflow=2.77 cfs 8,708 cf
Pond EX. CB5: EX. CB-5 12.0'	Peak Elev=60.16' Ir Round Culvert_n=0.013_L=170.0' S=0.0025 '/' Ou	nflow=5.37 cfs 11,254 cf tflow=5.37 cfs 11,254 cf
Pond EX. CB5A: EX. CB-5A 12.0	Peak Elev=55.64' اr "/ Round Culvert n=0.013 L=98.0' S=-0.0015 '/' Ou	nflow=6.18 cfs 13,831 cf tflow=6.18 cfs 13,831 cf
Pond EX. CB6: EX. CB-6 (STORM 12.0'	ICEPTOR) Peak Elev=53.54' Ir " Round Culvert n=0.013 L=118.0' S=0.0051 '/' Ou	
Pond EX. CB8: EX. CB-8 12	Peak Elev=46.30' 2.0" Round Culvert n=0.013 L=10.0' S=0.0060 '/' O	Inflow=2.95 cfs 8,391 cf utflow=2.95 cfs 8,391 cf
Pond EX. CB9: EX. CB-9 12.0	Peak Elev=44.82' Ir 0" Round Culvert n=0.013 L=30.0' S=0.0097 '/' Ou	nflow=5.26 cfs 15,532 cf tflow=5.26 cfs 15,532 cf
Pond EX.INF2: EXIST. INFILTRA Discard	TION Peak Elev=60.16' Storage=1,000 cf ded=0.06 cfs 2,574 cf Primary=3.54 cfs 1,999 cf Output	
Pond INF-1: U/G INF-1 Discarde	Peak Elev=44.53' Storage=2,912 cf Ir ed=0.28 cfs 7,767 cf Primary=2.14 cfs 2,673 cf Out	
Pond INF-2: U/G INF-2 Discarde	Peak Elev=43.15' Storage=3,054 cf Ir ed=0.30 cfs 8,205 cf Primary=1.32 cfs 3,224 cf Out	
Pond INF-3: U/G INF-3 Discarde	Peak Elev=43.67' Storage=3,057 cf Ir ed=0.29 cfs 8,107 cf Primary=1.00 cfs 2,646 cf Out	
Total Runoff Area =	* 182,849 sf Runoff Volume = 93,630 cf Avera 17 37% Pervious = 31 764 sf 82 63%	

17.37% Pervious = 31,764 sf 82.63% Impervious = 151,085 sf

Summary for Subcatchment 1S: DRAINS TO CB-1

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.88 cfs @ 12.01 hrs, Volume= Routed to Pond CB1 : PROP. CB-1 2,590 cf, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

	A	rea (sf)	CN E	Description					
		0	61 >	75% Gras	s cover, Go	ood, HSG B			
		4,516	98 F	aved park	ing, HSG B				
		4,516	98 V	Veighted A	verage				
		0		0.00% Pervious Area					
		4,516	1	100.00% Impervious Area					
	Тс	Length	Slope	Velocity	Capacity	Description			
(n	nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.4	25	0.0240	1.12		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.22"			
	0.1	26	0.0240	3.14		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	0.5	51	Total						

Summary for Subcatchment 2S: DRAINS TO CB-2

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.97 cfs @ 12.01 hrs, Volume= Routed to Pond CB2 : PROP. CB-2

2,804 cf, Depth= 6.64"

Α	rea (sf)	CN E	N Description					
	297	61 >	75% Gras	s cover, Go	bod, HSG B			
	4,768	98 F	aved park	ing, HSG B	}			
	5,065	96 V	Veighted A	verage				
	297	5	.86% Perv	ious Area				
	4,768	9	94.14% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.4	25	0.0160	0.96		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.22"			
0.4	60	0.0160	2.57		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
0.8	85	Total						

Summary for Subcatchment 3S: DRAINS TO CB-3

Runoff = 1.19 cfs @ 12.05 hrs, Volume= Routed to Pond CB3 : PROP. CB-3 3,567 cf, Depth= 5.71"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

	Ar	ea (sf)	CN E	I Description					
		2,095	61 >	61 >75% Grass cover, Good, HSG B					
		5,402	98 F	Paved park	ing, HSG B	8			
		7,497	88 V	Veighted A	verage				
		2,095	2	27.95% Per	vious Area				
		5,402	7	'2.05% Imp	pervious Ar	ea			
	_								
	Тс	Length	Slope		Capacity	Description			
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
3	3.2	25	0.0200	0.13		Sheet Flow,			
						Grass: Short n= 0.150 P2= 3.22"			
C).2	10	0.0200	0.99		Shallow Concentrated Flow,			
						Short Grass Pasture Kv= 7.0 fps			
C).4	63	0.0150	2.49		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
3	8.8	98	Total						

Summary for Subcatchment 4S: DRAINS TO CB-4

Runoff = 0.43 cfs @ 12.05 hrs, Volume= Routed to Pond CB4 : PROP. CB-4 1,251 cf, Depth= 5.25"

A	rea (sf)	CN E	escription				
	1,069				ood, HSG B		
	1,788	<u>98</u> F	aved park	<u>ing, HSG B</u>			
	2,857	84 V	Veighted A	verage			
	1,069	3	37.40% Pervious Area				
	1,788	6	2.60% Imp	pervious Ar	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
3.2	25	0.0200	0.13		Sheet Flow,		
					Grass: Short n= 0.150 P2= 3.22"		
0.2	10	0.0200	0.99		Shallow Concentrated Flow,		
					Short Grass Pasture Kv= 7.0 fps		
0.1	36	0.0400	4.06		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
3.5	71	Total					

Summary for Subcatchment 5S: DRAINS TO CB-5

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.76 cfs @ 12.01 hrs, Volume= Routed to Pond CB5 : PROP. CB-5 2,250 cf, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN E	CN Description					
	0	61 >	75% Gras	s cover, Go	ood, HSG B			
	3,924	98 F	aved park	ing, HSG B				
	3,924	98 V	Veighted A	verage				
	0	0	.00% Perv	ious Area				
	3,924	1	100.00% Impervious Area					
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
0.5	25	0.0130	0.88		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.22"			
0.2	22	0.0130	2.31		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
0.7	47	Total						

Summary for Subcatchment 6S: DRAINS TO CB-6

Runoff = 0.62 cfs @ 12.06 hrs, Volume= Routed to Pond CB6 : PROP. CB-6

2,081 cf, Depth= 6.88"

A	rea (sf)	CN E	Description		
	0	61 >	75% Gras	s cover, Go	bod, HSG B
	3,628	98 F	Paved park	ing, HSG B	6
	3,628	98 V	Veighted A	verage	
	0	0	.00% Perv	ious Area	
	3,628	1	00.00% In	npervious A	vrea
_					
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
3.6	25	0.0150	0.12		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
0.3	15	0.0150	0.86		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
0.1	20	0.0150	2.49		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
4.0	60	Total			

Summary for Subcatchment 7S: Subcat 7S

[46] Hint: Tc=0 (Instant runoff peak depends on dt)

Runoff = 0.25 cfs @ 12.00 hrs, Volume= Routed to Pond CB7 : PROP. CB-7 741 cf, Depth= 6.88"

3,400 cf, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

Area (sf)	CN	Description
13	61	>75% Grass cover, Good, HSG B
1,279	98	Paved parking, HSG B
1,293	98	Weighted Average
13		1.04% Pervious Area
1,279		98.96% Impervious Area

Summary for Subcatchment 8S: DRAINS TO CB-8

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	1.14 cfs @	12.01 hrs,	Volume=
Route	d to P	ond CB8 : PRO	P. CB-8	

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

	А	rea (sf)	CN E	CN Description					
		0	61 >	75% Gras	s cover, Go	bod, HSG B			
		5,929	98 F	Paved park	ing, HSG B				
		5,929	98 V	Veighted A	verage				
		0	C	0.00% Pervious Area					
		5,929	1	00.00% In	npervious A	vrea			
	_				-				
	Tc	Length	Slope		Capacity	Description			
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	0.4	25	0.0150	0.93		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 3.22"			
	0.4	55	0.0150	2.49		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	0.8	80	Total						

0.8 80 Total

Summary for Subcatchment 9S: ROOF D

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.22 cfs @ 12.01 hrs, Volume= Routed to Pond INF-3 : U/G INF-3 3,670 cf, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN	Description				
	6,400	98	Roofs, HSC	βB			
	6,400	100.00% Impervious Area					
Tc (min)	Length (feet)	Slop (ft/ft	,	Capacity (cfs)	Description		
1.0					Direct Entry,		

Summary for Subcatchment 10S: ROOF B

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.92 cfs @ 12.01 hrs, Volume= 2,752 cf, Depth= 6.88" Routed to Pond INF-3 : U/G INF-3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN I	Description		
	4,800	98	Roofs, HSG	βB	
	4,800		100.00% In	npervious A	rea
Tc _(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.0					Direct Entry,

Summary for Subcatchment 11S: ROOF A

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.07 cfs @ 12.01 hrs, Volume= 3,211 cf, Depth= 6.88" Routed to Pond INF-2 : U/G INF-2

A	rea (sf)	CN E	Description		
	5,600	98 F	Roofs, HSC	βB	
	5,600	1	00.00% In	npervious A	Area
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.0	. /	· · ·	· · · ·		Direct Entry,

Summary for Subcatchment 12S: ROOF E

[49] Hint: Tc<2dt may require smaller dt

0.76 cfs @ 12.01 hrs, Volume= 2,293 cf, Depth= 6.88" Runoff = Routed to Pond INF-1 : U/G INF-1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

Ar	rea (sf)	CN	CN Description						
	4,000	98	98 Roofs, HSG B						
	4,000		100.00% Impervious Area						
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
1.0		Direct Entry,							
	Summary for Subcatchment 13S: ROOF F								

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.92 cfs @	12.01 hrs,	Volume=
Routed	l to Ponc	I CB1 : PROI	P. CB-1	

2,752 cf, Depth= 6.88"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN I	Description						
	4,800	98 I	98 Roofs, HSG B						
	4,800		100.00% In	npervious A	Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
1.0					Direct Entry,				

Summary for Subcatchment 100S: RUNOFF TO EX. CB3A

Runoff = 2.77 cfs @ 12.05 hrs, Volume= 8,708 cf, Depth= 6.53" Routed to Pond EX. CB3A : EX. CB-3A - DESIGN POINT #1

Area (sf)	CN	Description			
1,285	61	>75% Grass cover, Good, HSG B			
14,730	98	Paved parking, HSG B			
16,015	95	Weighted Average			
1,285		8.02% Pervious Area			
14,730		91.98% Impervious Area			

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
 2.1	15	0.0200	0.12		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
0.2	10	0.0200	0.87		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 3.22"
1.2	157	0.0120	2.22		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
3.5	182	Total			

Summary for Subcatchment 200S: Drains to Northern Property line -DESIGN POINT #2

Runoff = 1.11 cfs @ 12.08 hrs, Volume= 3,337 cf, Depth= 3.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN D	escription		
	9,243	61 >	75% Gras	s cover, Go	bod, HSG B
	2,174	98 P	aved park	ing, HSG B	3
	11,417	68 V	/eighted A	verage	
	9,243	8	0.96% Per	vious Area	
	2,174	1	9.04% Imp	pervious Ar	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
2.7	20	0.0200	0.12		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
0.9	5	0.0200	0.09		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.22"
0.1	15	0.0200	2.87		Shallow Concentrated Flow,
					Paved Kv= 20.3 fps
1.5	92	0.0200	0.99		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps
5.2	132	Total			

Summary for Subcatchment 300S: DRAINS TO EX. CB-8

Runoff = 2.95 cfs @ 12.03 hrs, Volume= 8,391 cf, Depth= 5.94" Routed to Pond EX. CB8 : EX. CB-8

 Type III 24-hr
 25-Year Rainfall=7.12"

 Printed
 4/18/2022

 S LLC
 Page 17

Prepared by Greenman-Pedersen, Inc.						
HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions L	LC					

_	A	rea (sf)	CN D	Description						
		3,832	61 >	>75% Grass cover, Good, HSG B						
		13,117	98 F	aved park	ing, HSG B					
		16,949	90 V	Veighted A	verage					
		3,832	2	2.61% Per	vious Area					
	13,117 77.39% Impervious Are					ea				
		Length	Slope	Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	0.4	25	0.0180	1.00		Sheet Flow,				
						Smooth surfaces n= 0.011 P2= 3.22"				
	1.6	254	0.0180	2.72		Shallow Concentrated Flow,				
_						Paved Kv= 20.3 fps				
	2.0	279	Total							

Summary for Subcatchment 301S: DRAINS TO EX. CB-9

Runoff = 1.49 cfs @ 12.05 hrs, Volume= Routed to Pond EX. CB9 : EX. CB-9 4,468 cf, Depth= 6.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

A	rea (sf)	CN E	Description					
	1,592		61 >75% Grass cover, Good, HSG B					
	7,260	98 F	aved park	ing, HSG B				
	8,852	91 V	Veighted A	verage				
	1,592	1	7.98% Per	rvious Area				
	7,260	8	2.02% Imp	pervious Ar	ea			
_				_				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
2.5	20	0.0230	0.13		Sheet Flow,			
					Grass: Short n= 0.150 P2= 3.22"			
0.1	5	0.0230	0.80		Sheet Flow,			
					Smooth surfaces n= 0.011 P2= 3.22"			
0.6	102	0.0230	3.08		Shallow Concentrated Flow,			
					Paved Kv= 20.3 fps			
3.2	127	Total						

Summary for Subcatchment 302S: RUNOFF TO EX. CB6

Runoff = 2.49 cfs @ 12.04 hrs, Volume= 7,437 cf, Depth= 6.17" Routed to Pond EX. CB6 : EX. CB-6 (STORMCEPTOR)

 Type III 24-hr
 25-Year Rainfall=7.12"

 Printed
 4/18/2022

 S LLC
 Page 18

Prepared by Greenman-Pedersen, Inc.	
HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC	

 A	rea (sf)	CN D	escription						
	2,474	61 >	61 >75% Grass cover, Good, HSG B						
	11,981	98 P	aved park	ing, HSG B					
	14,456	92 V	Veighted A	verage					
	2,474	1	7.12% Per	vious Area					
	11,981	8	2.88% Imp	pervious Ar	ea				
_				•	-				
Тс	Length	Slope	Velocity	Capacity	Description				
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
1.7	8	0.0100	0.08		Sheet Flow,				
					Grass: Short n= 0.150 P2= 3.22"				
0.4	17	0.0100	0.73		Sheet Flow,				
					Smooth surfaces n= 0.011 P2= 3.22"				
0.8	97	0.0100	2.03		Shallow Concentrated Flow,				
					Paved Kv= 20.3 fps				
2.9	122	Total							

Summary for Subcatchment 303S: RUNOFF TO EX. CB 5A

[49] Hint: Tc<2dt may require smaller dt

Runoff	=	0.91 cfs @	12.01 hrs,	Volume=
Routed	to Pond	d EX. CB5A :	EX. CB-5A	

2,577 cf, Depth= 6.29"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

_	A	rea (sf)	CN [Description			
		656	61 >75% Grass cover, Good, HSG B				
_		4,260	98 F	Paved park	ing, HSG B	3	
		4,916	93 \	Neighted A	verage		
		656		13.35% Pei	rvious Area		
	4,260 86.65% Impervious Area					ea	
	_						
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	0.4	25	0.0200	1.05		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.22"	
	0.5	81	0.0150	2.49		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	0.0	106	Total				

0.9 106 Total

Summary for Subcatchment 304S: RUNOFF TO EX. CB5

Runoff = 3.13 cfs @ 12.05 hrs, Volume= 9,255 cf, Depth= 5.83" Routed to Pond EX. CB5 : EX. CB-5

 Type III 24-hr
 25-Year Rainfall=7.12"

 Printed
 4/18/2022

 S LLC
 Page 19

Prepared by Greenman-Peo	lersen, Inc.
HydroCAD® 10.10-7a s/n 01710	© 2021 HydroCAD Software Solutions LLC

	Area (sf)	CN E	CN Description			
	4,627	61 >	61 >75% Grass cover, Good, HSG B			
	14,438	98 F	aved park	ing, HSG B		
	19,066	89 V	Veighted A	verage		
	4,627	2	4.27% Per	vious Area		
	14,438	7	5.73% Imp	ervious Ar	ea	
_						
To		Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
0.4	25	0.0200	1.05		Sheet Flow,	
					Smooth surfaces n= 0.011 P2= 3.22"	
2.9	311	0.0080	1.82		Shallow Concentrated Flow,	
					Paved Kv= 20.3 fps	
3.3	336	Total				

Summary for Subcatchment 305S: RUNOFF TO CB12

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.63 cfs @ 12.01 hrs, Volume= 4,573 cf, Depth= 6.17" Routed to Pond EX CB12 : EXIST. CB12 (STORMCEPTOR)

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year Rainfall=7.12"

_	А	rea (sf)	CN E	Description			
		1,524	61 >75% Grass cover, Good, HSG B				
		7,365	98 F	Paved park	ing, HSG B		
		8,890	92 Weighted Average				
		1,524	1,524 17.14% Pervious Area				
		7,365 82.86% Impervious Area					
	_						
	Tc	Length	Slope	Velocity	Capacity	Description	
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	0.2	10	0.0200	0.87		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 3.22"	
	0.1	11	0.0100	1.50		Shallow Concentrated Flow,	
						Grassed Waterway Kv= 15.0 fps	
	0.7	88	0.0100	2.03		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
	10	109	Total				

1.0 109 Total

Summary for Subcatchment 400S: Drains to Hotel Lot - DESIGN POINT #4

Runoff = 3.55 cfs @ 12.07 hrs, Volume= 11,522 Routed to nonexistent node CB-D

11,522 cf, Depth= 6.29"

Prenared by Greenman-Pedersen Inc.

 Type III 24-hr
 25-Year Rainfall=7.12"

 Printed
 4/18/2022

 LLC
 Page 20

HydroCAD® 10.10)-7a s/r	n 01710 © 2021 HydroCAD Software Solutions LLC			
Area (sf)	CN	Description			
3,056	61	>75% Grass cover, Good, HSG B			
18,924	98	Paved parking, HSG B			
21,981	93	Weighted Average			
3,056		13.90% Pervious Area			
18,924		86.10% Impervious Area			

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	3.2	25	0.0200	0.13		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.22"
	0.6	35	0.0200	0.99		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	1.1	195	0.0200	2.87		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
-	4.0	0.5.5	T ()			

4.9 255 Total

Summary for Pond CB1: PROP. CB-1

Inflow Area =		9,316 sf,100.00% Impervious,		Inflow Depth = 6.88"	for 25-Year event		
Inflow	=	1.79 cfs @	12.01 hrs, Volume=	5,342 cf			
Outflow	=	1.79 cfs @	12.01 hrs, Volume=	5,342 cf, Atter	n= 0%, Lag= 0.0 min		
Primary	=	1.79 cfs @	12.01 hrs, Volume=	5,342 cf			
Routed to Pond DMH5 : PROP. DMH-1							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.67' @ 12.10 hrs Flood Elev= 46.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	43.30'	12.0" Round Culvert L= 59.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.30' / 43.00' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.38 cfs @ 12.01 hrs HW=44.51' TW=44.35' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.38 cfs @ 1.85 fps)

Summary for Pond CB2: PROP. CB-2

 Inflow Area =
 5,065 sf, 94.14% Impervious, Inflow Depth =
 6.64" for 25-Year event

 Inflow =
 0.97 cfs @
 12.01 hrs, Volume=
 2,804 cf

 Outflow =
 0.97 cfs @
 12.01 hrs, Volume=
 2,804 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.97 cfs @
 12.01 hrs, Volume=
 2,804 cf

 Routed to Pond DMH5 : PROP. DMH-1
 2,804 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.63' @ 12.10 hrs Flood Elev= 47.20'

Prepared by Greenman-Pedersen, Inc.	
HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC	<u>C</u>

Device	Routing	Invert	Outlet Devices
#1	Primary	43.70'	12.0" Round Culvert
			L= 31.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.70' / 43.20' S= 0.0161 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.64 cfs @ 12.01 hrs HW=44.43' TW=44.35' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.64 cfs @ 1.45 fps)

Summary for Pond CB3: PROP. CB-3

Inflow Area =		10,354 sf	, 69.44% Impervious,	Inflow Depth = 5.58"	for 25-Year event	
Inflow	=	1.62 cfs @	12.05 hrs, Volume=	4,818 cf		
Outflow	=	1.62 cfs @	12.05 hrs, Volume=	4,818 cf, Atte	n= 0%, Lag= 0.0 min	
Primary	=	1.62 cfs @	12.05 hrs, Volume=	4,818 cf	-	
Routed to Pond CB8 : PROP. CB-8						

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.05' @ 12.05 hrs Flood Elev= 46.15'

Device	Routing	Invert	Outlet Devices
#1	Primary	43.15'	12.0" Round Culvert L= 54.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.15' / 42.70' S= 0.0083 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.65 cfs @ 12.05 hrs HW=44.04' TW=43.66' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.65 cfs @ 2.95 fps)

Summary for Pond CB4: PROP. CB-4

 Inflow Area =
 2,857 sf, 62.60% Impervious, Inflow Depth = 5.25" for 25-Year event

 Inflow =
 0.43 cfs @
 12.05 hrs, Volume=
 1,251 cf

 Outflow =
 0.43 cfs @
 12.05 hrs, Volume=
 1,251 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.43 cfs @
 12.05 hrs, Volume=
 1,251 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.43 cfs @
 12.05 hrs, Volume=
 1,251 cf

 Routed to Pond CB3 : PROP. CB-3
 12.05 hrs, Volume=
 1,251 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.14' @ 12.06 hrs Flood Elev= 46.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	43.60'	12.0" Round Culvert L= 36.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.60' / 43.25' S= 0.0097 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.42 cfs @ 12.05 hrs HW=44.14' TW=44.05' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.42 cfs @ 1.41 fps)

Summary for Pond CB5: PROP. CB-5

 Inflow Area =
 3,924 sf,100.00% Impervious, Inflow Depth =
 6.88" for 25-Year event

 Inflow =
 0.76 cfs @
 12.01 hrs, Volume=
 2,250 cf

 Outflow =
 0.76 cfs @
 12.01 hrs, Volume=
 2,250 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.76 cfs @
 12.01 hrs, Volume=
 2,250 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.76 cfs @
 12.01 hrs, Volume=
 2,250 cf

 Routed to Pond INF-3 : U/G INF-3
 U/G INF-3
 0.76 cfs

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.67' @ 12.20 hrs Flood Elev= 45.90'

Device	Routing	Invert	Outlet Devices
#1	Primary	42.20'	12.0" Round Culvert L= 12.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 42.20' / 42.00' S= 0.0167 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.25 cfs @ 12.01 hrs HW=42.93' TW=42.92' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.25 cfs @ 0.57 fps)

Summary for Pond CB6: PROP. CB-6

Inflow Area =		3,628 sf	,100.00% Impervious,	Inflow Depth = 6.88" for 25-Year event	
Inflow	=	0.62 cfs @	12.06 hrs, Volume=	2,081 cf	
Outflow	=	0.62 cfs @	12.06 hrs, Volume=	2,081 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	0.62 cfs @	12.06 hrs, Volume=	2,081 cf	
Routed to Pond INF-3 : U/G INF-3					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.67' @ 12.20 hrs Flood Elev= 45.60'

Device	Routing	Invert	Outlet Devices
#1	Primary	42.20'	12.0" Round Culvert L= 9.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 42.20' / 42.00' S= 0.0222 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.06 hrs HW=43.25' TW=43.31' (Dynamic Tailwater)

Summary for Pond CB7: PROP. CB-7

 Inflow Area =
 1,293 sf, 98.96% Impervious, Inflow Depth = 6.88" for 25-Year event

 Inflow =
 0.25 cfs @
 12.00 hrs, Volume=
 741 cf

 Outflow =
 0.25 cfs @
 12.00 hrs, Volume=
 741 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 0.25 cfs @
 12.00 hrs, Volume=
 741 cf

 Routed to Pond DMH1 : PROP. DMH-1
 741 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Peak Elev= 43.80' @ 12.04 hrs Flood Elev= 45.05'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.05'	12.0" Round Culvert
			L= 34.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.05' / 40.70' S= 0.0103 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.00 hrs HW=41.49' TW=41.79' (Dynamic Tailwater) **1=Culvert** (Controls 0.00 cfs)

Summary for Pond CB8: PROP. CB-8

Inflow Area =		16,283 sf	, 80.57% Impervious,	Inflow Depth = 6.06"	for 25-Year event
Inflow	=	2.57 cfs @	12.04 hrs, Volume=	8,218 cf	
Outflow	=	2.57 cfs @	12.04 hrs, Volume=	8,218 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	2.57 cfs @	12.04 hrs, Volume=	8,218 cf	-
Routed to Pond INF-2 : U/G INF-2					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.68' @ 12.04 hrs Flood Elev= 47.30'

Device	Routing	Invert	Outlet Devices
#1	Primary	42.60'	12.0" Round Culvert
	5		L= 7.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 42.60' / 42.50' S= 0.0143 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.56 cfs @ 12.04 hrs HW=43.68' TW=42.63' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 2.56 cfs @ 3.77 fps)

Summary for Pond DMH1: PROP. DMH-1

[80] Warning: Exceeded Pond CB7 by 0.77' @ 12.03 hrs (3.32 cfs 769 cf) [80] Warning: Exceeded Pond DMH2 by 0.20' @ 12.19 hrs (3.77 cfs 433 cf)

67,372 sf, 86.20% Impervious, Inflow Depth = 4.39" Inflow Area = for 25-Year event Inflow = 9.35 cfs @ 12.02 hrs, Volume= 24.654 cf Outflow 9.35 cfs @ 12.02 hrs, Volume= 24,654 cf, Atten= 0%, Lag= 0.0 min = = 9.35 cfs @ 12.02 hrs, Volume= 24,654 cf Primary Routed to Pond EX. CB-D : EX. DMH - DESIGN POINT #3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.80' @ 12.03 hrs Flood Elev= 45.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	39.60'	18.0" Round Culvert
			L= 43.0' CPP, square edge headwall, Ke= 0.500

Inlet / Outlet Invert= 39.60' / 39.20' S= 0.0093 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 12.02 hrs HW=43.02' TW=43.09' (Dynamic Tailwater) **1=Culvert** (Controls 0.00 cfs)

Summary for Pond DMH2: PROP. DMH-2

[80] Warning: Exceeded Pond INF-3 by 1.67' @ 12.04 hrs (2.05 cfs 195 cf)

 Inflow Area =
 66,079 sf, 85.95% Impervious, Inflow Depth = 4.34" for 25-Year event

 Inflow =
 9.13 cfs @ 12.02 hrs, Volume=
 23,913 cf

 Outflow =
 9.13 cfs @ 12.02 hrs, Volume=
 23,913 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 9.13 cfs @ 12.02 hrs, Volume=
 23,913 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 9.13 cfs @ 12.02 hrs, Volume=
 23,913 cf

 Routed to Pond DMH1 : PROP. DMH-1
 23,913 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.84' @ 12.04 hrs Flood Elev= 46.00'

Device	Routing	Invert	Outlet Devices
#1	Primary	39.85'	18.0" Round Culvert
			L= 30.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 39.85' / 39.70' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=5.70 cfs @ 12.02 hrs HW=43.47' TW=43.02' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 5.70 cfs @ 3.23 fps)

Summary for Pond DMH3: PROP. DMH-3

[80] Warning: Exceeded Pond DMH3A by 2.47' @ 12.05 hrs (6.01 cfs 1,426 cf) [80] Warning: Exceeded Pond EX. CB9 by 0.07' @ 12.23 hrs (0.98 cfs 35 cf)

 Inflow Area =
 66,065 sf, 86.55% Impervious, Inflow Depth = 3.41" for 25-Year event

 Inflow =
 6.03 cfs @
 12.02 hrs, Volume=
 18,756 cf

 Outflow =
 6.03 cfs @
 12.02 hrs, Volume=
 18,756 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 6.03 cfs @
 12.02 hrs, Volume=
 18,756 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 6.03 cfs @
 12.02 hrs, Volume=
 18,756 cf

 Routed to Pond EX. CB-D : EX. DMH - DESIGN POINT #3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.49' @ 12.03 hrs Flood Elev= 46.55'

Device	Routing	Invert	Outlet Devices
#1	Primary	39.40'	18.0" Round Culvert L= 38.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 39.40' / 39.20' S= 0.0053 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=0.00 cfs @ 12.02 hrs HW=42.48' TW=42.95' (Dynamic Tailwater)

Summary for Pond DMH3A: PROP. DMH-3A

[80] Warning: Exceeded Pond INF-2 by 0.85' @ 12.04 hrs (1.19 cfs 46 cf)

Inflow Area =		21,883 sf	, 85.54% Impervious,	Inflow Depth = 1.77"	for 25-Year event
Inflow	=	1.32 cfs @	12.16 hrs, Volume=	3,224 cf	
Outflow	=	1.32 cfs @	12.16 hrs, Volume=	3,224 cf, Atte	n= 0%, Lag= 0.0 min
Primary	=	1.32 cfs @	12.16 hrs, Volume=	3,224 cf	-
Routed to Pond DMH3 : PROP. DMH-3					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.64' @ 12.04 hrs Flood Elev= 48.65'

Device	Routing	Invert	Outlet Devices
#1	Primary	40.30'	15.0" Round Culvert
			L= 168.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 40.30' / 39.50' S= 0.0048 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=1.79 cfs @ 12.16 hrs HW=41.67' TW=41.48' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 1.79 cfs @ 1.65 fps)

Summary for Pond DMH4: PROP DMH-4

[80] Warning: Exceeded Pond EX. CB8 by 1.70' @ 12.09 hrs (4.93 cfs 1,050 cf) [80] Warning: Exceeded Pond INF-1 by 1.58' @ 12.05 hrs (3.39 cfs 519 cf)

Inflow Area =	= 35,3	30 sf, 88.31% l	mpervious,	Inflow Depth = 3.7	6" for 25-Year event
Inflow =	4.01 cf	s @ 12.09 hrs,	Volume=	11,064 cf	
Outflow =	4.01 cf	^f s @ 12.09 hrs,	Volume=	11,064 cf, A	tten= 0%, Lag= 0.0 min
Primary =	4.01 cf	^f s @ 12.09 hrs,	Volume=	11,064 cf	
Routed to Pond EX. CB9 : EX. CB-9					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 45.82' @ 12.05 hrs Flood Elev= 47.08'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.32'	12.0" Round Culvert L= 118.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.32' / 40.64' S= 0.0058 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.85 cfs @ 12.09 hrs HW=45.49' TW=43.55' (Dynamic Tailwater) -1=Culvert (Outlet Controls 3.85 cfs @ 4.90 fps)

Summary for Pond DMH5: PROP. DMH-1

Inflow Area = 14,382 sf, 97.94% Impervious, Inflow Depth = 6.80" for 25-Year event Inflow 2.75 cfs @ 12.01 hrs, Volume= 8.146 cf = Outflow 2.75 cfs @ 12.01 hrs, Volume= 8,146 cf, Atten= 0%, Lag= 0.0 min = 2.75 cfs @ 12.01 hrs, Volume= Primary = 8.146 cf Routed to Pond INF-1 : U/G INF-1 Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.61' @ 12.14 hrs Flood Elev= 47.50'Davias Dauting Invert Outlet Devices

Device	Routing	Inven	Outlet Devices
#1	Primary	42.00'	12.0" Round Culvert
			L= 11.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 42.00' / 41.75' S= 0.0227 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.51 cfs @ 12.01 hrs HW=44.35' TW=43.91' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.51 cfs @ 3.20 fps)

Summary for Pond EX CB12: EXIST. CB12 (STORMCEPTOR)

[58] Hint: Peaked 14.30' above defined flood level

 Inflow Area =
 8,890 sf, 82.86% Impervious, Inflow Depth = 6.17" for 25-Year event

 Inflow =
 1.63 cfs @
 12.01 hrs, Volume=
 4,573 cf

 Outflow =
 1.63 cfs @
 12.01 hrs, Volume=
 4,573 cf, Atten= 0%, Lag= 0.0 min

 Primary =
 1.63 cfs @
 12.01 hrs, Volume=
 4,573 cf

 Routed to Pond EX.INF2 : EXIST. INFILTRATION SYSTEM #2

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 60.24' @ 12.08 hrs Flood Elev= 45.94'

Device	Routing	Invert	Outlet Devices
#1	Primary	43.09'	12.0" Round Culvert L= 16.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 43.09' / 42.72' S= 0.0231 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.01 hrs HW=45.71' TW=46.93' (Dynamic Tailwater)

Summary for Pond EX. CB-D: EX. DMH - DESIGN POINT #3

[80] Warning: Exceeded Pond DMH1 by 0.19' @ 12.18 hrs (3.69 cfs 409 cf)

[80] Warning: Exceeded Pond DMH3 by 0.78' @ 12.02 hrs (7.53 cfs 1,514 cf)

4582-PostdrainRev1	Type III 24-hr 25-Year Rainfall=7.12"
Prepared by Greenman-Pedersen, Inc.	Printed 4/18/2022
HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solution	ns LLC Page 27

Inflow Area	a =	133,437 sf, 86.38% Impervious, Inflow Depth = 3.90" for 25-Year event
Inflow	=	15.37 cfs @ 12.02 hrs, Volume= 43,411 cf
Outflow	=	15.37 cfs @ 12.02 hrs, Volume= 43,411 cf, Atten= 0%, Lag= 0.0 min
Primary	=	15.37 cfs @ 12.02 hrs, Volume= 43.411 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.10' @ 12.02 hrs Flood Elev= 44.18'

Device Routing Invert Outlet Devices	
#1 Primary 39.09' 18.0" Round Culvert L= 164.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 39.09' / 32.55' S= 0.0399 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf	

Primary OutFlow Max=15.27 cfs @ 12.02 hrs HW=43.06' (Free Discharge) **1=Culvert** (Inlet Controls 15.27 cfs @ 8.64 fps)

Summary for Pond EX. CB3A: EX. CB-3A - DESIGN POINT #1

Inflow Area =		16,015 sf	, 91.98% Impervious,	Inflow Depth = 6.53"	for 25-Year event
Inflow	=	2.77 cfs @	12.05 hrs, Volume=	8,708 cf	
Outflow	=	2.77 cfs @	12.05 hrs, Volume=	8,708 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	2.77 cfs @	12.05 hrs, Volume=	8,708 cf	•
Routed to nonexistent node DMH3B					

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.03' @ 12.05 hrs Flood Elev= 44.62'

Device Routing Invert Outlet Devices	
#1 Primary 41.82' 12.0'' Round Culvert L= 46.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.82' / 41.56' S= 0.0057 '/' CC= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=2.77 cfs @ 12.05 hrs HW=43.03' (Free Discharge) -1=Culvert (Barrel Controls 2.77 cfs @ 3.70 fps)

Summary for Pond EX. CB5: EX. CB-5

[58] Hint: Peaked 12.48' above defined flood level [80] Warning: Exceeded Pond EX.INF2 by 5.18' @ 12.11 hrs (8.61 cfs 3,460 cf)

Inflow Area =	27,955 sf, 77.99% Impervious,	Inflow Depth = 4.83" for 25-Year event		
Inflow =	5.37 cfs @ 12.04 hrs, Volume=	11,254 cf		
Outflow =	5.37 cfs @ 12.04 hrs, Volume=	11,254 cf, Atten= 0%, Lag= 0.0 min		
Primary =	5.37 cfs @ 12.04 hrs, Volume=	11,254 cf		
Routed to Pond EX. CB5A : EX. CB-5A				

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Peak Elev= 60.16' @ 12.06 hrs Flood Elev= 47.68'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.93'	12.0" Round Culvert
	,		L= 170.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.93' / 41.50' S= 0.0025 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=5.40 cfs @ 12.04 hrs HW=59.14' TW=54.12' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 5.40 cfs @ 6.88 fps)

Summary for Pond EX. CB5A: EX. CB-5A

[58] Hint: Peaked 10.23' above defined flood level [80] Warning: Exceeded Pond EX. CB5 by 0.38' @ 12.19 hrs (1.49 cfs 136 cf)

Inflow Area =		32,871 sf	, 79.29% Impervious,	Inflow Depth = 5.05"	for 25-Year event
Inflow	=	6.18 cfs @	12.02 hrs, Volume=	13,831 cf	
Outflow	=	6.18 cfs @	12.02 hrs, Volume=	13,831 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	6.18 cfs @	12.02 hrs, Volume=	13,831 cf	
Routed	l to Pon	d EX. CB6 : E	X. CB-6 (STORMCEP	TOR)	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 55.64' @ 12.05 hrs Flood Elev= 45.41'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.30'	12.0" Round Culvert
			L= 98.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.15' / 41.30' S= -0.0015 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.02 hrs HW=51.64' TW=51.93' (Dynamic Tailwater) **1=Culvert** (Controls 0.00 cfs)

Summary for Pond EX. CB6: EX. CB-6 (STORMCEPTOR)

[58] Hint: Peaked 9.59' above defined flood level[80] Warning: Exceeded Pond EX. CB5A by 0.37' @ 12.18 hrs (1.80 cfs 183 cf)

Inflow Area =		47,327 sf	, 80.39% Impervious,	Inflow Depth = 5.39" for 25-Year event
Inflow	=	8.66 cfs @	12.04 hrs, Volume=	21,267 cf
Outflow	=	8.66 cfs @	12.04 hrs, Volume=	21,267 cf, Atten= 0%, Lag= 0.0 min
Primary	=	8.66 cfs @	12.04 hrs, Volume=	21,267 cf
Routed	I to Pon	d DMH2 : PRO	OP. DMH-2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 53.54' @ 12.04 hrs Flood Elev= 43.95'

Prepared by Greenman-Pedersen, Inc.

Type III 24-hr 25-Year Rainfall=7.12" Printed 4/18/2022 HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC Page 29

Device	Routing	Invert	Outlet Devices		
#1 Primary	Primary OutFlow Max		12.0" Round Culvert L= 118.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 40.55' / 39.95' S= 0.0051 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 20 12.04 hrs HW=53.43' TW=44.81' (Dynamic Tailwater)		
τ—1=Cι	Primary OutFlow Max=8.11 cfs @ 12.04 hrs HW=53.43' TW=44.81' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 8.11 cfs @ 10.33 fps)				
	Summary for Pond EX. CB8: EX. CB-8				

Inflow Area =	16,949 sf, 77.39% Impervious,	Inflow Depth = 5.94" for 25-Year event
Inflow =	2.95 cfs @ 12.03 hrs, Volume=	8,391 cf
Outflow =	2.95 cfs @ 12.03 hrs, Volume=	8,391 cf, Atten= 0%, Lag= 0.0 min
Primary =	2.95 cfs @ 12.03 hrs, Volume=	8,391 cf
Routed to Pone	d DMH4 : PROP DMH-4	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 46.30' @ 12.06 hrs Flood Elev= 47.08'

Device	Routing	Invert	Outlet Devices
#1	Primary	41.38'	12.0" Round Culvert
			L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 41.38' / 41.32' S= 0.0060 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.19 cfs @ 12.03 hrs HW=45.26' TW=44.93' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 2.19 cfs @ 2.79 fps)

Summary for Pond EX. CB9: EX. CB-9

[80] Warning: Exceeded Pond DMH4 by 0.07' @ 12.04 hrs (0.72 cfs 26 cf)

44,183 sf, 87.05% Impervious, Inflow Depth = 4.22" for 25-Year event Inflow Area = Inflow 5.26 cfs @ 12.09 hrs, Volume= 15,532 cf = 15,532 cf, Atten= 0%, Lag= 0.0 min Outflow 5.26 cfs @ 12.09 hrs, Volume= = = 5.26 cfs @ 12.09 hrs, Volume= 15,532 cf Primary Routed to Pond DMH3 : PROP. DMH-3

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.82' @ 12.04 hrs Flood Elev= 45.09'

Device	Routing	Invert	Outlet Devices
#1	Primary	40.09'	12.0" Round Culvert L= 30.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 40.09' / 39.80' S= 0.0097 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.77 cfs @ 12.09 hrs HW=43.55' TW=42.56' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 3.77 cfs @ 4.79 fps)

Summary for Pond EX.INF2: EXIST. INFILTRATION SYSTEM #2

The soils present in the area of the infiltration system consist of Urban Land (NRCS classification 699). Due to the limited information provided for this soil type, 140C Chatfield-Hollis-Canton Complex was used as the closest soil present within the site.

The bottom of the stone in the infiltration system is approximately 6' below existing grade. Per USDA Soil Data Mart, the lowest value for the Saturated Ksat Value for this soil at a depth of 21-60" +/- is 42.33 micrometers/second.

Per NHDES Stormwater Manual: Vol. 2, pages 16-17 using a factor of safety of 2, the infiltration rate for this system is as follows:

42.33/2 (FS) = 21.17 micro/sec. Converting to inches/hr with a conversion factor of 0.1417 = (21.17 * 0.1417 = 3.00 in/hr)

[93] Warning: Storage range exceeded by 14.83'

[58] Hint: Peaked 15.16' above defined flood level

[90] Warning: Qout>Qin may require smaller dt or Finer Routing

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=11)

[80] Warning: Exceeded Pond EX CB12 by 5.24' @ 12.12 hrs (8.65 cfs 2,202 cf)

Inflow Area =	8,890 sf, 82.86% Impervious,	Inflow Depth = 6.17" for 25-Year event
Inflow =	1.63 cfs @ 12.01 hrs, Volume=	4,573 cf
Outflow =	3.59 cfs @ 12.22 hrs, Volume=	4,573 cf, Atten= 0%, Lag= 12.3 min
Discarded =	0.06 cfs @ 12.07 hrs, Volume=	2,574 cf
Primary =	3.54 cfs @ 12.22 hrs, Volume=	1,999 cf
Routed to Pond	d EX. CB5 : EX. CB-5	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 60.16' @ 12.07 hrs Surf.Area= 582 sf Storage= 1,000 cf Flood Elev= 45.00' Surf.Area= 582 sf Storage= 922 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 78.1 min (845.7 - 767.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	42.00'	583 cf	13.23'W x 44.00'L x 3.33'H Field A
			1,941 cf Overall - 484 cf Embedded = 1,457 cf x 40.0% Voids
#2A	42.50'	372 cf	ADS N-12 24" x 6 Inside #1
			Inside= 23.8"W x 23.8"H => 3.10 sf x 20.00'L = 62.0 cf
			Outside= 28.0"W x 28.0"H => 3.92 sf x 20.00'L = 78.4 cf
			6 Chambers in 3 Rows
#3	42.50'	14 cf	24.0" Round Pipe Storage x 4 Inside #1
			L= 1.1'
#4	42.50'	31 cf	24.0" Round Pipe Storage-Impervious
			L= 10.0'

1,000 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	42.50'	12.0" Round Culvert
			L= 32.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 42.50' / 42.34' S= 0.0050 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Device 1	43.90'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#3	Device 1	44.50'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads
#4	Discarded	42.00'	3.000 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 0.00'

Discarded OutFlow Max=0.06 cfs @ 12.07 hrs HW=60.14' (Free Discharge) **4=Exfiltration** (Controls 0.06 cfs)

Primary OutFlow Max=0.00 cfs @ 12.22 hrs HW=45.00' TW=46.81' (Dynamic Tailwater) 1=Culvert (Controls 0.00 cfs) 2=Orifice/Grate (Controls 0.00 cfs)

-3=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond INF-1: U/G INF-1

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=270)

Inflow Area =	18,381 sf	, 98.38% Impervious,	Inflow Depth = 6.82" for 25-Year event
Inflow =	3.52 cfs @	12.01 hrs, Volume=	10,440 cf
Outflow =	2.42 cfs @	12.13 hrs, Volume=	10,440 cf, Atten= 31%, Lag= 7.3 min
Discarded =	0.28 cfs @	12.13 hrs, Volume=	7,767 cf
Primary =	2.14 cfs @	12.13 hrs, Volume=	2,673 cf
Routed to Pone	d DMH4 : PR	OP DMH-4	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 44.53' @ 12.13 hrs Surf.Area= 1,650 sf Storage= 2,912 cf Flood Elev= 45.75' Surf.Area= 1,650 sf Storage= 3,868 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 45.2 min (786.3 - 741.1)

Volume	Invert	Avail.Storage	Storage Description
#1A	41.50'	1,910 cf	27.50'W x 60.00'L x 4.50'H Field A
			7,425 cf Overall - 2,649 cf Embedded = 4,776 cf x 40.0% Voids
#2A	42.00'	2,123 cf	ADS N-12 36" x 15 Inside #1
			Inside= 36.1"W x 36.1"H => 7.10 sf x 20.00'L = 142.0 cf
			Outside= 42.0"W x 42.0"H => 8.86 sf x 20.00'L = 177.1 cf
			Row Length Adjustment= -10.00' x 7.10 sf x 5 rows
			24.50' Header x 7.10 sf x 2 = 347.9 cf Inside
		4 033 cf	Total Available Storage

4,033 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	42.00'	12.0" Round Culvert
	-		L= 50.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 42.00' / 41.50' S= 0.0100 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Discarded	41.50'	3.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 38.50'
#3	Device 1	43.25'	9.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	45.65'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.28 cfs @ 12.13 hrs HW=44.53' (Free Discharge) **2=Exfiltration** (Controls 0.28 cfs)

Primary OutFlow Max=1.67 cfs @ 12.13 hrs HW=44.52' TW=43.91' (Dynamic Tailwater) 1=Culvert (Passes 1.67 cfs of 2.83 cfs potential flow) -3=Orifice/Grate (Orifice Controls 1.67 cfs @ 3.78 fps) -4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond INF-2: U/G INF-2

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=243)

Inflow Area =	21,883 sf, 85.54	% Impervious,	Inflow Depth = 6.27'	for 25-Year event			
Inflow =	3.60 cfs @ 12.02 h	nrs, Volume=	11,429 cf				
Outflow =	1.62 cfs @ 12.16 h	nrs, Volume=	11,429 cf, Atte	en= 55%, Lag= 8.5 min			
Discarded =	0.30 cfs @ 12.16 h	nrs, Volume=	8,205 cf	-			
Primary =	1.32 cfs @ 12.16 h	nrs, Volume=	3,224 cf				
Routed to Pond DMH3A : PROP. DMH-3A							

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.15' @ 12.16 hrs Surf.Area= 1,669 sf Storage= 3,054 cf Flood Elev= 44.25' Surf.Area= 1,669 sf Storage= 3,898 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 48.2 min (806.7 - 758.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	40.00'	1,946 cf	22.25'W x 75.00'L x 4.50'H Field A
			7,509 cf Overall - 2,645 cf Embedded = 4,864 cf x 40.0% Voids
#2A	40.50'	2,119 cf	ADS N-12 36" x 12 Inside #1
			Inside= 36.1"W x 36.1"H => 7.10 sf x 20.00'L = 142.0 cf
			Outside= 42.0"W x 42.0"H => 8.86 sf x 20.00'L = 177.1 cf
			Row Length Adjustment= +5.00' x 7.10 sf x 4 rows
			19.25' Header x 7.10 sf x 2 = 273.3 cf Inside

4,065 cf Total Available Storage

Storage Group A created with Chamber Wizard

4582-Postdrain--Rev1

Type III 24-hr 25-Year Rainfall=7.12" Printed 4/18/2022 LLC Page 33

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	40.60'	15.0" Round Culvert
	•		L= 41.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 40.60' / 40.40' S= 0.0049 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf
#2	Discarded	40.00'	3.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 37.00'
#3	Device 1	41.80'	7.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	44.15'	15.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.30 cfs @ 12.16 hrs HW=43.14' (Free Discharge) **2=Exfiltration** (Controls 0.30 cfs)

Primary OutFlow Max=1.32 cfs @ 12.16 hrs HW=43.14' TW=41.67' (Dynamic Tailwater)

-1=Culvert (Passes 1.32 cfs of 7.16 cfs potential flow)

-3=Orifice/Grate (Orifice Controls 1.32 cfs @ 4.94 fps)

4=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond INF-3: U/G INF-3

[87] Warning: Oscillations may require smaller dt or Finer Routing (severity=258)

[80] Warning: Exceeded Pond CB5 by 0.06' @ 12.05 hrs (0.95 cfs 310 cf)

[80] Warning: Exceeded Pond CB6 by 0.06' @ 12.04 hrs (0.93 cfs 319 cf)

Inflow Area =	18,752 sf,100.00% Impervious,	Inflow Depth = 6.88" for 25-Year event
Inflow =	3.41 cfs @ 12.02 hrs, Volume=	10,753 cf
Outflow =	1.29 cfs @ 12.19 hrs, Volume=	10,753 cf, Atten= 62%, Lag= 10.4 min
Discarded =	0.29 cfs @ 12.19 hrs, Volume=	8,107 cf
Primary =	1.00 cfs @ 12.19 hrs, Volume=	2,646 cf
Routed to Po	nd DMH2 : PROP. DMH-2	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Peak Elev= 43.67' @ 12.19 hrs Surf.Area= 1,650 sf Storage= 3,057 cf Flood Elev= 44.75' Surf.Area= 1,650 sf Storage= 3,868 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 49.1 min (787.7 - 738.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	40.50'	1,910 cf	27.50'W x 60.00'L x 4.50'H Field A
			7,425 cf Overall - 2,649 cf Embedded = 4,776 cf x 40.0% Voids
#2A	41.00'	2,123 cf	ADS N-12 36" x 15 Inside #1
			Inside= 36.1"W x 36.1"H => 7.10 sf x 20.00'L = 142.0 cf
			Outside= 42.0"W x 42.0"H => 8.86 sf x 20.00'L = 177.1 cf
			Row Length Adjustment= -10.00' x 7.10 sf x 5 rows
			24.50' Header x 7.10 sf x 2 = 347.9 cf Inside
		1	

4,033 cf Total Available Storage

Storage Group A created with Chamber Wizard

4582-Postdrain--Rev1

Type III 24-hr 25-Year Rainfall=7.12" Printed 4/18/2022 Page 34

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Primary	41.00'	12.0" Round Culvert
			L= 33.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 41.00' / 39.95' S= 0.0318 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Discarded	40.50'	3.000 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 37.50'
#3	Device 1	42.30'	6.0" Vert. Orifice/Grate C= 0.600 Limited to weir flow at low heads
#4	Device 1	44.65'	12.0" Horiz. Orifice/Grate C= 0.600
			Limited to weir flow at low heads

Discarded OutFlow Max=0.29 cfs @ 12.19 hrs HW=43.67' (Free Discharge) **1**–2=Exfiltration (Controls 0.29 cfs)

Primary OutFlow Max=1.00 cfs @ 12.19 hrs HW=43.67' TW=41.75' (Dynamic Tailwater)

-1=Culvert (Passes 1.00 cfs of 5.24 cfs potential flow)

3=Orifice/Grate (Orifice Controls 1.00 cfs @ 5.09 fps) **4=Orifice/Grate** (Controls 0.00 cfs)

Stormwater Management Report

Proposed Site Development Plans 1400 Lafayette Road, Portsmouth, NH 03801 Revised: April 15, 2022

APPENDIX F

Supplemental Calculations and Backup Data

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		lhr	2hr	3hr	6hr	12hr	24hr	48hr		lday	2day	4day	7day	10day	
lyr	0.26	0.40	0.50	0.65	0.82	1.04	lyr	0.70	0.98	1.21	1.56	2.03	2.66	2.93	lyr	2.36	2.82	3.23	3.95	4.56	lyr
2yr	0.32	0.50	0.62	0.81	1.02	1.30	2yr	0.88	1.18	1.52	1.94	2.49	3.22	3.58	2yr	2.85	3.44	3.94	4.69	5.34	2yr
5yr	0.37	0.58	0.73	0.98	1.25	1.61	5yr	1.08	1.47	1.89	2.43	3.14	4.08	4.59	5yr	3.61	4.41	5.05	5.95	6.72	5yr
10yr	0.41	0.65	0.82	1.12	1.45	1.89	10yr	1.25	1.73	2.23	2.90	3.76	4.88	5.54	10yr	4.32	5.33	6.10	7.12	8.00	10yr
25yr	0.48	0.76	0.97	1.34	1.77	2.34	25yr	1.53	2.14	2.78	3.63	4.75	6.19	7.12	25yr	5.47	6.84	7.82	9.05	10.08	25yr
50yr	0.54	0.86	1.10	1.54	2.07	2.76	50yr	1.79	2.53	3.29	4.33	5.67	7.41	8.60	50yr	6.56	8.27	9.45	10.84	12.01	50yr
100yr	0.60	0.97	1.25	1.77	2.42	3.26	100yr	2.09	2.98	3.91	5.16	6.78	8.88	10.40	100yr	7.85	10.00	11.42	13.00	14.31	100yr
200yr	0.67	1.10	1.43	2.05	2.83	3.84	200yr	2.44	3.52	4.62	6.14	8.10	10.64	12.58	200yr	9.41	12.10	13.80	15.59	17.07	200yr
500yr	0.80	1.31	1.71	2.49	3.48	4.77	500yr	3.00	4.38	5.77	7.72	10.24	13.52	16.18	500yr	11.96	15.56	17.73	19.84	21.56	500yr

+15% Rainfall

2-yr	3.70
10-yr	5.61
25-yr	7.12
50-yr	8.52

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name:

U/G INF-1 Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed? Yes 0.42 ac A = Area draining to the practice0.41 ac A_I = Impervious area draining to the practice 0.98 decimal I = percent impervious area draining to the practice, in decimal form Rv = Runoff coefficient = 0.05 + (0.9 x I)0.93 unitless 0.39 ac-in WOV= 1" x Rv x A 1,416 cf WQV conversion (ac-in x 43,560 sf/ac x 1ft/12") 25% x WOV (check calc for sediment forebay volume) 354 cf First Defense Unit Method of pretreatment? (not required for clean or roof runoff) \leftarrow > 25%WQV V_{SED} = sediment forebay volume, if used for pretreatment cf $V = volume^{1}$ (attach a stage-storage table) 1.436 cf \leftarrow > wov A_{SA} = surface area of the bottom of the pond 1,650 sf 3.00 iph $Ksat_{DESIGN} = design infiltration rate^{2}$ **←** <u><</u> 72-hrs 3.4 hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ E_{BTM} = elevation of the bottom of the basin 41.50 feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit) 38.95 feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit) feet $\leftarrow > *^3$ 2.55 feet D_{SHWT} = separation from SHWT $\epsilon \geq *^3$ 41.5 feet D_{ROCK} = separation from bedrock ← > 24" D_{amend} = Depth of amended soil, if applicable due high infiltation rate ft ← 4 - 10 ft 4.50 ft D_T = depth of trench, if trench proposed If a trench or underground system is proposed, observation well provided⁴ Yes Yes/No If a trench is proposed, material in trench Stone If a basin is proposed, basin floor material Yes/No If a basin is proposed, the perimeter should be curvilinear, basin floor shall be flat. ← >3:1 If a basin is proposed, pond side slopes :1 43.80 ft Peak elevation of the 10-year storm event (infiltration can be used in analysis) Peak elevation of the 50-year storm event (infiltration can be used in analysis) 45.35 ft 45.75 ft Elevation of the top of the practice (if a basin, this is the elevation of the berm) 10 peak elevation < Elevation of the top of the trench?⁵ YES ← yes If a basin is proposed, 50-year peak elevation \leq Elevation of berm? YES ← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes: Eshwt was calculated by measuring 10' depth from the existing grade. Nearest test pit was dug to 10' depth without encountering water. Further test pits may be needed to verify groundwater levels.

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: U/G INF-2

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable

		, , , , , , , , , , , , , , , , , , , ,
Yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	
0.50 ac	A = Area draining to the practice	
0.43 ac	A_{I} = Impervious area draining to the practice	
0.86 decimal	I = percent impervious area draining to the practice, in decimal form	
0.82 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.41 ac-in	WQV=1" x Rv x A	
1,496 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
374 cf	25% x WQV (check calc for sediment forebay volume)	
First Defense Unit	Method of pretreatment? (not required for clean or root runoff)	
cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
1,506 cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
1,669 sf	A_{SA} = surface area of the bottom of the pond	
3.00 iph	$K_{sat_{DESIGN}} = design infiltration rate2$	
3.6 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
40.00 feet	E_{BTM} = elevation of the bottom of the basin	
36.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the t	est pit)
feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the	test pit)
4.00 feet	D _{SHWT} = separation from SHWT	$\epsilon \geq *^3$
40.0 feet	D _{ROCK} = separation from bedrock	$\epsilon \geq *^3$
ft	D_{amend} = Depth of amended soil, if applicable due high infiltation rate	← ≥ 24''
4.50 ft	$D_{\rm T}$ = depth of trench, if trench proposed	← 4 - 10 ft
Yes Yes/No	If a trench or underground system is proposed, observation well provided ⁴	
Stone	If a trench is proposed, material in trench	
	If a basin is proposed, basin floor material	
Yes/No	If a basin is proposed, the perimeter should be curvilinear, basin floor shall be	flat.
:1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
42.51 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis))
44.07 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis))
44.25 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm	l)
YES	10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	←yes
1 V. 1 1 1	lowest invert of the outlet structure and excludes forebay volume	

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: U/G INF-3

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable

Yes	_	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	
0.43	ac	A = Area draining to the practice	
0.43	ac	A_{I} = Impervious area draining to the practice	
1.00	decimal	I = percent impervious area draining to the practice, in decimal form	
0.95	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.41	ac-in	WQV=1" x Rv x A	
1,483	cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
371		25% x WQV (check calc for sediment forebay volume)	
First Def	ense Unit	Method of pretreatment? (not required for clean or roof runoff)	
	cf	V_{SED} = sediment forebay volume, if used for pretreatment	$\leftarrow \geq 25\% WQV$
1,493	cf	$V = volume^{1}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
1,650	sf	A_{SA} = surface area of the bottom of the pond	
3.00	iph	$K_{Sat}_{DESIGN} = design infiltration rate2$	
3.6	hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
40.50	feet	E_{BTM} = elevation of the bottom of the basin	
35.30	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the te	est pit)
	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the	
5.20	feet	D_{SHWT} = separation from SHWT	$\epsilon \geq *^3$
40.5	feet	D _{ROCK} = separation from bedrock	$\leftarrow \geq *^3$
	ft	D _{amend} = Depth of amended soil, if applicable due high infiltation rate	← ≥ 24''
4.50	ft	D_T = depth of trench, if trench proposed	← 4 - 10 ft
Yes	Yes/No	If a trench or underground system is proposed, observation well provided ⁴	
Sto	one	If a trench is proposed, material in trench	
		If a basin is proposed, basin floor material	
	Yes/No	If a basin is proposed, the perimeter should be curvilinear, basin floor shall be	flat.
	:1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
42.99	ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
44.66	ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
44.75	ft	Elevation of the top of the practice (if a basin, this is the elevation of the berm)
YES		10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES		If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. Ksat_{DESIGN} includes a factor of safety. See Env-Wq 1504.14 for requirements for determining the infiltr. rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

4582-Postdrain--Rev1

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond INF-1: U/G INF-1

Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
41.50	1,650	0	42.02	1,741	343
41.51	1,652	7	42.03	1,743	349
41.52	1,653	13	42.04	1,744	354
41.53	1,655	20	42.05	1,746	360
41.54	1,657	26	42.06	1,748	366
41.55	1,659	33	42.07	1,750	371
41.56	1,660	40	42.08	1,751	377
41.57	1,662	46	42.09	1,753	382
41.58	1,664 1,666	53 59	42.10 42.11	1,755	387 393
41.59 41.60	1,667	66	42.11	1,757 1,758	398
41.61	1,669	73	42.12	1,760	403
41.62	1,671	79	42.14	1,762	408
41.63	1,673	86	42.15	1,764	413
41.64	1,674	92	42.16	1,765	418
41.65	1,676	99	42.17	1,767	423
41.66	1,678	106	42.18	1,769	428
41.67	1,680	112	42.19	1,771	433
41.68	1,681	119	42.20	1,772	438
41.69	1,683	125	42.21	1,774	443
41.70	1,685	132	42.22	1,776	447
41.71	1,687	139	42.23	1,778	452
41.72	1,688	145	42.24	1,779	457
41.73	1,690	152	42.25	1,781	461
41.74	1,692	158	42.26	1,783	467
41.75 41.76	1,694 1,695	165 172	42.27 42.28	1,785 1,786	472 479
41.77	1,697	172	42.20	1,788	486
41.78	1,699	185	42.30	1,790	492
41.79	1,701	191	42.31	1,792	499
41.80	1,702	198	42.32	1,793	506
41.81	1,704	205	42.33	1,795	514
41.82	1,706	211	42.34	1,797	521
41.83	1,708	218	42.35	1,799	529
41.84	1,709	224	42.36	1,800	536
41.85	1,711	231	42.37	1,802	544
41.86	1,713	238	42.38	1,804	552
41.87	1,715	244	42.39	1,806	560
41.88	1,716	251	42.40	1,807	568
41.89 41.90	1,718 1,720	257	42.41 42.42	1,809	576 584
41.90	1,720	264 271	42.42	1,811 1,813	593
41.91	1,723	277	42.43	1,813	601
41.93	1,725	284	42.45	1,816	609
41.94	1,727	290	42.46	1,818	618
41.95	1,729	297	42.47	1,820	627
41.96	1,730	304	42.48	1,821	635
41.97	1,732	310	42.49	1,823	644
41.98	1,734	317	42.50	1,825	653
41.99	1,736	323	42.51	1,827	662
42.00	1,737	330	42.52	1,828	671
42.01	1,739	336	42.53	1,830	680

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

		01			01	
Elevation	Wetted	Storage	Elevation	Wetted	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
42.54	1,832	689	43.06	1,923	1,222	
42.55	1,834	698 709	43.07	1,925	1,233	
42.56 42.57	1,835	708	43.08	1,926	1,244	
	1,837	717	43.09	1,928	1,256	
42.58	1,839	726	43.10	1,930	1,267	
42.59	1,841	736	43.11	1,932	1,278	
42.60	1,842	745	43.12	1,933	1,289	
42.61 42.62	1,844 1,846	755 764	43.13 43.14	1,935 1,937	1,300 1,311	
42.63	1,848	704 774	43.14	1,939	1,311	
42.64	1,849	783	43.16	1,940	1,323	
42.65	1,851	703	43.10	1,940	1,345	
42.66	1,853	803	43.18	1,944	1,345	
42.67	1,855	813	43.10	1,946	1,368	
42.68	1,856	822	43.19	1,940	1,379	
42.69	1,858	832	43.20	1,949	1,390	
42.09	1,860	842	43.21	1,951	1,390	Otomore holow
42.71	1,862	852	43.22	1,953	1,402	Storage below
42.72	1,863	862	43.24	1,954	1,424	lowest outlet
42.72	1,865	872	43.25	1,954	1,436	orifice
42.74	1,867	882	43.26	1,958	1,447	
42.75	1,869	893	43.27	1,960	1,458	
42.76	1,870	903	43.28	1,961	1,470	
42.77	1,872	913	43.29	1,963	1,481	
42.78	1,874	923	43.30	1,965	1,493	
42.79	1,876	933	43.31	1,967	1,504	
42.80	1,877	944	43.32	1,968	1,516	
42.81	1,879	954	43.33	1,970	1,527	
42.82	1,881	964	43.34	1,972	1,539	
42.83	1,883	975	43.35	1,974	1,550	
42.84	1,884	985	43.36	1,975	1,562	
42.85	1,886	996	43.37	1,977	1,573	
42.86	1,888	1,006	43.38	1,979	1,585	
42.87	1,890	1,017	43.39	1,981	1,596	
42.88	1,891	1,027	43.40	1,982	1,608	
42.89	1,893	1,038	43.41	1,984	1,619	
42.90	1,895	1,049	43.42	1,986	1,631	
42.91	1,897	1,059	43.43	1,988	1,643	
42.92	1,898	1,070	43.44	1,989	1,654	
42.93	1,900	1,081	43.45	1,991	1,666	
42.94	1,902	1,091	43.46	1,993	1,677	
42.95	1,904	1,102	43.47	1,995	1,689	
42.96	1,905	1,113	43.48	1,996	1,701	
42.97	1,907	1,124	43.49	1,998	1,712	
42.98	1,909	1,135	43.50	2,000	1,724	
42.99	1,911	1,146	43.51	2,002	1,736	
43.00	1,912	1,156	43.52	2,003	1,747	
43.01	1,914	1,167	43.53	2,005	1,759	
43.02	1,916	1,178	43.54	2,007	1,771	
43.03	1,918	1,189	43.55	2,009	1,782	
43.04	1,919	1,200	43.56	2,010	1,794	
43.05	1,921	1,211	43.57	2,012	1,806	

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Elevation Wetted Storage (feet) (sq-ft) (cubic-feet) (43.58) 2.016 1.829 43.59 2.016 1.829 43.60 2.017 1.841 44.11 2.105 2.425 43.60 2.017 1.841 44.12 2.108 2.448 43.61 2.021 1.864 44.15 2.114 2.483 43.64 2.024 1.888 43.65 2.026 1.899 44.17 2.117 2.506 43.66 2.028 1.911 44.88 2.031 1.934 44.20 2.122 2.540 43.69 2.033 1.946 44.21 2.124 2.552 43.71 2.037 1.993 44.22 2.126 2.553 43.72 2.038 1.981 44.22 2.131 2.586 43.76 2.040 4.262 <td< th=""><th></th><th></th><th>01</th><th></th><th></th><th>01</th></td<>			01			01
	Elevation	Wetted	Storage	Elevation	Wetted	Storage
43.592.0161.82944.112.1072.43743.602.0171.84144.122.1082.44843.612.0191.85244.132.1102.46043.622.0211.86444.142.1122.47143.632.0231.87644.152.1142.48343.642.0241.88844.162.1152.54943.652.0261.89944.172.1172.50643.662.0281.91144.182.1192.51743.672.0301.92344.192.1212.52443.682.0311.93444.202.1222.54043.692.0331.94644.212.1282.57543.712.0371.97044.232.1282.57543.722.0381.98144.242.1292.58643.732.0401.99344.252.1312.58843.742.0422.00544.262.1332.60943.752.0442.01744.292.1362.63243.762.0452.02844.332.1402.66443.802.0522.07543.322.1432.66743.812.0542.08744.332.1452.68843.832.0562.19944.342.1422.66843.802.0522.07543.322.1432.67743.812.0542.08744.332.1452.168<						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.612.0191.85244.132.1102.46043.622.0211.86444.142.1122.47143.632.0231.87644.152.1142.48343.642.0241.88844.162.1152.49543.652.0261.89944.172.1172.50643.662.0281.91144.182.1192.51743.672.0301.92344.202.1222.54043.682.0311.93444.202.1222.54043.692.0331.94644.212.1242.55243.702.0351.95844.222.1282.55343.712.0371.97044.232.1282.55643.732.0401.99344.252.1312.59843.742.0422.00544.262.1332.60943.752.0442.01744.232.1482.62043.762.0452.02844.282.1382.64343.782.0492.05644.302.1402.65443.802.0522.07544.332.1452.68643.802.0562.09944.342.1472.69943.812.0562.09944.332.1452.68843.822.0562.09944.332.1452.68843.832.0562.19944.332.1462.77243.842.0592.12244.362.1502.772<						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.632.0231.87644.152.1142.48343.642.0241.88844.162.1152.49543.652.0261.89944.172.1172.50643.662.0281.91144.182.1192.51743.672.0301.92344.192.1212.52943.682.0311.93444.202.1222.54043.692.0331.94644.212.1242.55343.702.0351.95844.222.1262.56343.712.0371.97044.232.1282.57543.722.0381.98144.242.1292.58643.732.0401.99344.252.1312.59843.742.0422.00544.262.1332.60943.752.0442.01744.272.1382.63243.762.0452.02844.282.1432.63243.772.0472.04044.292.1382.64343.782.0492.0522.07544.302.1442.66243.802.0522.07544.332.1452.68843.812.0562.09944.342.1472.69943.822.0562.09944.332.1442.14743.812.0582.1144.4372.1522.73343.862.0632.15744.392.1542.74443.872.0652.15744.392.156<			,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.682.0311.93444.202.1222.54043.692.0331.94644.212.1242.55243.702.0351.95844.222.1262.56343.712.0371.97044.232.1282.57543.722.0381.98144.242.1292.58643.732.0401.99344.252.1312.59843.742.0422.00544.262.1332.60943.752.0442.01744.272.1352.62043.762.0452.02844.282.1362.63243.772.0472.04044.292.1382.64343.792.0512.06244.302.1402.65443.802.0522.07544.332.1422.66843.812.0542.08744.332.1452.68843.822.0562.09944.342.1472.69843.832.0582.11044.352.1492.71143.842.0692.12244.362.1502.72343.852.0612.13444.372.1522.73343.862.0632.14644.382.1562.75543.892.0682.18144.442.1632.80043.902.0702.19244.442.1632.80043.932.0772.23944.462.1632.80043.942.0772.23944.462.1682.833<						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.72 $2,038$ $1,981$ 44.24 $2,129$ $2,586$ 43.73 $2,040$ $1,993$ 44.25 $2,131$ $2,598$ 43.74 $2,042$ $2,005$ 44.26 $2,133$ $2,609$ 43.75 $2,044$ $2,017$ 44.27 $2,135$ $2,620$ 43.76 $2,045$ $2,028$ 44.28 $2,136$ $2,632$ 43.77 $2,047$ $2,040$ 44.29 $2,138$ $2,643$ 43.78 $2,049$ $2,052$ 44.30 $2,140$ $2,654$ 43.79 $2,051$ $2,063$ 44.31 $2,142$ $2,666$ 43.80 $2,052$ $2,075$ 44.32 $2,143$ $2,677$ 43.81 $2,054$ $2,087$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,099$ 44.34 $2,147$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,156$ $2,773$ 43.86 $2,066$ $2,169$ 44.40 $2,157$ $2,776$ 43.89 $2,068$ $2,181$ 44.44 $2,164$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,800$ 43.92 $2,073$ $2,216$ 44.49 $2,173$ $2,866$ 43.99 $2,068$ $2,280$ 44.44 $2,164$ $2,811$ 43.99 $2,066$ 2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.74 $2,042$ $2,005$ 44.26 $2,133$ $2,609$ 43.75 $2,044$ $2,017$ 44.27 $2,135$ $2,620$ 43.76 $2,047$ $2,040$ 44.29 $2,138$ $2,632$ 43.77 $2,047$ $2,040$ 44.29 $2,138$ $2,643$ 43.78 $2,049$ $2,052$ 44.30 $2,140$ $2,654$ 43.79 $2,051$ $2,063$ 44.31 $2,142$ $2,666$ 43.80 $2,052$ $2,075$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,007$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.99 $2,066$ $2,169$ 44.40 $2,157$ $2,789$ 43.91 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.92 $2,073$ 2						
43.75 $2,044$ $2,017$ 44.27 $2,135$ $2,620$ 43.76 $2,045$ $2,028$ 44.28 $2,136$ $2,632$ 43.77 $2,047$ $2,040$ 44.29 $2,138$ $2,643$ 43.78 $2,049$ $2,052$ 44.30 $2,140$ $2,654$ 43.79 $2,051$ $2,063$ 44.31 $2,142$ $2,666$ 43.80 $2,052$ $2,075$ 44.32 $2,143$ $2,677$ 43.81 $2,056$ $2,097$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,099$ 44.34 $2,147$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,077$ $2,224$ 44.42 $2,161$ $2,789$ 43.91 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.92 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,177$ $2,888$ 44.00 $2,080$ 2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.77 $2,047$ $2,040$ 44.29 $2,138$ $2,643$ 43.78 $2,049$ $2,052$ 44.30 $2,140$ $2,654$ 43.79 $2,051$ $2,063$ 44.31 $2,142$ $2,666$ 43.80 $2,052$ $2,075$ 44.32 $2,143$ $2,677$ 43.81 $2,054$ $2,087$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,099$ 44.34 $2,147$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.42 $2,161$ $2,789$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,168$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,822$ 43.94 $2,077$ $2,239$ 44.45 $2,166$ $2,822$ 43.95 $2,080$ 2						
43.78 $2,049$ $2,052$ 44.30 $2,140$ $2,654$ 43.79 $2,051$ $2,063$ 44.31 $2,142$ $2,666$ 43.80 $2,052$ $2,075$ 44.32 $2,143$ $2,677$ 43.81 $2,054$ $2,087$ 44.33 $2,145$ $2,668$ 43.82 $2,056$ $2,099$ 44.34 $2,147$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.95 $2,079$ $2,251$ 44.47 $2,173$ $2,866$ 43.94 $2,084$ $2,286$ 44.50 $2,175$ $2,877$ 43.99 $2,084$ 2						
43.79 $2,051$ $2,063$ 44.31 $2,142$ $2,666$ 43.80 $2,052$ $2,075$ 44.32 $2,143$ $2,677$ 43.81 $2,054$ $2,087$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,099$ 44.33 $2,145$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.99 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.90 $2,070$ $2,192$ 44.42 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,163$ $2,800$ 43.92 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.95 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.98 $2,084$ $2,286$ 44.51 $2,175$ $2,877$ 43.99 $2,086$ $2,263$ 44.48 $2,171$ $2,855$ 43.97 $2,086$ $2,286$ 44.51 $2,177$ $2,888$ 44.00 $2,087$ 2						
43.80 $2,052$ $2,075$ 44.32 $2,143$ $2,677$ 43.81 $2,054$ $2,087$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,099$ 44.34 $2,147$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,156$ $2,755$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,168$ $2,833$ 43.95 $2,079$ $2,251$ 44.47 $2,170$ $2,844$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.98 $2,084$ $2,286$ 44.50 $2,175$ $2,877$ 43.99 $2,086$ $2,298$ 44.51 $2,177$ $2,888$ 44.00 $2,087$ $2,309$ 44.52 $2,178$ $2,920$ 44.02 $2,091$ 2						
43.81 $2,054$ $2,087$ 44.33 $2,145$ $2,688$ 43.82 $2,056$ $2,099$ 44.34 $2,147$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.95 $2,079$ $2,251$ 44.47 $2,170$ $2,844$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.97 $2,082$ $2,274$ 44.49 $2,173$ $2,866$ 43.98 $2,084$ $2,286$ 44.50 $2,175$ $2,877$ 43.99 $2,086$ $2,288$ 44.51 $2,177$ $2,888$ 44.00 $2,089$ 2						
43.82 $2,056$ $2,099$ 44.34 $2,147$ $2,699$ 43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.95 $2,079$ $2,251$ 44.47 $2,170$ $2,844$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.97 $2,082$ $2,274$ 44.49 $2,173$ $2,866$ 43.98 $2,084$ $2,286$ 44.50 $2,175$ $2,877$ 43.99 $2,086$ $2,298$ 44.51 $2,177$ $2,888$ 44.00 $2,087$ $2,309$ 44.52 $2,184$ $2,909$ 44.02 $2,091$ 2						
43.83 $2,058$ $2,110$ 44.35 $2,149$ $2,711$ 43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.95 $2,079$ $2,251$ 44.47 $2,170$ $2,844$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.97 $2,082$ $2,274$ 44.49 $2,173$ $2,866$ 43.98 $2,084$ $2,286$ 44.50 $2,175$ $2,877$ 43.99 $2,086$ $2,298$ 44.51 $2,177$ $2,888$ 44.00 $2,087$ $2,309$ 44.52 $2,178$ $2,898$ 44.01 $2,089$ $2,321$ 44.54 $2,182$ $2,920$ 44.03 $2,093$ 2						
43.84 $2,059$ $2,122$ 44.36 $2,150$ $2,722$ 43.85 $2,061$ $2,134$ 44.37 $2,152$ $2,733$ 43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 3.95 $2,079$ $2,251$ 44.47 $2,170$ $2,844$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.97 $2,082$ $2,274$ 44.49 $2,173$ $2,866$ 43.98 $2,084$ $2,286$ 44.51 $2,177$ $2,888$ 44.00 $2,087$ $2,309$ 44.52 $2,178$ $2,898$ 44.01 $2,089$ $2,321$ 44.53 $2,180$ $2,900$ 44.02 $2,091$ $2,332$ 44.54 $2,182$ $2,920$ 44.03 $2,093$ $2,344$ 44.55 $2,184$ $2,931$ 44.04 $2,094$ $2,$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
43.86 $2,063$ $2,146$ 44.38 $2,154$ $2,744$ 43.87 $2,065$ $2,157$ 44.39 $2,156$ $2,755$ 43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.95 $2,079$ $2,251$ 44.47 $2,170$ $2,844$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.97 $2,082$ $2,274$ 44.49 $2,173$ $2,866$ 43.98 $2,084$ $2,286$ 44.50 $2,175$ $2,877$ 43.99 $2,086$ $2,298$ 44.51 $2,177$ $2,888$ 44.00 $2,087$ $2,309$ 44.52 $2,178$ $2,898$ 44.01 $2,093$ $2,321$ 44.53 $2,180$ $2,909$ 44.02 $2,091$ $2,332$ 44.54 $2,182$ $2,920$ 44.03 $2,093$ $2,344$ 44.55 $2,184$ $2,931$ 44.04 $2,094$ $2,356$ 44.56 $2,185$ $2,942$ 44.05 $2,096$ 2						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
43.88 $2,066$ $2,169$ 44.40 $2,157$ $2,766$ 43.89 $2,068$ $2,181$ 44.41 $2,159$ $2,778$ 43.90 $2,070$ $2,192$ 44.42 $2,161$ $2,789$ 43.91 $2,072$ $2,204$ 44.43 $2,163$ $2,800$ 43.92 $2,073$ $2,216$ 44.44 $2,164$ $2,811$ 43.93 $2,075$ $2,228$ 44.45 $2,166$ $2,822$ 43.94 $2,077$ $2,239$ 44.46 $2,168$ $2,833$ 43.95 $2,079$ $2,251$ 44.47 $2,170$ $2,844$ 43.96 $2,080$ $2,263$ 44.48 $2,171$ $2,855$ 43.97 $2,082$ $2,274$ 44.49 $2,173$ $2,866$ 43.98 $2,084$ $2,286$ 44.50 $2,175$ $2,877$ 43.99 $2,086$ $2,298$ 44.51 $2,177$ $2,888$ 44.00 $2,087$ $2,309$ 44.52 $2,178$ $2,898$ 44.01 $2,089$ $2,321$ 44.53 $2,180$ $2,909$ 44.02 $2,091$ $2,332$ 44.54 $2,182$ $2,920$ 44.03 $2,093$ $2,344$ 44.55 $2,184$ $2,931$ 44.04 $2,094$ $2,356$ 44.56 $2,185$ $2,942$ 44.05 $2,096$ $2,367$ 44.57 $2,187$ $2,952$ 44.06 $2,098$ $2,379$ 44.58 $2,189$ $2,963$ 44.07 $2,100$ 2	43.86	2,063	2,146	44.38	2,154	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.87	2,065	2,157	44.39	2,156	2,755
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,066	2,169	44.40	2,157	2,766
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,068		44.41	2,159	2,778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.90			44.42		2,789
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,072	2,204	44.43		2,800
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.92	2,073	2,216	44.44	2,164	2,811
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.93	2,075	2,228	44.45	2,166	2,822
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.94	2,077	2,239	44.46	2,168	2,833
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.95	2,079	2,251	44.47	2,170	2,844
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.96	2,080	2,263	44.48	2,171	2,855
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.97	2,082	2,274	44.49	2,173	2,866
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43.98	2,084	2,286	44.50	2,175	2,877
44.012,0892,32144.532,1802,90944.022,0912,33244.542,1822,92044.032,0932,34444.552,1842,93144.042,0942,35644.562,1852,94244.052,0962,36744.572,1872,95244.062,0982,37944.582,1892,96344.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	43.99	2,086	2,298	44.51	2,177	2,888
44.022,0912,33244.542,1822,92044.032,0932,34444.552,1842,93144.042,0942,35644.562,1852,94244.052,0962,36744.572,1872,95244.062,0982,37944.582,1892,96344.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	44.00	2,087	2,309	44.52	2,178	2,898
44.032,0932,34444.552,1842,93144.042,0942,35644.562,1852,94244.052,0962,36744.572,1872,95244.062,0982,37944.582,1892,96344.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	44.01	2,089	2,321	44.53	2,180	2,909
44.032,0932,34444.552,1842,93144.042,0942,35644.562,1852,94244.052,0962,36744.572,1872,95244.062,0982,37944.582,1892,96344.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	44.02	2,091	2,332	44.54	2,182	2,920
44.052,0962,36744.572,1872,95244.062,0982,37944.582,1892,96344.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	44.03	2,093	2,344	44.55	2,184	2,931
44.062,0982,37944.582,1892,96344.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	44.04	2,094	2,356	44.56	2,185	2,942
44.062,0982,37944.582,1892,96344.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	44.05			44.57		
44.072,1002,39144.592,1912,97444.082,1012,40244.602,1922,984	44.06			44.58		
44.08 2,101 2,402 44.60 2,192 2,984	44.07	2,100		44.59	2,191	2,974
	44.08		2,402	44.60		

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Flovetion	\M/attad	Storage	Flovetion	\\/attad	Storage
Elevation (feet)	Wetted	Storage (cubic-feet)	Elevation (feet)	Wetted	Storage
44.62	<u>(sq-ft)</u> 2,196		45.14	(sq-ft)	(cubic-feet)
44.62	2,198	3,006 3,016	45.14 45.15	2,287 2,289	3,497 3,505
44.64	2,190	3,010	45.16	2,209	3,512
44.65	2,199	3,027	45.17	2,290	3,512
44.66	2,201	3,048	45.18	2,292	3,527
44.67	2,205	3,048	45.19	2,294	3,534
44.68	2,205	3,069	45.20	2,290	3,541
44.69	2,200	3,009	45.20	2,299	3,547
44.70	2,200	3,089	45.22	2,301	3,554
44.71	2,212	3,100	45.23	2,303	3,560
44.72	2,212	3,110	45.24	2,304	3,566
44.73	2,215	3,120	45.25	2,306	3,571
44.74	2,217	3,130	45.26	2,308	3,576
44.75	2,219	3,141	45.27	2,310	3,581
44.76	2,220	3,151	45.28	2,311	3,586
44.77	2,222	3,161	45.29	2,313	3,590
44.78	2,224	3,171	45.30	2,315	3,595
44.79	2,226	3,181	45.31	2,317	3,600
44.80	2,227	3,191	45.32	2,318	3,605
44.81	2,229	3,201	45.33	2,320	3,610
44.82	2,231	3,211	45.34	2,322	3,615
44.83	2,233	3,220	45.35	2,324	3,620
44.84	2,234	3,230	45.36	2,325	3,625
44.85	2,236	3,240	45.37	2,327	3,630
44.86	2,238	3,250	45.38	2,329	3,635
44.87	2,240	3,259	45.39	2,331	3,640
44.88	2,241	3,269	45.40	2,332	3,646
44.89	2,243	3,279	45.41	2,334	3,651
44.90	2,245	3,288	45.42	2,336	3,657
44.91	2,247	3,298	45.43	2,338	3,662
44.92	2,248	3,307	45.44	2,339	3,668
44.93	2,250	3,316	45.45	2,341	3,673
44.94	2,252	3,326	45.46	2,343	3,679
44.95	2,254	3,335	45.47	2,345	3,685
44.96	2,255	3,344	45.48	2,346	3,691
44.97	2,257	3,353	45.49	2,348	3,697
44.98	2,259	3,362	45.50	2,350	3,703
44.99	2,261	3,371	45.51	2,352	3,710
45.00	2,262	3,380	45.52	2,353	3,716
45.01	2,264	3,389	45.53	2,355	3,723
45.02	2,266	3,398	45.54	2,357	3,730
45.03	2,268	3,406	45.55	2,359	3,736
45.04	2,269	3,415	45.56	2,360	3,743
45.05	2,271	3,424	45.57	2,362	3,749
45.06 45.07	2,273	3,432	45.58	2,364	3,756
45.08	2,275 2,276	3,441 3,449	45.59 45.60	2,366 2,367	3,763 3,769
45.09	2,278	3,449	45.61	2,369	3,776
45.10	2,278	3,465	45.62	2,309	3,782
45.11	2,280	3,403	45.63	2,373	3,789
45.12	2,282	3,481	45.64	2,373	3,796
45.12	2,285	3,489	45.65	2,376	3,802
	_,0	0,.00		_,0:0	0,002
		I. I			

Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)
45.66	2,378	3,809
45.67	2,380	3,815
45.68	2,381	3,822
45.69	2,383	3,829
45.70	2,385	3,835
45.71	2,387	3,842
45.72	2,388	3,848
45.73	2,390	3,855
45.74	2,392	3,862
45.75	2,394	3,868
45.76	2,395	3,875
45.77	2,397	3,881
45.78	2,399	3,888
45.79	2,401	3,895
45.80	2,402	3,901
45.81	2,404	3,908
45.82	2,406	3,914
45.83	2,408	3,921
45.84	2,409	3,928
45.85	2,411	3,934
45.86	2,413	3,941
45.87	2,415	3,947
45.88	2,416	3,954
45.89	2,418	3,961
45.90	2,420	3,967
45.91	2,422	3,974
45.92	2,423	3,980
45.93	2,425	3,987
45.94	2,427	3,994
45.95	2,429	4,000
45.96	2,430	4,007
45.97	2,432	4,013
45.98	2,434	4,020
45.99	2,436	4,027
46.00	2,437	4,033

4582-Postdrain--Rev1

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond INF-2: U/G INF-2

Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
40.00	1,669	0	40.52	1,770	347
40.01	1,671	7	40.53	1,772	353
40.02	1,673	13	40.54	1,774	358
40.03	1,675	20	40.55	1,776	364
40.04	1,677	27	40.56	1,778	370
40.05	1,678	33	40.57	1,780	375
40.06	1,680	40	40.58	1,782	381
40.07	1,682	47	40.59	1,784	386
40.08	1,684	53	40.60	1,785	392
40.09	1,686	60	40.61	1,787	397
40.10	1,688	67	40.62	1,789	403
40.11	1,690	73	40.63	1,791	408
40.12	1,692	80	40.64	1,793	413
40.13	1,694	87	40.65	1,795	418
40.14	1,696	93	40.66	1,797	423
40.15	1,698	100	40.67	1,799	428
40.16	1,700	107	40.68	1,801	433
40.17	1,702	113	40.69	1,803	438
40.18	1,704	120	40.70	1,805	443
40.19	1,706	127	40.71	1,807	448
40.20	1,708	133	40.72	1,809	453
40.21	1,710	140	40.73	1,811	458
40.22	1,712	147	40.74	1,813	462
40.23	1,713	154	40.75	1,815	467
40.24	1,715	160	40.76	1,817	472
40.25	1,717	167	40.77	1,819	478
40.26	1,719	174	40.78	1,820	485
40.27	1,721	180	40.79	1,822	492
40.28	1,723	187	40.80	1,824	499
40.29	1,725	194	40.81	1,826	505
40.30	1,727	200	40.82	1,828	513
40.31	1,729	207	40.83	1,830	520
40.32	1,731	214	40.84	1,832	527
40.33	1,733	220	40.85	1,834	535
40.34	1,735	227	40.86	1,836	543
40.35	1,737	234	40.87	1,838	550
40.36	1,739	240	40.88	1,840	558
40.37	1,741	247	40.89	1,842	566
40.38	1,743	254	40.90	1,844	575
40.39	1,745	260	40.91	1,846	583
40.40	1,747	267	40.92	1,848	591
40.41	1,748	274	40.93	1,850	600
40.42	1,750	280	40.94	1,852	608 617
40.43	1,752	287 294	40.95	1,854	617 625
40.44	1,754		40.96	1,855	
40.45 40.46	1,756 1,758	300 307	40.97 40.98	1,857 1,859	634 643
40.48					
	1,760	314 320	40.99	1,861	652 661
40.48 40.49	1,762 1 764	320 327	41.00 41.01	1,863 1,865	670
40.49	1,764 1,766	334	41.01	1,865 1,867	679
40.50	1,768	334 340	41.02	1,869	688
TU.U I	1,700	0+0	- 1.00	1,003	000
			I		

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Elevation	Wetted	Storage	Elevation	Wetted	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
41.04	1,871	697	41.56	1,972	1,234	
41.05	1,873	706	41.57	1,974	1,245	
41.06	1,875	715	41.58	1,976	1,256	
41.07	1,877	725	41.59	1,978	1,267	
41.08	1,879	734	41.60	1,980	1,278	
41.09	1,881	744	41.61	1,982	1,290	
41.10		753	41.62			
	1,883			1,984	1,301	
41.11	1,885	763	41.63	1,986	1,312	
41.12	1,887	772	41.64	1,988	1,323	
41.13	1,889	782	41.65	1,990	1,335	
41.14	1,890	792	41.66	1,992	1,346	
41.15	1,892	802	41.67	1,994	1,357	
41.16	1,894	811	41.68	1,996	1,368	
41.17	1,896	821	41.69	1,997	1,380	
41.18	1,898	831	41.70	1,999	1,391	
41.19	1,900	841	41.71	2,001	1,403	
41.20	1,902	851	41.72	2,003	1,414	
41.21	1,904	861	41.73	2,005	1,425	
41.22	1,906	871	41.74	2,007	1,437	
41.23	1,908	881	41.75	2,009	1,448	
41.24	1,910	892	41.76	2,011	1,460	
41.25	1,912	902	41.77	2,013	1,471	Storage below
41.26	1,914	912	41.78	2,015	1,483	• •
41.27	1,916	922	41.79	2,017	1,494	lowest outlet
41.28	1,918	933	41.80	2,019	1,506	orifice
41.29	1,920	943	41.81	2,010	1,517	
41.30	1,922	953	41.82	2,021	1,529	
41.31	1,924	964	41.83	2,025	1,540	
41.32	1,925	974	41.84	2,025	1,552	
41.32						
	1,927	985	41.85	2,029	1,563	
41.34	1,929	995	41.86	2,031	1,575	
41.35	1,931	1,006	41.87	2,032	1,587	
41.36	1,933	1,016	41.88	2,034	1,598	
41.37	1,935	1,027	41.89	2,036	1,610	
41.38	1,937	1,038	41.90	2,038	1,621	
41.39	1,939	1,048	41.91	2,040	1,633	
41.40	1,941	1,059	41.92	2,042	1,645	
41.41	1,943	1,070	41.93	2,044	1,656	
41.42	1,945	1,080	41.94	2,046	1,668	
41.43	1,947	1,091	41.95	2,048	1,680	
41.44	1,949	1,102	41.96	2,050	1,691	
41.45	1,951	1,113	41.97	2,052	1,703	
41.46	1,953	1,124	41.98	2,054	1,715	
41.47	1,955	1,135	41.99	2,056	1,727	
41.48	1,957	1,146	42.00	2,058	1,738	
41.49	1,959	1,156	42.01	2,060	1,750	
41.50	1,960	1,167	42.02	2,062	1,762	
41.51	1,962	1,178	42.03	2,064	1,773	
41.52	1,964	1,189	42.04	2,066	1,785	
41.53	1,966	1,200	42.05	2,067	1,797	
41.54	1,968	1,212	42.06	2,069	1,809	
41.55	1,970	1,223	42.07	2,000	1,820	
	.,070	1,220	.2.07	_,011	1,020	
			1			

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Elevation Weited Storage Elevation Weited Storage 42.08 2.073 1,832 42.60 2.174 2.444 42.09 2.075 1,844 42.61 2.176 2.455 42.10 2.077 1,856 42.62 2.178 2.467 42.11 2.079 1,887 42.63 2.182 2.490 42.13 2.083 1.891 42.66 2.184 2.502 42.14 2.085 1.903 42.66 2.184 2.502 42.14 2.085 1.903 42.66 2.194 2.555 42.17 2.091 1.938 42.69 2.192 2.548 42.18 2.093 1.950 42.70 2.194 2.552 42.19 2.095 1.962 42.71 2.196 2.571 42.20 2.097 1.974 42.77 2.202 2.605 42.21 2.099 1.985 42.73 2.202 2.617	F 1	\\/	01	F lowether		01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Wetted	Storage	Elevation	Wetted	Storage
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				
42.522,1592,35043.042,2602,94142.532,1612,36243.052,2622,95242.542,1632,37443.062,2642,96342.552,1652,38543.072,2662,97442.562,1672,39743.082,2682,98542.572,1692,40943.092,2702,99542.582,1712,42043.102,2723,006						
42.532,1612,36243.052,2622,95242.542,1632,37443.062,2642,96342.552,1652,38543.072,2662,97442.562,1672,39743.082,2682,98542.572,1692,40943.092,2702,99542.582,1712,42043.102,2723,006						
42.542,1632,37443.062,2642,96342.552,1652,38543.072,2662,97442.562,1672,39743.082,2682,98542.572,1692,40943.092,2702,99542.582,1712,42043.102,2723,006						
42.552,1652,38543.072,2662,97442.562,1672,39743.082,2682,98542.572,1692,40943.092,2702,99542.582,1712,42043.102,2723,006						
42.562,1672,39743.082,2682,98542.572,1692,40943.092,2702,99542.582,1712,42043.102,2723,006						
42.572,1692,40943.092,2702,99542.582,1712,42043.102,2723,006		2,165	2,385	43.07	2,266	2,974
42.58 2,171 2,420 43.10 2,272 3,006						
42.59 2,173 2,432 43.11 2,274 3,017						
	42.59	2,173	2,432	43.11	2,274	3,017

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

					-
Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
43.12	2,276	3,027	43.64	2,377	3,522
43.13	2,278	3,038	43.65	2,379	3,530
43.14	2,279	3,049	43.66	2,381	3,538
43.15	2,281	3,059	43.67	2,383	3,545
43.16	2,283	3,070	43.68	2,385	3,552
43.17	2,285	3,080	43.69	2,386	3,560
43.18	2,287	3,091	43.70	2,388	3,566
43.19	2,289	3,101	43.71	2,390	3,573
43.20	2,291	3,112	43.72	2,392	3,580
43.21	2,293	3,122	43.73	2,394	3,586
43.22	2,295	3,132	43.74	2,396	3,592
43.23	2,297	3,143	43.75	2,398	3,597
43.24	2,299	3,153	43.76	2,400	3,603
43.25	2,301	3,163	43.77	2,402	3,607
43.26	2,303	3,173	43.78	2,404	3,612
43.27	2,305	3,184	43.79	2,406	3,617
43.28	2,307	3,194	43.80	2,408	3,622
43.29	2,309	3,204	43.81	2,410	3,627
43.30	2,311	3,214	43.82	2,412	3,632
43.31	2,313	3,224	43.83	2,414	3,637
43.32	2,314	3,234	43.84	2,416	3,642
43.33	2,314	3,244	43.85	2,418	3,647
43.34	2,318	3,254	43.86	2,420	3,652
43.35	2,320	3,263	43.87	2,421	3,657
43.36	2,322	3,273	43.88	2,423	3,663
43.37	2,324	3,283	43.89	2,425	3,668
43.38	2,326	3,293	43.90	2,427	3,673
43.39	2,328	3,302	43.91	2,429	3,679
43.40	2,330	3,312	43.92	2,431	3,684
43.41	2,332	3,321	43.93	2,433	3,690
43.42	2,334	3,331	43.94	2,435	3,695
43.43	2,336	3,340	43.95	2,437	3,701
43.44	2,338	3,350	43.96	2,439	3,707
43.45	2,340	3,359	43.97	2,441	3,713
43.46	2,342	3,368	43.98	2,443	3,719
43.47	2,344	3,377	43.99	2,445	3,725
43.48	2,346	3,387	44.00	2,447	3,731
43.49	2,348	3,396	44.01	2,449	3,738
43.50	2,349	3,405	44.02	2,451	3,745
43.51	2,351	3,414	44.03	2,453	3,751
43.52	2,353	3,422	44.04	2,455	3,758
43.53	2,355	3,431	44.05	2,456	3,765
43.54	2,357	3,440	44.06	2,458	3,771
43.55	2,359	3,449	44.07	2,460	3,778
43.56	2,361	3,457	44.08	2,462	3,785
43.57	2,363	3,466	44.09	2,464	3,791
43.58	2,365	3,474	44.10	2,466	3,798
43.59	2,367	3,482	44.11	2,468	3,805
43.60	2,369	3,490	44.12	2,400	3,811
43.61	2,303	3,499	44.13	2,472	3,818
43.62	2,373	3,507	44.14	2,474	3,825
43.63	2,375	3,515	44.15	2,476	3,831
	_,•.•	0,0.0		_,	0,001
			•		

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)
44.16	2,478	3,838
44.17	2,480	3,845
44.18	2,482	3,851
44.19	2,484	3,858
44.20	2,486	3,865
44.21	2,488	3,872
44.22	2,490	3,878
44.23	2,491	3,885
44.24	2,493	3,892
44.25	2,495	3,898
44.26	2,497	3,905
44.27	2,499	3,912
44.28	2,501	3,918
44.29	2,503	3,925
44.30	2,505	3,932
44.31	2,507	3,938
44.32	2,509	3,945
44.33	2,511	3,952
44.34	2,513	3,958
44.35	2,515	3,965
44.36	2,517	3,972
44.37	2,519	3,978
44.38	2,521	3,985
44.39	2,523	3,992
44.40	2,525	3,998
44.41	2,526	4,005
44.42	2,528	4,012
44.43	2,530	4,018
44.44	2,532	4,025
44.45	2,534	4,032
44.46	2,536	4,038
44.47	2,538	4,045
44.48	2,540	4,052
44.49	2,542	4,058
44.50	2,544	4,065

4582-Postdrain--Rev1

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond INF-3: U/G INF-3

Elevation	Wetted	Storage	Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
40.50	1,650	0	41.02	1,741	343
40.51	1,652	7	41.03	1,743	349
40.52	1,653	13	41.04	1,744	354
40.53	1,655	20	41.05	1,746	360
40.54	1,657	26	41.06	1,748	366
40.55	1,659	33	41.07	1,750	371
40.56	1,660	40	41.08	1,751	377
40.57	1,662	46	41.09	1,753	382
40.58	1,664	53	41.10	1,755	387
40.59	1,666	59	41.11	1,757	393
40.60	1,667	66	41.12	1,758	398
40.61	1,669	73	41.13	1,760	403
40.62	1,671	79	41.14	1,762	408
40.63	1,673	86	41.15	1,764	413
40.64	1,674	92	41.16	1,765	418
40.65	1,676	99	41.17	1,767	423
40.66	1,678	106	41.18	1,769	428
40.67	1,680	112	41.19	1,771	433
40.68	1,681	112	41.20	1,772	438
40.69	1,683	125	41.20	1,774	443
40.09	1,685	125	41.21	1,776	443
40.70	1,687	132	41.22	1,778	447 452
	1,688				
40.72		145	41.24	1,779	457
40.73	1,690	152	41.25	1,781	461
40.74	1,692	158	41.26	1,783	467
40.75	1,694	165	41.27	1,785	472
40.76	1,695	172	41.28	1,786	479
40.77	1,697	178	41.29	1,788	486
40.78	1,699	185	41.30	1,790	492
40.79	1,701	191	41.31	1,792	499
40.80	1,702	198	41.32	1,793	506
40.81	1,704	205	41.33	1,795	514
40.82	1,706	211	41.34	1,797	521
40.83	1,708	218	41.35	1,799	529
40.84	1,709	224	41.36	1,800	536
40.85	1,711	231	41.37	1,802	544
40.86	1,713	238	41.38	1,804	552
40.87	1,715	244	41.39	1,806	560
40.88	1,716	251	41.40	1,807	568
40.89	1,718	257	41.41	1,809	576
40.90	1,720	264	41.42	1,811	584
40.91	1,722	271	41.43	1,813	593
40.92	1,723	277	41.44	1,814	601
40.93	1,725	284	41.45	1,816	609
40.94	1,727	290	41.46	1,818	618
40.95	1,729	297	41.47	1,820	627
40.96	1,730	304	41.48	1,821	635
40.97	1,732	310	41.49	1,823	644
40.98	1,734	317	41.50	1,825	653
40.99	1,736	323	41.51	1,827	662
41.00	1,737	330	41.52	1,828	671
41.01	1,739	336	41.53	1,830	680
			l		

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Elevation	Wetted	Storage	Elevation	Wetted	Storage	
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	
41.54	1,832	689	42.06	1,923	1,222	
41.55	1,834	698	42.07	1,925	1,233	
41.56	1,835	708	42.08	1,926	1,244	
41.57	1,837	717	42.09	1,928	1,256	
41.58	1,839	726	42.10	1,930	1,267	
41.59	1,841	736	42.11	1,932	1,278	
41.60	1,842	745	42.12	1,933	1,289	
41.61	1,844	755	42.13	1,935	1,300	
41.62	1,846	764	42.14	1,937	1,311	
41.63	1,848	774	42.15 42.16	1,939	1,323 1,334	
41.64 41.65	1,849 1,851	783 793	42.10	1,940 1,942	1,345	
41.66	1,853	803	42.17	1,944	1,345	
41.67	1,855	813	42.10	1,946	1,368	
41.68	1,856	822	42.20	1,947	1,379	
41.69	1,858	832	42.21	1,949	1,390	
41.70	1,860	842	42.22	1,951	1,402	
41.71	1,862	852	42.23	1,953	1,413	
41.72	1,863	862	42.24	1,954	1,424	
41.73	1,865	872	42.25	1,956	1,436	
41.74	1,867	882	42.26	1,958	1,447	
41.75	1,869	893	42.27	1,960	1,458	Storage below
41.76	1,870	903	42.28	1,961	1,470	lowest outlet
41.77	1,872	913	42.29	1,963	1,481	orifice
41.78	1,874	923	42.30	1,965	1,493	Unince
41.79 41.80	1,876 1,877	933 944	42.31 42.32	1,967 1,968	1,504 1,516	
41.80	1,879	944 954	42.32	1,900	1,510	
41.82	1,881	964	42.34	1,972	1,539	
41.83	1,883	975	42.35	1,974	1,550	
41.84	1,884	985	42.36	1,975	1,562	
41.85	1,886	996	42.37	1,977	1,573	
41.86	1,888	1,006	42.38	1,979	1,585	
41.87	1,890	1,017	42.39	1,981	1,596	
41.88	1,891	1,027	42.40	1,982	1,608	
41.89	1,893	1,038	42.41	1,984	1,619	
41.90	1,895	1,049	42.42	1,986	1,631	
41.91	1,897	1,059	42.43	1,988	1,643	
41.92 41.93	1,898 1,900	1,070 1,081	42.44 42.45	1,989 1,991	1,654 1,666	
41.93	1,900	1,091	42.45	1,993	1,677	
41.95	1,902	1,102	42.40	1,995	1,689	
41.96	1,905	1,113	42.48	1,996	1,701	
41.97	1,907	1,124	42.49	1,998	1,712	
41.98	1,909	1,135	42.50	2,000	1,724	
41.99	1,911	1,146	42.51	2,002	1,736	
42.00	1,912	1,156	42.52	2,003	1,747	
42.01	1,914	1,167	42.53	2,005	1,759	
42.02	1,916	1,178	42.54	2,007	1,771	
42.03	1,918	1,189	42.55	2,009	1,782	
42.04	1,919	1,200	42.56	2,010	1,794	
42.05	1,921	1,211	42.57	2,012	1,806	
		l				

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Elevation Wetted Storage Elevation Wetted Storage 42.58 2.014 1.817 43.10 2.105 2.425 42.59 2.016 1.829 43.11 2.107 2.437 42.60 2.017 1.841 43.12 2.108 2.448 42.61 2.019 1.852 43.13 2.110 2.460 42.62 2.021 1.864 43.15 2.114 2.483 42.65 2.026 1.899 43.17 2.117 2.506 42.66 2.028 1.911 43.18 2.112 2.547 42.66 2.033 1.934 43.20 2.122 2.540 42.66 2.033 1.946 43.21 2.124 2.552 42.71 2.037 1.990 43.23 2.128 2.575 42.72 2.038 1.981 43.24 2.128 2.575 42.75 2.040 1.993 43.25 2.131 2.598			01			01
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Elevation	Wetted	Storage	Elevation	Wetted	Storage
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1,970			
42.74 $2,042$ $2,005$ 43.26 $2,133$ $2,609$ 42.75 $2,044$ $2,017$ 43.27 $2,135$ $2,620$ 42.76 $2,047$ $2,040$ 43.29 $2,138$ $2,632$ 42.77 $2,047$ $2,040$ 43.29 $2,138$ $2,643$ 42.78 $2,049$ $2,052$ 43.30 $2,140$ $2,654$ 42.79 $2,051$ $2,063$ 43.31 $2,142$ $2,666$ 42.80 $2,052$ $2,075$ 43.33 $2,145$ $2,688$ 42.82 $2,056$ $2,007$ 43.33 $2,145$ $2,688$ 42.82 $2,056$ $2,109$ 43.34 $2,147$ $2,699$ 42.83 $2,058$ $2,110$ 43.35 $2,149$ $2,711$ 42.84 $2,059$ $2,122$ 43.36 $2,150$ $2,722$ 42.85 $2,061$ $2,134$ 43.37 $2,152$ $2,733$ 42.86 $2,063$ $2,146$ 43.38 $2,154$ $2,774$ 42.87 $2,065$ $2,157$ 43.39 $2,156$ $2,755$ 42.88 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,068$ $2,181$ 43.41 $2,157$ $2,766$ 42.90 $2,077$ $2,239$ 43.42 $2,161$ $2,789$ 42.91 $2,072$ $2,204$ 43.43 $2,163$ $2,800$ 42.92 $2,073$ $2,216$ 43.44 $2,164$ $2,811$ 42.99 $2,075$ 2						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
42.78 $2,049$ $2,052$ 43.30 $2,140$ $2,654$ 42.79 $2,051$ $2,063$ 43.31 $2,142$ $2,666$ 42.80 $2,052$ $2,075$ 43.32 $2,143$ $2,677$ 42.81 $2,054$ $2,087$ 43.33 $2,145$ $2,688$ 42.82 $2,056$ $2,099$ 43.34 $2,147$ $2,699$ 42.83 $2,058$ $2,110$ 43.35 $2,149$ $2,711$ 42.84 $2,059$ $2,122$ 43.36 $2,150$ $2,722$ 42.85 $2,061$ $2,134$ 43.37 $2,152$ $2,733$ 42.86 $2,063$ $2,146$ 43.38 $2,154$ $2,744$ 42.87 $2,065$ $2,157$ 43.39 $2,156$ $2,755$ 42.88 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,068$ $2,181$ 43.42 $2,161$ $2,789$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.90 $2,077$ $2,2204$ 43.43 $2,163$ $2,800$ 42.92 $2,077$ $2,228$ 43.44 $2,164$ $2,811$ 42.93 $2,075$ $2,228$ 43.45 $2,166$ $2,822$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,833$ 42.95 $2,079$ $2,251$ 43.47 $2,173$ $2,866$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,833$ 42.95 $2,079$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
42.80 $2,052$ $2,075$ 43.32 $2,143$ $2,677$ 42.81 $2,054$ $2,087$ 43.33 $2,145$ $2,688$ 42.82 $2,056$ $2,099$ 43.34 $2,147$ $2,699$ 42.83 $2,058$ $2,110$ 43.35 $2,149$ $2,711$ 42.84 $2,059$ $2,122$ 43.36 $2,150$ $2,722$ 42.85 $2,061$ $2,134$ 43.37 $2,152$ $2,733$ 42.86 $2,063$ $2,146$ 43.38 $2,156$ $2,755$ 42.88 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,068$ $2,181$ 43.41 $2,159$ $2,778$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.91 $2,072$ $2,204$ 43.43 $2,163$ $2,800$ 42.92 $2,073$ $2,216$ 43.44 $2,164$ $2,811$ 42.93 $2,075$ $2,228$ 43.45 $2,168$ $2,833$ 42.95 $2,079$ $2,251$ 43.47 $2,170$ $2,844$ 42.96 $2,080$ $2,263$ 43.48 $2,177$ $2,888$ 43.00 $2,087$ $2,309$ 43.52 $2,178$ $2,898$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,877$ 42.99 $2,086$ $2,263$ 43.45 $2,168$ $2,833$ 42.95 $2,079$ 2						
42.81 $2,054$ $2,087$ 43.33 $2,145$ $2,688$ 42.82 $2,056$ $2,099$ 43.34 $2,147$ $2,699$ 42.83 $2,058$ $2,110$ 43.35 $2,149$ $2,711$ 42.84 $2,059$ $2,122$ 43.36 $2,150$ $2,722$ 42.85 $2,061$ $2,134$ 43.37 $2,152$ $2,733$ 42.86 $2,063$ $2,146$ 43.38 $2,154$ $2,744$ 42.87 $2,065$ $2,157$ 43.39 $2,156$ $2,755$ 42.89 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.91 $2,072$ $2,204$ 43.43 $2,163$ $2,800$ 42.92 $2,073$ $2,216$ 43.44 $2,164$ $2,811$ 42.93 $2,075$ $2,228$ 43.45 $2,166$ $2,822$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,833$ 42.95 $2,079$ $2,251$ 43.47 $2,170$ $2,844$ 42.96 $2,080$ $2,263$ 43.50 $2,175$ $2,877$ 42.99 $2,086$ $2,286$ 43.50 $2,175$ $2,877$ 42.99 $2,086$ $2,288$ 43.51 $2,177$ $2,888$ 43.00 $2,087$ $2,309$ 43.52 $2,178$ $2,999$ 43.02 $2,094$ 2		2,051				2,666
42.82 $2,056$ $2,099$ 43.34 $2,147$ $2,699$ 42.83 $2,058$ $2,110$ 43.35 $2,149$ $2,711$ 42.84 $2,059$ $2,122$ 43.36 $2,150$ $2,722$ 42.85 $2,061$ $2,134$ 43.37 $2,152$ $2,733$ 42.86 $2,063$ $2,146$ 43.38 $2,154$ $2,744$ 42.87 $2,065$ $2,157$ 43.39 $2,156$ $2,755$ 42.88 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,068$ $2,181$ 43.41 $2,159$ $2,778$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.91 $2,072$ $2,204$ 43.43 $2,163$ $2,800$ 42.92 $2,073$ $2,216$ 43.44 $2,164$ $2,811$ 42.93 $2,075$ $2,228$ 43.45 $2,166$ $2,822$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,833$ 42.95 $2,079$ $2,251$ 43.47 $2,170$ $2,844$ 42.96 $2,080$ $2,263$ 43.48 $2,171$ $2,855$ 42.97 $2,082$ $2,274$ 43.49 $2,173$ $2,866$ 42.98 $2,084$ $2,286$ 43.50 $2,175$ $2,877$ 42.99 $2,086$ $2,298$ 43.51 $2,177$ $2,888$ 43.00 $2,087$ $2,309$ 43.52 $2,178$ $2,909$ 43.02 $2,091$ 2	42.80	2,052	2,075	43.32	2,143	2,677
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
42.84 $2,059$ $2,122$ 43.36 $2,150$ $2,722$ 42.85 $2,061$ $2,134$ 43.37 $2,152$ $2,733$ 42.86 $2,063$ $2,146$ 43.38 $2,154$ $2,744$ 42.87 $2,065$ $2,157$ 43.39 $2,156$ $2,755$ 42.88 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,068$ $2,181$ 43.41 $2,159$ $2,778$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.91 $2,072$ $2,204$ 43.43 $2,163$ $2,800$ 42.92 $2,073$ $2,216$ 43.44 $2,164$ $2,811$ 42.93 $2,075$ $2,228$ 43.45 $2,166$ $2,822$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,833$ 42.95 $2,079$ $2,251$ 43.47 $2,170$ $2,844$ 42.96 $2,080$ $2,263$ 43.48 $2,171$ $2,855$ 42.97 $2,082$ $2,274$ 43.49 $2,173$ $2,866$ 42.98 $2,084$ $2,286$ 43.50 $2,175$ $2,877$ 42.99 $2,086$ $2,298$ 43.51 $2,177$ $2,888$ 43.00 $2,087$ $2,309$ 43.52 $2,178$ $2,898$ 43.01 $2,089$ $2,321$ 43.53 $2,180$ $2,900$ 43.02 $2,091$ $2,332$ 43.54 $2,182$ $2,920$ 43.03 $2,093$ 2		2,056			2,147	2,699
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
42.86 $2,063$ $2,146$ 43.38 $2,154$ $2,744$ 42.87 $2,065$ $2,157$ 43.39 $2,156$ $2,755$ 42.88 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,068$ $2,181$ 43.41 $2,159$ $2,778$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.91 $2,072$ $2,204$ 43.43 $2,163$ $2,800$ 42.92 $2,073$ $2,216$ 43.44 $2,164$ $2,811$ 42.93 $2,075$ $2,228$ 43.45 $2,166$ $2,822$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,833$ 42.95 $2,079$ $2,251$ 43.47 $2,170$ $2,844$ 42.96 $2,080$ $2,263$ 43.48 $2,171$ $2,855$ 42.97 $2,082$ $2,274$ 43.49 $2,173$ $2,866$ 42.98 $2,084$ $2,286$ 43.50 $2,175$ $2,877$ 42.99 $2,086$ $2,298$ 43.51 $2,177$ $2,888$ 43.00 $2,087$ $2,309$ 43.52 $2,178$ $2,898$ 43.01 $2,099$ $2,321$ 43.53 $2,180$ $2,909$ 43.02 $2,091$ $2,332$ 43.54 $2,182$ $2,920$ 43.03 $2,093$ $2,367$ 43.56 $2,184$ $2,931$ 43.04 $2,094$ $2,356$ 43.56 $2,184$ $2,931$ 43.04 $2,094$ 2		2,059			2,150	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,061			2,152	2,733
42.88 $2,066$ $2,169$ 43.40 $2,157$ $2,766$ 42.89 $2,068$ $2,181$ 43.41 $2,159$ $2,778$ 42.90 $2,070$ $2,192$ 43.42 $2,161$ $2,789$ 42.91 $2,072$ $2,204$ 43.43 $2,163$ $2,800$ 42.92 $2,073$ $2,216$ 43.44 $2,164$ $2,811$ 42.93 $2,075$ $2,228$ 43.45 $2,166$ $2,822$ 42.94 $2,077$ $2,239$ 43.46 $2,168$ $2,833$ 42.95 $2,079$ $2,251$ 43.47 $2,170$ $2,844$ 42.96 $2,080$ $2,263$ 43.48 $2,171$ $2,855$ 42.97 $2,082$ $2,274$ 43.49 $2,173$ $2,866$ 42.98 $2,084$ $2,286$ 43.50 $2,175$ $2,877$ 42.99 $2,086$ $2,298$ 43.51 $2,177$ $2,888$ 43.00 $2,087$ $2,309$ 43.52 $2,178$ $2,898$ 43.01 $2,089$ $2,321$ 43.53 $2,180$ $2,909$ 43.02 $2,091$ $2,332$ 43.54 $2,182$ $2,920$ 43.03 $2,093$ $2,344$ 43.55 $2,184$ $2,931$ 43.04 $2,094$ $2,356$ 43.56 $2,185$ $2,942$ 43.05 $2,096$ $2,367$ 43.57 $2,187$ $2,952$ 43.06 $2,098$ $2,379$ 43.58 $2,189$ $2,963$ 43.07 $2,100$ 2	42.86	2,063	2,146	43.38	2,154	2,744
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.87	2,065	2,157	43.39	2,156	2,755
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.88	2,066		43.40	2,157	2,766
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.89	2,068	2,181		2,159	2,778
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,070		43.42	2,161	2,789
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.91	2,072	2,204	43.43	2,163	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.92		2,216	43.44		2,811
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.93	2,075	2,228	43.45	2,166	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,077	2,239	43.46	2,168	2,833
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	42.95	2,079	2,251	43.47	2,170	2,844
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2,080	2,263	43.48		2,855
42.992,0862,29843.512,1772,88843.002,0872,30943.522,1782,89843.012,0892,32143.532,1802,90943.022,0912,33243.542,1822,92043.032,0932,34443.552,1842,93143.042,0942,35643.562,1852,94243.052,0962,36743.572,1872,95243.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	42.97	2,082	2,274	43.49	2,173	2,866
43.002,0872,30943.522,1782,89843.012,0892,32143.532,1802,90943.022,0912,33243.542,1822,92043.032,0932,34443.552,1842,93143.042,0942,35643.562,1852,94243.052,0962,36743.572,1872,95243.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	42.98	2,084	2,286	43.50	2,175	2,877
43.012,0892,32143.532,1802,90943.022,0912,33243.542,1822,92043.032,0932,34443.552,1842,93143.042,0942,35643.562,1852,94243.052,0962,36743.572,1872,95243.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	42.99	2,086	2,298	43.51	2,177	2,888
43.022,0912,33243.542,1822,92043.032,0932,34443.552,1842,93143.042,0942,35643.562,1852,94243.052,0962,36743.572,1872,95243.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	43.00	2,087	2,309	43.52	2,178	2,898
43.032,0932,34443.552,1842,93143.042,0942,35643.562,1852,94243.052,0962,36743.572,1872,95243.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	43.01	2,089	2,321	43.53	2,180	2,909
43.042,0942,35643.562,1852,94243.052,0962,36743.572,1872,95243.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	43.02	2,091		43.54	2,182	
43.052,0962,36743.572,1872,95243.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	43.03	2,093	2,344	43.55	2,184	2,931
43.062,0982,37943.582,1892,96343.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	43.04	2,094	2,356	43.56	2,185	2,942
43.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	43.05	2,096	2,367	43.57	2,187	2,952
43.072,1002,39143.592,1912,97443.082,1012,40243.602,1922,984	43.06	2,098			2,189	2,963
43.08 2,101 2,402 43.60 2,192 2,984	43.07		2,391	43.59		
	43.09			43.61		

Prepared by Greenman-Pedersen, Inc. HydroCAD® 10.10-7a s/n 01710 © 2021 HydroCAD Software Solutions LLC

Elevation	\\/attad	Characte		\\/attad	Ctorers
Elevation (feet)	Wetted (sq-ft)	Storage (cubic-feet)	Elevation (feet)	Wetted	Storage (cubic-feet)
43.62	2,196	3,006	44.14	<u>(sq-ft)</u> 2,287	3,497
43.62	2,190	3,000	44.14	2,287 2,289	3,505
43.64	2,198	3,010	44.15	2,209	3,505
43.65	2,199	3,027	44.10	2,290	3,512
43.66	2,201	3,048	44.17	2,292	3,519
43.67	2,203	3,048	44.10	2,294 2,296	3,534
43.68			44.19		3,541
43.69	2,206 2,208	3,069 3,079	44.20	2,297 2,299	3,547
43.70	2,200	3,089	44.22	2,299	3,554
43.71	2,210	3,100	44.22	2,301	3,560
43.72	2,212	3,110	44.24	2,303	3,566
43.72	2,215	3,120	44.25	2,304	3,571
43.74	2,213	3,120	44.25	2,308	3,576
43.75	2,217	3,141	44.27	2,310	3,581
43.76	2,219	3,151	44.28	2,310	3,586
43.77	2,220	3,161	44.29	2,313	3,590
43.78	2,222	3,171	44.30	2,315	3,595
43.79	2,224	3,181	44.31	2,317	3,600
43.80	2,220	3,191	44.32	2,318	3,605
43.81	2,229	3,201	44.33	2,320	3,610
43.82	2,231	3,211	44.34	2,322	3,615
43.83	2,233	3,220	44.35	2,324	3,620
43.84	2,234	3,230	44.36	2,325	3,625
43.85	2,236	3,240	44.37	2,327	3,630
43.86	2,238	3,250	44.38	2,329	3,635
43.87	2,240	3,259	44.39	2,331	3,640
43.88	2,241	3,269	44.40	2,332	3,646
43.89	2,243	3,279	44.41	2,334	3,651
43.90	2,245	3,288	44.42	2,336	3,657
43.91	2,247	3,298	44.43	2,338	3,662
43.92	2,248	3,307	44.44	2,339	3,668
43.93	2,250	3,316	44.45	2,341	3,673
43.94	2,252	3,326	44.46	2,343	3,679
43.95	2,254	3,335	44.47	2,345	3,685
43.96	2,255	3,344	44.48	2,346	3,691
43.97	2,257	3,353	44.49	2,348	3,697
43.98	2,259	3,362	44.50	2,350	3,703
43.99	2,261	3,371	44.51	2,352	3,710
44.00	2,262	3,380	44.52	2,353	3,716
44.01	2,264	3,389	44.53	2,355	3,723
44.02	2,266	3,398	44.54	2,357	3,730
44.03	2,268	3,406	44.55	2,359	3,736
44.04	2,269	3,415	44.56	2,360	3,743
44.05	2,271	3,424	44.57	2,362	3,749
44.06	2,273	3,432	44.58	2,364	3,756
44.07	2,275	3,441	44.59	2,366	3,763
44.08	2,276	3,449	44.60	2,367	3,769
44.09	2,278	3,457	44.61	2,369	3,776
44.10	2,280	3,465	44.62	2,371	3,782
44.11	2,282	3,473	44.63	2,373	3,789
44.12	2,283	3,481	44.64	2,374	3,796
44.13	2,285	3,489	44.65	2,376	3,802

Elevation	Wetted	Storage
(feet)	(sq-ft)	(cubic-feet)
44.66	2,378	3,809
44.67	2,380	3,815
44.68	2,381	3,822
44.69	2,383	3,829
44.70	2,385	3,835
44.71	2,387	3,842
44.72	2,388	3,848
44.73	2,390	3,855
44.74	2,392	3,862
44.75	2,394	3,868
44.76	2,395	3,875
44.77	2,397	3,881
44.78	2,399	3,888
44.79	2,401	3,895
44.80	2,402	3,901
44.81	2,404	3,908
44.82	2,406	3,914
44.83	2,408	3,921
44.84	2,409	3,928
44.85	2,411	3,934
44.86	2,413	3,941
44.87	2,415	3,947
44.88	2,416	3,954
44.89	2,418	3,961
44.90	2,420	3,967
44.91	2,422	3,974
44.92	2,423	3,980
44.93	2,425	3,987
44.94	2,427	3,994
44.95	2,429	4,000
44.96	2,430	4,007
44.97	2,432	4,013
44.98	2,434	4,020
44.99	2,436	4,027
45.00	2,437	4,033

GPI Project No.	458219	Sheet	1 of 3				
Project Description	4 Amigos, LLC	_					
Task Drawdown Calculations							
Calculated By	SJB	Date	04/15/22				
Checked By		Date					

Drawdown within 72 hours Analysis for Static Method

Proposed Underground Infiltration System #1

Infiltration Rate:	3.00	inches/hour (Ksat conversion from NHDES, see Hydrocad node for additional information)
Design Infiltration Rate:	3.00	inches/hour
Total Volume:	1,436	cf
Basin bottom area:	1,650	sf
· ·	sign Infi	/olume in cubic feet as determined by the Static Itration Rate in inches per hour)(conversion for inches to feet)
Time $_{drawdown}$ = (1,436 cf) (1/ 3	8.00 in/hr) (1ft/12 in.)(1 / 1,650 sf)
= 3.48 hours	S	

GPI Project No.	458219	Sheet	2 of 3
Project Description	4 Amigos, LLC		
Task Drawdown C	alculations		
Calculated By	SJB	Date	04/15/22
Checked By		Date	
2	218		04/15/22

Drawdown within 72 hours Analysis for Static Method

Proposed Underground Infiltration System #2

Infiltration Rate:	3.00	inches/hour (Ksat conversion from NHDES, see Hydrocad node for additional information)
Design Infiltration Rate:	3.00	inches/hour
Total Volume:	1,506	cf
Basin bottom area:	1,669	sf
	sign Infi	/olume in cubic feet as determined by the Static Itration Rate in inches per hour)(conversion for inches to feet)
Time $_{drawdown}$ = (1,506 cf) (1/ 3	8.00 in/hr) (1ft/12 in.)(1 / 1,669 sf)
= 3.61 hour	S	

GPI Project No.	458219	Sheet	3 of 3
Project Description	4 Amigos, LLC		
Task Drawdown C	Calculations		
Calculated By	SJB	Date	04/15/22
Checked By		Date	

Drawdown within 72 hours Analysis for Static Method

Proposed Underground Infiltration System #3

Infiltration Rate:	3.00	inches/hour (Ksat conversion from NHDES, see Hydrocad node for additional information)
Design Infiltration Rate:	3.00	inches/hour
Total Volume:	1,493	cf
Basin bottom area:	1,650	sf
	sign Infi	/olume in cubic feet as determined by the Static Itration Rate in inches per hour)(conversion for inches to feet)
Time $_{drawdown}$ = (1,493 cf) (1/ 3	8.00 in/hr) (1ft/12 in.)(1 / 1,650 sf)
= 3.62 hour	S	

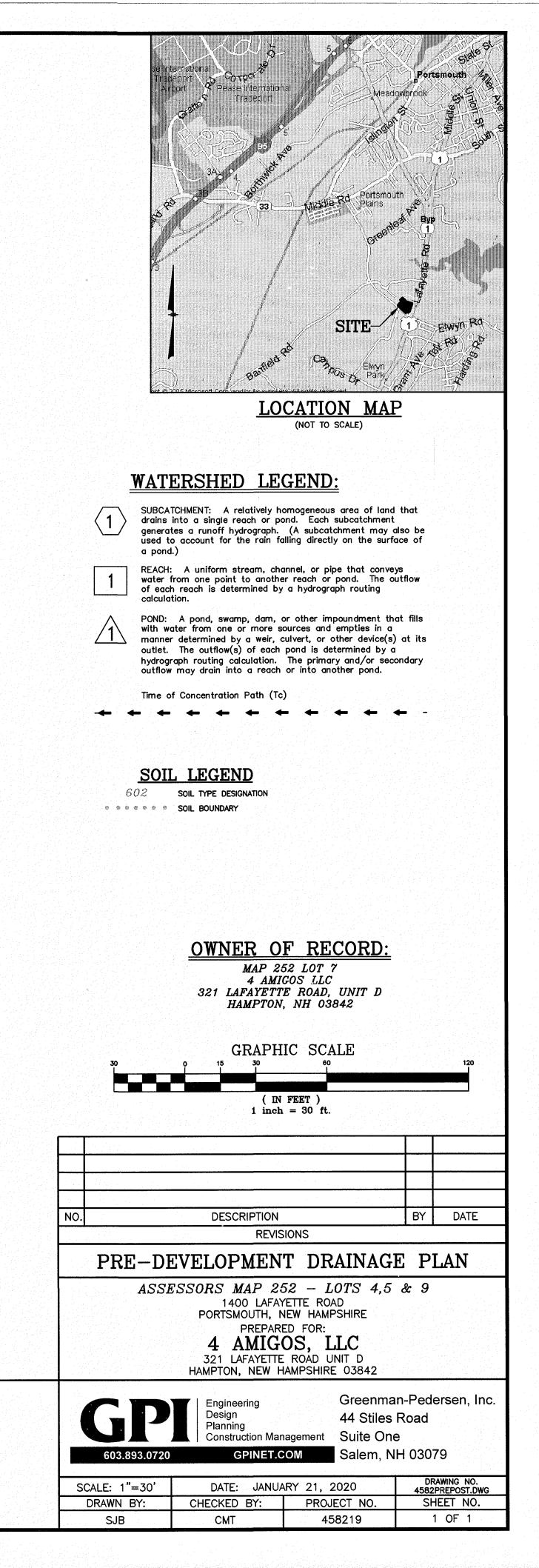
Appendix B. BMP Pollutant Removal Efficiency

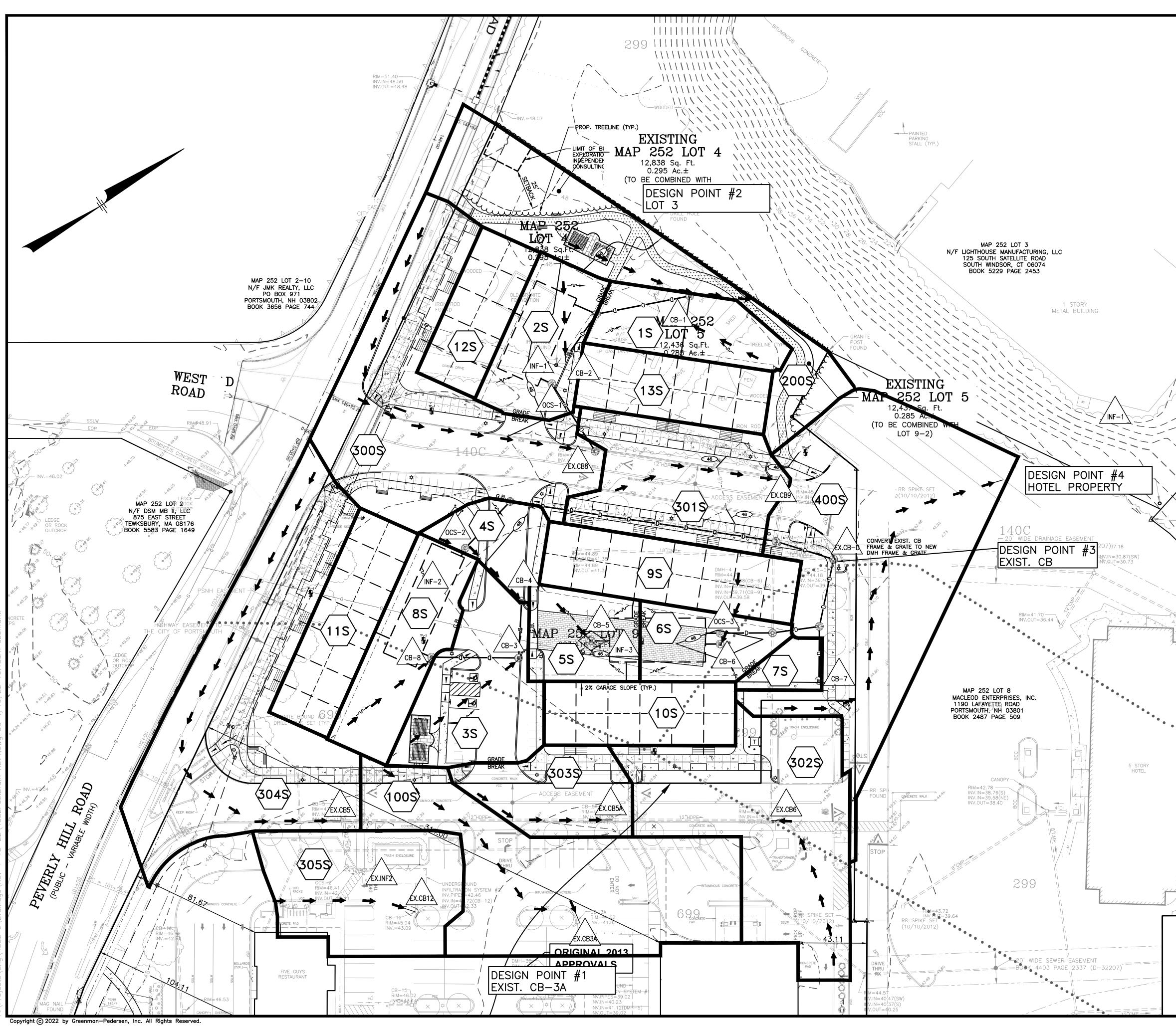
Pollutant Removal Efficiencies for Best Management Practices for Use in Pollutant Loading Analysis

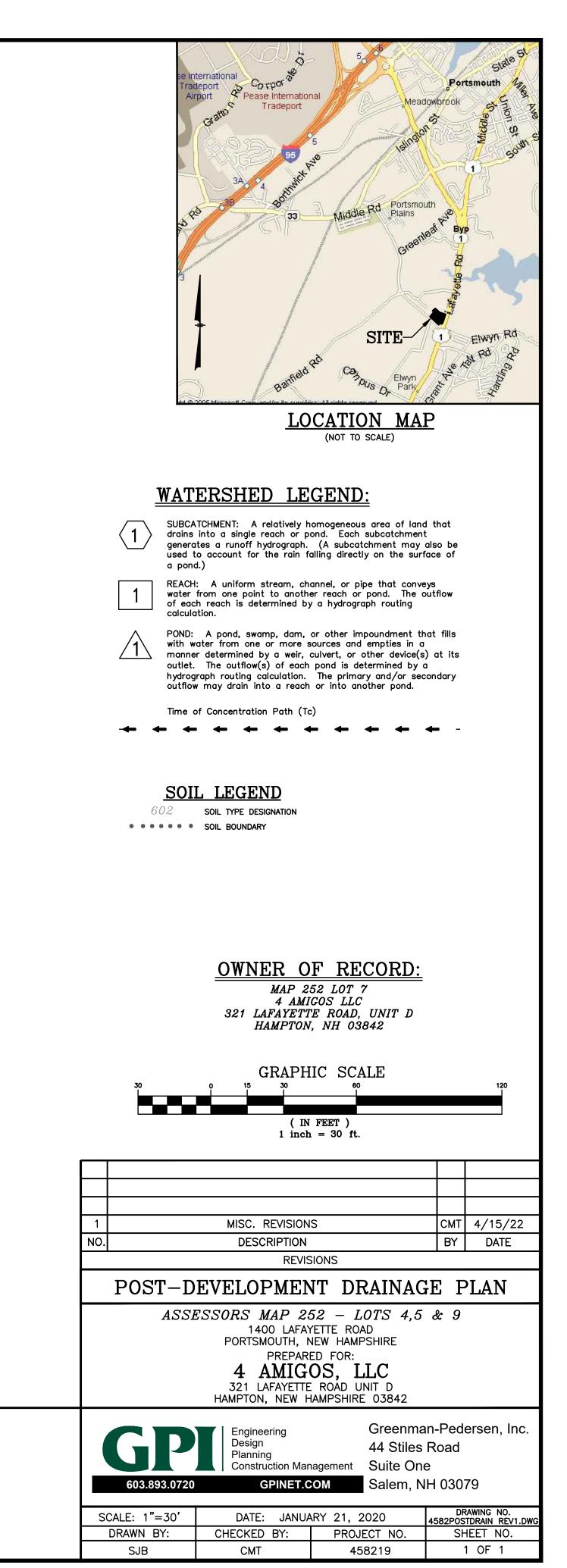
Best Management Practice (BMP) removal efficiencies for pollutant loading analysis for total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) are presented in the table below. These removal efficiencies were developed by reviewing various literature sources and using best professional judgment based on literature values and general expectation of how values for different BMPS should relate to one another. The intent is to update this information and add BMPs and removal efficiencies for other parameters as more information/data becomes available in the future.

NHDES will consider other BMP removal efficiencies if sufficient documentation is provided.

Please note that all BMPs must be designed in accordance with the specifications in the Alteration of Terrain (AoT) Program Administrative Rules (Env-Wq 1500). If BMPs are not designed in accordance with the AoT Rules, NHDES may require lower removal efficiencies to be used in the analysis.


<u>BMP in Series</u>: When BMPs are placed in series, the BMP with the highest removal efficiency shall be the efficiency used in the model for computing annual loadings. Adding efficiencies together is generally not allowed because removals typically decrease rapidly with decreasing influent concentration and, in the case of primary BMPs (i.e., stormwater ponds, infiltration and filtering practices), pre-treatment is usually part of the design and is therefore, most likely already accounted for in the efficiencies cited for these BMPs.


Pollutant R	Values Accepted for Loading Analyses					
ВМР Туре	ВМР	Notes	Lit. Ref.	TSS	TN	ТР
	Wet Pond		B, F	70%	35%	45%
	Wet Extended Detention Pond		А, В	80%	55%	68%
Stormwater Ponds	Micropool Extended Detention Pond	ТВА				
	Multiple Pond System	TBA				
	Pocket Pond	TBA				
	Shallow Wetland		A, B, F, I	80%	55%	45%
Stormwater	Extended Detention Wetland		A, B, F, I	80%	55%	45%
Wetlands	Pond/Wetland System	TBA				
	Gravel Wetland		Н	95%	85%	64%
	Infiltration Trench (≥75 ft from surface water)		B, D, I	90%	55%	60%
	Infiltration Trench (<75 ft from surface water)		B, D, I	90%	10%	60%
Infiltration Practices	Infiltration Basin (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Infiltration Basin (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Dry Wells			90%	55%	60%
	Drip Edges			90%	55%	60%
	Aboveground or Underground Sand Filter that infiltrates WQV (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Aboveground or Underground Sand Filter that infiltrates WQV (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Aboveground or Underground Sand Filter with underdrain		A, I, F, G, H	85%	10%	45%
Filtering	Tree Box Filter	TBA				
Practices	Bioretention System		I, G, H	90%	65%	65%
Taciles	Permeable Pavement that infiltrates WQV (≥75 ft from surface water)		A, F, B, D, I	90%	60%	65%
	Permeable Pavement that infiltrates WQV (<75 ft from surface water)		A, F, B, D, I	90%	10%	65%
	Permeable Pavement with underdrain		Use TN and TP values for sand filter w/ underdrain and outlet pipe	90%	10%	45%


Pollutant R	Values Accepted for Loading Analyses					
ВМР Туре	ВМР	Notes	Lit. Ref.	TSS	TN	ТР
Treatment Swales	Flow Through Treatment Swale	TBA				
Vegetated Buffers	Vegetated Buffers		A, B, I	73%	40%	45%
	Sediment Forebay	TBA				
Pre- Treatment Practices	Vegetated Filter Strip		A, B, I	73%	40%	45%
	Vegetated Swale		A, B, C, F, H, I	65%	20%	25%
	Flow-Through Device - Hydrodynamic Separator		A, B, G, H	35%	10%	5%
	Flow-Through Device - ADS Underground Multichamber Water Quality Unit (WQU)		G, H	72%	10%	9%
	Other Flow-Through Devices	TBA				
	Off-line Deep Sump Catch Basin		J, K, L, M	15%	5%	5%

Projects\Eng\458219\Drainage\4582PrePost.dwg_PRE_1/21/20_9:48am_sbo

INSPECTION & MAINTENANCE MANUAL FOR STORMWATER MANAGEMENT SYSTEMS

SITE DEVELOPMENT PLANS 1400 LAFAYETTE ROAD PORTSMOUTH, NEW HAMPSHIRE

44 Stiles Road, Suite One Salem, NH 03079 (603) 893-0720

Responsible Party:

4 Amigos, LLC 321D Lafayette Road Hampton, NH 03842 Contact: Rick Green 603-765-6510

January 21, 2020

Revised: April 15, 2022

4 Amigos, LLC Site Development Plans Inspection & Maintenance Manual

TABLE OF CONTENTS

Inspection & Maintenance Documentation Requirements	Section 1
BMP Specific I&M Procedures	Section 2
Long Term Maintenance Plan Exhibit	Section 3
Control of Invasive Species	Section 4
Stormwater Inspection & Maintenance Log	Section5
De-Icing Log	Section 6
Loose Copy of Log Forms	Inside Back Cover

Stormwater Inspection & Maintenance Manual

Site Development Plans 1400 Lafayette Road, Portsmouth, NH

SECTION 1 I & M DOCUMENTATION REQUIREMENTS

4 Amigos, LLC shall be responsible for the continued operation, and maintenance of all stormwater management systems in accordance with this manual and the requirements of NHDES AOT Env-Wq 1507.07. Logs of inspections and maintenance shall be maintained and filed with the City of Portsmouth as needed. Copies will need to be kept for the most recent three years and made available to the Planning Board, Conservation Commission, and NHDES upon request.

Logs shall include the date on which each inspection or maintenance task was performed, a description of the inspection findings or maintenance completed, and the name of the inspector or maintenance personnel performing the task. If a maintenance task requires the cleanout of any sediments or debris, the location where the sediment and debris was disposed after removal will be indicated. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations.

All stormwater facilities associated with this development are identified on Figure 1 contained within Section 3 of this manual and listed individually on the log form included herein, and shall be inspected and maintained in accordance with the procedures outlined in Section 4.

Stormwater Inspection & Maintenance Manual

Site Development Plans 1400 Lafayette Road, Portsmouth, NH

SECTION 2 BMP SPECIFIC I & M PROCEDURES

Driveway/Parking Lot Sweeping

Sweeping shall be done once in the early fall and then immediately following spring snowmelt to remove sand and other debris and when visual buildup of debris is apparent. Pavement surfaces shall be swept at other times such as in the fall after leaves have dropped to remove accumulated debris. Since contaminants typically accumulate within 12 inches of the curbline, street cleaning operations should concentrate in cleaning curb and gutter lines for maximum pollutant removal efficiency. Other areas shall also be swept periodically when visual buildup of debris is apparent. Once removed from paved surfaces, the sweeping must be handled and disposed of properly. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations.

Deep Sump Hooded Catch Basins

Inspect and clean as required all catch basins at least four times per year including at the end of the foliage and snow removal seasons. Sediment must be removed whenever the depth of deposits is greater than or equal to one half the depth from the bottom of sump to the invert of the lowest pipe in the basin. If the basin outlet is designed with a hood to trap floatable materials check to ensure watertight seal is working. Damaged hoods should be replaced when noted by inspection. At a minimum, remove floating debris and hydrocarbons at the time of the inspection. Sediment and debris can be removed by a clamshell bucket; however, a vacuum truck is preferred. Disposal of the accumulated sediment and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations.

Hydrodynamic Separator (First Defense Unit)

Initial maintenance to be performed twice a year for the first year after the unit is online and operational. A vacuum truck must be used at a minimum of once per year for sediment removal. Refer to the attached First Defense Owner's manual for operation and maintenance procedures and schedules thereafter.

Subsurface Stormwater Infiltration Systems

All subsurface systems should initially be inspected within the first three months after completion of the site's construction. Preventive maintenance should be performed at least every six months and sediment shall be removed from pretreatment BMP's after every major storm event. The Infiltration System shall be inspected on regular bi-annual scheduled dates. During the first year of operation, the system shall be inspected after at least two large storm events (> 1 inch) to ensure that it is fully drained within 72 hours. If standing water is present more than 72 hours after a rainfall event, the infiltration system shall be cleaned.

Ponded water in the system indicates potential infiltration failure in the bottom of the pipe and/or stone. In this case, accumulated sediment shall be removed from the bottom utilizing water jets and/or truck mounted vacuum equipment. Sediment and debris removal should be through the use of truck mounted vacuum equipment. Outlet pipes should be flushed to point of discharge on the same frequency as mentioned above. Disposal of the accumulated sediment

Stormwater Inspection & Maintenance Manual

Site Development Plans 1400 Lafayette Road, Portsmouth, NH

and hydrocarbons must be in accordance with applicable local, state, and federal guidelines and regulations.

The following is the recommended procedure to inspect the underground system in service:

- 1. Locate the riser or cleanout section of the system. The riser/cleanout will typically be 6 or 12" in diameter or larger.
- 2. Remove the lid from the riser/cleanout.
- 3. Measure the sediment buildup at each riser and cleanout location. Only certified confined space entry personnel having appropriate equipment should be permitted to enter the system.
- 4. Inspect each manifold, all laterals, and outlet pipes for sediment build up, obstructions, or other problems. Obstructions should be removed at this time.
- 5. If measured sediment build up is between 2" to 8", cleaning should be considered; if sediment build up exceeds 8", cleaning should be performed at the earliest opportunity. A thorough cleaning of the system (manifolds and laterals) shall be performed by water jets and/or truck mounted vacuum equipment.

Pretreatment BMP's shall be inspected and cleaned during the regular bi-annual inspections.

The inlet and outlet of the subsurface systems should be checked periodically to ensure that flow structures are not blocked by debris. All pipes connecting the structures to the system should be checked for debris that may obstruct flow. Inspections should be conducted monthly during wet weather conditions from March to November.

Vegetated Areas

Inspect slopes and embankments early in the growing season to identify active or potential erosion problems. Replant bare areas or areas with sparse growth. Where rill erosion is evident, armor the area with an appropriate lining or divert the erosive flows to on-site areas able to withstand the concentrated flows. During the summer months, all landscape features are to be maintained with the minimum possible amount of fertilizers, pesticides or herbicides.

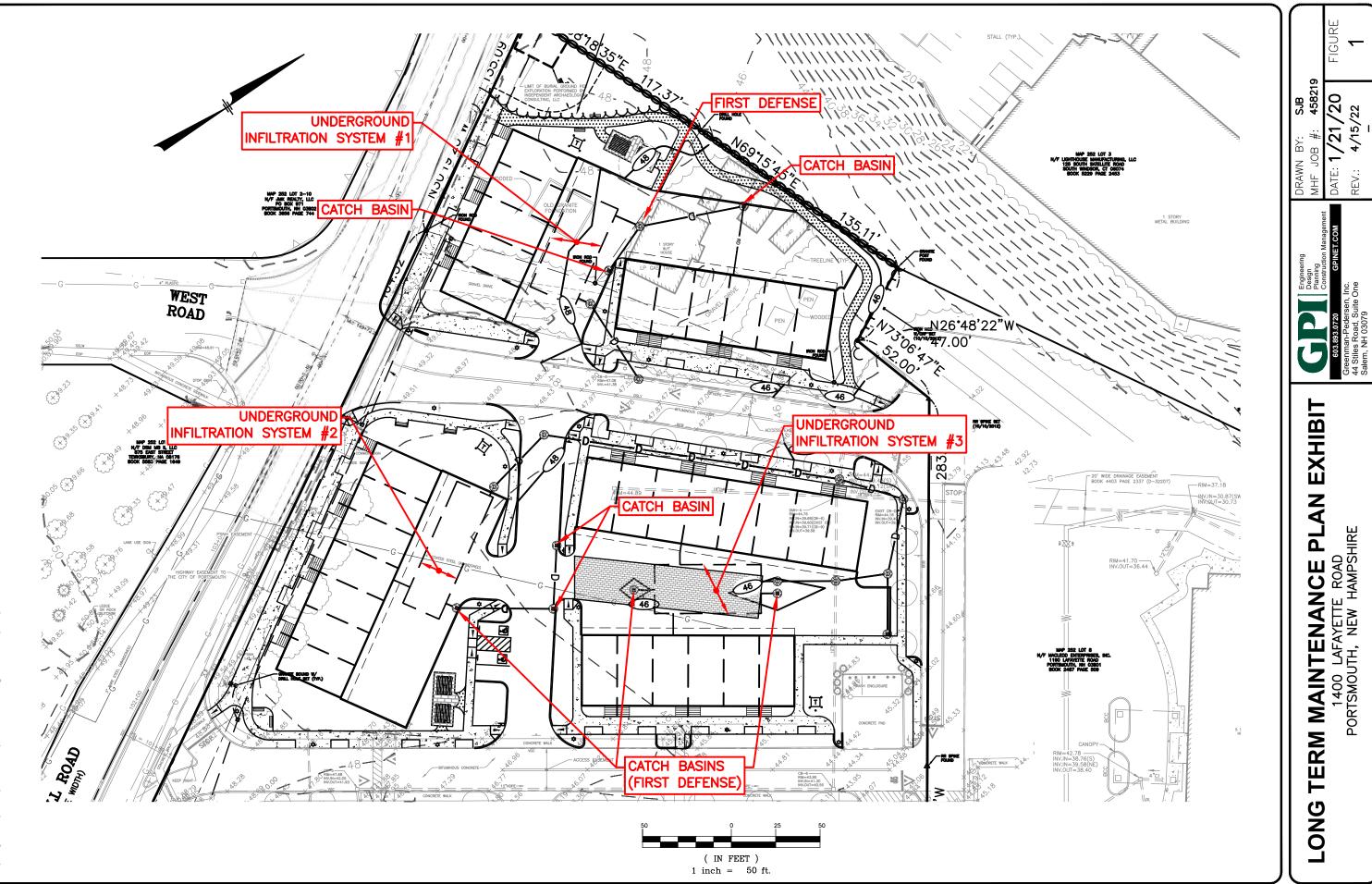
Winter Maintenance

Proposed snow storage is located along the edge of the roadways. Any excess snow is to be trucked offsite. During the winter months all snow is to be stored such that snowmelt is controlled. Avoid disposing of snow on top of storm drain catch basins or in stormwater drainage swales or ditches. The minimum amount of deicing chemicals needed is to be used. It is recommended that winter maintenance contractors be current UNHT2 Green SnowPro Certified applicators or equivalent. In addition, a NHDES Salt Applicator Certification is recommended, but not required. Information on these certifications can be found in the links provided below:

- http://t2.unh.edu/green-snopro-training-and-nhdes-certification
- http://des.nh.gov/organization/divisions/water/wmb/was/salt-reduction-initiative/salt-applicator-certification.htm

Site Development Plans 1400 Lafayette Road, Portsmouth, NH

Control of Invasive Species


During maintenance activities, check for the presence of invasive species. Invasive species must be managed/removed in accordance with RSA 430:530 and AGR 3800. See Section 4 of this manual for information from the University of New Hampshire Cooperative Extension and the New Hampshire Guide to Upland Invasive Species from the New Hampshire Department of Agriculture Markets and Food, Plant Industry Division or the information provided on their website (http://www.agriculture.nh.gov/divisions/plant-industry/invasive-plants.htm).

.

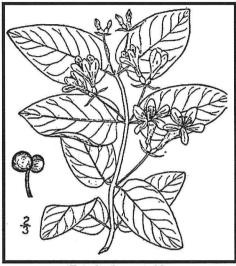
Stormwater Inspection & Maintenance Manual

Site Development Plans 1400 Lafayette Road, Portsmouth, NH Revised: April 15, 2022

SECTION 3 LONG TERM MAINTENANCE PLAN EXHIBIT

:\Projects\CAD\458219\4582 SP.dwg LTMP 4/19/22 9:52am sbonfc

Stormwater Inspection & Maintenance Manual


Site Development Plans 1400 Lafayette Road, Portsmouth, NH Revised: April 15, 2022

SECTION 4

CONTROL OF INVASIVE SPECIES

UNIVERSITY of NEW HAMPSHIRE Methods for Disposing COOPERATIVE EXTENSION Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

Tatarian honeysuckle Lonicera tatarica USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

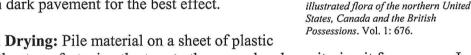
Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit <u>www.nhinvasives.org</u> or contact your UNH Cooperative Extension office.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)


How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic

Japanese knotweed

Polygonum cuspidatum USDA-NRCS PLANTS Database /

Britton, N.L., and A. Brown. 1913. An

and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Wellrotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for *years* in areas where removal and disposal took place.

Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)	Fruit and Seeds	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.
oriental bittersweet (Celastrus orbiculatus) multiflora rose (Rosa multiflora)	Fruits, Seeds, Plant Fragments	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.

Non-Woody Plants	Method of Reproducing	Methods of Disposal
<pre>garlic mustard (Alliaria petiolata) spotted knapweed (Centaurea maculosa) • Sap of related knapweed can cause skin irritation and tumors. Wear gloves when handling. black swallow-wort (Cynanchum nigrum) • May cause skin rash. Wear gloves and long sleeves when handling. pale swallow-wort (Cynanchum rossicum) giant hogweed (Heracleum mantegazzianum) • Can cause major skin rash. Wear gloves and long sleeves when handling. dame's rocket (Hesperis matronalis) perennial pepperweed (Lepidium latifolium) purple loosestrife (Lythrum salicaria) Japanese stilt grass (Microstegium vimineum) mile-a-minute weed (Polygonum perfoliatum)</pre>	Fruits and Seeds	 Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material. During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material. (You can pile onto plastic or cover with plastic sheeting).
common reed (Phragmites australis) Japanese knotweed (Polygonum cuspidatum) Bohemian knotweed (Polygonum x bohemicum)	Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal activities.	 Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.

January 2010

UNH Cooperative Extension programs and policies are consistent with pertinent Federal and State laws and regulations, and prohibits discrimination in its programs, activities and employment on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sex, sexual orientation, or veteran's, marital or family status. College of Life Sciences and Agriculture, County Governments, NH Dept. of Resources and Economic Development, Division of Forests and Lands, NH Fish and Game ,and U.S. Dept. of Agriculture cooperating.

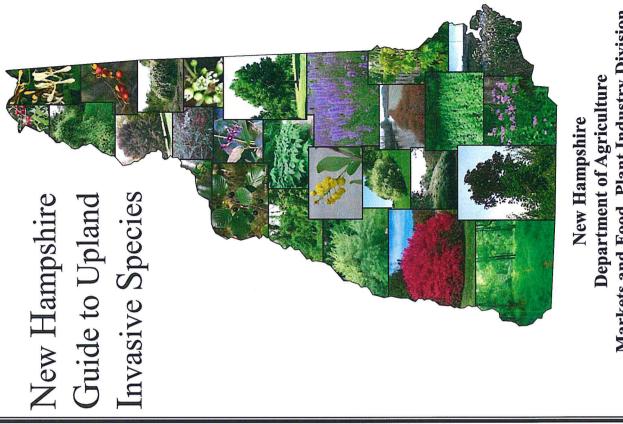
CONTACT INFORMATION

TERRESTRIAL PLANTS

Douglas Cygan, Invasive Species Coordinator, NH Department of Agriculture, Markets & Food, Division of Plant Industry, 29 Hazen Drive, Concord, NH 03301 (603) 271-3488, douglas.cygan@agr.nh.gov Website: www.agriculture.nh.gov

AQUATIC PLANTS

Amy Smagula, Clean Lakes and Exotic Species Coordinator, NH Department of Environmental Services, 29 Hazen Drive, PO Box 95, Concord, NH 03302 (603) 271-2248, asmagula@des.state.nh.us.


RESOURCES

U.S. Department of Agriculture's Animal Plant Health Inspection Service (USDA www.des.nh.gov/organization/divisions/water/wmb/coastal/cwipp/index.htm New Hampshire Department of Agriculture, Markets & Food (DAMF) New Hampshire Department of Resources & Economic Development, New Hampshire Department of Resources & Economic Development, University of New Hampshire Cooperative Extension (UNHCE) New Hampshire Department of Environmental Services (DES) NH Coastal Watershed Invasive Plant Partnership (CWIPP) Funding for the printing of this booklet provided by: Natural Resource Conservation Service (NRCS) http://www.nhdfl.org/organization/div_nhnhi.htm Invasive Plant Atlas of New England (IPANE) New Hampshire Fish & Game Department New England Wildflower Society (NEWS) www.des.state.nh.us/wmb/exoticspecies Division of Forests and Lands (DRED) http://invasives.eeb.uconn.edu/ipane Natural Heritage Bureau (DRED) The Nature Conservancy (TNC) http://www.naturalheritage.org www.wildlife.state.nh.us www.agriculture.nh.gov http://plants.usda.gov www.aphis.usda.gov www.ceinfo.unh.edu www.newfs.org www.nature.org APHIS)

U.S. Department of Agriculture's Animal Plant Health Inspection Service

33

0,,

Markets and Food, Plant Industry Division

3rd Edition 2011

Douglas Cygan

New Hampshire Department of Agriculture, Markets & Food Terrestrial Invasive Plant Species	GLOSSARY OF PLANT TERMS Alternate: Arranged singly at each node, as leaves or buds on different sides of
Introduction	 a stem. Annual: Living or growing for only one year or season. Aril: A fleshy, usually brightly colored cover of a seed that develops from the ovule stalk and partially or entirely envelops the seed. Axis: The noint at which the leaf is attached to the main stem or branch
Throughout the world, non-native invasive species have become an over- whelming problem resulting in impacts to the natural environment and man-	Biennial: Having a life cycle that normally takes two growing seasons to com-
ageu lanuscapes. Invasive species typicany possess certain traits that give them an advantage over most native species. The most common traits include the wordinction of many offenring early and ranid development and adaptabil.	Capsule: A dry dehiscent fruit that develops from two or more united capsules. Commund: Commosed of more than one part.
ity and high tolerance to many environmental conditions. These traits allow invasive species to be highly competitive and, in many cases, suppress native	Deciduous: Shedding or losing foliage at the end of the growing season. Dehiscent: The spontaneous opening of a fruit at maturity.
species. Studies show that invasives can reduce natural diversity, impact en- dangered or threatened species, reduce wildlife habitat, create water quality impacts, stress and reduce forest and agricultural crop production, damage	Drupe: A fleshy fruit usually having a single hard stone enclosing a seed. Entire: Referring to a leaf not having an indented margin. Filiform: Having the form resembling a thread or filament.
personal property, and cause nearly projection. Invasive species began arriving in North America in the mid-to-late 1700s	Glabrous: Having no hairs or projections; smooth.
by various means. Many were brought here for ornamental uses, erosion con- trol, or to provide for wildlife habitat. Others arrived inadvertently through international travel and commerce.	Inductor: 10 be attanged with regular overlapping edges. Inflorescence: A cluster of small flowers arranged on a flower stalk. Lanceolate: A leaf tapering from a rounded base toward an apex, lance-shaped Lenticels: The small corky nores or narrow lines on the surface of the stems of
Impacts and Actions	woody plants that allow the interchange of gases between the interior tissue and the surrounding air.
Biologists have found that invasive species cover more than 100 million acres of land in the U.S. and their population numbers continue to spread. The repeated process of spread has become so extreme that invasive species cost the United States billions of dollars per year. This is a result of lost agri-	Lustrous: Having a sheen or glow. Native: A species that originated in a certain place or region; indigenous. Naturalized: Adapted or acclimated to a new environment without cultivation. Opposite: Growing in pairs on either side of a stem. Ovate: Broad or rounded at the base and tapering toward the end.
and the control efforts required to eradicate them.	Palitate: A pranetical cluster of howers in which the oranenes are facenties Peduncle: The stalk of a solitary flower of an inflorescence. Politate: I eaf being round with the stem attached near its center
On February 3, 1999, President Clinton signed Executive Order 13112, which established the National Invasive Species Council. The Council is responsible for assessing the impacts of invasive species, providing the nation	Perennial: Living three or more years. Perfect: Having both stamens and pistals in the same flower. Pod: A dry, several-sealed, dehiscent fruit.
with guidance and leadership on invasive species issues, and seeing that rederal programs are coordinated and compatible with state and local initiatives.	Pubescent: Covered in fine short hairs. Raceme: Elongated cluster of flowers along the main stem in which the flowers at the base open first.
Each state is also required to participate by evaluating and responding to their invasive species concerns. In the summer of 2000, the State of New	Rhizome: A horizontal, usually underground stem that often sends out roots and shoots from its nodes.
Hampshire passed House Bill 1238-FN, which created the invasive species Act (ISA) and the New Hampshire Invasive Species Committee.	Samara: A winged, often one-seed indehiscent fruit as of the ash, elm or maple. Simple: Having no divisions or branches; not compound. Umbel: A flat-topped or rounded inflorescence.
2	31

Lythrum salicaria - Purple Loosestrife	Strife Family: Lythraceae Native to: Eurasia	New Hampshire Invasive Species Committee
Description: Perennial growing 30-80" tall by ² / ₃ 's as wide. Stems: 4-6 sided, turning woody in summer. Leaves: Op- posite to whorled, lanceolate, 2-4" long. Flowers: Spiked raceme, purple to ma- genta, June to October. Fruit: Capsule. Habitat: Mostly found in wetlands and aquatic systems, full to partial sun. Spread: Each plant can produce ap- proximately 2.5-4.5 million seeds. Seeds dispersed by water, wildlife and humans.		The New Hampshire Invasive Species Committee (ISC) is an advisory group for the Commissioner of the NH Department of Agriculture, Markets & Food (DAMF) on matters concerning invasive species in the state. The ISC consists of 11 appointed members representing the following: the NH Department of Agriculture, the NH Department of Environmental Services, the NH Department of Resources & Economic Development, the NH De- partment of Transportation, the NH Department of Fish & Game, The Col- lege of Life Science & Agriculture of the University of NH, the UNH Coop- erative Extension, environmental interests, horticultural interests, general public interests, and livestock owners & feed growers interests. The ISC meets regularly to conduct the following efforts:
ing native species and destroying wild- life habitat. Controls: Hand pull, use a spade to dig larger plants or use biocon- trols (<i>Galerucella Spp.</i> , top left is a lar- vae & top right is an adult).	Photos by Douglas Cygan	 Review information; Evaluate and discuss potentially invasive plant, insect and fungi species of concern; Host guest presentations on related topics; Develop outreach and educational materials; Formulate management practices as guidance for the control of invasive species; and
Phragmites australis - Common Reed	Reed Family: Poaceae Native to: Eurasia	• Prepare lists of proposed prohibited and restricted species.
Description: Perennial rhizomatous grass growing 14' tall. Stems: Called 'culms' are large, hollow and grow up to 1" dia. Leaves: Lanceolate, up to 24" long, bluish-green in color. Flow-		(vote: 1 nus commutee is not charged with the evaluation of listing of aquatic plant species, which is conducted by the Department of Environ- mental Services under RSA-487:16-a. However, a brief description of the program and four of the aquatic species are described on pages 29 & 30 of this book).
ers: Panicles with many spikelets hav- ing seven small reddish flowers. Habi- tat- Mostly found in marshlands but		New Hampshire Rules In accordance with the Invasive Species Act (ISA), HB 1258-FN, the
also grows in freshwater wetlands and aquatic systems, full to partial sun. Spread: Spreads primarily by rhi-		DAMF is the lead state agency for terrestrial invasive plants, insects and fungi species. The DAMF has the responsibility for the evaluation, publication and development of rules on invasive plant species. This is for the purpose of protecting the health of native species, the environment, commercial
nies that suppress native species and alter wildlife habitat. Controls: Hand pull small plants. Use a spade to dig larger plants or apply herbicides.		Agr 3800, states " <u>No</u> person shall collect, transport, import, export, Mar 3800, states " <u>No</u> person shall collect, transport, import, export, <u>move, buy, sell, distribute, propagate or transplant any living or viable</u> <u>portion of any listed prohibited invasive plant species, which includes all</u> <u>of their cultivars and varieties, listed</u> " (see the New Hampshire Depart-
	Photos by Douglas Cygan	plete set of rules).

Invasive Uplan	Invasive Upland Plant Species (Agr 3800)		New Hampshire Department of Environmental Services
Common Name	Scientific Name	Page	Aquatic Invasive Plant Species
Norway Maple	Acer platanoides	9	"Exotic aquatic species" are plants or animals that are not part of New Hamp-
Tree of Heaven	Ailanthus altissima	7	shire's native aquatic flora and fauna. Since the first exotic aquatic plant in-
Garlic Mustard	Alliaria petiolata	∞	festation in New Hampshire was discovered in 1965 in Lake Winnipesaukee,
Japanese Barberry	Berberis thunbergii	6	exotic aquatic plant infestations have increased to a total of 83 infestations in
European Barberry	Berberis vulgaris	10	72 waterbodies in 2008. Species present include variable milfoil (63 water-
Oriental Bittersweet	Celastrus orbiculatus	-11	bodies), Eurasian milfoil (3 waterbodies), fanwort (9 waterbodies), water showni (1 motorhody) and Darrition of doc (1 motorhody). Confert of Darri
Spotted Knapweed	Centaurea biebersteinii	12	ured (2 waterhodiec) and Buronean Naiad (2 waterhodiec) and Didomo (1
Black Swallow-Wort	Cynanchum nigrum	13	weed (2 waterbody). Most of these exotic plants can propagate by fragmentation as
Pale Swallow-Wort	Cynanchum rosicum	13	well as by seed.
Autumn Olive	Elaeagnus umbellata	14	
Burning Bush	Euonymus alatus	15	Exotic aquatic plant fragments can easily become attached to aquatic recrea-
Giant Hogweed	Heracleum mantegazzianum	16	tional equipment, such as boats, motors, and trailers, and can spread from wa-
Dame's Rocket	Hesperis matronalis	17	terbody to waterbody through transient boating activities. Infestations can
Perennial Pepperweed	Lepidium latifolium	18	nave detrimental effects on the ecological, recreational, aesthetic, and eco-
Blunt-Leaved Privet	Ligustrum obtusifolium	19	holies and decreasing sharefront property values by as much as 1000 percent
Showy Bush Honeysuckle	Lonicera x bella	20	according to a UNH study (Halstead. et al., 2001).
Japanese Honeysuckle	Lonicera japonica	20	
Morrow's Honeysuckle	Lonicera morrowii	21	Mirrionhullum heteronhullum - Variable Milfoil Family: Haloragaceae
Tatarian Honeysuckle	Lonicera tatarica	21	
Japanese Stilt-grass	Microstegium vimineum	22	Description: Submerged aquatic peren-
Japanese Knotweed	Polygonum cuspidatum	23	nial growing 20' tall. Stems: Round, Carlo and Article
Mile-a-Minute Vine	Polygonum perfoliatum	23	thick and reddish. Leaves: Feathery
Bohemian Knotweed	Reynoutria japonica	23	leaflets surrounding the stem. Flowers:
Common Buckthorn	Rhamnus cathartica	24	Stalks that emerge above the water with
Glossy Buckthorn	Rhamnus frangula	24	I also words calm streams and other when the stress of the
Multiflora Rose	Rosa multiflora	25	similar aquatic systems with full to par-
Inva (To see the complete list of	Invasive Insect Species (To see the complete list of all 16 invasive insects refer to rules Agr 3800)		.=
Hemlock Wooly Adelgid	Adelges tsugae	26	vidual plant segments break off, and when the segments because the segment because the segment because the segment of the segm
Emerald Ash Borer	Agrilus planipennis	27	uisperseu by water IntoVertifent, Inutialis,
Asian Longhorned Beetle	Anoplothora glabripennis	28	bodies, suppresses native species and
Invasive To see the complete list of invasi	Invasive Aquatic Plant Species To see the complete list of invasive acuatic plants refer to DES's Env-Wo 1300 rules	ules	destroys fish habitat. Controls: Prevention, hand pulling, bottom screening,
			and aquatic herbicide use.
Variable Milfoil	Myriophyllum heterophyllum	5	
Purple Loosestrife Common Reed	Lythrum salicaria Dhramites metralis	30	Allower Statk
	t nu uguntes unsu ann	20	Photos by Amy Smagula
4			59

WHAT YOU CAN DO	There are many things that you, as an individual, can do to help control the spread of invasive species and preserve native flora and fauna:	 Minimize impacts to natural vegetation, soils, and drainage. Learn how to identify invasive plants and know how to tell them apart from native species. 	 Control invasives on your property by following recommended practices. When landscaping, ask your local garden center or contact your County 	 Extension Service about alternative plantings. Become active in local or regional initiatives to control invasives. After working in an area with invasive species remove any soil, or 	propagules that may have adhered to clothing, shoes, vehicle tires, etc. CONTROL METHODS	Mechanical: Mechanical control involves hand pulling, digging, cultiva- tion, mowing, cutting or utilizing some type of physical barrier such as a tarpaulin, mulch, wood chips, etc. This method is most effective when populations of unwanted species are low.	Cultural: Cultural control is the manipulation of a plant community to prevent the introduction or spread of an unwanted species. This can be accomplished by modifying the growing environment such as the soil, available light or moisture, or planting trees or shrubs that can outcompete the invasive species.	Chemical: Chemical control involves the use of an approved herbicide to manage a targeted species. The application method must be chosen to avoid damage to beneficial or native species. The applicator must adhere to all State and Federal pesticide regulations and in many cases be licensed by the state. For more information, contact the NH Department of Agriculture's Pesticide Control Division at 603-271-3550 or www.agriculture.nh.gov.	Biological: Biological control is the use of native or introduced beneficial organisms to naturally reduce populations of unwanted species. Most biological controls are found to be self-sustaining and host specific.
Anoplophora glabripennis - Asian Longhorned Beetle Family: Cerambyeidae Native to: Europe			Pico Pico Pico Pico Pico Pico Pico Pico		- 115 - 115	Asian Longhorned Beetle— <i>Anoplophora glabripenuis</i> (Photo by Chris Rallis) The Asian longhorned beetle (ALB) is a serious threat to a large variety of decidu-	a large glossy black insect with white spots dotting its elytra. Adults grow to 1- 1.5" long and have whitish bandings on their antennae. Females are typically big- ger than males. Tree injury occurs when	larvae tunnel through the xylem (heartwood) of the host, thus weakening the tree. Hosts trees include, but aren't limited to: Maple, Chestnut, Poplar, Wil- low, Birch, Elm, and Mountain ash. Adult females chew a crater in the bark and lay 1-egg per site. Upon hatching the larvae and the time the the set and the larvae and the time the larvae and the larvae area the set of the set the set of th	1-2 years through perfect ${}^{3/8}_{-/8}$ diameter exit holes. Other signs include coarse wood shavings called frass, oozing sap, oviposition sites, leaf-feeding damage, and mature beetles. If found, please call the NH Dept. of Agriculture at (603) Ault feeding damage on leaf 271-2561.

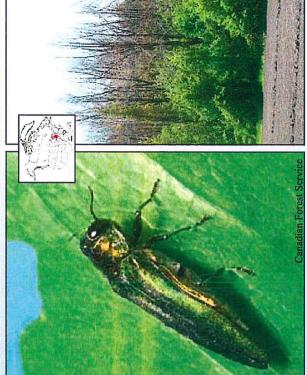
28

DO NOT MOVE FIREWOOD

Norway Maple-Acer platanoides

by 40' wide. Bark: Grayish and somewhat smooth, greenish-red. Leaves: Opposite, 4-7" wide, 5-lobed, dark green to dark red Zone: 3-7. Habitat: Moist, well drained soils, full sun to partial shade. Spread: Seeds spread by wind and water. Comments: Leaf stalks exude milky white sap. Fast growing, buds break earlier than most native species. Naturalizes in woodlands furrowed. Twigs: Smooth, olive-brown. vellow, April. Fruit: Horizontal samara. **Description:** Large deciduous tree 60' high imbricate, rounded, above, lustrous below. Flowers: Greenish-Terminal, Buds:

stem, bark banding, or slash bark with ax Controls: Pull or dig seedlings/saplings. Cut large trees and prune suckers when they sprout. Herbicide: foliar spray, cutwhere it can outcompete native species. and apply to wounds.



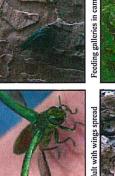
Photos by Douglas Cygan

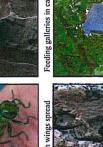


Leaves turn yellow in Fall

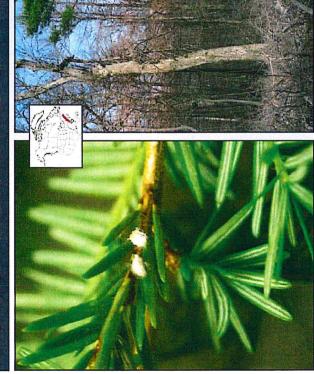
Emerald Ash Borer-Agrilus planipennis

fly 1-mile or so in search of a mate and to emerging from the eggs create distinctive These feeding galleries can girdle the tree Movement of species of ash trees (Fraxinus spp.). Native to East Asia, it is suspected that they were accidentally introduced to North America in infested wood packing material. The adults are 3/8" to $\frac{1}{2}$ " in length by metallic green appearance. Adults emerge from a D-shaped exit hole from late May to mid-July and live for 3-6 weeks, during lay eggs. Females will lay 60-90 eggs in Larvae S-shaped feeding galleries within the cam-Emerald Ash Borers (EAB) are small invasive wood boring beetles that attack all 1/16" in width. Their bodies have a dark which time they feed on ash foliage, and bium which is directly beneath the bark. the crevices of ash tree bark. and result in tree death.





EAB Purple prism trap Photos by Douglas Cygan & Chris Rallis D-shaped exit hole


If found, please contact the NH Dept. of

Agriculture at (603) 271-2561.

EAB into new uninfested areas is principally through transportation of firewood. DO NOT MOVE FIREWOOD

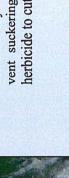
Adelges tsugae - Hemlock Wooly Adelgid

Family: Adelgidae Native to: Asia

Hemlock Wooly Adelgid-Adelges tsugae Nests

Hemlock trees dead from Adelgid (www.earthportal.org)

reached the east coast and now infects nemlock trees from Georgia to Maine. It 50-300 eggs. To protect themselves & covering. Adults insert their piercing remely small averaging about ¹/₈" in ength with piercing-sucking mouth parts adults are females with each producing the needles. Trees die from needle loss (Adelges North American hemlock trees (Tsuga spp.). It is native to Japan & China and was first found in the Pacific Northwest in the 1920's. By the 1950's it had spreads by movement of nursery stock, wind and animals. These insects are exsimilar in appearance to aphids. All their eggs they produce a white-waxy mouth parts into the stem at the base of the NH Dept. of Agriculture at (603) & lack of nutrition. If found, please call sugae) (HWA) is a serious pest to all Adelgid Hemlock Wooly 271-2561

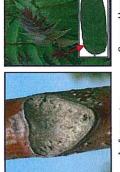


Crawler leaving nest (Chris Rallis)

Crawlers (Chris Rallis)

Photos by Douglas Cygan & Chris Rallis

DO NOT MOVE FIREWOOD


Family: Simaroubaceae Native to: China

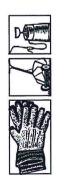
Tree of Heaven-Ailanthus altissima

saplings by hand. Larger trees can be vent suckering, if trees are cut, apply all by 40' wide. Bark: Grayish, slightly near base. Flowers: Panicles, 8-16" long, yellowish-green, mid-June. Fruit: Samara. Zone: 4-8. Habitat: Highly adaptable and pollution tolerant, full sun to cies. Controls: Remove seedlings and **Description:** Deciduous tree up to 60' Twigs:Reddish-brown. Leaves: Compound, 18-24" long with 13-25 leaflets arranged alternately on stem, lanceolate, 3-5" long with 2-4 teeth partial shade. Spread: Seeds are wind dispersed. Comments: Very fast growing, dense canopy shades out native spemechanically removed or cut. To preherbicide to cut portion of stump. furrowed.

Tree of Heaven invasion

Illiaria petiolata - Garlic Mustard

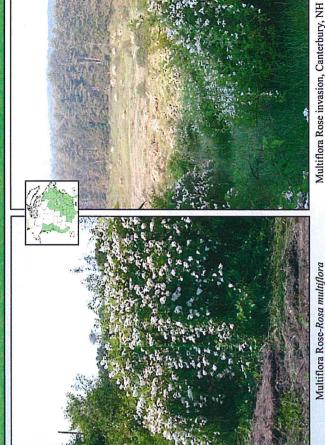
Family: Cruciferad


Native to: Japan & Korea

Garlic Mustard-Alliaria petiolata

Woodland invasion (photo by Cornell University)

2nd plains, forests and roadsides, adaptable to seeds turn black when mature. Zone: 4most soil and light conditions. Spread: Comments: Plants spread quickly into displacement of native species. Controls: Small populations can be hand pulled while large populations can be continuously cut back to prevent floweryear plants flower and reach $2-3^{1}/_{2}$ tall. neart-shaped. Flowers: Umbel, small, 4oetals, white, April-May. Fruit: Pods, 8. Habitat: Prefers moist shaded flood-Seeds spread by water and wildlife. natural areas leading to competition and ing and seed production. Herbicide treat-Leaves: Triangular, coarsely toothed, Description: Cool season biennial,



ments are also effective.

Photos by Douglas Cygan

Multiflora Rose-Rosa multiflora

Description: Hardy shrub / climber reaching up to 15' or more in height in width. Stems: Long and arching, forming dense clumps, thorns Alternately arranged, compound with 7-9 leaflets and having feather margins at base. Flowers: Clusters of white or pink, June to July. Fruit: Rose hips turn red in fall. Zone: 3-8. Habitat: gressive, leading to competition and displacement of native species. Conmay or may not be present. Leaves: sun. Spread: Fruits with seeds are dispersed by birds. Comments: Very agtrols: Hand or mechanical removal, Prefers moist, well drained soils, full cutting, or herbicide application. and 10'

Family: Rhamnaceae Native to: Eurasia Rhammus cathartica - Common Buckthorn

growtree measuring 20' by 15'. Bark: Gravish to brown with raised lenticels. Stems: Leaves: Opposite, simple and broadly ovate with toothed margins. Flowers: greenishyellow, mid-June. Fruit: Fleshy, 1/4" diameter turning black in the fall. Zone: 3-7. Habitat: Adapts to most conditions including pH, heavy shade to full sun. Spread: Seeds are bird dispersed. Comng, outcompetes native species. Controls: Remove seedlings and saplings by hand. Larger trees can be cut or plants Cinnamon colored with terminal spine. **Description:** Deciduous shrub or small ments: Highly: Aggressive, fast can be treated with an herbicide. 4-petaled, Inconspicuous,

Rhamnus frangula - Glossy Buckthorn

Description: Tall deciduous shrub up to 20' in height by 15' wide, Bark: Gravish white, mid-June. Fruit: Fleshy, turning full sun to partial shade. Spread: Seeds fast growing, dense canopy shades out lings and saplings by hand. Larger trees with whitish lenticels. Twigs: Reddishbrown. Leaves: Ovate, 4-5" long by 3on stem. Flowers: Small, greenish-Highly adaptable and pollution tolerant, native species. Controls: Remove seed-4" wide, arranged oppositely or whorled black in the fall. Zone: 2-7. Habitat: **Comments:** Very can be cut or herbicide may be used. are bird dispersed.

Family: Rhamnaceae Native to: Japan

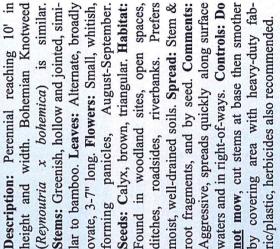
Family: Berberidaceae

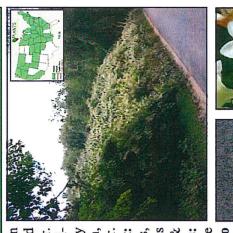
Japanese Barberry-Berberis thunbergii

Japanese Barberry invasion, Antrim, NH

mature plants by hand. Dig larger plants Leaves: Ovate, simple, entire. Color vares depending on variety. Flowers: Small yellowish, bloom in May in clusters of 2-4. Fruit: Drupe, turning red in summer. Zone: 4-8. Habitat: Prefers well drained soils in semi shade and often occurring in roadsides, and open fields. Spread: Seeds are dispersed by wildlife. Comments: Forms dense thickets in natural environments where it becomes estabished, resulting in impacts to native flora and fauna. Controls: Remove small imwith a garden spade or remove mechani-**Description:** Deciduous shrub, 2-4¹/₂' tall. cally. Cut stems at base or control with herbicide treatment. forests,

Flowers vellowish


Photos by Douglas Cygan Frost covered Barberry


0

Berberis vulgaris - European Barberry

Family: Berberidaceae Native to: China

Polygonum cuspidatum - Japanese Knotweed

Photos by Douglas Cygan

Polygonum perfoliatum - Mile-a-Minute Vine

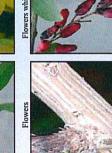
height. Stems: Greenish with stiff barbs used for support. Leaves: Alternate, triangular in shape with clasping bract at the base, 1-3" long. Flowers: Ra-

ceous perennial vine growing to 25' in

Description: Very fast growing herba-

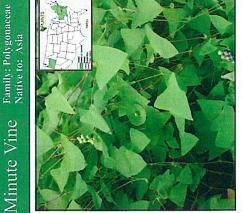
Cut or 6' in width. Stems: Tan bark with 3 long nate, simple, $\frac{1}{2}$ "-1 $\frac{1}{2}$ " long, bright green above, dull below. Flowers: Perfect, sun to partial shade and open spaces to ments: Highly adaptable to most environments and is pollution tolerant. Conmechanically remove older larger plants or apply approved herbicides for large Description: Shrub 3-8' in height by 3-1/2" long, mid-April to May. Fruit: Oblong drupe turning pale red in wooded areas. Spread: Seeds are disspines at each leaf axis. Leaves: Alter-Zone: 4-8. Habitat: Prefers full Compersed by birds and wildlife. trols: Hand pull young plants. populations. yellow, fall.

Woodland invasion, Claremont, NH


European Barberry-Berberis vulgaris

ial shade to full sun, fields, roadsides & forests. Prefers moist, well-drained soils. Spread: Seed spread by birds & wildlife. Comments: Fast growing,

Seeds: An achene within a greenish, berry-like fruit. Habitat: Grows in par-



Stems

cemes, inconspicuous and white form-

ing at the bract, August - October.

Mowing, hand

aggressive. Controls:

cutting or mended.

herbicide use is recom-

Photos by Leslie J. Mchrhoff

23

Family: Poaceae Microstegium vimineum - Japanese Stilt Grass

Japanese Stilt Grass-Microstegium vimineum

silvery stripe of reflective hairs down the midrib. Flowers: Racemes occur at the Plants spread quickly into natural areas to prevent flowering and seed producgrass, reaching 2-4' tall. Leaves: Lanceo-Zone: 5-11. Habitat: Occurs along rivsides, adaptable to most soil and light eading to competition and displacement of native species. Controls: Small popuations can be hand pulled while large populations can be continuously cut back annual ate, tapered at both ends, 2-3" long with late August. erbanks, floodplains, forests and roadspread by water, wildlife & humans. Comments: ion. Herbicide treatments are also effecin late fall. **Description:** Weak-stemmed conditions. Spread: Seeds ends of the stalk itself, develop Fruit: Achenes tive.

Root (UMASS Exten Early develo

Photos courtesy of Leslie J. Mehrhoff/UCONN-IPANE and Seed-Achene UMASS Extension Fall-leaves turn purplish

Family: Celastraceae Native to: Japan, China elastrus orbiculatus - Oriental Bittersweet

Oriental Bittersweet-Celastrus orbiculatus

Description: Deciduous vine reaching ish, blooming in spring. Fruit: Yellow red aril. Fruits occur in the axils of the rowed. Leaves: Alternate, ovate, bluntly coothed, 3-4" long by 2/3's as wide, tapered at the base. Flowers: Small, greenheights of 40-60'. Bark: Tannish, furdehiscent capsule surrounding an orangebittersweet native whereas

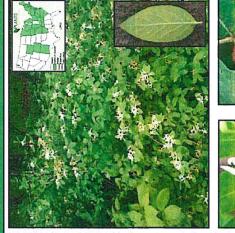
Comments: Very aggressive, climbs up roadsides, fields, forests and along rivers and streams. Spread: Birds and humans. and over trees and smothers them. Do not trols: Difficult to manage. Cutting, pull-(Celastrus scandens) fruits at the ends. Zone: 4-8. Habitat: Disturbed edges, buy wreaths made of these vines. Coning, or recommended herbicide use applied to foliage, bark, or cut-stump. stems

Fruit is a fleshy capsule Photos by Douglas Cygan Mature Orange-yellow fruit

Family: Compositae Native to: Eurasia Centaurea maculosa - Spotted Knapweed

Spotted Knapweed—Centaurea maculosa

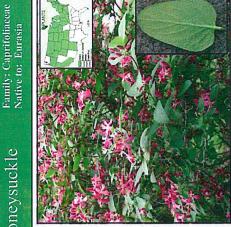
Spread: Seeds be hand pulled while large populations ennial living 3-5 years. Leaves: Alterdivided, Pale green, 1-3" long. terminal, purple, uly-August. Fruit: Each plant produces housands of brownish seeds per year. Zone: 3-10. Habitat: Invades dry sunny roadsides, fields and waste places. Its arge taproot allows it to survive harsh spread by wind and wildlife. Comments: ows and fields leading to competition native species. Roots excrete a toxin killing off other plants. Controls: Small populations can can be continuously cut back to prevent Herbi-Plants spread quickly into natural mead-Description: Tall erect herbaceous perflowering and seed production. cide treatments are also effective. and displacement of draught Flowers: Aster-like, winters and nate,



Photos by Leslie Mehrhoff & Douglas Cygan Stems

Native to: Japan Lonicera morrowii - Morrow's Honeysuckle

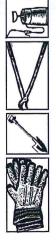
Stems: Smooth, glabrous, Tannish, hol-Zone: 3 . Habitat: Moist fields, waste places. Spread: Seeds are dispersed by wildlife and huinvades sites, forming a dense vegetative layer that outcompetes native flora and fauna removal and repetitive cutting also work Flowers: Tubular, white, turning yellow with age, May to June. Fruits: Berry species. Controls: Hand control is effecwell. Herbicide treatment is better for tall. ow. Leaves: Ovate, simple, entire, opposite, pubescent beneath, $1-2^{1}/_{2}$ " long. to wet shaded floodplains, forests, roadive for small plants, while mechanical Description: Shrub reaching 6-8' Comments: Rapidly areas with greater infestations. turning red. sides. mans.

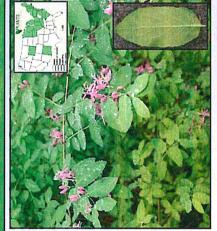


Photos by Douglas Cygan & Leaf Photo by Leslie J. Mehrhoff

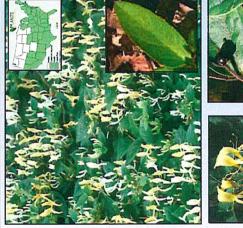
Lonicera tatarica - Tatarian Honeysuckle

cies. Controls: Hand control is effective Description: Upright deciduous shrub 1-2¹/₂" Rapidly invades forests, fields, roadsides moval, cutting and chemical applications reaching 6-15' tall. Stems: Smooth, glahollow. Leaves: Ovate, long. Flowers: Tubular, pink or white, to May. Fruit: Berry with two seeds, turning red in fall. Zone: 3. Habitat: Under story species in woodland sites, also invades open spaces. Thrives in moist soils. Spread: Seeds dispersed by wildlife and humans. Comments: and floodplains. Outcompetes native spefor small plants while mechanical resmooth, bluish-green, opposite, are better for larger stands. tan, brous, April


Family: Caprifoliacea Lonicera x bella - Showy Bush Honeysuckle


neight and width. Stems: Greenish to sitely arranged, simple and elliptic, 1-3" ц. ers: Yellow, white or pink, May to early June. Fruit: Fleshy red, forming in pairs in leaf axis. Zone: 4. Habitat: Prefers dry upland soils, full sun to tatarica & L. morrowii. Spreads into an with corky wings. Leaves: Oppoong by half as wide, light green. Flowneavy shade, pH adaptable. Spread: Comments: L. x bella is a cross between L. natural areas forming dense stands, which displace native species. Concontinuous cutting, girdling, and herbirols: Hand or mechanical removal 20' **Description:** Shrub reaching Seeds are dispersed by birds. cide treatment.

Family: Caprifoliaceae Lonicera japonica - Japanese Honeysuckle


Stems: Reddish-brown, pubescent. Leaves: Opposite and not clasping the stem as opposed to the three native honeysuckle to partial shade. Spread: Seeds spread resulting in loss of habitat. Controls: vines that do clasp the stem, oblong, ¹/₂-2" long, rounded at base. Flowers: ubular, white or yellow, fragrant, May Habitat: Prefers moist soils and full sun grow quickly, covering native vegetation, to mid-July. Fruit: Berry, smooth, mechanical removal, cutting, blackish to slightly purplish. Zone: 4-8. by wildlife. Comments: Vines Description: Climbing vine. girdling, chemical. nand or

Photos courtesy of Leslie J. Mehrhoff/UCONN-IPANE

Leaf Photo by Leslie J. Mehrhoff

Cynanchum nigrum - Black Swallow-Wort

Description: Perennial herbaceous plish, from June to September. Seed: Seeds are similar to those of milkfers full to partial sun. Spread: Seeds competing native species. Controls: vine that grows to 6'. Leaves: Opposite, lanceolate, dark glossy green, simple with a smooth edge, 2-4" long. vades roadsides, fields, disturbed sites, meadows, and woodlands, outing the growing season. If plants are to be dug, use a spade and make sure Flowers: Small ¹/4", 5-petaled, purweed. Zone: 4 to 8. Habitat: It predispersed by wind. Comments: In-Hand pull young plants. Remove and Apply herbicides as a foliar spray durdestroy seed pods before they open. hat all root fragments are removed.

Photos by Douglas Cygan

Native to: China

Cynanchum rossicum - Pale Swallow-Wort

Description: Perennial vine growing Controls: Hand pull young Remove and destroy seed pods before they open. Apply herbicides as a foliar spray. Dig using a spade to enwort with the exception of the flowers. long. Flowers: Magenta, ³/₈", flowering from June to September. Seed: Zone: 4 to 8. Habitat: It prefers full to partial Comments: Invades roadsides, fields, disturbed sites, meadows and woodto 3-6'. Very similar to black swallow-Leaves: Opposite, lanceolate, 2-4" sun. Spread: Seeds dispersed by wind. sure all root fragments are removed. Seeds are similar to milkweed. lands. plants.

Photos courtesy of John M. Randall/The Nature Conservancy

Family: Elacagnaceae

Autumn Olive-Elacagnus umbellata

saplings by hand. Larger shrubs can be iptical, 2-3" long, glossy, green above **Description:** Weedy deciduous shrub Stems: Cinnamon-brown. Leaves: El-4-petaled, mid-June. Fruit: wildlife. Comments: Very aggressive. Outcompetes and displaces native species. Controls: Remove seedlings and mechanically removed, or cut and apply gray and smooth with whitish lenticels. and silverish below. Flowers: Solitary, Spread: Seeds dispersed by birds and measuring 20' by 20'. Bark: Silverv-Zone: 3-8. Habitat: Naturalzes in open spaces exposed to full sun. nerbicide to stump. whitish, Drupe.

Blunt-leaved Privet-Ligustrum obtusifolium

tall by 10-12' wide. Stems: Greenish. smooth. Leaves: Opposite, simple and elliptic, 1-3" long by half as wide, light green. Flowers: Small white panicles, May to early lune. Fruit: Small blackish drupe. Zone: 4-7. Habitat: Prefers dry upand soils, full sun to heavy shade, pH adaptable. Spread: Seeds dispersed by petition and displacement of native species. Controls: Hand or mechanical removal, cutting, herbicide applica-Comments: Becomes estabished in natural areas leading to com-Description: Shrub reaching 12' tions such as foliar or cut-stem blunt tipped, oirds.

Photos by Douglas Cygan & Leslie Mehrhoff Fall color

Perennial Pepperweed-Lepidium latifolium

Description: Long lived perennial growand ditches, wetlands, and floodplains. nal, tightly clustered, white, July. Fruit: ish soils such as coastal tidal marshes Silicle, rounded, flattish, hairy ¹/₁₆" long. Zone: 4-8. Habitat: Prefers wet, brackng 2-4' tall. Leaves: Alternate, lanceoate with serrated edge. Flowers: Termi-

coastal wetland species. Controls: Small populations can be hand pulled while competition and displacement of native quickly into natural areas leading to Spread: Seeds and creeping rhizome spread arge populations can be continuously cut fragments spread by water, wildlife and Comments: Plants humans.

Perennial Pepperweed invasion Seacoast area, NH

Seeds (photo-USDA) Photos by Kevin Lucey & Jennifer Forman Persistent stems

Fuonymus alatus - Burning Bush

Burning Bush-Euonymus alatus

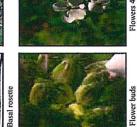
persed by birds and wildlife. Com-Outcompetes and displaces move seedlings and saplings. Use a spade or shovel to dig out larger tic, 1-3" long by half as wide, light ish-yellow, May to June. Fruit: Fleshy upland soils, full sun to heavy shade, pH adaptable. Spread: Seeds are disnative species. Controls: Hand replants. Large populations may be con-Description: Deciduous shrub reach-Oppositely arranged, simple and ellipgreen. Flowers: Inconspicuous greenturning red in fall. Zone: 3 to 8. Habitat: Prefers dry ing 20' in height and width. Stems: Greenish with corky wings. Leaves: rolled with herbicide use. green capsule ments:

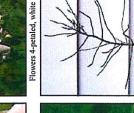
Giant Hogweed-Heracleum mantegazzianum

Open field invasion (Photo-Bugwood.org)

The clear, watery sap is phototoxic to numan skin, causing severe blistering splotches, 2-4" diameter with coarse Seeds: Flattened, ³/₈" long, ovate with 4 shade. Spread: Seeds dispersed by water, wildlife and humans. Comments: and burns. Spreads readily and displaces native species. Controls: Remove plants by digging up tap root. purple on underside. Flowers: White infloresprown resin canals. Zone: 3-8. Habitat: Found in wet areas, roadsides, gardens, open spaces, full sun to partial Herbicide can also be used as a foliar Description: Biennial growing to 15' comoound, deeply incised, 3-5' wide, hairy in diameter, May-June. hairs, hollow. Leaves: Large, Greenish with Stems: cence, 1-2' treatment. tall.

Dame's Rocket-Hesperis matronalis


Dame's Rocket invasion


Description: Cool season biennial. 2nd purplish, early to mid spring. Fruit: Leaves: Alternately arranged and lanceoate in shape with toothed margins. 4-petals, Pods, seeds turn brown when mature. Zone: 4-8. Habitat: Prefers partial sun, year plants flower and reach 30" tall Flowers: Terminal racemes,

plains, forests and roadsides, adaptable to Comments: Plants spread quickly into displacement of native species. Conmoist to mesic conditions such as floodfull sun with adequate moisture. Spread: natural areas leading to competition and trols: Small populations can be hand oulled while large populations can be continuously cut back to prevent flowerng and seed production. Herbicide treat-Seeds spread by water and wildlife. ments are also effective.

Photos by Leslie Mehroff

Seed pods

Stems

Stormwater Inspection & Maintenance Manual Site Development Plans 1400 Lafayette Road, Portsmouth, NH Revised: April 15, 2022

SECTION 5 STORMWATER INSPECTION & MAINTENANCE LOG

STORMWATER INSPECTION MAINTENANCE LOG

1400 LAFAYETTE ROAD, PORTSMOUTH, NH

General Information						
Project Name		Location	Portsmouth, NH			
	Residential Development Plans					
Date of Inspection		Start/ End Time				
Inspector's Name(s)						
Inspector's Title(s)						
Inspector's Contact						
Information						

	Site Specific BMP's	Maintenance Interval
1	Street Sweeping	1 year
2	Deep Sump Catch Basins	6 months
	Underground Infiltration Systems	
3	(#1-3)	6 months
4	Hydrodynamic Separators	3 months
	(First Defense Units)	(See separate
		maintenance log for
		First Defense Unit)

STORMWATER INSPECTION MAINTENANCE LOG

1400 LAFAYETTE ROAD, PORTSMOUTH, NH

	Corrective				
BMP Description	Action	Notes			
	Required?	Notes			
	Requireu.				
	Street Swee	ping			
Evidence of debris accumulation	Yes No				
Evidence of oil grease	Yes No				
Other (specify)	Yes No				
	Deep Sump Cato	h Basins			
Grates clear of debris	Yes No				
Inlet and outlet clear of debris	Yes No				
Evidence of oil grease	🗌 Yes 🗌 No				
Observance of accumulated sediment	🗌 Yes 🗌 No	Sediment Depth =			
Evidence of structural deterioration	🗌 Yes 🗌 No				
Evidence of flow bypassing facility	Yes No				
Other (specify)	Yes No				
Und	erground Infiltrat	ion System #1			
Inlet and outlet clear of debris	Yes No				
Bottom surface clear of debris	🗌 Yes 🗌 No				
Evidence of rilling or gullying	Yes No				
Observance of accumulated sediment	Yes No				
Bottom dewaters within 72 hrs. of a	☐ Yes ☐ No				
storm event					
Standing water or wet spots	Yes No				
Other (specify)	Yes No				
Underground Infiltration System #2					
Inlet and outlet clear of debris	Yes No				
Bottom surface clear of debris	🗌 Yes 🗌 No				
Evidence of rilling or gullying	Yes No				
Observance of accumulated sediment	Yes No				
Bottom dewaters within 72 hrs. of a	Yes No				
storm event					
Standing water or wet spots	Yes No				
Other (specify)	Yes No				

STORMWATER INSPECTION MAINTENANCE LOG

1400 LAFAYETTE ROAD, PORTSMOUTH, NH

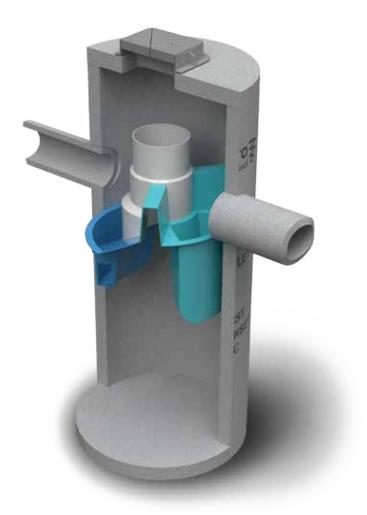
BMP Description	Corrective Action Required?	Notes		
Und	lerground Infiltrati	on System #3		
Inlet and outlet clear of debris Bottom surface clear of debris Evidence of rilling or gullying Observance of accumulated sediment Bottom dewaters within 72 hrs. of a storm event	Yes No Yes No			
Standing water or wet spots Other (specify)	Yes No			
Hydrodyn	amic Separators (First Defense Units)		
See separate maintenance log for First Defense Unit				

NOTE: Photos shall be provided with each inspection log and shall be sufficiently labeled to identify photo location.

Stormwater Inspection & Maintenance Manual

Site Development Plans 1400 Lafayette Road, Portsmouth, NH Revised: April 15, 2022

SECTION 6


DE-ICING LOG

Deicing Log

Date Applied	Type of Deicing Material	Amount Applied
		1

Operation and Maintenance Manual

First Defense® and First Defense®-HC

Vortex Separator for Stormwater Treatment

Stormwater Solutions Turning Water Around ...®

Table of Contents

- 3 First Defense[®] by Hydro International
 - Introduction
 - Operation
 - Pollutant Capture and Retention
- 4 Model Sizes & Configurations
 - First Defense® Components
- 5 Maintenance
 - Overview
 - Maintenance Equipment Considerations
 - Determining Your Maintenance Schedule
- 6 Maintenance Procedures
 - Inspection
 - Floatables and Sediment Clean Out
- 8 First Defense[®] Installation Log
- 9 First Defense[®] Inspection and Maintenance Log

COPYRIGHT STATEMENT: The contents of this manual, including the graphics contained herein, are intended for the use of the recipient to whom the document and all associated information are directed. Hydro International plc owns the copyright of this document, which is supplied in confidence. It must not be used for any purpose other than that for which it is supplied and must not be reproduced, in whole or in part stored in a retrieval system or transmitted in any form or by any means without prior permission in writing from Hydro International plc. First Defense[®] is a trademarked hydrodynamic vortex separation device of Hydro International plc. A patent covering the First Defense[®] has been granted.

DISCLAIMER: Information and data contained in this manual is exclusively for the purpose of assisting in the operation and maintenance of Hydro International plc's First Defense[®]. No warranty is given nor can liability be accepted for use of this information for any other purpose. Hydro International plc has a policy of continuous product development and reserves the right to amend specifications without notice.

I. First Defense® by Hydro International

Introduction

The First Defense[®] is an enhanced vortex separator that combines an effective and economical stormwater treatment chamber with an integral peak flow bypass. It efficiently removes total suspended solids (TSS), trash and hydrocarbons from stormwater runoff without washing out previously captured pollutants. The First Defense[®] is available in several model configurations (refer to *Section II. Model Sizes & Configurations*, page 4) to accommodate a wide range of pipe sizes, peak flows and depth constraints.

Operation

The First Defense® operates on simple fluid hydraulics. It is selfactivating, has no moving parts, no external power requirement and is fabricated with durable non-corrosive components. No manual procedures are required to operate the unit and maintenance is limited to monitoring accumulations of stored pollutants and periodic clean-outs. The First Defense® has been designed to allow for easy and safe access for inspection, monitoring and clean-out procedures. Neither entry into the unit nor removal of the internal components is necessary for maintenance, thus safety concerns related to confined-spaceentry are avoided.

Pollutant Capture and Retention

The internal components of the First Defense[®] have been designed to optimize pollutant capture. Sediment is captured and retained in the base of the unit, while oil and floatables are stored on the water surface in the inner volume (Fig.1).

The pollutant storage volumes are isolated from the built-in bypass chamber to prevent washout during high-flow storm events. The sump of the First Defense[®] retains a standing water level between storm events. This ensures a quiescent flow regime at the onset of a storm, preventing resuspension and washout of pollutants captured during previous events.

Accessories such as oil absorbent pads are available for enhanced oil removal and storage. Due to the separation of the oil and floatable storage volume from the outlet, the potential for washout of stored pollutants between clean-outs is minimized.

Applications

- Stormwater treatment at the point of entry into the drainage line
- Sites constrained by space, topography or drainage profiles with limited slope and depth of cover
- Retrofit installations where stormwater treatment is placed on or tied into an existing storm drain line
- · Pretreatment for filters, infiltration and storage

Advantages

- · Inlet options include surface grate or multiple inlet pipes
- Integral high capacity bypass conveys large peak flows without the need for "offline" arrangements using separate junction manholes
- Proven to prevent pollutant washout at up to 500% of its treatment flow
- Long flow path through the device ensures a long residence time within the treatment chamber, enhancing pollutant settling
- · Delivered to site pre-assembled and ready for installation

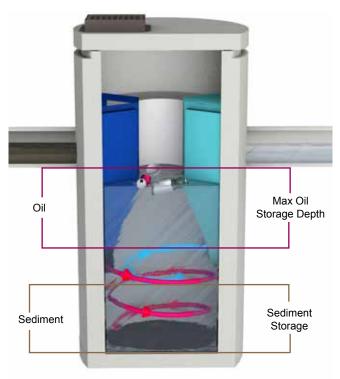


Fig.1 Pollutant storage volumes in the First Defense®.

II. Model Sizes & Configurations

The First Defense[®] inlet and internal bypass arrangements are available in several model sizes and configurations. The components of the First Defense[®]-4HC and First Defense[®]-6HC have modified geometries as to allow greater design flexibility needed to accommodate various site constraints.

All First Defense[®] models include the internal components that are designed to remove and retain total suspended solids (TSS), gross solids, floatable trash and hydrocarbons (Fig.2a - 2b). First Defense[®] model parameters and design criteria are shown in Table 1.

First Defense® Components

- 1. Built-In Bypass
- 4. Floatables Draw-off Port

- 2. Inlet Pipe
- 5. Outlet Pipe 6. Floatables Storage
- 7. Sediment Storage
- 8. Inlet Grate or Cover

3. Inlet Chute

a.

8

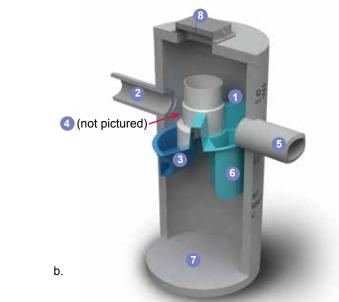


Fig.2a) First Defense[®]-4 and First Defense[®]-6; b) First Defense[®]-4HC and First Defense[®]-6HC, with higher capacity dual internal bypass and larger maximum pipe diameter.

Table 1	First Defense [®] Polluta	nt Starage Consolitie	a and Maximum (Noon out Dontho
Table I.	FII'SL DEIENSE [®] Poliulai	ni Siorade Cabacille	s and iviaximum (Jean out Depths

First Defense [®] Model Number	Diameter	Oil Storage Capacity	Oil Clean Out Depth	Maximum Sediment Storage Capacity ¹		Recommended Sediment Clean-out Capacity	
				Volume	Depth	Volume	Depth
	(ft / m)	(gal / L)	(in / cm)	(yd³ / m³)	(in / cm)	(yd³ / m³)	(in / cm)
FD-4	4 / 1.2	180 / 681	<23.5 / 60	1.3 / 1.0	33 / 84	0.7 / 0.5	18 / 46
FD-4HC		191 / 723	<24.4 / 62				
FD-6	6 / 1.8	420 / 1,590	<23.5 / 60	3.3 / 2.5	37.5 / 95	1.3 / 1.0	15 / 38
FD-6HC		496 / 1,878	<28.2 / 72				

NOTE

¹ Sediment storage capacity and clean out depth may vary, as larger sediment storage sump volumes are provided when required.

Hydro International (Stormwater), 94 Hutchins Drive, Portland ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Web: www.hydro-int.com

III. Maintenance

Overview

The First Defense[®] protects the environment by removing a wide range of pollutants from stormwater runoff. Periodic removal of these captured pollutants is essential to the continuous, long-term functioning of the First Defense[®]. The First Defense[®] will capture and retain sediment and oil until the sediment and oil storage volumes are full to capacity. When sediment and oil storage capacities are reached, the First Defense[®] will no longer be able to store removed sediment and oil. Maximum pollutant storage capacities are provided in Table 1.

The First Defense[®] allows for easy and safe inspection, monitoring and clean-out procedures. A commercially or municipally owned sump-vac is used to remove captured sediment and floatables. Access ports are located in the top of the manhole.

Maintenance events may include Inspection, Oil & Floatables Removal, and Sediment Removal. Maintenance events do not require entry into the First Defense[®], nor do they require the internal components of the First Defense[®] to be removed. In the case of inspection and floatables removal, a vactor truck is not required. However, a vactor truck is required if the maintenance event is to include oil removal and/or sediment removal.

Maintenance Equipment Considerations

The internal components of the First Defense[®]-HC have a centrally located circular shaft through which the sediment storage sump can be accessed with a sump vac hose. The open diameter of this access shaft is 15 inches in diameter (Fig.3). Therefore, the nozzle fitting of any vactor hose used for maintenance should be less than 15 inches in diameter.

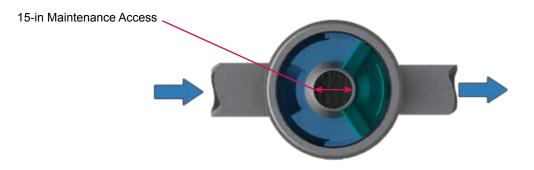


Fig.3 The central opening to the sump of the First Defense®-HC is 15 inches in diameter.

Determining Your Maintenance Schedule

The frequency of clean out is determined in the field after installation. During the first year of operation, the unit should be inspected every six months to determine the rate of sediment and floatables accumulation. A simple probe such as a Sludge-Judge[®] can be used to determine the level of accumulated solids stored in the sump. This information can be recorded in the maintenance log (see page 9) to establish a routine maintenance schedule.

The vactor procedure, including both sediment and oil / flotables removal, for a 6-ft First Defense[®] typically takes less than 30 minutes and removes a combined water/oil volume of about 765 gallons.

First Defense® Operation and Maintenance Manual

Page | 6

Inspection Procedures

- Set up any necessary safety equipment around the access port or grate of the First Defense[®] as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole.
- Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities. Fig.4 shows the standing water level that should be observed.
- Without entering the vessel, use the pole with the skimmer net to remove floatables and loose debris from the components and water surface.
- Using a sediment probe such as a Sludge Judge[®], measure the depth of sediment that has collected in the sump of the vessel.
- On the Maintenance Log (see page 9), record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components or blockages.
- 7. Securely replace the grate or lid.
- 8. Take down safety equipment.
- Notify Hydro International of any irregularities noted during inspection.

Floatables and Sediment Clean Out

Floatables clean out is typically done in conjunction with sediment removal. A commercially or municipally owned sumpvac is used to remove captured sediment and floatables (Fig.5).

Floatables and loose debris can also be netted with a skimmer and pole. The access port located at the top of the manhole provides unobstructed access for a vactor hose and skimmer pole to be lowered to the base of the sump.

Scheduling

- Floatables and sump clean out are typically conducted once a year during any season.
- Floatables and sump clean out should occur as soon as possible following a spill in the contributing drainage area.

Fig.4 Floatables are removed with a vactor hose (First Defense model FD-4, shown).

Recommended Equipment

- Safety Equipment (traffic cones, etc)
- Crow bar or other tool to remove grate or lid
- · Pole with skimmer or net (if only floatables are being removed)
- Sediment probe (such as a Sludge Judge[®])
- Vactor truck (flexible hose recommended)
- First Defense[®] Maintenance Log

Hydro International (Stormwater), 94 Hutchins Drive, Portland ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Web: www.hydro-int.com

First Defense® Operation and Maintenance Manual

Floatables and sediment Clean Out Procedures

- Set up any necessary safety equipment around the access port or grate of the First Defense[®] as stipulated by local ordinances. Safety equipment should notify passing pedestrian and road traffic that work is being done.
- 2. Remove the grate or lid to the manhole.
- 3. Without entering the vessel, look down into the chamber to inspect the inside. Make note of any irregularities.
- Remove oil and floatables stored on the surface of the water with the vactor hose (Fig.5) or with the skimmer or net (not pictured).
- Using a sediment probe such as a Sludge Judge[®], measure the depth of sediment that has collected in the sump of the vessel and record it in the Maintenance Log (page 9).
- Once all floatables have been removed, drop the vactor hose to the base of the sump. Vactor out the sediment and gross debris off the sump floor (Fig.5).
- 7. Retract the vactor hose from the vessel.
- 8. On the Maintenance Log provided by Hydro International, record the date, unit location, estimated volume of floatables and gross debris removed, and the depth of sediment measured. Also note any apparent irregularities such as damaged components, blockages, or irregularly high or low water levels.

Fig.5 Sediment is removed with a vactor hose (First Defense model FD-4, shown).

9. Securely replace the grate or lid.

Maintenance at a Glance

Activity	Frequency			
Inspection	- Regularly during first year of installation - Every 6 months after the first year of installation			
Oil and Floatables Removal	- Once per year, with sediment removal - Following a spill in the drainage area			
Sediment Removal	- Once per year or as needed - Following a spill in the drainage area			
NOTE: For most clean outs the entire volume of liquid does not need to be removed from the manhole. Only remove the first few inches of oils and floatables from the water surface to reduce the total volume of liquid removed during a clean out.				

Page | 7

First Defense® Installation Log

HYDRO INTERNATIONAL REFERENCE NUMBER:				
SITE NAME:				
SITE LOCATION:				
OWNER:	CONTRACTOR:			
CONTACT NAME:	CONTACT NAME:			
COMPANY NAME:	COMPANY NAME:			
ADDRESS:	ADDRESS:			
TELEPHONE:	TELEPHONE:			
FAX:	FAX:			

INSTALLATION DATE: / /

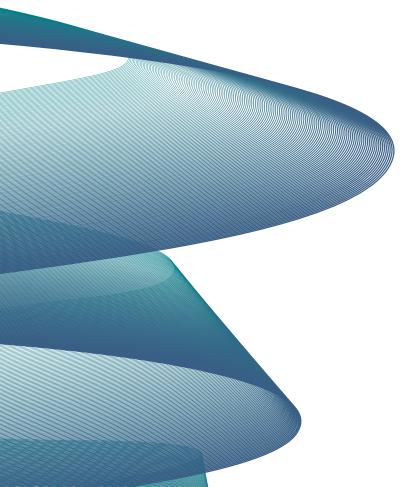
MODEL SIZE (CIRCLE ONE):	FD-4	FD-4HC	FD-6	FD-6HC
INLET (CIRCLE ALL THAT APPLY):	GRATED INLET	(CATCH BASIN)	INLET PIPE (F	LOW THROUGH)

First Defense[®] Inspection and Maintenance Log

Date	Initials	Depth of Floatables and Oils	Sediment Depth Measured	Volume of Sediment Removed	Site Activity and Comments

Hydro International (Stormwater), 94 Hutchins Drive, Portland ME 04102 Tel: (207) 756-6200 Fax: (207) 756-6212 Web: www.hydro-int.com

Notes



What is HX?

HX is Hydro Experience, it is the essence of Hydro. It's interwoven into every strand of Hydro's story, from our products to our people, our engineering pedigree to our approach to business and problem-solving.

HX is a stamp of quality and a mark of our commitment to optimum process performance. A Hydro solution is tried, tested and proven.

There is no equivalent to Hydro HX.

Stormwater Solutions

94 Hutchins Drive Portland, ME 04102

Tel: (207) 756-6200 Fax: (207) 756-6212 stormwaterinquiry@hydro-int.com

www.hydro-int.com

Turning Water Around...® FD_O+M_D1502