
Stormwater Management Report

West End Yards

Cate Street/Route 1 Portsmouth, NH 03801

APPLICANT & OWNER Cate Street Development, LLC

11 Elkins Street Suite 420 Boston, MA 02127

REVISION 2 July 24, 2019

Libby House 5 Fletcher Street, Suite 1 Kennebunk, ME 04043

Table of Contents

Stormwater Management Report West End Yards

1	Exec 1.1	Revisions	
2	Proje 2.1	Existing Conditions	2 2
	2.2	Proposed Conditions	3
3	Hydr 3.1 3.2 3.3	ologic Analysis 4 Existing Watershed Summary 9 Proposed Watershed Summary 9 Best Management Practices 3 3.3.1 Off-line Closed Drainage System 3.3.2 Bioretention Basins (Rain Gardens) 3.3.3 Subsurface Infiltration Chambers 3.3.4 Water Quality Unit (WQU) 3.3.5 Treatment Swale with Level Spreader 3.3.6 Vegetated Buffer Hydrologic Analysis Results 3.4.1 Groundwater Recharge Volume	4555667777
4	Soil E 4.1	Erosion and Sedimentation Control Construction Support Activities1	
5	Sum	mary1(С

Tahlos

Tab	bles	Page
1.1	AP 1Peak Flow Results	8
1.2	AP1 Total Volume Results	8
2.1	AP2 Peak Flow Results	8
2.2	AP2 Total Volume Results	8
3.1	AP3 Peak Flow Results	8
3.2	AP3 Total Volume Results	

Appendices

- А NHDES WebGIS; Surface Water Impairments NHDES WebGIS; AOT Screening layers
- В NHB Data Check
- С NRCS Soil Survey Report
- D Aerial Photograph Site Photos
- Е Groundwater Recharge Calculations **BMP** Worksheets
- F **NRCC Extreme Precipitation Tables**
- Pre-Development Hydrologic Analysis 10-yr F2.1
- Pre-Development Hydrologic Analysis 2, 25 & 50-yr F2.2
- Post-Development Hydrologic Analysis 10-yr F3.1
- Post-Development Hydrologic Analysis 2, 25 & 50-yr F3.2
- **RipRap Apron Calculations** G
- Н Site Specific Soils Mapping
- Infiltration Feasibility Report L
- J **UIC** Registrations
- Inspection and Maintenance Plan Κ

Figures

- 1 Site Location Map
- 2 FEMA Flood Insurance Rate Map
- Pre-Development Subwatershed Plan 3
- 4 Post-Development Subwatershed Plan

End of Report

End of Report

This Stormwater Management Report describes proposed work and stormwater management associated with the re-development of the Frank Jones Center Property as well as a collection of other properties along Cate Street, located between Route 1 Bypass and Bartlett Street, Portsmouth, New Hampshire (Site). The Site is identified on the Site Location Map, Figure 1.

The results of the redevelopment of these parcels of land are as follows:

- 1.8 Acre reduction of impervious surfaces on the 13.31 Acres being redeveloped

 Equivalent to a 13.6% reduction
- 2) 0.35 Acre reduction of impervious surface in the wetland buffer along Hodgson Brooka. Equivalent to a 24% reduction of impervious surface in the buffer
- 3) 100% Stormwater pre-treatment

 a. Currently stormwater is not pre-treated
- 4) 50%-100% Stormwater Treatment
 - a. Currently stormwater is not treated
- 5) Provision of a 25 to 30-ft wide vegetated wetland buffer along the top of bank to Hodgson Brook
 - a. Currently only a short section of the wetland and brook has a vegetated buffer at the top of bank
- 6) Increased Stormwater Infiltration both passively through restoration of vegetated areas and actively through Stormwater Management Practices such as, bioretention areas and Infiltration Chamber Galleries
- 7) Net reduction on stormwater runoff to Hodgson Brook and the Watershed points of Analysis, both in Flow Rate and Volume

The proposal consists of the construction of:

- 1) A new City Street, in essence an extension of Cate Street to Route 1 Bypass at the current intersection of Route1 Bypass, Borthwick Avenue and the Frank Jones Center driveway
- 2) A multi-use / Bike Trail along the alignment of the new City Street from Route 1 Bypass to Bartlett Street.
- 3) A Dog Park
- 4) New greenspaces throughout the site

- 5) A 20,000-sf footprint Retail / Commercial / Office Building in the current location of the Frank Jones Center. Gross floor space of 40,000-sf over 2 floors
- 6) 2, 4 story Apartment Buildings providing a total of 325 apartment units
- 7) 23 Townhomes
- 8) Parking for all of the uses above Commercial, Office and Residential

Existing and proposed hydrologic conditions for the development of the project Site were evaluated to compare existing and proposed stormwater peak discharges and volumes. The evaluation demonstrates a net decrease in peak stormwater discharge and volume for the 2-year, 10-year, 25-year, and 100-year storm events.

1.1 Revisions

The following revisions are present in this Stormwater Management Report:

- 1. Tables 1.1, 1.2 and Tables 2.1 and 2.2 summarizing the results at the Analyses Points.
- 2. Appendix E BMP Work Sheets
- 3. Appendix F Revised HydroCAD Calculations
- 4. Appendix G Rip Rap Outlet Protection Calculations
- 5. Appendix I Infiltration Feasibility Report Items have been provided in Appendix I. These consist of a Test Pits with ESHWT, and Ksat calculations by McPhail Associates.
- 6. The drainage along the last few hundred feet of Cate Street into the intersection with Bartlett Street has been modeled and flows to analysis Point 3 (AP3).

2 Project Description

2.1 Existing Conditions

The Site, 13.3 Acres of commercial land, is located east of U.S. Route 1 Bypass in Portsmouth, New Hampshire (Refer to Figure 1). Existing Site features include the Frank Jones Center and an accessory building on Tax Map 172 Lot 1, parking area on Tax Map 173 Lot 2, 2 industrial buildings on Tax Map 165 Lot 2, The PK Brown contractor yard and buildings on Tax Map 163 Lot 34, a House and outbuildings on Tax Map 163 Lot 33, and City Land occupied by Cate Street and a pocket of woods.

2.1.1 Site Parameters

A review of Federal, state, and local requirements for the Site generated the following results:

• The Site lies outside the 500-year flood plain, denoted as "Zone X" on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map Community Panel Number 33015C0259E, May 17, 2005.

- The Site is free of Endangered Flora or Fauna Habitat that would be directly affected by the project per the New Hampshire Natural Heritage Bureau (NHB). Refer to Appendix C.
- Freshwater wetland resources exist on and adjacent to the property. Resource area delineations were completed by Luke Hurley, CWS, CSS of Gove Environmental Services, Inc. and are included on the plans. These Wetlands are subject to a 100-ft wetland buffer.

2.1.2 Soils

The Site is characterized by Natural Resources Conservation Service (NRCS, formerly SCS) as Urban land-Canton complex, which is classified as Hydrological Soil Group (HSG) D. A websoil survey of the soils within the Site can be found in Appendix C.

A Site Specific Soils Mapping (SSSM) has been prepared for the site by Luke Hurley, CWS, CSS of Gove Environmental Services, Inc. Based upon the mapping the site has been mapped as:

400A Udorthents, sandy or gravelly

This map unit typically includes the following concepts: 1) very gravelly (> 35%) sand or very gravelly loamy sand; Or 2) sand or loamy sand textures that may have lenses of loamy very fine sand or finer somewhere in the particle-size class control section (25 - 100 cm or 10 - 40"). Saturated hydraulic conductivity (Ksat) is high or very high. Drainage class ranges from excessively drained to somewhat poorly drained. Typical gravel pit.

Mr. Hurley has offered that this would equate to an Eldridge NRCS, 38 Hydrologic Soils Group (HSG) C. According to this guidance we have used HSG C for the drainage analysis.

Hydraulic conductivity has been confirmed by McPhail Associates, Inc., the team Geotechnical Engineers.

ESHWT has been confirmed by Testpit in each stormwater practice using infiltration.

2.2 Proposed Conditions

The redevelopment of the site, will reduce impervious cover by13.6% over the entire site area and greatly improve the stormwater collection, conveyance, treatment and ability to provide groundwater recharge on site. The practices implemented to accomplish this are discussed further in section 3.3.

2.2.1 Design Elements

The following measures have been incorporated in the project design to control the peak stormwater runoff rate, provide recharge, and treat stormwater generated by the site:

- Best Management Practices Designed in accordance with the City of Portsmouth regulations and the NHDES Stormwater Manual;
- An Erosion and Sediment Control plan has been developed that will prevent direct discharges to wetlands, and avoid or minimize channelized stormwater flow directly into wetland resource areas;
- Land disturbance and grading shall be conducted in a selective manner and appropriate construction BMPs are incorporated to preclude construction period runoff/erosion;
- Top soil is preserved or supplemented sufficient to maintain vegetation cover;
- All conveyances and outfalls are dissipated outside of wetland areas; and
- No work is proposed in Essential or Significant Wildlife Habitats or fisheries habitats, as identified by the NHB.

3 Hydrologic Analysis

The hydrologic analyses for existing and proposed conditions were completed using HydroCAD version 10.00-20 to determine peak runoff flow rates and total runoff volumes for the watershed models. HydroCAD is based on the NRCS Technical Release 20 and Technical Release 55, and is subject to cumulative rainfall/volume dependent routing calculations. Hydrographs are prepared for each element of the watershed and routed through the dynamicstorage-indication method to produce various time-based results.

Labeling on the drainage plans and HydroCAD diagrams is as follows:

- Subcatchments represented by hexagons
- Ponds represented by triangles
- Reaches and Analysis Points represented by squares
- Time of Concentration represented by circles with letters and flow lines

The Pre and Post-Development hydrologic analysis has been included in Appendix F.

3.1 Existing Watershed Summary

The majority of stormwater runoff from the existing on-site development is conveyed via the cities stormwater runoff system which runs south to north along U.S. Route 1 Bypass. The stormwater system and the outfalls into Hodgson Brook are designated as Analysis Point AP1. A small portion of stormwater flows offsite and is designated as Analysis Point AP2. The portion of Cate Street east of the site and the intersection with Bartlett Street is modeled and flows to AP3. All soils on Site are hydrologic soils group C.

14 subwatersheds have been established for the project's pre-development conditions. Refer to the Pre-Development Subwatershed Plan included as Figure 3.

3.2 Proposed Watershed Summary

Post-development stormwater management features have been located and designed to imitate a more natural distribution of stormwater over the site than what exists today due to the extreme amount of impervious coverage. Stormwater is conveyed via closed drainage system to one of the following:

- Water Quality Unit followed by a vegetated swale and level spreader
- Bioretention areas
- Subsurface Infiltration Chamber galleries

Overflow stormwater leaves the infiltration practices in large storm events and flows to either Hodgson Brook or the City closed Drainage system on Bartlett Street via overflow pipes tied to the proposed closed drainage system.

52 subwatersheds have been established for the project's post-development conditions. Refer to the Post-Development Subwatershed Plan included as Figure 4.

3.3 Best Management Practices

BMPs have been incorporated into the proposed Site improvements in order to protect natural resources from point source stormwater releases associated with the development. The following sections discuss the various BMP's employed.

3.3.1 Off-line Closed Drainage System

A project of this size will inevitably require a closed drainage stormwater collection system employing catch basins, drain manholes and pipe to route stormwater to locations on site available to treat and control it prior to release to downstream areas in the watershed.

There are two common types of closed drainage systems employed In-line and Off-line.

In an in-line closed drainage system, stormwater is collected by catch basins that are connected to each other in series as the system moves down gradient across the site. This type of system re-suspends any solids that settle in the downstream catch basin sumps as flow from upstream catch basins are conveyed through them. Ultimately, this provides little to no pre-treatment of suspended solids.

The proposal utilizes an off-line closed drainage system. In an off-line system, stormwater is collected by catch basins that are then connected to a "drain main" via drain manholes. The sump of each catch basin is then able to retain the suspended solids that enter the catch basin without being re-suspended by flow from another catch basin flowing through it. The proposal also implements catch basins that are "hooded". The hoods are accessories that are mounted to the wall of the catch basin over the invert out that extend about 1-ft below the invert which help to retain floating solids and help settle sediment in the sump of the catch basin.

3.3.2 Bioretention Basins (Rain Gardens)

Bioretention areas are being employed to treat and control stormwater along the new City Street on the north side. The bioretention areas are located at the curve in the road at the east end of the site.

Bioretention basins utilize biologic actions that take place in all soil cross sections to treat stormwater. The soil in a bioretention basin, commonly referred to as a rain garden is a specific tested mix of soils components that create a soil with a very specific infiltration rate and organic soil / sand mix. Bioretention basins can be constructed in any existing soil condition.

Due to high

The proposal employs bioretention basins that provide some infiltration and groundwater recharge and are also equipped with underdrains to ensure that stormwater does not remain ponded for more than 72 hours.

3.3.3 Subsurface Infiltration Chambers

Subsurface Chambers are being used by this proposal. Particularly, Stormtech SC740 chambers. These chambers consist of high density poly ethylene (HDPE) arches embedded in clean washed stone. The chambers provide superior storage and the stone provides both storage and a stable interface with the in-situ soils the chamber gallery is constructed in. Stormtech Chamber systems provide an additional amount of pre-treatment in one row of chambers called the isolator row. Stormwater is directed to the isolator row first and flows laterally through perforations to the chambers and stone adjacent to it. The isolator row is constructed on top of filter fabric allowing any sediment finding its way to the chambers to be trapped and kept out of the stone. With adequate separation to ESHWT and acceptable Ksat rates, infiltration can be employed to allow the stormwater to recharge the groundwater.

After extensive soils mapping efforts, including a joint site visit for test pits and logging by the Soils Scientist form Gove Environmental Services and the Geotechnical Engineer from McPhail Associates, Infiltration Basin locations have been selected. Infiltration Basins 1, 2 and 3 take advantage of the outwash material in the center area of the site. The 3 infiltration basins have been sized using an average Ksat from the 3 test pits in their vicinity. Test pits 108, Test pit 109 and Test pit 110. See below for summary of Ksats and the Ksat(design) used.

Ksat108 = 3.47243 in/hr Ksat109 = 0.52016 in/hr

Ksat(avg) = 1.19031 in/hr Factor of safety = 2.0 Ksat(design) = 0.97 in/hr

It should be noted that the infiltration basins will all be within the native soils represented by Test pit 108. All fill material will be excavated out. The implementation of design using Ksat based on an average of the 3 test pit rates accounts for possible contamination.

The area of surface drainage at the Townhouse portion of the project is in a clayey area of the property and due to this will employ lined subsurface chamber fields for detention. The chamber fields will have underdrains to ensure they drain fully.

3.3.4 Water Quality Unit (WQU)

A Water Quality Unit is being provided in the design just prior to the treatment swale and level spreader that allows discharge of stormwater from the closed drainage system to outlet to Hodgson Brook. The WQU will ensure maximum suspended solids removal ahead of stormwater release to the brook.

3.3.5 Swale with Level Spreader

A swale and level spreader are provided at the outfall of the closed drainage system ahead of Hodgson Brook to ensure energy in the stormwater is dissipated prior to release.

3.3.6 Vegetated Buffer

The design as proposed provides a vegetated buffer along the alignment of the new City Street between the multi-use / bike trail and the top of bank to Hodgson Brook. While this is an improvement, it cannot be claimed as a treatment practice under the NHDES Stormwater rules because it is note deep enough.

3.4 Hydrologic Analysis Results

Today the stormwater generated on site either flows to Hodgson Brook at Analysis Point AP1 or to the City Closed Drainage system in Cate Street hat is connected to the system in Bartlett Street denoted by Analysis Point AP2. The Pre development site is highly impervious, developed with buildings and paved areas.

The post-development decrease in impervious ground cover and proposed BMPs will attenuate peak flows from the Site. The proposed improvements will result in a net decrease to the Analysis Points AP 1, AP2 and AP3 in peak stormwater discharge for the 2-year, 10-year, 25-year, and 100-year 24-hour storm events, as compared to the existing conditions peak stormwater flowrate. The following tables summarize existing vs. proposed stormwater flows for the watershed analysis.

100-year

lable 1.1: AP1 Peak Stormwater Flowrate Results at Analysis Point					
Dosign Storm	Existing Flow	Proposed Flow	Net Change		
Design Storm	(cfs)	(cfs)	(cfs)		
2-year	22.40	20.53	-1.87		
10-year	37.02	34.99	-2.03		
25-year	48.62	45.49	-3.13		
50-year	59.48	55.15	-4.33		

Table 1.2: AP1 Total Stormwater Volume Results at Analysis Point

72.55

Design Storm	Existing Volume (cf)	Proposed Volume (cf)	Net Change (cf)
2-year	85,142	71,906	-13,236
10-year	140,865	123,435	-17,430
25-year	185,670	165,248	-20,422
50-year	227,940	204,925	-23,015
100-year	279,330	253,373	-25,957

67.61

-4.94

Table 2.1: AP2 Peak Stormwater Flowrate Results at Analysis Point

Design Storm	Existing Flow (cfs)	Proposed Flow (cfs)	Net Change (cfs)
2-year	16.28	7.27	-9.01
10-year	26.23	14.18	-12.05
25-year	33.98	19.94	-14.04
50-year	41.17	25.02	-16.12
100-year	49.81	42.54	-7.27

Table 2.2: AP2 Total Stormwater Volume Results at Analysis Point

Design Storm	Existing Volume (cf)	Proposed Volume (cf)	Net Change (cf)
2-year	56,249	39,690	-16,559
10-year	92,749	72,394	-20,355
25-year	121,770	99,315	-22,455
50-year	148,993	124,799	-24,194
100-year	181,956	153,971	-27,985

Table 3.1: AP3 Peak Stormwater Flowrate Results at Analysis Point

Design Storm	Existing Flow (cfs)	Proposed Flow (cfs)	Net Change (cfs)
2-year	2.99	2.57	-0.42
10-year	4.61	3.99	-0.62
25-year	5.87	5.04	-0.83
50-year	7.04	5.98	-1.06
100-year	8.46	7.10	-1.36

Design Storm	Existing Volume	Proposed Volume	Net Change
Design storm	(cf)	(cf)	(cf)
2-year	10,938	9,970	-968
10-year	17,283	16,368	-915
25-year	22,274	21,388	-886
50-year	26,935	26,046	-889
100-year	32,568	31,766	-802

Table 3.2: AP3 Total Stormwater Volume Results at Analysis Point

As can be seen the re-development of the site affords a unique opportunity to reduce stormwater flows both in rate and volume to a taxed waterway and an existing City Storm Drain.

3.4.1 Groundwater Recharge Volume

The Groundwater Recharge Volume (GRV) required for this project is very small. The Impervious surface areas used to calculate the value were taken directly from HydroCAD. HydroCAD did not consider the large gravel area on the eastern side of the site to be impervious. If it were the project would have a negative GRV requirement. The paved, buildings and sidewalk surfaces in the post-development are almost an even match to the pre-development. GRV(required) is equal to 60-cf. See Appendix E.

The subsurface infiltration basins proposed far exceed the 60-cf of GRV in infiltrated stormwater.

4 Soil Erosion and Sedimentation Control

Soil erosion and sedimentation control details and narratives for construction periods are provided in the Site plans and the Stormwater Pollution Prevention Plan (SWPPP) which will be prepared and provided as the project is submitted to NHDES for an AoT Permit. Soil erosion and sedimentation control details and procedures are consistent with the NHDES best management Practices for Erosion and Sediment Control.

Erosion and sedimentation controls used on the Site during construction will include silt fence, check dams, hay bales, a construction entrance, and water for dust control. Additional erosion and sediment controls will be utilized as required. Silt fence and hay bales will be placed down-gradient of disturbed areas and up-gradient of wetlands. A construction entrance will be installed to ensure sediment does not get tracked onto US Route 1 Bypass or Bartlett Street.

Water will be applied to exposed soils to provide dust control as needed.

The schedule for the commencement or cessation of construction activities, grading, and soil stabilization measures ceased on a portion of the Site, and stabilization measures initiated, shall be recorded and maintained as part of the SWPPP.

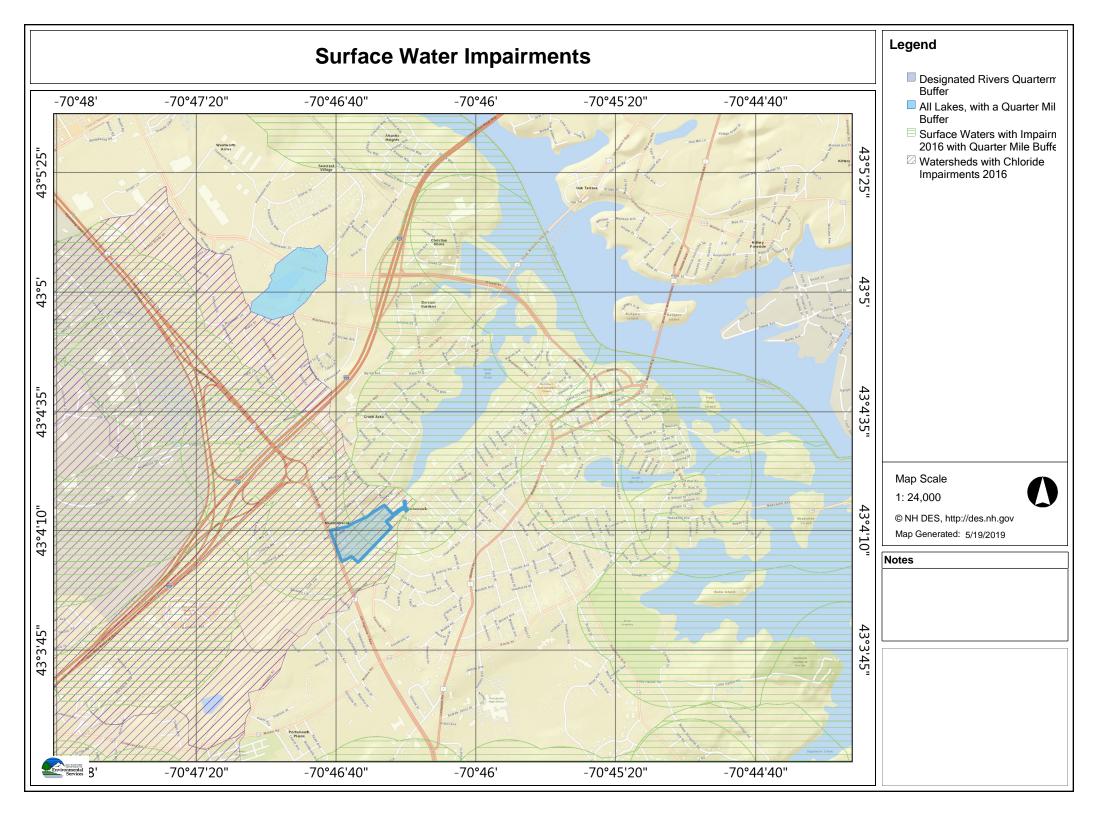
4.1 Construction Support Activities

Waste materials generated from construction activities will include excavated soil, brush, asphalt, and building demo debris. All excavation debris and other waste will be transported to an approved disposal facility. If required, materials may be temporarily stockpiled within designated staging areas. Details and procedures are provided in the construction Site plans. Construction materials will be present on-site during various stages of construction. All materials will be temporarily stored within designated staging or lay-down areas and will be transported to the Site as needed. Construction vehicle fueling will take place at a designated staging area only. Staging areas will be located within the limit of work, outside the wetlands located on-site.

5 Summary

This Stormwater Management Report describes proposed work and stormwater management associated with the re-development of the Frank Jones Center and assembled properties.

The proposed Site improvements will decrease post-development peak stormwater runoff rates and volumes. 2 bioretention areas and 3 subsurface infiltration galleries, as well as an offline closed drainage system and a vegetated swale and level spreader all work together to accomplish the improvements.



Appendix A

NHDES WebGIS Printouts; Surface Water Impairments

NHDES WebGIS Printouts; AOT Screening Layers

Details

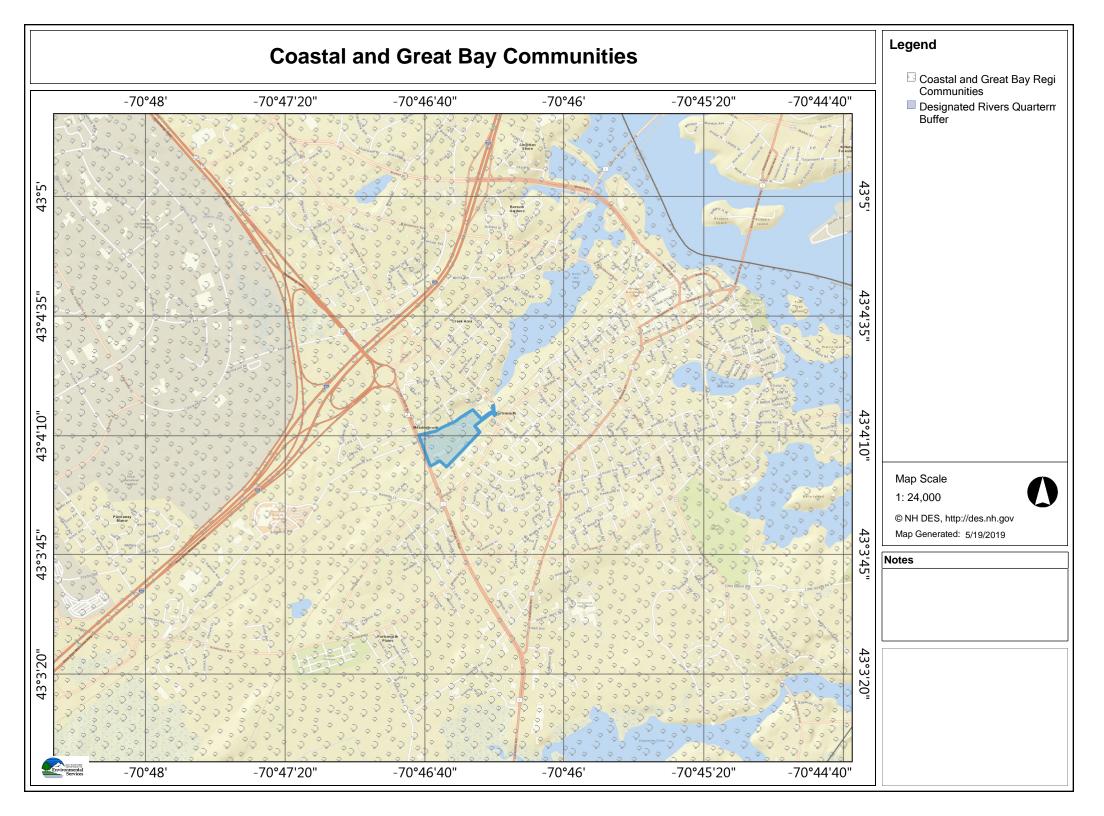
- AUID NHRIV600031001-04
- Shape

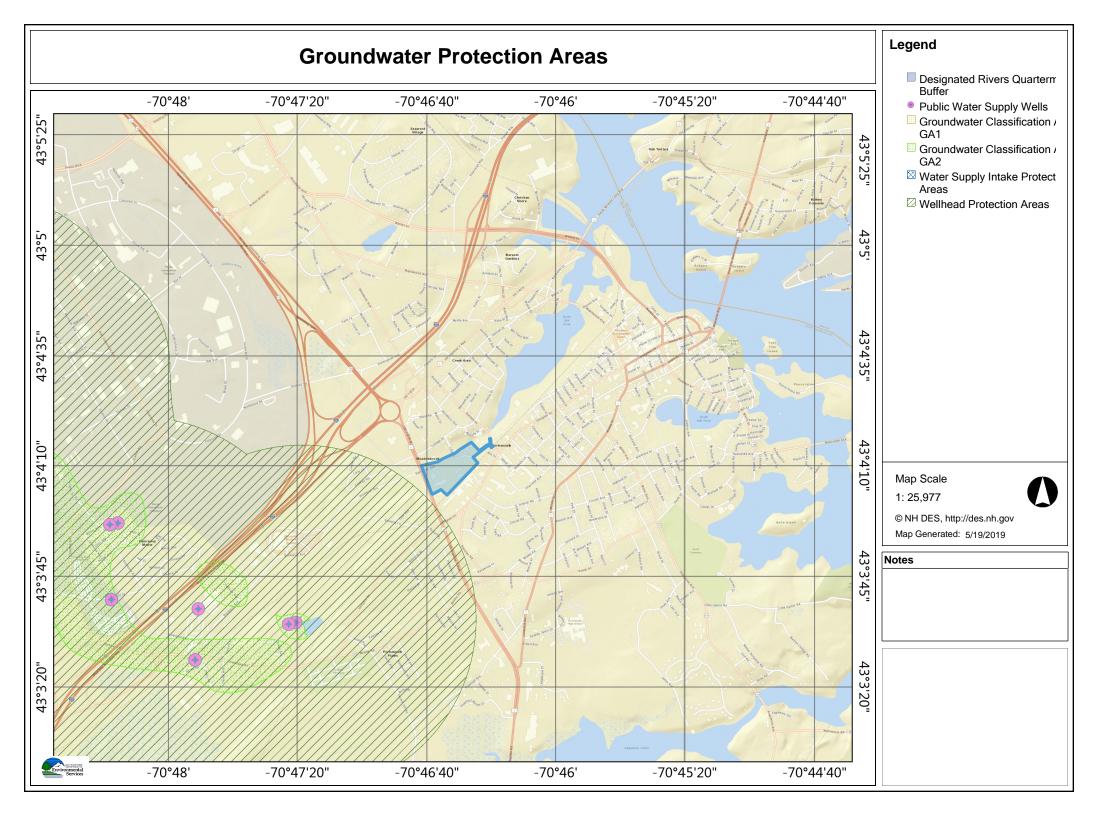
N/A

• FID

388

• Waterbodyi


NHRIV600031001-04


- Beach N
- Waterbodyn

LOWER HODGSON BROOK

• Impairment

Benthic-Macroinvertebrate Bioassessments (Streams), Chloride, Dissolved oxygen saturation, Escherichia coli, Dissolved Oxygen (mg/L)

Appendix B

NHB Letter

To: James Andretta 14 High Street Wiscasset, ME 04578 Date: 4/13/2018

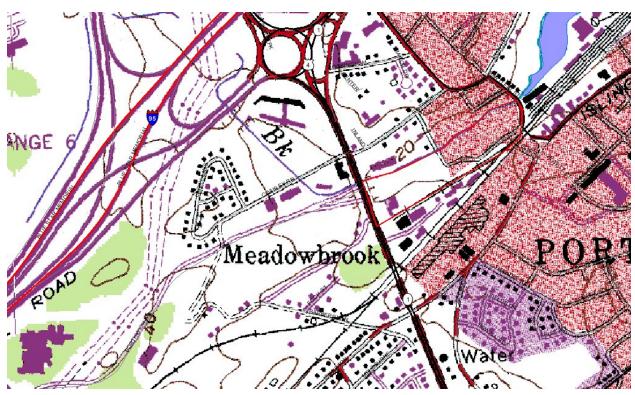
From: NH Natural Heritage Bureau

Re: Review by NH Natural Heritage Bureau of request dated 4/13/2018

NHB File ID: NHB18-1167

Applicant: Rick Lundborn

Location: Tax Map(s)/Lot(s): 172 Lot 1, 165 Lot 2, 163 Lot 34, 163 Lot 33, 173 Lot 2 Portsmouth


Project Description: Cate Street Development

The NH Natural Heritage database has been checked for records of rare species and exemplary natural communities near the area mapped below. The species considered include those listed as Threatened or Endangered by either the state of New Hampshire or the federal government. We currently have no recorded occurrences for sensitive species near this project area.

A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed for certain species. An on-site survey would provide better information on what species and communities are indeed present.

This report is valid through 4/12/2019.

MAP OF PROJECT BOUNDARIES FOR NHB FILE ID: NHB18-1167

Appendix C

NRCS Soil Survey Report

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for **Rockingham County, New Hampshire**

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Rockingham County, New Hampshire	13
799—Urban land-Canton complex, 3 to 15 percent slopes	13
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

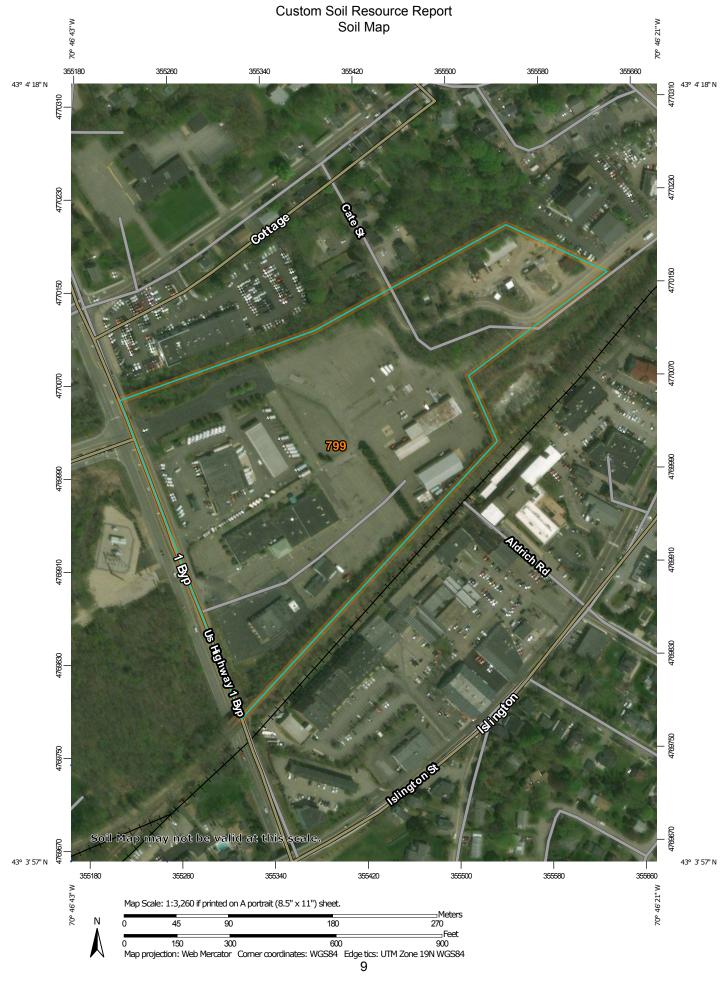
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

	Area of Interest (AOI)			MAP INFORMATION	
Area of Int				The soil surveys that comprise your AOI were mapped at	
	Area of Interest (AOI)	٥	Stony Spot	1:24,000.	
Soils	Soil Map Unit Polygons	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.	
~	Soil Map Unit Lines	Ŷ	Wet Spot	Enlargement of maps beyond the scale of mapping can cause	
	Soil Map Unit Points	\triangle	Other	misunderstanding of the detail of mapping and accuracy of soil	
_	Point Features	, * *	Special Line Features	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed	
ø	Blowout	Water Fea		scale.	
\boxtimes	Borrow Pit	\sim	Streams and Canals		
*	Clay Spot	Transport	tation Rails	Please rely on the bar scale on each map sheet for map measurements.	
0	Closed Depression		Interstate Highways		
×	Gravel Pit	~	US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL:	
<u>م</u>	Gravelly Spot	~	Major Roads	Coordinate System: Web Mercator (EPSG:3857)	
0	Landfill	~	-	Mana from the Web Call Current are based on the Web Manader	
Ă.	Lava Flow	~	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts	
	Marsh or swamp	Backgrou	Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more	
~	Mine or Quarry			accurate calculations of distance or area are required.	
Ô	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as	
ő	Perennial Water			of the version date(s) listed below.	
Š	Rock Outcrop			Onit Ourses Asses Deckingham Occursts New House shine	
÷	Saline Spot			Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 19, Sep 11, 2017	
т ::	Sandy Spot				
 e	Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	
_	Sinkhole			-	
\$ }	Slide or Slip			Date(s) aerial images were photographed: Dec 31, 2009—Sep 12, 2016	
\$	·			, · •	
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
799	Urban land-Canton complex, 3 to 15 percent slopes	18.4	100.0%
Totals for Area of Interest		18.4	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Rockingham County, New Hampshire

799—Urban land-Canton complex, 3 to 15 percent slopes

Map Unit Setting

National map unit symbol: 9cq0 Elevation: 0 to 1,000 feet Mean annual precipitation: 42 to 46 inches Mean annual air temperature: 45 to 48 degrees F Frost-free period: 120 to 160 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 55 percent Canton and similar soils: 20 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canton

Setting

Parent material: Till

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam *H2 - 5 to 21 inches:* gravelly fine sandy loam *H3 - 21 to 60 inches:* loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 5.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Udorthents

Percent of map unit: 5 percent Hydric soil rating: No

Boxford and eldridge

Percent of map unit: 4 percent Hydric soil rating: No

Squamscott and scitico

Percent of map unit: 4 percent Landform: Marine terraces Hydric soil rating: Yes

Chatfield

Percent of map unit: 4 percent Hydric soil rating: No

Scituate and newfields

Percent of map unit: 4 percent Hydric soil rating: No

Walpole

Percent of map unit: 4 percent Landform: Depressions Hydric soil rating: Yes

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

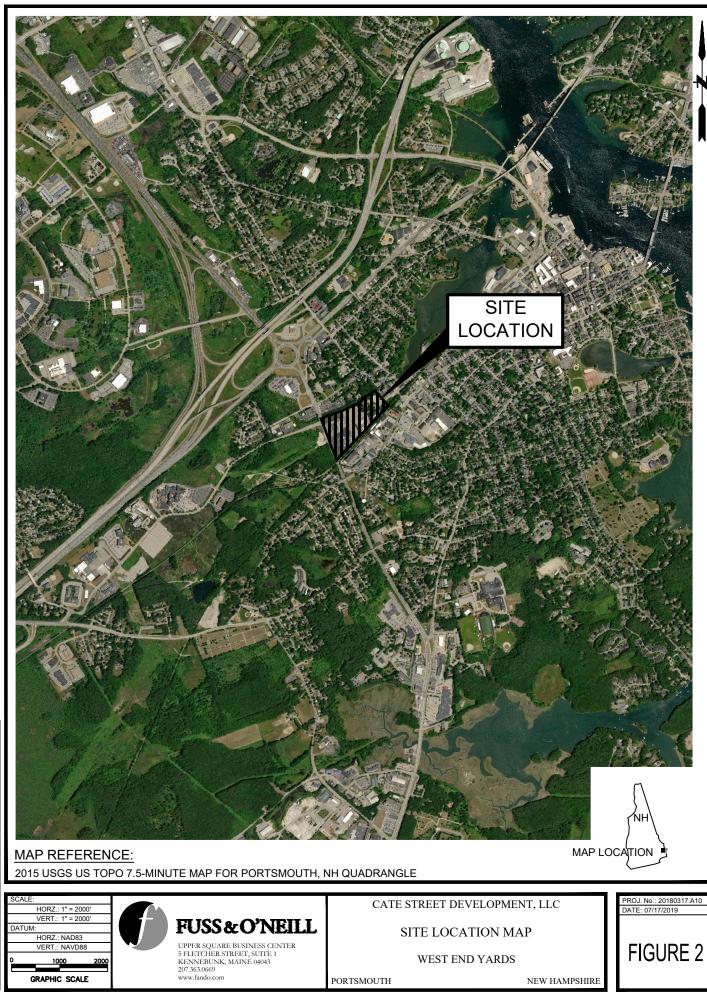
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

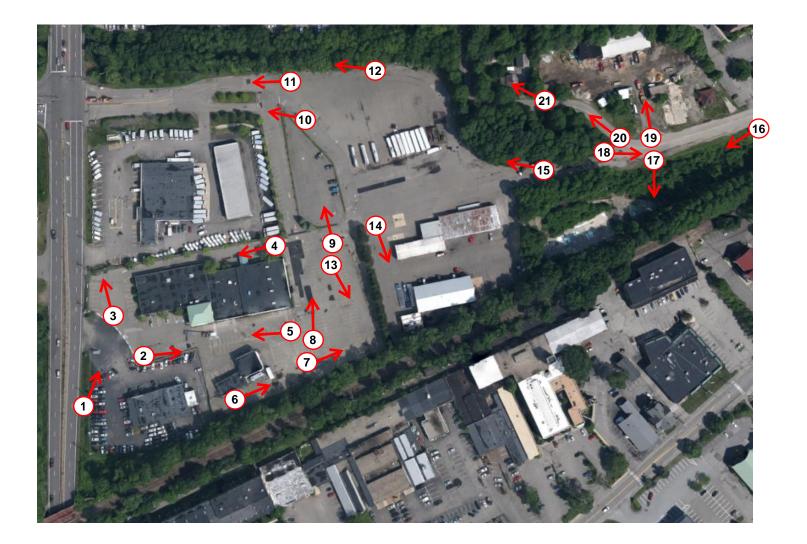
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf




Appendix D

Aerial Photograph

Site Photographs

Cate Street Redevelopment: Existing Conditions Photo Key

Photo 1 View looking north at Frank Jones Center

Photo 2 Rear of Frank Jones Center looking northeast

Photo 3 Parking area between Frank Jones center and Route 1 looking northwest

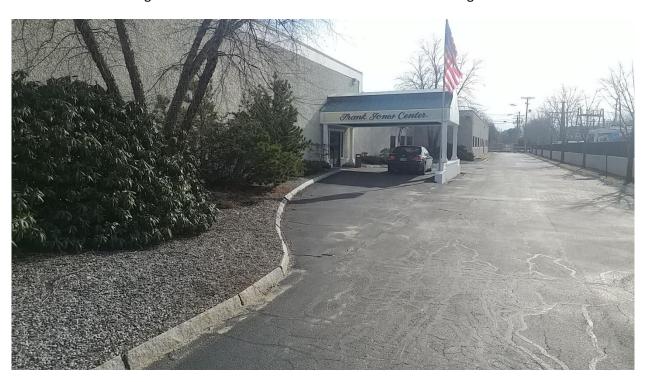


Photo 4 Front side of Frank Jones Center looking southwest towards Route 1

Photo 5 Rear of Frank Jones Center looking southwest towards Route 1

Photo 6 Building behind Frank Jones Center and railroad tracks looking northeast

Photo 7 Main parking lot at Frank Jones Center looking northeast

Photo 8 Main parking lot at Frank Jones Center looking northwest

Photo 9 Middle Parking area looking northwest

Photo 10 Looking west on Borthwick Ave towards Route 1

Photo 11 View from Borthwick Ave looking towards Route 1

Photo 12 View of Hodgson Brook looking west

Photo 13 Main parking lot at Frank Jones Center looking southeast

Photo 14 View of existing buildings looking southeast

Photo 15 Access road off Cate Street looing west

Photo 16 Current construction south of Cate Street looing southwest

Photo 17 Current construction south of Cate Street looing southeast

<u>Photo 18</u> Current construction south of Cate Street looing northeast

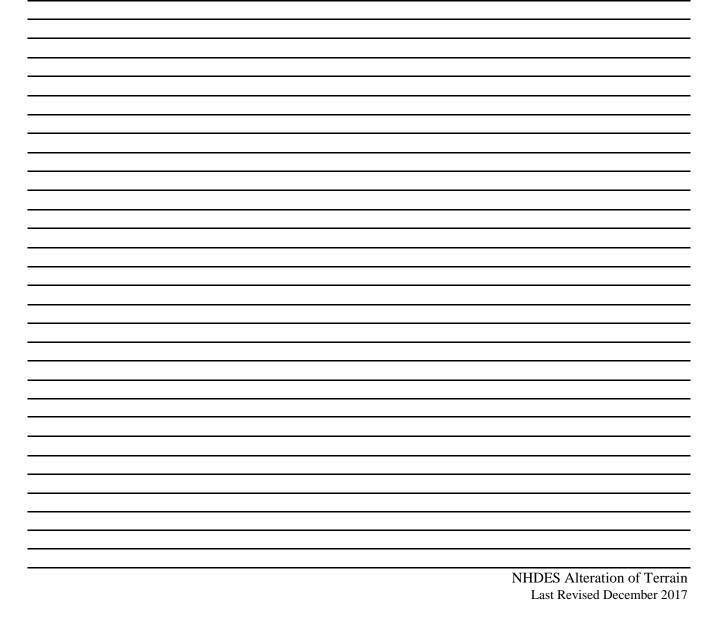
Photo 19 Existing buildings north of Cate Street

Photo 20 Cate Street looking northeast

Photo 21 Existing house on Cate Street

Appendix E

Groundwater Recharge Volume Calculations


BMP Worksheets

	ac	Area of HSG A soil that was replaced by impervious cover	0.40"
	ac	Area of HSG B soil that was replaced by impervious cover	0.25"
(0.17)	ac	Area of HSG C soil that was replaced by impervious cover	0.10"
	ac	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.10	inches	Rd = weighted groundwater recharge depth	
-0.0167	ac-in	GRV = AI * Rd	
(60)	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

BIORETENTION BASIN 1

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

YES		Have you reviewed the restrictions on unlined systems outlined in Env-We	a 1508 07(a)?
0.12 ac			y 1300.07(a)?
0.12 ac 0.06 ac		A = Area draining to the practice	
		A_{I} = Impervious area draining to the practice	
0.50 de		I = percent impervious area draining to the practice, in decimal form $P = P = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right)$	
0.50 ui		Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.06 ac		WQV = 1" x Rv x A	
214 cf		WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
53 cf		25% x WQV (check calc for sediment forebay volume)	
160 cf		75% x WQV (check calc for surface sand filter volume)	
		Method of Pretreatment? (not required for clean or roof runoff)	
53 cf	f	V_{SED} = sediment forebay volume, if used for pretreatment	← <u>></u> 25%WQV
1,962 sf	f	A_{SA} = surface area of the practice	
2.41 ip	oh	$I_{\text{DESIGN}} = \text{design infiltration rate}^1$	
YES Y	es/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	
0.5 h	ours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
13.67 fe	eet	E_{FC} = elevation of the bottom of the filter course material ²	
12.67 fe	eet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
16.40 fe	eet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
12.40 fe	eet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
1.00 fe	eet	$D_{FC \text{ to } UD}$ = depth to UD from the bottom of the filter course	← ≥ 1'
1.27 fe	eet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← <u>></u> 1'
(2.73) fe	eet	$D_{FC \text{ to SHWT}}$ = depth to SHWT from the bottom of the filter course	← ≥ 1'
16.11 ft		Peak elevation of the 50-year storm event (infiltration can be used in a	nalysis)
17.00 ft		Elevation of the top of the practice	•
YES		50 peak elevation \leq Elevation of the top of the practice	← yes
If a surface s	sand filter	or underground sand filter is proposed:	
YES ac	c	Drainage Area check.	← < 10 ac
cf	f	$V = volume of storage^{3}$ (attach a stage-storage table)	← <u>></u> 75%WQV
			← 18", or 24" if
in	nches	D_{FC} = filter course thickness	within GPA
Sheet		Note what sheet in the plan set contains the filter course specification	
		Access grate provided?	← yes
ľ	CS/1NO	Access grate provided?	v yus

If a bioretention area is proposed:

If a biorecention are		
YES ac	Drainage Area no larger than 5 ac?	← yes
1,209 cf	$V = volume of storage^{3}$ (attach a stage-storage table)	$\leftarrow \geq WQV$
inches 18.0	D_{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet CD511	Note what sheet in the plan set contains the filter course specification	
3.0 :1	Pond side slopes	← <u>>3</u> :1
Sheet	Note what sheet in the plan set contains the planting plans and surface	e cover
If porous pavement	is proposed:	
	Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
acres	A_{SA} = surface area of the pervious pavement	
#DIV/0! :1	ratio of the contributing area to the pervious surface area	← 5:1
inches	D_{FC} = filter course thickness	← 12", or 18" if within GPA
Sheet L SHTS	Note what sheet in the plan set contains the filter course spec.	← 304.1 sand

1. Rate of the limiting layer (either the filter course or the underlying soil). See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

System Is Lined with UnderDrain

NHDES Alteration of Terrain

Last Revised: May 2018

Proposed

Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
15.50	1,013	0	16.24	1,304	856	16.98	1,611	1,934
15.52	1,021	20	16.26	1,312	882	17.00	1,620	1,966
15.54	1,028	41	16.28	1,320	909			
15.56	1,036	61	16.30	1,328	935			
15.58	1,043	82	16.32	1,336	962			
15.60	1,051	103	16.34	1,345	989			
15.62	1,058	124	16.36	1,353	1,016			
15.64	1,066	146	16.38	1,361	1,043			
15.66	1,074	167	16.40	1,369	1,070			
15.68	1,082	188	16.42	1,378	1,098			
15.70	1,089	210	16.44	1,386	1,125			
15.72	1,097	232	16.46	1,394	1,153			
15.74	1,105	254	16.48	1,403	1,181			
15.76	1,113	276	16.50	1,411	1,209			
15.78	1,121	299	16.52	1,419	1,237			
15.80	1,129	321	16.54	1,427	1,266			
15.82	1,136	344	16.56	1,435	1,295			
15.84	1,144	367	16.58	1,443	1,323			
15.86	1,152	389	16.60	1,452	1,352			
15.88	1,160	413	16.62	1,460	1,381			
15.90	1,168	436	16.64	1,468	1,411			
15.92	1,176	459	16.66	1,476	1,440			
15.94	1,185	483	16.68	1,485	1,470			
15.96	1,193	507	16.70	1,493	1,499			
15.98	1,201	531	16.72	1,501	1,529			
16.00	1,209	555	16.74	1,510	1,560			
16.02	1,217	579	16.76	1,518	1,590			
16.04	1,225	603	16.78	1,526	1,620			
16.06	1,232	628	16.80	1,535	1,651			
16.08	1,240	653	16.82	1,543	1,682			
16.10	1,248	678	16.84	1,552	1,713			
16.12	1,256	703	16.86	1,560	1,744			
16.14	1,264	728	16.88	1,569	1,775			
16.16	1,272	753	16.90	1,577	1,806			
16.18	1,280	779	16.92	1,586	1,838			
16.20	1,288	804	16.94	1,594	1,870			
16.22	1,296	830	16.96	1,603	1,902			
		I			I			

Stage-Area-Storage for Pond 27 BRB1:

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

BIORETENTION BASIN 2

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable

0.29 0.19 acA = Area draining to the practice0.19 0.65A ₁ = Impervious area draining to the practice0.65 0.66decimal unitesI = percent impervious area draining to the practice, in decimal form0.64 0.64 0.19ac maxRv = Runoff coefficient = 0.05 + (0.9 x I)0.19 0.19ac offWQV = 1" x Rv x A675 67 67WQV conversion (ac-in x 43,560 sf/ac x 1f/12")169 506 cf25% x WQV (check calc for sediment forebay volume)506 506 75% x WQV (check calc for surface sand filter volume)Flow-Through Device PewiceMethod of Pretreatment? (not required for clean or roof runoff)169 2.820 sfA _{SA} = surface area of the practice2.41 2.820 YES Yes/NoIf I _{DESIGN} = design infiltration rate ¹ 12. hours 10.667 10.67 16 feetInceston of the bottom of the filter course material ² 15.67 (feetE _{IC} = elevation of the underdrain (UD), if applicable20.40 20.40 (feetE _{SINVT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)17.73 10.00 (feetD _{RCK without bedrock form the bottom of the filter course MC work from the bottom of the filter course $€ ≥ 1'$18.28 19.00 19ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00 19.00 19Elevation of the top of the practice S0 peak elevation $≤ E \ge 1'$18.28 19.00 10ftElevation of the top of the practice S0 peak elevation $≤ E \ge 1'$19.00 10Elevation of t}	VAS		Have you reviewed the restrictions on unlined systems outlined in Env-W	a 1508 07(a)?
0.19 0.19 acA _I = Impervious area draining to the practice0.65 0.65 0.64 0.19 0.19 ac-inI = percent impervious area draining to the practice, in decimal form0.64 0.19 0.19 ac-inRv = Runoff coefficient = 0.05 + (0.9 x I)0.19 0.19 ac-inWQV = 1" x Rv x A675 675WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")169 cfcf25% x WQV (check calc for sediment forebay volume) 506 cf506 cf75% x WQV (check calc for surface sand filter volume)Flow-Through Device Perover 2.826 sfMethod of Pretreatment? (not required for clean or roof runoff)169 cfV_{SED} = sediment forebay volume, if used for pretreatment the practice2.41 iphiphJDESIGN = design infiltration rate1YES Yes/NoIf IDESIGN = design infiltration rate1YES volumeTDRAIN = drain time = V / (AsA * 1DESIGN) the tot of the bottom of the filter course materia1216.67 if eet Erc = elevation of the bottom of the filter course materia1217.73 if eet Courd = depth to UD from the bottom of the filter course $\notin \geq 1^{1}$ 10.00 if eet Courd = depth to UD from the bottom of the filter course $\notin \geq 1^{1}$ 17.03 if eet is courd = depth to SHWT from the bottom of the filter course $\notin \geq 1^{1}$ 18.28 if th Peak elevation of the 50-year storm event (infiltration can be used in analysis)19.00 if the surface sand filter or underground sand filter is proposed:YES is 0 prainage Area check. $< < 10 ac< > 75\%WQV< < 10 ac$	yes			q 1508.07(a)?
0.65decimal unitlessI = percent impervious area draining to the practice, in decimal form0.64unitlessRv = Runoff coefficient = 0.05 + (0.9 x I)0.19ac-inWQV = 1" x Rv x A675cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")169cf25% x WQV (check calc for sediment forebay volume)506cf75% x WQV (check calc for surface sand filter volume)Flow-Through DeviceMethod of Pretreatment? (not required for clean or roof runoff)169cfV _{SED} = sediment forebay volume, if used for pretreatment2,826sfA _{SA} = surface area of the practice2,41iphIb_DESIGN = design infiltration rate ¹ YESYes/NoIf I_DESIGN = design infiltration rate ¹ 16.67feet $E_{rc} =$ elevation of the bottom of the filter course material ² 15.67feet $E_{rc} =$ elevation of SHWT (if none found, enter the lowest elevation of the test pit)17.73feet $D_{FC to UD} =$ depth to UD from the bottom of the filter course16.06feetDer to ROCK = depth to bedrock from the bottom of the filter course18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the op of the practiceYESs0 peak elevation ≤ they of the practice ≤ 1 "17.73feetDrec				
0.64unitless $Rv = Runoff coefficient = 0.05 + (0.9 x I)$ 0.19ac-inWQV=1" x Rv x A675cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")169cf25% x WQV (check calc for surface sand filter volume)506r75% x WQV (check calc for surface sand filter volume)Flow-Through DeviceMethod of Pretreatment? (not required for clean or roof runoff)169cfV _{SED} = sediment forebay volume, if used for pretreatment2,826sf $A_{SA} = surface area of the practice2.41iphIpesston = design infiltration rate111Jpesston = design infiltration rate1YESYes/NoIf Ipesston is < 0.50 iph, has an underdrain been provided?1.2hoursTDRAIN = drain time = V / (A_{SA} * I_{DESION})6.67feetE_{rC} = elevation of the bottom of the filter course material215.67feetE_{rC} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)17.73feetB_{OCCK} = depth to UD from the bottom of the filter course\neq \geq 1^{\circ}D_{FC to UD} = depth to UD from the bottom of the filter course\neq \geq 1^{\circ}D_{FC to BOCK} = depth to SHWT from the bottom of the filter course\neq \geq 1^{\circ}D_{FC to BOCK} = depth to SHWT from the bottom of the filter course\neq \geq 1^{\circ}D_{FC to BOCK} = depth to SHWT from the bottom of the filter course\neq \geq 1^{\circ}D_{FC to BOCK} = depth to SHWT from the bottom of the filter course\neq \geq 1^{\circ}D_{FC to BOCK} = depth to SHWT from the bottom of the filter$				
0.19 ac-inWQV=1" x Rv x A675 675cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")169 506cf25% x WQV (check calc for sediment forebay volume)506 50775% x WQV (check calc for surface sand filter volume)Flow-Through DeviceMethod of Pretreatment? (not required for clean or roof runoff)169 2,826cfV _{SED} = sediment forebay volume, if used for pretreatment2,826 2,826sfA _{SA} = surface area of the practice2,41 2,827iphI _{DESIGN} = design infiltration rate ¹ YES YES 16.67 16.67fetE _{RC} = elevation of the bottom of the filter course material ² 16.67 15.67 16.64fetE _{RC} = elevation of the underdrain (UD), if applicable20.40 20.40 17.73 16etE _{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)17.73 16.67 17.73 16etD _{RC to DD} = depth to UD from the bottom of the filter course the filter course the 2 1'1.00 10.00 10.00 17.73 16etD _{RC to DD} = depth to Bdrock from the bottom of the filter course the 2 1'1.00 19.00 11.00 19.00 16tD _{RC to DRCK} = depth to BHWT from the bottom of the filter course the 2 1'18.28 19.00 17ft 10.84 elevation ≤ Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practiceYES 19.00 16tElevation of the practice 50 peak elevation ≤ Elevation of the top of the practice 50 peak elevation ≤ Elevation of the top of the practice 50 peak elevat				
675cfWQV conversion (ac-in x 43,560 sf/ac x 1ft/12")169cf25% x WQV (check calc for sediment forebay volume)506cf75% x WQV (check calc for surface sand filter volume)Flow-Through DeviceMethod of Pretreatment? (not required for clean or roof runoff)169cf V_{SED} = sediment forebay volume, if used for pretreatment $< \leq 25\%$ WQV2,826sf A_{SA} = surface area of the practice2.41iph I_{DESIGN} = design infiltration rate ¹ YESYes/NoIf I_{DESIGN} is < 0.50 iph, has an underdrain been provided?				
169cf25% x WQV (check calc for sediment forebay volume)506cf75% x WQV (check calc for surface sand filter volume)Flow-Through DeviceMethod of Pretreatment? (not required for clean or roof runoff)169cf V_{SED} = sediment forebay volume, if used for pretreatment $= 25\%$ WQV2,826sf A_{SA} = surface area of the practice2.41iph I_{DESIGN} = design infiltration rate ¹ YESYes/NoIf I_{DESIGN} = design infiltration rate ¹ 1.2hours T_{DRAIN} = drain time = $V / (A_{SA} * I_{DESIGN})$ 16.67feet E_{FC} = elevation of the bottom of the filter course material ² 15.67feet E_{UD} = invert elevation of the underdrain (UD), if applicable20.40feet E_{SHWT} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.7.73feet E_{ROCK} = elevation of bedrock from the bottom of the filter course(1.06)feet $D_{FC to UD}$ = depth to UD from the bottom of the filter course(1.06)feet $D_{FC to BOKK}$ = depth to SHWT from the bottom of the filter course(1.06)feet $D_{FC to BOKK}$ = depth to SHWT from the bottom of the filter course(2.73)feetfeet elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYESs0 peak elevation \leq Elevation of the top of the practiceYESacDrainage Area check.(cfV = volume of storage ³ (attach a stage-storage table) <t< td=""><td></td><td></td><td>-</td><td></td></t<>			-	
506cf75% x WQV (check calc for surface sand filter volume)Flow-Through DeviceMethod of Pretreatment? (not required for clean or roof runoff)169cf V_{SED} = sediment forebay volume, if used for pretreatment 2.826 sf A_{SA} = surface area of the practice2.41iph I_{DESIGN} = design infiltration rate ¹ YESYes/NoIf I_{DESIGN} is < 0.50 iph, has an underdrain been provided?				
Flow-Through DeviceMethod of Pretreatment? (not required for clean or roof runoff)169cf V_{SED} = sediment forebay volume, if used for pretreatment $\bigstar \ge 25\%WQV$ 2,826sf A_{SA} = surface area of the practice2.412,41iph I_{DESIGN} = design infiltration rate ¹ YESYESYes/NoIf I_{DESIGN} is < 0.50 iph, has an underdrain been provided?			· · ·	
169cf V_{SED} = sediment forebay volume, if used for pretreatment $\Leftarrow \ge 25\%WQV$ 2,826sf A_{SA} = surface area of the practice2.41iph I_{DESIGN} = design infiltration rate ¹ YESYes/NoIf I_{DESIGN} is < 0.50 iph, has an underdrain been provided?				
2,826sf A_{SA} = surface area of the practice2.41iph I_{DESIGN} = design infiltration rate ¹ YESYes/NoIf I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	Flow-Throu	gh Device	Method of Pretreatment? (not required for clean or roof runoff)	
2.41iph $I_{DESIGN} = design infiltration rate^1$ YESYes/NoIf I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	169 c	ef	V_{SED} = sediment forebay volume, if used for pretreatment	← <u>></u> 25%WQV
YESYes/NoIf I_{DESIGN} is < 0.50 iph, has an underdrain been provided?1.2hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ $\bigstar \leq 72$ -hrs16.67feet $E_{FC} = elevation of the bottom of the filter course material215.67feetE_{UD} = invert elevation of the underdrain (UD), if applicable20.40feetE_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)17.73feetE_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feetD_{FC to UD} = depth to UD from the bottom of the filter course(1.06)feetD_{FC to NOCK} = depth to bedrock from the bottom of the filter course(3.73)feetD_{FC to SHWT} = depth to SHWT from the bottom of the filter course(3.73)feetD_{FC to SHWT} = depth to SHWT from the bottom of the filter course(4.23)(4.23)(5.24)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)feet(7.33)(7.33)$	2,826 s	sf	A_{SA} = surface area of the practice	
1.2hours $T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$ \bigstar 16.67feet $E_{FC} = elevation of the bottom of the filter course material^215.67feetE_{UD} = invert elevation of the underdrain (UD), if applicable20.40feetE_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)17.73feetE_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feetD_{FC to UD} = depth to UD from the bottom of the filter course\bigstar 21'(1.06) feetD_{FC to NOCK} = depth to bedrock from the bottom of the filter course\checkmark 21'(1.06) feetD_{FC to NOCK} = depth to SHWT from the bottom of the filter course\checkmark 21'(1.06) feetD_{FC to SHWT} = depth to SHWT from the bottom of the filter course\checkmark 21'(1.828) ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practiceYESacDrainage Area check.\checkmark 4''\checkmark 27'' attach a stage-storage table)\leftarrow 27'' attach\leftarrow 27'' attach\checkmark 18'', or 24''' if$	2.41 i	iph	$I_{DESIGN} = design infiltration rate1$	
16.67feet E_{FC} = elevation of the bottom of the filter course material ² 15.67feet E_{UD} = invert elevation of the underdrain (UD), if applicable20.40feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)17.73feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)100feet $D_{FC to UD}$ = depth to UD from the bottom of the filter course(1.06)feet $D_{FC to ROCK}$ = depth to bedrock from the bottom of the filter course(3.73)feet $D_{FC to SHWT}$ = depth to SHWT from the bottom of the filter course(3.73)feet $D_{FC to SHWT}$ = depth to SHWT from the bottom of the filter course(3.73)feet $D_{FC to BHWT}$ = depth to SHWT from the bottom of the filter course(4.82)ftPeak elevation of the top of the practiceYES50 peak elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \leftarrow < 10 ac	YES Y	Yes/No	If I_{DESIGN} is < 0.50 iph, has an underdrain been provided?	
15.67feet E_{UD} = invert elevation of the underdrain (UD), if applicable20.40feet E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the test pit)17.73feet E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD}$ = depth to UD from the bottom of the filter course $\boldsymbol{\leftarrow} \geq 1'$ (1.06)feet $D_{FC to ROCK}$ = depth to bedrock from the bottom of the filter course $\boldsymbol{\leftarrow} \geq 1'$ (3.73)feet $D_{FC to SHWT}$ = depth to SHWT from the bottom of the filter course $\boldsymbol{\leftarrow} \geq 1'$ 18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50peak elevation \leq Elevation of the top of the practiceYESacDrainage Area check. $\boldsymbol{\leftarrow} < 10 \text{ ac}$ cfV = volume of storage ³ (attach a stage-storage table) $\boldsymbol{\leftarrow} \geq 75\% WQV$ $\boldsymbol{\leftarrow} 18"$, or 24" if	1.2 ł	hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> 72-hrs
20.40feet $E_{SHWT} =$ elevation of SHWT (if none found, enter the lowest elevation of the test pit)17.73feet $E_{ROCK} =$ elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD} =$ depth to UD from the bottom of the filter course $\leftarrow \ge 1'$ (1.06)feet $D_{FC to ROCK} =$ depth to bedrock from the bottom of the filter course $\leftarrow \ge 1'$ (3.73)feet $D_{FC to SHWT} =$ depth to SHWT from the bottom of the filter course $\leftarrow \ge 1'$ 18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50peak elevation \le Elevation of the top of the practiceYESacDrainage Area check. $\leftarrow cf$ V = volume of storage ³ (attach a stage-storage table) $\leftarrow \ge 75\% WQV$ $\leftarrow 18"$, or 24" if	16.67 f	feet	E_{FC} = elevation of the bottom of the filter course material ²	
17.73feet $E_{ROCK} =$ elevation of bedrock (if none found, enter the lowest elevation of the test pit)1.00feet $D_{FC to UD} =$ depth to UD from the bottom of the filter course $\leftarrow \ge 1'$ (1.06)feet $D_{FC to ROCK} =$ depth to bedrock from the bottom of the filter course $\leftarrow \ge 1'$ (3.73)feet $D_{FC to SHWT} =$ depth to SHWT from the bottom of the filter course $\leftarrow \ge 1'$ 18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50peak elevation \le Elevation of the top of the practiceYES50peak elevation \le Elevation of the top of the practiceYEScDrainage Area check. \leftarrow < 10 ac	15.67 f	feet	E_{UD} = invert elevation of the underdrain (UD), if applicable	
1.00feet $D_{FC to UD} = depth to UD from the bottom of the filter course\leftarrow \ge 1'(1.06)feetD_{FC to ROCK} = depth to bedrock from the bottom of the filter course\leftarrow \ge 1'(3.73)feetD_{FC to ROCK} = depth to SHWT from the bottom of the filter course\leftarrow \ge 1'(3.73)feetD_{FC to SHWT} = depth to SHWT from the bottom of the filter course\leftarrow \ge 1'18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50 peak elevation \le Elevation of the top of the practice\leftarrow yesIf a surface sand filter or underground sand filter is proposed:\leftarrow < 10 acYESacDrainage Area check.\leftarrow < 10 ac\leftarrow < 10 ac\leftarrow > 75\% WQV\leftarrow = 18", or 24" if$	20.40 f	feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation	of the test pit)
1.00feet $D_{FC to UD}$ = depth to UD from the bottom of the filter course $\leftarrow \ge 1'$ (1.06)feet $D_{FC to ROCK}$ = depth to bedrock from the bottom of the filter course $\leftarrow \ge 1'$ (3.73)feet $D_{FC to ROCK}$ = depth to SHWT from the bottom of the filter course $\leftarrow \ge 1'$ 18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50 peak elevation \le Elevation of the top of the practice $\leftarrow yes$ If a surface sand filter or underground sand filter is proposed: $\leftarrow < 10 \text{ ac}$ eft $V =$ volume of storage ³ (attach a stage-storage table) $\leftarrow < 275\%WQV$ $\leftarrow < 18", or 24"$ if	17.73 f	feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation	n of the test pit)
(3.73)feet $D_{FC to SHWT} = depth to SHWT from the bottom of the filter course\leftarrow \ge 1'18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50 peak elevation \le Elevation of the top of the practiceYES50 peak elevation \le Elevation of the top of the practiceYES50 peak elevation \le Elevation of the top of the practiceYESacDrainage Area check.\leftarrow < 10 accfV = volume of storage3 (attach a stage-storage table)\leftarrow = 75\%WQV\leftarrow = 18", or 24" if$	1.00 f	feet		—
18.28 19.00 ftftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00 FtElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practiceYESacDrainage Area check. \leftarrow < 10 accfV = volume of storage ³ (attach a stage-storage table) \leftarrow > 75%WQV \leftarrow 18", or 24" if	(1.06) f	feet	$D_{FC \text{ to } ROCK}$ = depth to bedrock from the bottom of the filter course	← <u>></u> 1'
18.28ftPeak elevation of the 50-year storm event (infiltration can be used in analysis)19.00ftElevation of the top of the practiceYES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \leftarrow < 10 ac	(3.73) f	feet	$D_{FC \text{ to SHWT}}$ = depth to SHWT from the bottom of the filter course	← ≥ 1'
19.00ftElevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \leftarrow < 10 acYESacDrainage Area check. \leftarrow < 10 accfV = volume of storage ³ (attach a stage-storage table) \leftarrow > 75%WQV \leftarrow 18", or 24" if				(nalysis)
YES50 peak elevation \leq Elevation of the top of the practice \leftarrow yesIf a surface sand filter or underground sand filter is proposed: \leftarrow < 10 acYESacDrainage Area check. \leftarrow < 10 accfV = volume of storage ³ (attach a stage-storage table) \leftarrow > 75%WQV \leftarrow 18", or 24" if			•	. .
YESacDrainage Area check. $\leftarrow < 10 \text{ ac}$ cfV = volume of storage ³ (attach a stage-storage table) $\leftarrow > 75\%WQV$ $\leftarrow 18"$, or 24" if	YES			← yes
cf V = volume of storage3 (attach a stage-storage table) ← ≥ 75%WQV ← 18", or 24" if ← 18"	If a surface	sand filter	r or underground sand filter is proposed:	
← 18", or 24" if	YES a	ac	Drainage Area check.	← < 10 ac
	C	ef	V = volume of storage ³ (attach a stage-storage table)	← <u>></u> 75%WQV
inches $D_{ro} = filter$ course thickness within CDA				← 18", or 24" if
$\mathbf{W}(\mathbf{U}) = \mathbf{W}(\mathbf{U}) = \mathbf{W}(\mathbf{W}(\mathbf{U}) = \mathbf{W}(\mathbf{W}) $	i	inches	D_{FC} = filter course thickness	within GPA
Sheet Note what sheet in the plan set contains the filter course specification	Sheet		Note what sheet in the plan set contains the filter course specification	
Yes/No Access grate provided?				← yes

If a bioretention area is proposed:

If a bioretention a		
YES ac	Drainage Area no larger than 5 ac?	← yes
1,774 cf	V = volume of storage ³ (attach a stage-storage table)	$\leftarrow \geq WQV$
inches 18.0	D_{FC} = filter course thickness	← 18", or 24" if within GPA
Sheet CD5	11 Note what sheet in the plan set contains the filter course specification	ation
3.0 :1	Pond side slopes	← <u>>3</u> :1
Sheet L SHT	US Note what sheet in the plan set contains the planting plans and su	urface cover
If porous pavemen	t is proposed:	
	Type of pavement proposed (concrete? Asphalt? Pavers? Etc)	
acres	A_{SA} = surface area of the pervious pavement	
#DIV/0! :1	ratio of the contributing area to the pervious surface area	← 5:1
inches	D_{FC} = filter course thickness	← 12", or 18" if within GPA
Sheet	Note what sheet in the plan set contains the filter course spec.	← 304.1 sand

1. Rate of the limiting layer (either the filter course or the underlying soil). See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.

Designer's Notes:

NHDES Alteration of Terrain

Last Revised: May 2018

Proposed

Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 41 BRB2:

Elevation	Surface	Storage	Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
17.50	1,563	0	18.24	1,877	1,272	18.98	2,206	2,782
17.52	1,571	31	18.26	1,886	1,309	19.00	2,215	2,826
17.54	1,579	63	18.28	1,895	1,347	19.02	2,215	2,826
17.56	1,588	95	18.30	1,903	1,385	19.04	2,215	2,826
17.58	1,596	126	18.32	1,912	1,423	19.06	2,215	2,826
17.60	1,604	158	18.34	1,921	1,462	19.08	2,215	2,826
17.62	1,612	191	18.36	1,930	1,500	19.10	2,215	2,826
17.64	1,621	223	18.38	1,939	1,539	19.12	2,215	2,826
17.66	1,629	255	18.40	1,947	1,578	19.14	2,215	2,826
17.68	1,637	288	18.42	1,956	1,617	19.16	2,215	2,826
17.70	1,646	321	18.44	1,965	1,656	19.18	2,215	2,826
17.72	1,654	354	18.46	1,974	1,695	19.20	2,215	2,826
17.74	1,663	387	18.48	1,983	1,735	19.22	2,215	2,826
17.76	1,671	420	18.50	1,992	1,775	19.24	2,215	2,826
17.78	1,680	454	18.52	2,001	1,815	19.26	2,215	2,826
17.80	1,688	488	18.54	2,009	1,855	19.28	2,215	2,826
17.82	1,697	521	18.56	2,018	1,895	19.30	2,215	2,826
17.84	1,705	555	18.58	2,027	1,935	19.32	2,215	2,826
17.86	1,714	590	18.60	2,036	1,976	19.34	2,215	2,826
17.88	1,722	624	18.62	2,044	2,017	19.36	2,215	2,826
17.90	1,731	658	18.64	2,053	2,058	19.38	2,215	2,826
17.92	1,739	693	18.66	2,062	2,099	19.40	2,215	2,826
17.94	1,748	728	18.68	2,071	2,140	19.42	2,215	2,826
17.96	1,757	763	18.70	2,080	2,182	19.44	2,215	2,826
17.98	1,765	798	18.72	2,089	2,223	19.46	2,215	2,826
18.00	1,774	834	18.74	2,098	2,265	19.48	2,215	2,826
18.02	1,782	869	18.76	2,106	2,307	19.50	2,215	2,826
18.04	1,791	905	18.78	2,115	2,350			
18.06	1,799	941	18.80	2,124	2,392			
18.08	1,808	977	18.82	2,133	2,435			
18.10	1,817	1,013	18.84	2,142	2,477			
18.12	1,825	1,050	18.86	2,151	2,520			
18.14	1,834	1,086	18.88	2,160	2,563			
18.16	1,842	1,123	18.90	2,169	2,607			
18.18	1,851	1,160	18.92	2,179	2,650			
18.20	1,860	1,197	18.94	2,188	2,694			
18.22	1,868	1,234	18.96	2,197	2,738			
		I				l		

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Underground Infiltration Basin #1

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	
0.85 ac	A = Area draining to the practice	
0.85 ac	$A_I =$ Impervious area draining to the practice	
1.00 decimal	I = percent impervious area draining to the practice, in decimal form	
0.95 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.81 ac-in	WQV= 1" x Rv x A	
2,940 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
735 cf	25% x WQV (check calc for sediment forebay volume)	
N/A	Method of pretreatment? (not required for clean or roof runoff)	
- cf	V_{SED} = sediment forebay volume, if used for pretreatment	← <u>></u> 25%WQV
1,100 cf	$V = volume^{1}$ (attach a stage-storage table)	← <u>></u> WQV
3,889 sf	A_{SA} = surface area of the bottom of the pond	
0.97 iph	$I_{DESIGN} = design infiltration rate2$	
3.5 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> /2-nrs
20.50 feet	E_{BTM} = elevation of the bottom of the basin	
17.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the t	est pit)
13.80 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the	
3.50 feet	D_{SHWT} = separation from SHWT	← ≥ * ³
6.7 feet	D_{ROCK} = separation from bedrock	$\leftarrow \geq *^3$
N/A ft	$D_{amend} = Depth$ of amended soil, if applicable due high infiltation rate	← ≥ 24''
N/A ft	D_{T} = depth of trench, if trench proposed	← 4 - 10 ft
Yes Yes/No	If a trench or underground system is proposed, observation well provided ⁴	
N/A	If a trench is proposed, material in trench	
Stone	If a basin is proposed, basin floor material	
No Yes/No	If a basin is proposed, the perimeter should be curvilinear, basin floor shall be	
0.0:1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
22.20 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
23.48 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
24.00 ft	_Elevation of the top of the practice (if a basin, this is the elevation of the bern	ı)
YES	10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes
1 Volume holow th	be lowest invert of the outlet structure and excludes forebay volume	

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See Env-Wq 1504.14 for requirements for determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Underground Infiltration Basin #2

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	
0.65 ac	A = Area draining to the practice	
0.65 ac	A_{I} = Impervious area draining to the practice	
1.00 decimal	I = percent impervious area draining to the practice, in decimal form	
0.95 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
0.62 ac-in	WQV= 1" x Rv x A	
2,258 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
564 cf	25% x WQV (check calc for sediment forebay volume)	
N/A	Method of pretreatment? (not required for clean or roof runoff)	
- cf	V_{SED} = sediment forebay volume, if used for pretreatment	← <u>></u> 25%WQV
639 cf	$V = volume^{1}$ (attach a stage-storage table)	← <u>></u> WQV
2,264 sf	A_{SA} = surface area of the bottom of the pond	
0.97 iph	$I_{\text{DESIGN}} = \text{design infiltration rate}^2$	
3.5 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> /2-nrs
18.00 feet	E_{BTM} = elevation of the bottom of the basin	
17.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the	test pit)
16.20 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the	e test pit)
1.00 feet	D_{SHWT} = separation from SHWT	← ≥ * ³
1.8 feet	D _{ROCK} = separation from bedrock	$\leftarrow \geq *^3$
N/A ft	D_{amend} = Depth of amended soil, if applicable due high infiltation rate	← ≥ 24"
N/A ft	D_{T} = depth of trench, if trench proposed	← 4 - 10 ft
Yes Yes/No	If a trench or underground system is proposed, observation well provided ⁴	
N/A	If a trench is proposed, material in trench	
Stone	If a basin is proposed, basin floor material	
No Yes/No	If a basin is proposed, the perimeter should be curvilinear, basin floor shall be	e flat.
0.0 :1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
19.64 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)
20.46 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)
21.50 ft	Elevation of the top of the practice (if a basin, this is the elevation of the berr	n)
YES	10 peak elevation \leq Elevation of the top of the trench? ⁵	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes
1 Volumo bolow th	ne lowest invert of the outlet structure and excludes forebay volume	

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See Env-Wq 1504.14 for requirements for determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

INFILTRATION PRACTICE CRITERIA (Env-Wq 1508.06)

Type/Node Name: Underground Infiltration Basin #3

Enter the type of infiltration practice (e.g., basin, trench) and the node name in the drainage analysis, if applicable

Yes	Have you reviewed Env-Wq 1508.06(a) to ensure that infiltration is allowed?	
2.10 ac	A = Area draining to the practice	
1.48 ac	A_{I} = Impervious area draining to the practice	
0.71 decimal	I = percent impervious area draining to the practice, in decimal form	
0.68 unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
1.44 ac-in	WQV=1" x Rv x A	
5,216 cf	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
1,304 cf	25% x WQV (check calc for sediment forebay volume)	
Deep Sump CB	Method of pretreatment? (not required for clean or roof runoff)	
- cf	V_{SED} = sediment forebay volume, if used for pretreatment	← <u>></u> 25%WQV
2,469 cf	$V = volume^{1}$ (attach a stage-storage table)	← <u>></u> WQV
8,686 sf	A_{SA} = surface area of the bottom of the pond	
0.97 iph	$I_{DESIGN} = design infiltration rate2$	
3.5 hours	$T_{DRAIN} = drain time = V / (A_{SA} * I_{DESIGN})$	← <u><</u> /2-nrs
18.00 feet	E_{BTM} = elevation of the bottom of the basin	
17.00 feet	E_{SHWT} = elevation of SHWT (if none found, enter the lowest elevation of the te	est pit)
16.20 feet	E_{ROCK} = elevation of bedrock (if none found, enter the lowest elevation of the	test pit)
1.00 feet	D_{SHWT} = separation from SHWT	$\leftarrow \geq * $ ³
1.8 feet	D_{ROCK} = separation from bedrock	$\leftarrow \geq *^3$
N/A ft	D_{amend} = Depth of amended soil, if applicable due high infiltation rate	← <u>></u> 24"
N/A ft	D_{T} = depth of trench, if trench proposed	← 4 - 10 ft
Yes Yes/No	If a trench or underground system is proposed, observation well provided ⁴	
N/A	If a trench is proposed, material in trench	
Stone	If a basin is proposed, basin floor material	
No Yes/No	If a basin is proposed, the perimeter should be curvilinear, basin floor shall be	
0.0:1	If a basin is proposed, pond side slopes	← <u>></u> 3:1
19.92 ft	Peak elevation of the 10-year storm event (infiltration can be used in analysis)	
21.42 ft	Peak elevation of the 50-year storm event (infiltration can be used in analysis)	
21.50 ft	_Elevation of the top of the practice (if a basin, this is the elevation of the berm)
YES	10 peak elevation \leq Elevation of the top of the trench?	← yes
YES	If a basin is proposed, 50-year peak elevation \leq Elevation of berm?	← yes
1 Voluma bolow th	be lowest invert of the outlet structure and excludes forebay volume	

1. Volume below the lowest invert of the outlet structure and excludes forebay volume

2. See Env-Wq 1504.14 for requirements for determining the infiltration rate

3. 1' separation if treatment not required; 4' for treatment in GPAs & WSIPAs; & 3' in all other areas.

4. Clean, washed well graded diameter of 1.5 to 3 inches above the in-situ soil.

5. If 50-year peak elevation exceeds top of trench, the overflow must be routed in HydroCAD as secondary discharge.

Designer's Notes:

Appendix F

Hydrologic Analysis

Appendix F1

NRCC Extreme Precipitation Tables

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

Smoothing	Yes
State	New Hampshire
Location	
Longitude	70.776 degrees West
Latitude	43.068 degrees North
Elevation	0 feet
Date/Time	Thu, 12 Apr 2018 14:10:02 -0400

Extreme Precipitation Estimates

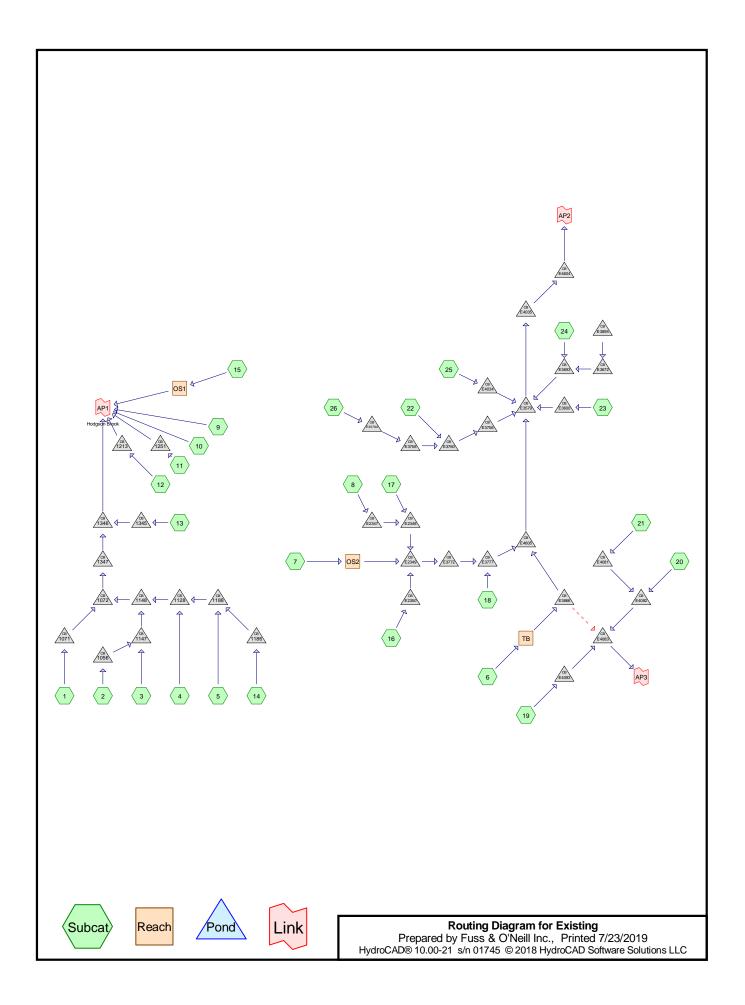
	_																				
	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12h	24hr	8hr		1day	2day	4day	7day	10day	
1yr	0.26	0.40	0.50	0.65	0.81	1.04	1yr	0.70	0.98	1.21	1.56	2.03	2.66	2.92	1yr	2.35	2.81	3.22	3.94	4.55	1yr
2yr	0.32	0.50	0.62	0.81	1.02	1.30	2yr	0.88	1.18	1.52	1.94	2.49	3.21	.57	2yr	2.84	3.43	3.94	4.68	5.33	2yr
5yr	0.37	0.58	0.73	0.97	1.25	1.60	5yr	1.08	1.46	1.88	2.43	3.14	4.07	.58	5yr	3.60	4.40	5.04	5.93	6.70	5yr
10yr	0.41	0.65	0.82	1.11	1.45	1.89	10yr	1.25	1.72	2.23	2.89	3.7:	4.87	.53	10yr	4.31	5.32	6.08	7.11	7.98	10yr
25yr	0.48	0.76	0.96	1.33	1.77	2.33	25yr	1.53	2.14	2.77	3.62	4.74	6.17	.10	25yr	5.46	6.83	7.80	9.02	10.05	25yr
50yr	0.53	0.86	1.10	1.53	2.06	2.75	50yr	1.78	2.52	3.28	4.32	5.60	7.39	.58	50yr	6.54	8.25	9.42	10.81	11.98	50yr
100yr	0.59	0.96	1.24	1.76	2.41	3.24	100yr	2.08	2.97	3.89	5.15	6.70	8.86	0.38	100yr	7.84	9.98	11.37	12.96	14.28	100yr
200yr	0.67	1.10	1.42	2.04	2.81	3.82	200yr	2.43	3.50	4.60	6.11	8.0′	10.61	2.55	200yr	9.39	12.07	13.74	15.55	17.04	200yr
500yr	0.79	1.31	1.70	2.47	3.46	4.74	500yr	2.98	4.36	5.74	7.68	10.2	13.49	6.15	500yr	11.94	15.53	17.65	19.78	21.52	500yr
													· · · · · ·								

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.23	0.36	0.44	0.59	0.73	0.89	1yr	0.63	0.87	0.92	1.32	1.67	2.22	2.51	1yr	1.97	2.41	2.86	3.16	3.88	1yr
2yr	0.31	0.49	0.60	0.81	1.00	1.19	2yr	0.86	1.16	1.37	1.82	2.34	3.06	3.45	2yr	2.70	3.32	3.82	4.55	5.08	2yr
5yr	0.35	0.54	0.67	0.92	1.17	1.40	5yr	1.01	1.37	1.61	2.12	2.74	3.79	4.20	5yr	3.36	4.04	4.72	5.54	6.25	5yr
10yr	0.39	0.59	0.73	1.03	1.33	1.60	10yr	1.14	1.56	1.81	2.39	3.06	4.38	4.87	10yr	3.87	4.69	5.45	6.42	7.21	10yr
25yr	0.44	0.67	0.83	1.19	1.56	1.90	25yr	1.35	1.86	2.10	2.76	3.54	4.70	5.91	25yr	4.16	5.69	6.67	7.81	8.70	25yr
50yr	0.48	0.73	0.91	1.31	1.77	2.17	50yr	1.52	2.12	2.35	3.08	3.94	5.31	6.83	50yr	4.70	6.57	7.76	9.07	10.04	50yr
100yr	0.54	0.81	1.02	1.47	2.01	2.47	100yr	1.74	2.42	2.63	3.43	4.37	5.96	7.89	100yr	5.27	7.59	9.02	10.54	11.59	100yr
200yr	0.59	0.89	1.13	1.64	2.28	2.82	200yr	1.97	2.75	2.94	3.80	4.82	6.67	9.12	200yr	5.90	8.77	10.49	12.27	13.41	200yr
500yr	0.69	1.02	1.32	1.91	2.72	3.37	500yr	2.35	3.29	3.41	4.34	5.49	7.75	11.03	500yr	6.86	10.61	12.81	15.02	16.23	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.28	0.44	0.54	0.72	0.89	1.08	1yr	0.77	1.06	1.26	1.74	2.21	2.99	3.15	1yr	2.65	3.03	3.58	4.38	5.05	1yr
2yr	0.34	0.52	0.64	0.86	1.06	1.27	2yr	0.92	1.24	1.48	1.96	2.51	3.43	3.70	2yr	3.03	3.56	4.08	4.83	5.64	2yr
5yr	0.40	0.62	0.76	1.05	1.33	1.62	5yr	1.15	1.58	1.88	2.53	3.25	4.34	4.95	5yr	3.84	4.76	5.37	6.36	7.14	5yr
10yr	0.47	0.72	0.89	1.24	1.61	1.97	10yr	1.39	1.93	2.28	3.10	3.94	5.34	6.19	10yr	4.72	5.95	6.79	7.82	8.74	10yr
25yr	0.57	0.87	1.09	1.55	2.04	2.56	25yr	1.76	2.50	2.95	4.06	5.13	7.81	8.31	25yr	6.91	7.99	9.10	10.31	11.39	25yr
50yr	0.67	1.02	1.27	1.82	2.45	3.12	50yr	2.11	3.05	3.59	4.99	6.29	9.78	10.41	50yr	8.66	10.01	11.37	12.69	13.93	50yr
100yr	0.78	1.19	1.49	2.15	2.94	3.79	100yr	2.54	3.71	4.36	6.14	7.72	12.25	13.04	100yr	10.84	12.54	14.20	15.65	17.05	100yr
200yr	0.92	1.38	1.75	2.53	3.53	4.63	200yr	3.05	4.52	5.32	7.55	9.47	15.38	16.35	200yr	13.61	15.72	17.75	19.28	20.87	200yr
500yr	1.14	1.69	2.18	3.16	4.50	6.00	500yr	3.88	5.87	6.90	9.98	12.44	20.79	22.06	500yr	18.40	21.21	23.87	25.41	27.28	500yr



Appendix F2.1

Pre-Development Hydrologic Analysis: Drainage Diagram, Area Listing & Soil Listing

Area Listing (all nodes)

Area (sq-ft)	CN	Description (subcatchment-numbers)
(3410)		
484	86	<50% Grass cover, Poor, HSG C (7)
87,893	74	>75% Grass cover, Good, HSG C (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21,
		22)
38,670	96	Gravel surface, HSG C (8, 9, 15)
391,636	98	Paved parking, HSG C (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
		20, 21, 22, 23, 24, 25)
54,274	98	Roofs, HSG C (1, 2, 3, 5, 6, 7, 14, 26)
75,567	70	Woods, Good, HSG C (8, 9, 10, 14, 15)
648,524	91	TOTAL AREA

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
648,524	HSG C	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26
0	HSG D	
0	Other	
648,524		TOTAL AREA

Existing Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Printed 7/23/2019 Page 4

		Groun	nd Covers (all	nodes)			
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatc
 (sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Number
 0	0	484	0	0	484	<50% Grass cover,	-
						Poor	
0	0	87,893	0	0	87,893	>75% Grass cover,	
						Good	
0	0	38,670	0	0	38,670	Gravel surface	
0	0	391,636	0	0	391,636	Paved parking	
0	0	54,274	0	0	54,274	Roofs	
0	0	75,567	0	0	75,567	Woods, Good	
0	0	648,524	0	0	648,524	TOTAL AREA	

/~II ----

Existing Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
1	1056	18.30	17.70	128.5	0.0047	0.025	12.0	0.0	0.0
2	1071	17.50	17.30	31.0	0.0065	0.025	12.0	0.0	0.0
3	1072	17.10	15.90	31.0	0.0387	0.025	15.0	0.0	0.0
4	1128	22.90	14.70	860.0	0.0095	0.025	12.0	0.0	0.0
5	1147	18.30	18.20	36.0	0.0028	0.025	12.0	0.0	0.0
6	1148	18.20	17.50	311.5	0.0022	0.025	12.0	0.0	0.0
7	1186	22.30	21.00	161.5	0.0080	0.025	12.0	0.0	0.0
8	1188	20.00	18.90	191.0	0.0058	0.025	12.0	0.0	0.0
9	1213	17.60	14.60	150.0	0.0200	0.025	12.0	0.0	0.0
10	1251	16.50	14.70	82.0	0.0220	0.025	18.0	0.0	0.0
11	1345	19.10	17.40	915.0	0.0019	0.025	12.0	0.0	0.0
12	1346	15.70	14.70	143.0	0.0070	0.025	15.0	0.0	0.0
13	1347	15.90	15.80	204.0	0.0005	0.025	15.0	0.0	0.0
14	E2347	9.70	9.80	72.5	-0.0014	0.013	15.0	0.0	0.0
15	E2348	9.80	9.10	15.1	0.0464	0.013	15.0	0.0	0.0
16	E2349	9.10	8.70	86.7	0.0046	0.013	15.0	0.0	0.0
17	E2350	10.40	10.30	19.3	0.0052	0.013	15.0	0.0	0.0
18	E3578A	9.00	7.90	11.2	0.0982	0.012	8.0	0.0	0.0
19	E3579	2.00	1.80	205.5	0.0010	0.015	36.0	0.0	0.0
20	E3600	7.50	2.00	21.4	0.2570	0.012	12.0	0.0	0.0
21	E3672	8.20	8.20	13.9	0.0000	0.012	4.0	0.0	0.0
22	E3693	7.90	2.00	27.1	0.2177	0.012	12.0	0.0	0.0
23	E3756	7.80	2.00	23.2	0.2500	0.012	12.0	0.0	0.0
24	E3758	8.00	8.00	10.2	0.0000	0.012	12.0	0.0	0.0
25	E3760	8.00	7.80	32.7	0.0061	0.012	12.0	0.0	0.0
26	E3772	8.60	7.70	48.0	0.0187	0.013	15.0	0.0	0.0
27	E3777	7.60	7.50	28.2	0.0035	0.013	15.0	0.0	0.0
28	E3866	5.40	4.60	35.7	0.0224	0.012	24.0	0.0	0.0
29	E3866	5.30	5.00	83.8	0.0036	0.012	42.0	24.0	0.0
30	E3895	9.70	8.70	37.1	0.0270	0.012	4.0	0.0	0.0
31	E4034	7.50	2.00	14.8	0.3716	0.012	12.0	0.0	0.0
32	E4035	1.80	1.00	139.6	0.0057	0.012	42.0	0.0	0.0
33	E4081	5.80	5.70	13.0	0.0077	0.013	12.0	0.0	0.0
34	E4082	5.90	5.70	11.1	0.0180	0.013	12.0	0.0	0.0
35	E4083	5.00	4.75	25.4	0.0098	0.025	42.0	24.0	0.0
36	E4093	5.90	5.60	13.7	0.0219	0.013	12.0	0.0	0.0
37	E4604	1.20	1.00	18.1	0.0110	0.012	42.0	0.0	0.0
38	E4605	4.40	4.20	22.2	0.0090	0.012	24.0	0.0	0.0

Appendix F2.2

Pre-Development Hydrologic Analysis: Node listing for 2-year, 25-year & 50-year

Existing
Prepared by Fuss & O'Neill Inc.
HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=62,857 sf 94.73% Impervious Runoff Depth=3.34" Flow Length=505' Tc=8.9 min CN=97 Runoff=4.65 cfs 17,512 cf
Subcatchment 2:	Runoff Area=36,669 sf 98.09% Impervious Runoff Depth=3.46" Flow Length=369' Tc=10.9 min CN=98 Runoff=2.59 cfs 10,560 cf
Subcatchment 3:	Runoff Area=17,703 sf 90.15% Impervious Runoff Depth=3.23" Tc=6.0 min CN=96 Runoff=1.42 cfs 4,770 cf
Subcatchment 4:	Runoff Area=38,050 sf 94.05% Impervious Runoff Depth=3.34" Tc=6.0 min CN=97 Runoff=3.10 cfs 10,601 cf
Subcatchment 5:	Runoff Area=41,493 sf 97.25% Impervious Runoff Depth=3.34" Tc=0.0 min CN=97 Runoff=4.13 cfs 11,560 cf
Subcatchment 6:	Runoff Area=30,394 sf 95.76% Impervious Runoff Depth=3.34" Tc=6.0 min CN=97 Runoff=2.48 cfs 8,468 cf
Subcatchment 7:	Runoff Area=113,910 sf 73.61% Impervious Runoff Depth=2.82" Tc=6.0 min CN=92 Runoff=8.37 cfs 26,759 cf
Subcatchment 8:	Runoff Area=78,622 sf 37.70% Impervious Runoff Depth=2.92" Tc=0.0 min CN=93 Runoff=7.24 cfs 19,123 cf
Subcatchment 9:	Runoff Area=12,536 sf 52.67% Impervious Runoff Depth=2.44" Tc=6.0 min CN=88 Runoff=0.82 cfs 2,552 cf
Subcatchment 10:	Runoff Area=110,643 sf 28.77% Impervious Runoff Depth=1.64" Tc=6.0 min CN=78 Runoff=4.85 cfs 15,151 cf
Subcatchment 11:	Runoff Area=28,184 sf 92.95% Impervious Runoff Depth=3.23" Tc=6.0 min CN=96 Runoff=2.26 cfs 7,594 cf
Subcatchment 12:	Runoff Area=9,264 sf 21.99% Impervious Runoff Depth=1.71" Tc=6.0 min CN=79 Runoff=0.43 cfs 1,324 cf
Subcatchment 13:	Runoff Area=6,003 sf 66.57% Impervious Runoff Depth=2.63" Tc=6.0 min CN=90 Runoff=0.42 cfs 1,314 cf
Subcatchment 14:	Runoff Area=3,932 sf 93.59% Impervious Runoff Depth=3.23" Tc=6.0 min CN=96 Runoff=0.32 cfs 1,059 cf
Subcatchment 15:	Runoff Area=5,252 sf 12.11% Impervious Runoff Depth=2.63" Tc=0.0 min CN=90 Runoff=0.45 cfs 1,149 cf
Subcatchment 16:	Runoff Area=3,719 sf 88.76% Impervious Runoff Depth=3.13" Tc=0.0 min CN=95 Runoff=0.36 cfs 969 cf

_				
EX	110	-	n	1
	ΝC	סנו		ч

Existing Prepared by Fuss & O'Neill In	
HydroCAD® 10.00-21 S/1101745	© 2018 HydroCAD Software Solutions LLC Page 7
Subcatchment 17:	Runoff Area=3,261 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.33 cfs 939 cf
Subcatchment 18:	Runoff Area=18,344 sf 45.09% Impervious Runoff Depth=2.18" Tc=0.0 min CN=85 Runoff=1.32 cfs 3,337 cf
Subcatchment 19:	Runoff Area=216 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.02 cfs 62 cf
Subcatchment 20:	Runoff Area=609 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.06 cfs 175 cf
Subcatchment 21:	Runoff Area=8,913 sf 83.17% Impervious Runoff Depth=3.02" Tc=0.0 min CN=94 Runoff=0.84 cfs 2,244 cf
Subcatchment 22:	Runoff Area=6,196 sf 95.11% Impervious Runoff Depth=3.34" Tc=0.0 min CN=97 Runoff=0.62 cfs 1,726 cf
Subcatchment 23:	Runoff Area=417 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.04 cfs 120 cf
Subcatchment 24:	Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.35 cfs 1,014 cf
Subcatchment 25:	Runoff Area=3,436 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.35 cfs 990 cf
Subcatchment 26:	Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.44 cfs 1,262 cf
Reach OS1:	Inflow=0.45 cfs 1,149 cf Outflow=0.45 cfs 1,149 cf
Reach OS2:	Inflow=8.37 cfs 26,759 cf Outflow=8.37 cfs 26,759 cf
Reach TB:	Inflow=2.48 cfs 8,468 cf Outflow=2.48 cfs 8,468 cf
Pond 1056:	Peak Elev=165.79' Inflow=2.59 cfs 10,560 cf 12.0" Round Culvert n=0.025 L=128.5' S=0.0047 '/' Outflow=2.59 cfs 10,560 cf
Pond 1071:	Peak Elev=89.10' Inflow=4.65 cfs 17,512 cf 12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=4.65 cfs 17,512 cf
Pond 1072:	Peak Elev=86.35' Inflow=13.44 cfs 56,059 cf 15.0" Round Culvert n=0.025 L=31.0' S=0.0387 '/' Outflow=13.44 cfs 56,059 cf
Pond 1128:	Peak Elev=241.25' Inflow=6.32 cfs 23,217 cf 12.0" Round Culvert n=0.025 L=860.0' S=0.0095 '/' Outflow=6.32 cfs 23,217 cf

Existing Prepared by Fuss & O'Neill I HydroCAD® 10.00-21 s/n 01745	Type III 24-hr 2 yr Rainfall=3.69" nc. Printed 7/23/2019 © 2018 HydroCAD Software Solutions LLC Page 8
Pond 1147:	Peak Elev=163.40' Inflow=3.82 cfs 15,330 cf 12.0" Round Culvert n=0.025 L=36.0' S=0.0028 '/' Outflow=3.82 cfs 15,330 cf
Pond 1148:	Peak Elev=161.42' Inflow=9.24 cfs 38,547 cf 12.0" Round Culvert n=0.025 L=311.5' S=0.0022 '/' Outflow=9.24 cfs 38,547 cf
Pond 1186:	Peak Elev=245.54' Inflow=0.32 cfs 1,059 cf 12.0" Round Culvert n=0.025 L=161.5' S=0.0080 '/' Outflow=0.33 cfs 1,057 cf
Pond 1188:	Peak Elev=245.48' Inflow=4.34 cfs 12,616 cf 12.0" Round Culvert n=0.025 L=191.0' S=0.0058 '/' Outflow=4.34 cfs 12,616 cf
Pond 1213:	Peak Elev=17.97' Inflow=0.43 cfs 1,324 cf 12.0" Round Culvert n=0.025 L=150.0' S=0.0200 '/' Outflow=0.43 cfs 1,324 cf
Pond 1251:	Peak Elev=17.24' Inflow=2.26 cfs 7,594 cf 18.0" Round Culvert n=0.025 L=82.0' S=0.0220 '/' Outflow=2.26 cfs 7,594 cf
Pond 1345:	Peak Elev=43.80' Inflow=0.42 cfs 1,314 cf 12.0" Round Culvert n=0.025 L=915.0' S=0.0019 '/' Outflow=0.42 cfs 1,314 cf
Pond 1346:	Peak Elev=43.34' Inflow=13.86 cfs 57,373 cf 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow=13.86 cfs 57,373 cf
Pond 1347:	Peak Elev=78.68' Inflow=13.44 cfs 56,059 cf 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow=13.44 cfs 56,059 cf
Pond E2347:	Peak Elev=27.63' Inflow=7.24 cfs 19,123 cf 15.0" Round Culvert n=0.013 L=72.5' S=-0.0014 '/' Outflow=7.24 cfs 19,123 cf
Pond E2348:	Peak Elev=26.64' Inflow=7.57 cfs 20,062 cf 15.0" Round Culvert n=0.013 L=15.1' S=0.0464 '/' Outflow=7.57 cfs 20,062 cf
Pond E2349:	Peak Elev=25.58' Inflow=13.27 cfs 47,790 cf 15.0" Round Culvert n=0.013 L=86.7' S=0.0046 '/' Outflow=13.27 cfs 47,790 cf
Pond E2350:	Peak Elev=25.58' Inflow=0.36 cfs 969 cf 15.0" Round Culvert n=0.013 L=19.3' S=0.0052 '/' Outflow=0.36 cfs 969 cf
Pond E3578A:	Peak Elev=9.38' Inflow=0.44 cfs 1,262 cf 8.0" Round Culvert n=0.012 L=11.2' S=0.0982 '/' Outflow=0.44 cfs 1,262 cf
Pond E3579:	Peak Elev=4.36' Inflow=16.28 cfs 56,249 cf 36.0" Round Culvert n=0.015 L=205.5' S=0.0010 '/' Outflow=16.28 cfs 56,249 cf
Pond E3600:	Peak Elev=7.60' Inflow=0.04 cfs 120 cf 12.0" Round Culvert n=0.012 L=21.4' S=0.2570 '/' Outflow=0.04 cfs 120 cf
Pond E3672:	Peak Elev=8.20' Inflow=0.00 cfs 0 cf 4.0" Round Culvert n=0.012 L=13.9' S=0.0000 '/' Outflow=0.00 cfs 0 cf

Existing Prepared by Fuss & O'Neil HydroCAD® 10.00-21, s/p.0174	Type III 24-hr 2 yr Rainfall=3.69" I Inc. Printed 7/23/2019 5 © 2018 HydroCAD Software Solutions LLC Page 9	
Pond E3693:	Peak Elev=8.19' Inflow=0.35 cfs 1,014 cf 12.0" Round Culvert n=0.012 L=27.1' S=0.2177 '/' Outflow=0.35 cfs 1,014 cf	
Pond E3756:	Peak Elev=8.33' Inflow=1.06 cfs 2,988 cf 12.0" Round Culvert n=0.012 L=23.2' S=0.2500 '/' Outflow=1.06 cfs 2,988 cf	
Pond E3758:	Peak Elev=8.66' Inflow=0.44 cfs 1,262 cf 12.0" Round Culvert n=0.012 L=10.2' S=0.0000 '/' Outflow=0.44 cfs 1,262 cf	
Pond E3760:	Peak Elev=8.63' Inflow=1.06 cfs 2,988 cf 12.0" Round Culvert n=0.012 L=32.7' S=0.0061 '/' Outflow=1.06 cfs 2,988 cf	
Pond E3772:	Peak Elev=19.18' Inflow=13.27 cfs 47,790 cf 15.0" Round Culvert n=0.013 L=48.0' S=0.0187 '/' Outflow=13.27 cfs 47,790 cf	
Pond E3777:	Peak Elev=14.19' Inflow=14.44 cfs 51,127 cf 15.0" Round Culvert n=0.013 L=28.2' S=0.0035 '/' Outflow=14.44 cfs 51,127 cf	
Pond E3866:	Peak Elev=5.73' Inflow=2.48 cfs 8,468 cf Primary=0.02 cfs 11 cf Secondary=2.48 cfs 8,457 cf Outflow=2.48 cfs 8,468 cf	
Pond E3895:	Peak Elev=0.00' 4.0" Round Culvert n=0.012 L=37.1' S=0.0270 '/' Primary=0.00 cfs 0 cf	
Pond E4034:	Peak Elev=7.79' Inflow=0.35 cfs 990 cf 12.0" Round Culvert n=0.012 L=14.8' S=0.3716 '/' Outflow=0.35 cfs 990 cf	
Pond E4035:	Peak Elev=3.67' Inflow=16.28 cfs 56,249 cf 42.0" Round Culvert n=0.012 L=139.6' S=0.0057 '/' Outflow=16.28 cfs 56,249 cf	
Pond E4081:	Peak Elev=6.51' Inflow=0.84 cfs 2,244 cf 12.0" Round Culvert n=0.013 L=13.0' S=0.0077 '/' Outflow=0.84 cfs 2,244 cf	
Pond E4082:	Peak Elev=6.41' Inflow=0.90 cfs 2,419 cf 12.0" Round Culvert n=0.013 L=11.1' S=0.0180 '/' Outflow=0.90 cfs 2,419 cf	
Pond E4083:	Peak Elev=5.46' Inflow=2.99 cfs 10,938 cf 42.0" x 24.0" Box Culvert n=0.025 L=25.4' S=0.0098 '/' Outflow=2.99 cfs 10,938 cf	
Pond E4093:	Peak Elev=5.97' Inflow=0.02 cfs 62 cf 12.0" Round Culvert n=0.013 L=13.7' S=0.0219 '/' Outflow=0.02 cfs 62 cf	
Pond E4604:	Peak Elev=2.93' Inflow=16.28 cfs 56,249 cf 42.0" Round Culvert n=0.012 L=18.1' S=0.0110 '/' Outflow=16.28 cfs 56,249 cf	
Pond E4605:	Peak Elev=6.55' Inflow=14.44 cfs 51,138 cf 24.0" Round Culvert n=0.012 L=22.2' S=0.0090 '/' Outflow=14.44 cfs 51,138 cf	
Link AP1: Hodgson Brook	Inflow=22.40 cfs 85,142 cf Primary=22.40 cfs 85,142 cf	

Link AP2:

Link AP3:

Inflow=16.28 cfs 56,249 cf Primary=16.28 cfs 56,249 cf

Inflow=2.99 cfs 10,938 cf Primary=2.99 cfs 10,938 cf

Total Runoff Area = 648,524 sf Runoff Volume = 152,332 cf Average Runoff Depth = 2.82" 31.24% Pervious = 202,614 sf 68.76% Impervious = 445,910 sf

Existing
Prepared by Fuss & O'Neill Inc.
HvdroCAD® 10.00-21 s/n 01745 © 2018 HvdroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=62,857 sf 94.73% Impervious Runoff Depth=6.74" Flow Length=505' Tc=8.9 min CN=97 Runoff=9.10 cfs 35,315 cf
Subcatchment 2:	Runoff Area=36,669 sf 98.09% Impervious Runoff Depth=6.86" Flow Length=369' Tc=10.9 min CN=98 Runoff=5.01 cfs 20,965 cf
Subcatchment 3:	Runoff Area=17,703 sf 90.15% Impervious Runoff Depth=6.62" Tc=6.0 min CN=96 Runoff=2.81 cfs 9,771 cf
Subcatchment 4:	Runoff Area=38,050 sf 94.05% Impervious Runoff Depth=6.74" Tc=6.0 min CN=97 Runoff=6.06 cfs 21,377 cf
Subcatchment 5:	Runoff Area=41,493 sf 97.25% Impervious Runoff Depth=6.74" Tc=0.0 min CN=97 Runoff=8.07 cfs 23,312 cf
Subcatchment 6:	Runoff Area=30,394 sf 95.76% Impervious Runoff Depth=6.74" Tc=6.0 min CN=97 Runoff=4.84 cfs 17,076 cf
Subcatchment 7:	Runoff Area=113,910 sf 73.61% Impervious Runoff Depth=6.15" Tc=6.0 min CN=92 Runoff=17.49 cfs 58,412 cf
Subcatchment 8:	Runoff Area=78,622 sf 37.70% Impervious Runoff Depth=6.27" Tc=0.0 min CN=93 Runoff=14.88 cfs 41,082 cf
Subcatchment 9:	Runoff Area=12,536 sf 52.67% Impervious Runoff Depth=5.69" Tc=6.0 min CN=88 Runoff=1.83 cfs 5,945 cf
Subcatchment 10:	Runoff Area=110,643 sf 28.77% Impervious Runoff Depth=4.57" Tc=6.0 min CN=78 Runoff=13.52 cfs 42,096 cf
Subcatchment 11:	Runoff Area=28,184 sf 92.95% Impervious Runoff Depth=6.62" Tc=6.0 min CN=96 Runoff=4.47 cfs 15,556 cf
Subcatchment 12:	Runoff Area=9,264 sf 21.99% Impervious Runoff Depth=4.68" Tc=6.0 min CN=79 Runoff=1.16 cfs 3,610 cf
Subcatchment 13:	Runoff Area=6,003 sf 66.57% Impervious Runoff Depth=5.92" Tc=6.0 min CN=90 Runoff=0.90 cfs 2,962 cf
Subcatchment 14:	Runoff Area=3,932 sf 93.59% Impervious Runoff Depth=6.62" Tc=6.0 min CN=96 Runoff=0.62 cfs 2,170 cf
Subcatchment 15:	Runoff Area=5,252 sf 12.11% Impervious Runoff Depth=5.92" Tc=0.0 min CN=90 Runoff=0.96 cfs 2,592 cf
Subcatchment 16:	Runoff Area=3,719 sf 88.76% Impervious Runoff Depth=6.51" Tc=0.0 min CN=95 Runoff=0.71 cfs 2,016 cf

Existing Prepared by Fuss & O'Neill Inc.	Type III 24-hr 25 yr Rainfall=7.10" Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD	Software Solutions LLC Page 12
Subcatchment 17:	Runoff Area=3,261 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.64 cfs 1,864 cf
Subcatchment 18:	Runoff Area=18,344 sf 45.09% Impervious Runoff Depth=5.35" Tc=0.0 min CN=85 Runoff=3.14 cfs 8,176 cf
Subcatchment 19:	Runoff Area=216 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.04 cfs 123 cf
Subcatchment 20:	Runoff Area=609 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.12 cfs 348 cf

 Tc=0.0 min CN=94 Runoff=1.70 cfs 4,744 cf

 Subcatchment 22:
 Runoff Area=6,196 sf 95.11% Impervious Runoff Depth=6.74" Tc=0.0 min CN=97 Runoff=1.20 cfs 3,481 cf

 Subcatchment 23:
 Runoff Area=417 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.08 cfs 238 cf

 Subcatchment 24:
 Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.69 cfs 2,013 cf

 Subcatchment 25:
 Runoff Area=3,436 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.67 cfs 1,964 cf

 Subcatchment 26:
 Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=6.86"

Runoff Area=8,913 sf 83.17% Impervious Runoff Depth=6.39"

Subcatchment 21:

 Subcatchment 20:
 Runoff Alea=4,381 Si
 100.00% Impervious
 Runoff Deptri=0.86

 Tc=0.0 min
 CN=98
 Runoff=0.85 cfs
 2,505 cf

 Inflow=0.96 cfs
 2,592 cf

 Outflow=0.96 cfs 2,592 cf

 Reach OS2:

 Inflow=17.49 cfs 58,412 cf

 Outflow=17.49 cfs 58,412 cf

 Outflow=17.49 cfs 58,412 cf

 Inflow=4.84 cfs 17,076 cf

 Outflow=4.84 cfs 17,076 cf

 Pond 1056:

 12.0" Round Culvert n=0.025 L=128.5' S=0.0047 '/' Outflow=5.01 cfs 20,965 cf

 Pond 1071:
 Peak Elev=296.21' Inflow=9.10 cfs 35,315 cf

12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=9.10 cfs 35,315 cf

 Pond 1072:
 Peak Elev=285.68'
 Inflow=26.27 cfs
 112,909 cf

 15.0"
 Round Culvert
 n=0.025
 L=31.0'
 S=0.0387 '/'
 Outflow=26.27 cfs
 112,909 cf

 Pond 1128:
 Peak Elev=877.62'
 Inflow=12.29 cfs
 46,858 cf

 12.0"
 Round Culvert
 n=0.025
 L=860.0'
 S=0.0095 '/'
 Outflow=12.29 cfs
 46,858 cf

Existing Prepared by Fuss & O'l		5 <i>yr Rainfall</i> =7.10" Printed_7/23/2019
	1745 © 2018 HydroCAD Software Solutions LLC	Plinted 7/23/2019 Page 13
Pond 1147:	Peak Elev=579.60' Inflo 12.0" Round Culvert n=0.025 L=36.0' S=0.0028 '/' Outflo	
Pond 1148:	Peak Elev=571.99' Inflow 12.0" Round Culvert n=0.025 L=311.5' S=0.0022 '/' Outflow	,
Pond 1186:	Peak Elev=894.05' Infle 12.0" Round Culvert n=0.025 L=161.5' S=0.0080 '/' Outfle	
Pond 1188:	Peak Elev=893.86' Inflo 12.0" Round Culvert n=0.025 L=191.0' S=0.0058 '/' Outflor	
Pond 1213:	Peak Elev=18.23' Infl 12.0" Round Culvert n=0.025 L=150.0' S=0.0200 '/' Outfl	
Pond 1251:	Peak Elev=17.60' Inflo 18.0" Round Culvert n=0.025 L=82.0' S=0.0220 '/' Outflo	
Pond 1345:	Peak Elev=123.38' Infl 12.0" Round Culvert n=0.025 L=915.0' S=0.0019 '/' Outfl	
Pond 1346:	=Peak Elev=121.22' Inflow 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow	
Pond 1347:	=Peak Elev=256.49' Inflow 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow	
Pond E2347:	Peak Elev=93.22' Inflow 15.0" Round Culvert n=0.013 L=72.5' S=-0.0014 '/' Outflow	
Pond E2348:	Peak Elev=89.02' Inflow 15.0" Round Culvert n=0.013 L=15.1' S=0.0464 '/' Outflow	
Pond E2349:	Peak Elev=85.21' Inflow= 15.0" Round Culvert n=0.013 L=86.7' S=0.0046 '/' Outflow=	
Pond E2350:	Peak Elev=85.22' Infle 15.0" Round Culvert n=0.013 L=19.3' S=0.0052 '/' Outfle	
Pond E3578A:	Peak Elev=9.59' Infle 8.0" Round Culvert n=0.012 L=11.2' S=0.0982 '/' Outfle	
Pond E3579:	Peak Elev=5.89' Inflow= 36.0" Round Culvert n=0.015 L=205.5' S=0.0010 '/' Outflow=	
Pond E3600:	Peak Elev=7.64' Ir 12.0" Round Culvert n=0.012 L=21.4' S=0.2570 '/' Ou	nflow=0.08 cfs 238 cf tflow=0.08 cfs 238 cf
Pond E3672:	Peak Elev=8.31' 4.0" Round Culvert n=0.012 L=13.9' S=0.0000 '/' 0	Inflow=0.00 cfs 0 cf Dutflow=0.00 cfs 0 cf

Existing Prepared by Fuss & O'Neil HydroCAD® 10.00-21 s/n 0174	l Inc. 5 © 2018 HydroCAD Software Solutions LLC	<i>Type III 24-hr 25 yr Rainfall=7.10"</i> Printed 7/23/2019 Page 14
Pond E3693:		reak Elev=8.32' Inflow=0.69 cfs 2,013 cf S=0.2177 '/' Outflow=0.69 cfs 2,013 cf
Pond E3756:		eak Elev=8.60' Inflow=2.06 cfs 5,986 cf S=0.2500 '/' Outflow=2.06 cfs 5,986 cf
Pond E3758:		'eak Elev=9.01' Inflow=0.85 cfs 2,505 cf S=0.0000 '/' Outflow=0.85 cfs 2,505 cf
Pond E3760:		'eak Elev=8.97' Inflow=2.06 cfs 5,986 cf S=0.0061 '/' Outflow=2.06 cfs 5,986 cf
Pond E3772:	Peak E 15.0" Round Culvert n=0.013 L=48.0' S=	Elev=57.69' Inflow=27.53 cfs 103,375 cf 0.0187 '/' Outflow=27.53 cfs 103,375 cf
Pond E3777:	Peak E 15.0" Round Culvert n=0.013 L=28.2' S=	Elev=36.05' Inflow=30.36 cfs 111,551 cf 0.0035 '/' Outflow=30.36 cfs 111,551 cf
Pond E3866:	Pe Primary=0.01 cfs 18 cf Secondary=4.84 cf	eak Elev=6.01' Inflow=4.84 cfs 17,076 cf s 17,058 cf Outflow=4.84 cfs 17,076 cf
Pond E3895:	4.0" Round Culvert n=0.012 L=3	Peak Elev=0.00' 37.1' S=0.0270 '/' Primary=0.00 cfs 0 cf
Pond E4034:		eak Elev=7.91' Inflow=0.67 cfs 1,964 cf S=0.3716 '/' Outflow=0.67 cfs 1,964 cf
Pond E4035:	Peak 42.0" Round Culvert n=0.012 L=139.6' S=	Elev=4.76' Inflow=33.98 cfs 121,770 cf 0.0057 '/' Outflow=33.98 cfs 121,770 cf
Pond E4081:		eak Elev=6.88' Inflow=1.70 cfs 4,744 cf S=0.0077 '/' Outflow=1.70 cfs 4,744 cf
Pond E4082:		'eak Elev=6.69' Inflow=1.82 cfs 5,093 cf S=0.0180 '/' Outflow=1.82 cfs 5,093 cf
Pond E4083:	Pe 42.0" x 24.0" Box Culvert n=0.025 L=25.4	ak Elev=5.73' Inflow=5.87 cfs 22,274 cf S=0.0098 '/' Outflow=5.87 cfs 22,274 cf
Pond E4093:		Peak Elev=6.00' Inflow=0.04 cfs 123 cf 7' S=0.0219 '/' Outflow=0.04 cfs 123 cf
Pond E4604:	Peak 42.0" Round Culvert_n=0.012 L=18.1' S=	Elev=3.88' Inflow=33.98 cfs 121,770 cf =0.0110 '/' Outflow=33.98 cfs 121,770 cf
Pond E4605:	Peak 24.0" Round Culvert n=0.012 L=22.2' S=	Elev=9.87' Inflow=30.36 cfs 111,569 cf 0.0090 '/' Outflow=30.36 cfs 111,569 cf
Link AP1: Hodgson Brook		Inflow=48.62 cfs 185,670 cf Primary=48.62 cfs 185,670 cf

Link AP2:

Inflow=33.98 cfs 121,770 cf Primary=33.98 cfs 121,770 cf

Inflow=5.87 cfs 22,274 cf Primary=5.87 cfs 22,274 cf

Total Runoff Area = 648,524 sf Runoff Volume = 329,715 cf Average Runoff Depth = 6.10" 31.24% Pervious = 202,614 sf 68.76% Impervious = 445,910 sf

Link AP3:

Existing
Prepared by Fuss & O'Neill Inc.
HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=62,857 sf 94.73% Impervious Runoff Depth=8.14" Flow Length=505' Tc=8.9 min CN=97 Runoff=10.91 cfs 42,637 cf
Subcatchment 2:	Runoff Area=36,669 sf 98.09% Impervious Runoff Depth=8.26" Flow Length=369' Tc=10.9 min CN=98 Runoff=6.01 cfs 25,240 cf
Subcatchment 3:	Runoff Area=17,703 sf 90.15% Impervious Runoff Depth=8.02" Tc=6.0 min CN=96 Runoff=3.37 cfs 11,831 cf
Subcatchment 4:	Runoff Area=38,050 sf 94.05% Impervious Runoff Depth=8.14" Tc=6.0 min CN=97 Runoff=7.27 cfs 25,810 cf
Subcatchment 5:	Runoff Area=41,493 sf 97.25% Impervious Runoff Depth=8.14" Tc=0.0 min CN=97 Runoff=9.67 cfs 28,145 cf
Subcatchment 6:	Runoff Area=30,394 sf 95.76% Impervious Runoff Depth=8.14" Tc=6.0 min CN=97 Runoff=5.81 cfs 20,617 cf
Subcatchment 7:	Runoff Area=113,910 sf 73.61% Impervious Runoff Depth=7.54" Tc=6.0 min CN=92 Runoff=21.19 cfs 71,562 cf
Subcatchment 8:	Runoff Area=78,622 sf 37.70% Impervious Runoff Depth=7.66" Tc=0.0 min CN=93 Runoff=17.97 cfs 50,181 cf
Subcatchment 9:	Runoff Area=12,536 sf 52.67% Impervious Runoff Depth=7.06" Tc=6.0 min CN=88 Runoff=2.25 cfs 7,373 cf
Subcatchment 10:	Runoff Area=110,643 sf 28.77% Impervious Runoff Depth=5.85" Tc=6.0 min CN=78 Runoff=17.21 cfs 53,984 cf
Subcatchment 11:	Runoff Area=28,184 sf 92.95% Impervious Runoff Depth=8.02" Tc=6.0 min CN=96 Runoff=5.37 cfs 18,835 cf
Subcatchment 12:	Runoff Area=9,264 sf 21.99% Impervious Runoff Depth=5.98" Tc=6.0 min CN=79 Runoff=1.47 cfs 4,613 cf
Subcatchment 13:	Runoff Area=6,003 sf 66.57% Impervious Runoff Depth=7.30" Tc=6.0 min CN=90 Runoff=1.10 cfs 3,651 cf
Subcatchment 14:	Runoff Area=3,932 sf 93.59% Impervious Runoff Depth=8.02" Tc=6.0 min CN=96 Runoff=0.75 cfs 2,628 cf
Subcatchment 15:	Runoff Area=5,252 sf 12.11% Impervious Runoff Depth=7.30" Tc=0.0 min CN=90 Runoff=1.17 cfs 3,194 cf
Subcatchment 16:	Runoff Area=3,719 sf 88.76% Impervious Runoff Depth=7.90" Tc=0.0 min CN=95 Runoff=0.86 cfs 2,448 cf

Existing Prepared by Fuss & O'Neill Inc. <u>HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD</u>	Type III 24-hr 50 yr Rainfall=8.50"Printed 7/23/2019Software Solutions LLCPage 17
Subcatchment 17:	Runoff Area=3,261 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.76 cfs 2,245 cf
Subcatchment 18:	Runoff Area=18,344 sf 45.09% Impervious Runoff Depth=6.70" Tc=0.0 min CN=85 Runoff=3.88 cfs 10,237 cf
Subcatchment 19:	Runoff Area=216 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.05 cfs 149 cf
Subcatchment 20:	Runoff Area=609 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.14 cfs 419 cf
Subcatchment 21:	Runoff Area=8,913 sf 83.17% Impervious Runoff Depth=7.78" Tc=0.0 min CN=94 Runoff=2.05 cfs 5,778 cf
Subcatchment 22:	Runoff Area=6,196 sf 95.11% Impervious Runoff Depth=8.14" Tc=0.0 min CN=97 Runoff=1.44 cfs 4,203 cf
Subcatchment 23:	Runoff Area=417 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.10 cfs 287 cf
Subcatchment 24:	Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.82 cfs 2,423 cf
Subcatchment 25:	Runoff Area=3,436 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.80 cfs 2,365 cf
Subcatchment 26:	Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=1.02 cfs 3,016 cf
Reach OS1:	Inflow=1.17 cfs 3,194 cf Outflow=1.17 cfs 3,194 cf

Reach OS2:

 Reach TB:
 Inflow=5.81 cfs 20,617 cf

 Outflow=5.81 cfs 20,617 cf

 Pond 1056:
 Peak Elev=840.39'

Inflow=21.19 cfs 71,562 cf Outflow=21.19 cfs 71,562 cf

 12.0" Round Culvert n=0.025 L=128.5' S=0.0047 '/' Outflow=6.01 cfs 25,240 cf

 Pond 1071:
 Peak Elev=419.37' Inflow=10.91 cfs 42,637 cf

12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=10.91 cfs 42,637 cf

 Pond 1072:
 Peak Elev=404.23'
 Inflow=31.51 cfs
 136,289 cf

 15.0"
 Round Culvert
 n=0.025
 L=31.0'
 S=0.0387 '/'
 Outflow=31.51 cfs
 136,289 cf

Pond 1128: Peak Elev=1,256.78' Inflow=14.84 cfs 56,581 cf 12.0" Round Culvert n=0.025 L=860.0' S=0.0095 '/' Outflow=14.84 cfs 56,581 cf

Existing		50 yr Rainfall=8.50"
Prepared by Fuss & O'N HydroCAD® 10.00-21 s/n 0 ⁻	IPIII INC.	Printed 7/23/2019 Page 18
Pond 1147:	Peak Elev=827.43' Infl 12.0" Round Culvert n=0.025 L=36.0' S=0.0028 '/' Outfl	ow=8.93 cfs 37,071 cf
Pond 1148:	Peak Elev=816.57' Inflo 12.0" Round Culvert n=0.025 L=311.5' S=0.0022 '/' Outflo	,
Pond 1186:	Peak Elev=1,280.49' In 12.0" Round Culvert n=0.025 L=161.5' S=0.0080 '/' Out	
Pond 1188:	Peak Elev=1,280.19' Inflo 12.0" Round Culvert n=0.025 L=191.0' S=0.0058 '/' Outflo	
Pond 1213:	Peak Elev=18.32' In 12.0" Round Culvert n=0.025 L=150.0' S=0.0200 '/' Out	flow=1.47 cfs 4,613 cf flow=1.47 cfs 4,613 cf
Pond 1251:	Peak Elev=17.74' Infl 18.0" Round Culvert n=0.025 L=82.0' S=0.0220 '/' Outfl	,
Pond 1345:	Peak Elev=170.80' In 12.0" Round Culvert n=0.025 L=915.0' S=0.0019 '/' Out	,
Pond 1346:	Peak Elev=167.59' Inflow 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow	
Pond 1347:	Peak Elev=362.13' Inflow 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow	
Pond E2347:	Peak Elev=135.00' Inflo 15.0" Round Culvert n=0.013 L=72.5' S=-0.0014 '/' Outflo	
Pond E2348:	Peak Elev=128.81' Inflo 15.0" Round Culvert n=0.013 L=15.1' S=0.0464 '/' Outflo	
Pond E2349:	Peak Elev=123.16' Inflow 15.0" Round Culvert n=0.013 L=86.7' S=0.0046 '/' Outflow	
Pond E2350:	Peak Elev=123.17' In 15.0" Round Culvert n=0.013 L=19.3' S=0.0052 '/' Out	
Pond E3578A:	Peak Elev=9.70' In 8.0" Round Culvert n=0.012 L=11.2' S=0.0982 '/' Out	flow=1.02 cfs 3,016 cf flow=1.02 cfs 3,016 cf
Pond E3579:	Peak Elev=6.94' Inflow 36.0" Round Culvert n=0.015 L=205.5' S=0.0010 '/' Outflow	
Pond E3600:	Peak Elev=7.65' 12.0" Round Culvert n=0.012 L=21.4' S=0.2570 '/' O	Inflow=0.10 cfs 287 cf utflow=0.10 cfs 287 cf
Pond E3672:	Peak Elev=8.35 4.0" Round Culvert n=0.012 L=13.9' S=0.0000 '/'	5' Inflow=0.00 cfs 0 cf Outflow=0.00 cfs 0 cf

Existing Prepared by Fuss & O'Neil HydroCAD® 10.00-21 s/n 0174	<i>Type III 24-hr 50 yr Rainfall=8.50"</i> I Inc. Printed 7/23/2019 5 © 2018 HydroCAD Software Solutions LLC Page 19
Pond E3693:	Peak Elev=8.36' Inflow=0.82 cfs 2,423 cf 12.0" Round Culvert n=0.012 L=27.1' S=0.2177 // Outflow=0.82 cfs 2,423 cf
Pond E3756:	Peak Elev=8.72' Inflow=2.47 cfs 7,218 cf 12.0" Round Culvert n=0.012 L=23.2' S=0.2500 '/' Outflow=2.47 cfs 7,218 cf
Pond E3758:	Peak Elev=9.18' Inflow=1.02 cfs 3,016 cf 12.0" Round Culvert n=0.012 L=10.2' S=0.0000 '/' Outflow=1.02 cfs 3,016 cf
Pond E3760:	Peak Elev=9.12' Inflow=2.47 cfs 7,218 cf 12.0" Round Culvert n=0.012 L=32.7' S=0.0061 '/' Outflow=2.47 cfs 7,218 cf
Pond E3772:	Peak Elev=82.87' Inflow=33.31 cfs 126,434 cf 15.0" Round Culvert n=0.013 L=48.0' S=0.0187 '/' Outflow=33.31 cfs 126,434 cf
Pond E3777:	Peak Elev=51.20' Inflow=36.83 cfs 136,671 cf 15.0" Round Culvert n=0.013 L=28.2' S=0.0035 '/' Outflow=36.83 cfs 136,671 cf
Pond E3866:	Peak Elev=6.12' Inflow=5.81 cfs 20,617 cf Primary=0.01 cfs 28 cf Secondary=5.81 cfs 20,589 cf Outflow=5.81 cfs 20,617 cf
Pond E3895:	Peak Elev=0.00' 4.0" Round Culvert n=0.012 L=37.1' S=0.0270 '/' Primary=0.00 cfs 0 cf
Pond E4034:	Peak Elev=7.96' Inflow=0.80 cfs 2,365 cf 12.0" Round Culvert n=0.012 L=14.8' S=0.3716 '/' Outflow=0.80 cfs 2,365 cf
Pond E4035:	Peak Elev=5.17' Inflow=41.17 cfs 148,993 cf 42.0" Round Culvert n=0.012 L=139.6' S=0.0057 '/' Outflow=41.17 cfs 148,993 cf
Pond E4081:	Peak Elev=7.07' Inflow=2.05 cfs 5,778 cf 12.0" Round Culvert n=0.013 L=13.0' S=0.0077 '/' Outflow=2.05 cfs 5,778 cf
Pond E4082:	Peak Elev=6.80' Inflow=2.19 cfs 6,197 cf 12.0" Round Culvert n=0.013 L=11.1' S=0.0180 '/' Outflow=2.19 cfs 6,197 cf
Pond E4083:	Peak Elev=5.83' Inflow=7.04 cfs 26,935 cf 42.0" x 24.0" Box Culvert n=0.025 L=25.4' S=0.0098 '/' Outflow=7.04 cfs 26,935 cf
Pond E4093:	Peak Elev=6.01' Inflow=0.05 cfs 149 cf 12.0" Round Culvert n=0.013 L=13.7' S=0.0219 '/' Outflow=0.05 cfs 149 cf
Pond E4604:	Peak Elev=4.22' Inflow=41.17 cfs 148,993 cf 42.0" Round Culvert n=0.012 L=18.1' S=0.0110 '/' Outflow=41.17 cfs 148,993 cf
Pond E4605:	Peak Elev=12.79' Inflow=36.83 cfs 136,699 cf 24.0" Round Culvert n=0.012 L=22.2' S=0.0090 '/' Outflow=36.83 cfs 136,699 cf
Link AP1: Hodgson Brook	Inflow=59.48 cfs 227,940 cf Primary=59.48 cfs 227,940 cf

Link AP2:

Inflow=41.17 cfs 148,993 cf Primary=41.17 cfs 148,993 cf

Inflow=7.04 cfs 26,935 cf Primary=7.04 cfs 26,935 cf

Total Runoff Area = 648,524 sf Runoff Volume = 403,870 cf Average Runoff Depth = 7.47" 31.24% Pervious = 202,614 sf 68.76% Impervious = 445,910 sf

Link AP3:

Appendix F2.3

Pre-Development Hydrologic Analysis: Full summary for 10-year storm

Existing
Prepared by Fuss & O'Neill Inc.
HvdroCAD® 10.00-21 s/n 01745 © 2018 HvdroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=62,857 sf 94.73% Impervious Runoff Depth=5.25" Flow Length=505' Tc=8.9 min CN=97 Runoff=7.15 cfs 27,475 cf
Subcatchment 2:	Runoff Area=36,669 sf 98.09% Impervious Runoff Depth=5.36" Flow Length=369' Tc=10.9 min CN=98 Runoff=3.95 cfs 16,386 cf
Subcatchment 3:	Runoff Area=17,703 sf 90.15% Impervious Runoff Depth=5.13" Tc=6.0 min CN=96 Runoff=2.20 cfs 7,567 cf
Subcatchment 4:	Runoff Area=38,050 sf 94.05% Impervious Runoff Depth=5.25" Tc=6.0 min CN=97 Runoff=4.76 cfs 16,632 cf
Subcatchment 5:	Runoff Area=41,493 sf 97.25% Impervious Runoff Depth=5.25" Tc=0.0 min CN=97 Runoff=6.34 cfs 18,137 cf
Subcatchment 6:	Runoff Area=30,394 sf 95.76% Impervious Runoff Depth=5.25" Tc=6.0 min CN=97 Runoff=3.81 cfs 13,285 cf
Subcatchment 7:	Runoff Area=113,910 sf 73.61% Impervious Runoff Depth=4.68" Tc=6.0 min CN=92 Runoff=13.50 cfs 44,393 cf
Subcatchment 8:	Runoff Area=78,622 sf 37.70% Impervious Runoff Depth=4.79" Tc=0.0 min CN=93 Runoff=11.54 cfs 31,371 cf
Subcatchment 9:	Runoff Area=12,536 sf 52.67% Impervious Runoff Depth=4.24" Tc=6.0 min CN=88 Runoff=1.39 cfs 4,431 cf
Subcatchment 10:	Runoff Area=110,643 sf 28.77% Impervious Runoff Depth=3.23" Tc=6.0 min CN=78 Runoff=9.61 cfs 29,763 cf
Subcatchment 11:	Runoff Area=28,184 sf 92.95% Impervious Runoff Depth=5.13" Tc=6.0 min CN=96 Runoff=3.50 cfs 12,047 cf
Subcatchment 12:	Runoff Area=9,264 sf 21.99% Impervious Runoff Depth=3.32" Tc=6.0 min CN=79 Runoff=0.83 cfs 2,567 cf
Subcatchment 13:	Runoff Area=6,003 sf 66.57% Impervious Runoff Depth=4.46" Tc=6.0 min CN=90 Runoff=0.69 cfs 2,230 cf
Subcatchment 14:	Runoff Area=3,932 sf 93.59% Impervious Runoff Depth=5.13" Tc=6.0 min CN=96 Runoff=0.49 cfs 1,681 cf
Subcatchment 15:	Runoff Area=5,252 sf 12.11% Impervious Runoff Depth=4.46" Tc=0.0 min CN=90 Runoff=0.74 cfs 1,951 cf
Subcatchment 16:	Runoff Area=3,719 sf 88.76% Impervious Runoff Depth=5.01" Tc=0.0 min CN=95 Runoff=0.56 cfs 1,554 cf

_		
Fγ	isti	na
ᄂᄉ	ເວເເ	IIM

Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

HydroCAD® 10.00-21 s/n 01745	© 2018 HydroCAD Software Solutions LLC Page 7
Subcatchment 17:	Runoff Area=3,261 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.50 cfs 1,457 cf
Subcatchment 18:	Runoff Area=18,344 sf 45.09% Impervious Runoff Depth=3.93" Tc=0.0 min CN=85 Runoff=2.33 cfs 6,002 cf
Subcatchment 19:	Runoff Area=216 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.03 cfs 97 cf
Subcatchment 20:	Runoff Area=609 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.09 cfs 272 cf
Subcatchment 21:	Runoff Area=8,913 sf 83.17% Impervious Runoff Depth=4.90" Tc=0.0 min CN=94 Runoff=1.32 cfs 3,640 cf
Subcatchment 22:	Runoff Area=6,196 sf 95.11% Impervious Runoff Depth=5.25" Tc=0.0 min CN=97 Runoff=0.95 cfs 2,708 cf
Subcatchment 23:	Runoff Area=417 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.06 cfs 186 cf
Subcatchment 24:	Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.54 cfs 1,573 cf
Subcatchment 25:	Runoff Area=3,436 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.53 cfs 1,535 cf
Subcatchment 26:	Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.67 cfs 1,958 cf
Reach OS1:	Inflow=0.74 cfs 1,951 cf Outflow=0.74 cfs 1,951 cf
Reach OS2:	Inflow=13.50 cfs 44,393 cf Outflow=13.50 cfs 44,393 cf
Reach TB:	Inflow=3.81 cfs 13,285 cf Outflow=3.81 cfs 13,285 cf
Pond 1056:	Peak Elev=369.43' Inflow=3.95 cfs 16,386 cf 12.0" Round Culvert n=0.025 L=128.5' S=0.0047 '/' Outflow=3.95 cfs 16,386 cf
Pond 1071:	Peak Elev=188.86' Inflow=7.15 cfs 27,475 cf 12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=7.15 cfs 27,475 cf
Pond 1072:	Peak Elev=182.36' Inflow=20.64 cfs 87,878 cf 15.0" Round Culvert n=0.025 L=31.0' S=0.0387 '/' Outflow=20.64 cfs 87,878 cf
Pond 1128:	Peak Elev=547.72' Inflow=9.65 cfs 36,450 cf 12.0" Round Culvert n=0.025 L=860.0' S=0.0095 '/' Outflow=9.65 cfs 36,450 cf

Existing Prepared by Fuss & O'Neill I	Type III 24-hr 10	<i>yr Rainfall</i> =5.60" Printed 7/23/2019
	© 2018 HydroCAD Software Solutions LLC	Page 8
Pond 1147:	Peak Elev=363.77' Inflow 12.0" Round Culvert n=0.025 L=36.0' S=0.0028 '/' Outflow	=5.85 cfs 23,953 cf
Pond 1148:	Peak Elev=359.07' Inflow= 12.0" Round Culvert n=0.025 L=311.5' S=0.0022 '/' Outflow=	
Pond 1186:	Peak Elev=557.85' Inflov 12.0" Round Culvert n=0.025 L=161.5' S=0.0080 '/' Outflov	
Pond 1188:	Peak Elev=557.73' Inflow 12.0" Round Culvert n=0.025 L=191.0' S=0.0058 '/' Outflow	
Pond 1213:	Peak Elev=18.12' Inflov 12.0" Round Culvert n=0.025 L=150.0' S=0.0200 '/' Outflov	
Pond 1251:	Peak Elev=17.45' Inflow 18.0" Round Culvert n=0.025 L=82.0' S=0.0220 '/' Outflow	,
Pond 1345:	Peak Elev=82.08' Inflov 12.0" Round Culvert n=0.025 L=915.0' S=0.0019 '/' Outflov	
Pond 1346:	Peak Elev=80.82' Inflow= 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow=	,
Pond 1347:	Peak Elev=164.33' Inflow= 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow=	
Pond E2347:	Peak Elev=58.45' Inflow= 15.0" Round Culvert n=0.013 L=72.5' S=-0.0014 '/' Outflow=	,
Pond E2348:	======================================	
Pond E2349:	======================================	,
Pond E2350:	Peak Elev=53.22' Inflov 15.0" Round Culvert n=0.013 L=19.3' S=0.0052 '/' Outflov	
Pond E3578A:	Peak Elev=9.50' Inflov 8.0" Round Culvert n=0.012 L=11.2' S=0.0982 '/' Outflov	
Pond E3579:	======================================	,
Pond E3600:	Peak Elev=7.62' Infl 12.0" Round Culvert n=0.012 L=21.4' S=0.2570 '/' Outfl	
Pond E3672:	Peak Elev=8.24' 4.0" Round Culvert n=0.012 L=13.9' S=0.0000 '/' O	Inflow=0.00 cfs 0 cf utflow=0.00 cfs 0 cf

Existing Prepared by Fuss & O'Neill HydroCAD® 10 00-21 s/n 0174		<i>Type III 24-hr 10 yr Rainfall</i> =5.60" Printed 7/23/2019 Page 9
Pond E3693:		eak Elev=8.27' Inflow=0.54 cfs 1,573 cf S=0.2177 '/' Outflow=0.54 cfs 1,573 cf
Pond E3756:		eak Elev=8.49' Inflow=1.62 cfs 4,666 cf S=0.2500 '/' Outflow=1.62 cfs 4,666 cf
Pond E3758:		eak Elev=8.86' Inflow=0.67 cfs 1,958 cf S=0.0000 '/' Outflow=0.67 cfs 1,958 cf
Pond E3760:		eak Elev=8.82' Inflow=1.62 cfs 4,666 cf S=0.0061 '/' Outflow=1.62 cfs 4,666 cf
Pond E3772:	Peak 15.0" Round Culvert n=0.013 L=48.0' S	Elev=36.77' Inflow=21.30 cfs 78,775 cf =0.0187 '/' Outflow=21.30 cfs 78,775 cf
Pond E3777:	Peak 15.0" Round Culvert n=0.013 L=28.2' S=	Elev=23.90' Inflow=23.40 cfs 84,777 cf =0.0035 '/' Outflow=23.40 cfs 84,777 cf
Pond E3866:	Pea Primary=0.02 cfs 11 cf Secondary=3.81 cfs	ak Elev=5.89' Inflow=3.81 cfs 13,285 cf s 13,275 cf Outflow=3.81 cfs 13,285 cf
Pond E3895:	4.0" Round Culvert n=0.012 L=3	Peak Elev=0.00' 7.1' S=0.0270 '/' Primary=0.00 cfs 0 cf
Pond E4034:		eak Elev=7.86' Inflow=0.53 cfs 1,535 cf S=0.3716 '/' Outflow=0.53 cfs 1,535 cf
Pond E4035:	Peak 42.0" Round Culvert n=0.012 L=139.6' S=	< Elev=4.31' Inflow=26.23 cfs 92,749 cf =0.0057 '/' Outflow=26.23 cfs 92,749 cf
Pond E4081:		eak Elev=6.71' Inflow=1.32 cfs 3,640 cf S=0.0077 '/' Outflow=1.32 cfs 3,640 cf
Pond E4082:		eak Elev=6.57' Inflow=1.42 cfs 3,912 cf S=0.0180 '/' Outflow=1.42 cfs 3,912 cf
Pond E4083:	Pea 42.0" x 24.0" Box Culvert n=0.025 L=25.4' S	ak Elev=5.62' Inflow=4.61 cfs 17,283 cf S=0.0098 '/' Outflow=4.61 cfs 17,283 cf
Pond E4093:	12.0" Round Culvert n=0.013 L=13	Peak Elev=5.99' Inflow=0.03 cfs 97 cf .7' S=0.0219 '/' Outflow=0.03 cfs 97 cf
Pond E4604:	Peak 42.0" Round Culvert_n=0.012 L=18.1' S	< Elev=3.49' Inflow=26.23 cfs 92,749 cf =0.0110 '/' Outflow=26.23 cfs 92,749 cf
Pond E4605:	Peak 24.0" Round Culvert_n=0.012 L=22.2' S	< Elev=7.79' Inflow=23.40 cfs 84,788 cf =0.0090 '/' Outflow=23.40 cfs 84,788 cf
Link AP1: Hodgson Brook		Inflow=37.02 cfs 140,865 cf Primary=37.02 cfs 140,865 cf

Link AP2:

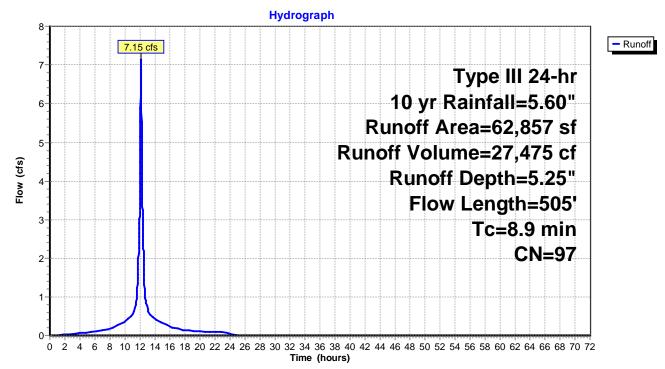
Inflow=26.23 cfs 92,749 cf Primary=26.23 cfs 92,749 cf

Inflow=4.61 cfs 17,283 cf Primary=4.61 cfs 17,283 cf

Total Runoff Area = 648,524 sf Runoff Volume = 250,896 cf Average Runoff Depth = 4.64" 31.24% Pervious = 202,614 sf 68.76% Impervious = 445,910 sf

Link AP3:

Summary for Subcatchment 1:

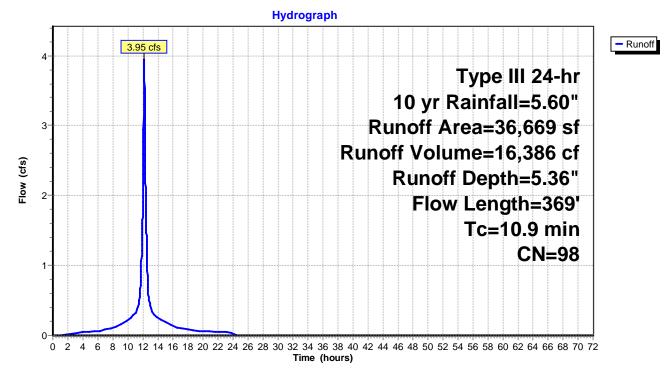

Runoff = 7.15 cfs @ 12.12 hrs, Volume= 27,475 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

_	A	rea (sf)	CN	Description							
		3,311	74	74 >75% Grass cover, Good, HSG C							
		19,506	98	Roofs, HSC	θC						
_		40,040	98	Paved park	ing, HSG C						
		62,857	97	Weighted A	verage						
		3,311		5.27% Perv	vious Area						
		59,546		94.73% Imp	pervious Ar	ea					
	Tc (min)	Length (feet)	Slop (ft/ft		Capacity (cfs)	Description					
	5.4	50	0.160	0 0.16		Sheet Flow, A-B					
	3.5	455	0.011	4 2.17		Woods: Light underbrush n= 0.400 P2= 3.21" Shallow Concentrated Flow, B-C Paved Kv= 20.3 fps					
	89	505	Total								

8.9 505 Total

Subcatchment 1:

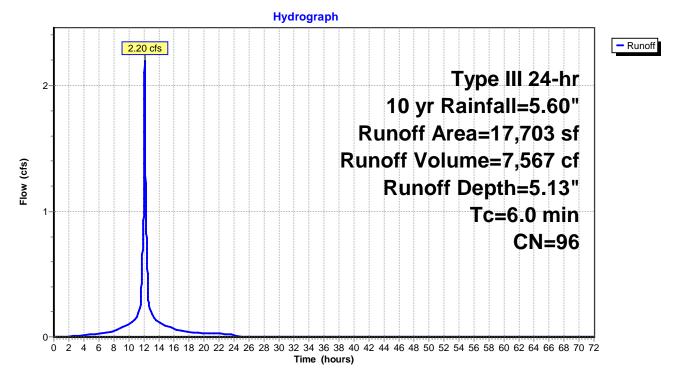

Summary for Subcatchment 2:

Runoff = 3.95 cfs @ 12.15 hrs, Volume= 16,386 cf, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

A	rea (sf)	CN	Description							
	700	74	>75% Grass cover, Good, HSG C							
	2,984	98	Roofs, HSG	БС						
	32,985	98	Paved park	ing, HSG C	,					
	36,669	98	Weighted A	verage						
	700		1.91% Perv	ious Area						
	35,969	1	98.09% Imp	pervious Are	ea					
Tc	Length	Slope	 Velocity 	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
9.3	50	0.0400	0.09		Sheet Flow, A-B					
					Woods: Light underbrush n= 0.400 P2= 3.21"					
1.6	319	0.0257	3.25		Shallow Concentrated Flow, B-C					
					Paved Kv= 20.3 fps					
10.9	369	Total								

Subcatchment 2:


Summary for Subcatchment 3:

Runoff = 2.20 cfs @ 12.08 hrs, Volume= 7,567 cf, Depth= 5.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

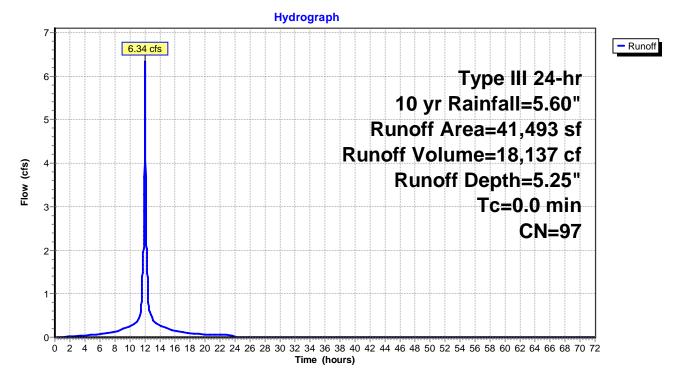
Area (sf) CN	Description					
1,743	3 74	>75% Grass cover, Good, HSG C					
10,382	2 98	Roofs, HSG C					
5,578	3 98	Paved parking, HSG C					
17,703	3 96	Weighted Average					
1,743	3	9.85% Pervious Area					
15,960)	90.15% Impervious Area					
Tc Leng (min) (fee							
6.0		Direct Entry,					

Subcatchment 3:

Summary for Subcatchment 4:

Runoff = 4.76 cfs @ 12.08 hrs, Volume= 16,632 cf, Depth= 5.25"

Area (sf) CN E	Description									
2,2			s cover, Go		SG C						
	35,787 98 Paved parking, HSG C 38,050 97 Weighted Average										
	3,050 97 Weighted Average 2,263 5.95% Pervious Area										
35,7			pervious Ar	ea							
Ta lar	ath Olana) (ala alta	O an a aite i	Deee							
	ngth Slope eet) (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Desc	ription						
6.0		(1000)	(0.0)	Direc	t Entry	/,					
			Sub	ocatch	nment	: 4:					
			Hydr	ograph							-
5	4.76 cfs]									- Runoff
-		-						-			
-										24-hr	
4						10	yr R	lain	fall=	5.60"	
-					R	luno	off Ai	rea=	:38,0	50 sf	
					Run	off \	/olu	me=	:16.6	32 cf	
low (cfs)								· · · · · · · · · · · · · · · · · · ·		5.25"	
HO Nor						1.6		1 1 7) min	
2								1			
									C	N=97	
-											
1											
-	Л										
0	4 6 8 10 12 14	16 18 20 22 2				44 46 48	3 50 52 5	54 56 58	3 60 62 6	64 66 68 70	72
			Т	ime (hou	irs)						

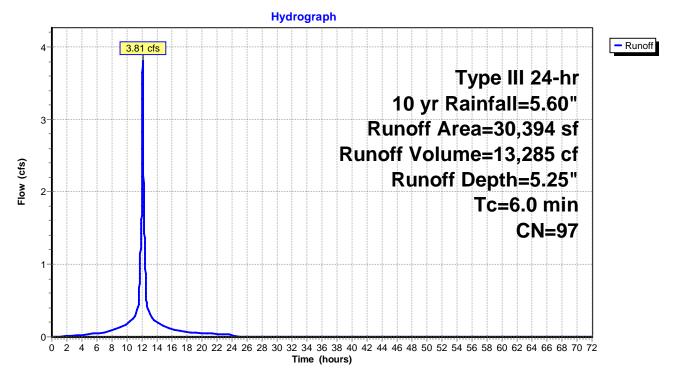

Summary for Subcatchment 5:

Runoff = 6.34 cfs @ 12.00 hrs, Volume= 18,137 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area (s	f) CN	Description				
1,13	³ 9 74	>75% Grass cover, Good, HSG C				
2,89	98 0	Roofs, HSG C				
37,46	64 98	Paved parking, HSG C				
41,49	97 3	Weighted Average				
1,13	39	2.75% Pervious Area				
40,35	54	97.25% Impervious Area				

Subcatchment 5:


Summary for Subcatchment 6:

Runoff = 3.81 cfs @ 12.08 hrs, Volume= 13,285 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

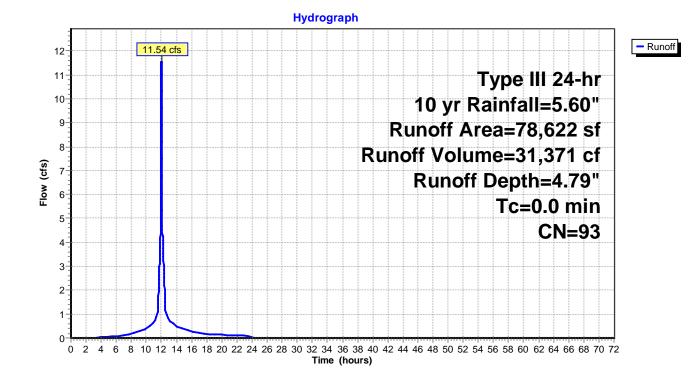
A	rea (sf)	CN	Description						
	1,290	74	>75% Gras	s cover, Go	ood, HSG C				
	4,065	98	Roofs, HSG	СС					
	25,039	98	Paved park	ing, HSG C	;				
	30,394	97	Weighted A	verage					
	1,290		4.24% Pervious Area						
	29,104		95.76% Impervious Area						
Τ.	1			0	Description				
TC	Length	Slope		Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
6.0					Direct Entry,				

Subcatchment 6:

Summary for Subcatchment 7:

Runoff = 13.50 cfs @ 12.08 hrs, Volume= 44,393 cf, Depth= 4.68"

Area (sf)	CN Description	า			
29,577		ss cover, Go	ood, HSG C		
8,271 70,081	98 Roofs, HS 98 Paved par	ے C king, HSG C			
5,497		king, HSC C			
484		s cover, Po	or, HSG C		
113,910 30,061	92 Weighted	Average rvious Area			
83,849		pervious Area			
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description		
6.0			Direct Entry		
		Sut	ocatchment	7:	
			ograph		
15					
14	13.50 cfs				- Runoff
13				Type III 24-hr	-
12				10 yr Rainfall=5.60"	
11			Ru	noff Area=113,910 sf	
9				off Volume=44,393 cf	-
			I CUII		-
				Runoff Depth=4.68"	-
ш	·····			Tc=6.0 min	-
5				CN=92	-
4					-
3					-
2					-
1					-
0 1 4 6	8 10 12 14 16 18 20 22	24 26 28 30 32	34 36 38 40 42 44	46 48 50 52 54 56 58 60 62 64 66 68 70 7	1 72
		т	ime (hours)		


Summary for Subcatchment 8:

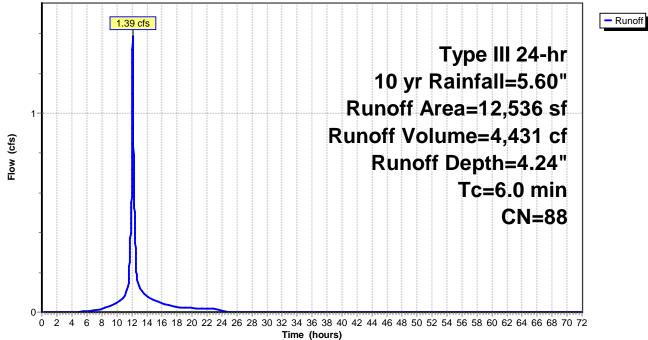
Runoff = 11.54 cfs @ 12.00 hrs, Volume= 31,371 cf, Depth= 4.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description
11,870	74	>75% Grass cover, Good, HSG C
2,647	70	Woods, Good, HSG C
34,463	96	Gravel surface, HSG C
 29,642	98	Paved parking, HSG C
78,622	93	Weighted Average
48,980		62.30% Pervious Area
29,642		37.70% Impervious Area

Subcatchment 8:

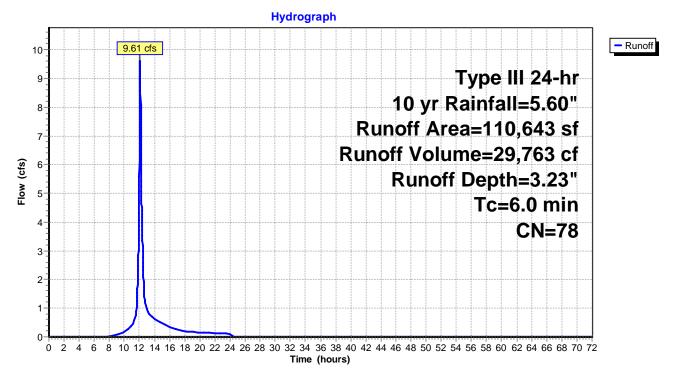
Summary for Subcatchment 9:


Runoff = 1.39 cfs @ 12.09 hrs, Volume= 4,431 cf, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area (sf)	CN	Description	
3,710	74	>75% Grass cover,	Good, HSG C
1,203	70	Woods, Good, HSG	C
235	70	Woods, Good, HSG	C
2,236	98	Paved parking, HSC	i C
4,367	98	Paved parking, HSC	i C
785	96	Gravel surface, HSC	G C
12,536	88	Weighted Average	
5,933		47.33% Pervious Ar	ea
6,603		52.67% Impervious	Area
Tc Length (min) (feet)	Sloj (ft/		
6.0			Direct Entry,

Subcatchment 9:


Summary for Subcatchment 10:

Runoff = 9.61 cfs @ 12.09 hrs, Volume= 29,763 cf, Depth= 3.23"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area (sf)	CN	Description
8,775	74	>75% Grass cover, Good, HSG C
70,036	70	Woods, Good, HSG C
31,832	98	Paved parking, HSG C
110,643	78	Weighted Average
78,811		71.23% Pervious Area
31,832		28.77% Impervious Area
	Clar	na Valasity Constitution
Tc Length	Slop	
(min) (feet)	(ft/	
6.0		Direct Entry,

Subcatchment 10:

Summary for Subcatchment 11:

Runoff = 3.50 cfs @ 12.08 hrs, Volume= 12,047 cf, Depth= 5.13"

Area (sf)	CN Description
1,988	74 >75% Grass cover, Good, HSG C
26,196	98 Paved parking, HSG C
28,184 1,988	96 Weighted Average 7.05% Pervious Area
26,196	92.95% Impervious Area
Tc Length (min) (feet)	Slope Velocity Capacity Description (ft/ft) (ft/sec) (cfs)
<u>6.0</u>	Direct Entry,
0.0	
	Subcatchment 11:
	Hydrograph
3- 	3.50 cfs Type III 24-hr 10 yr Rainfall=5.60" 10 yr Rainfall=5.60" Runoff Area=28,184 sf Runoff Volume=12,047 cf Runoff Depth=5.13" Tc=6.0 min CN=96 CN=96
0 2 4 6	8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

Summary for Subcatchment 12:

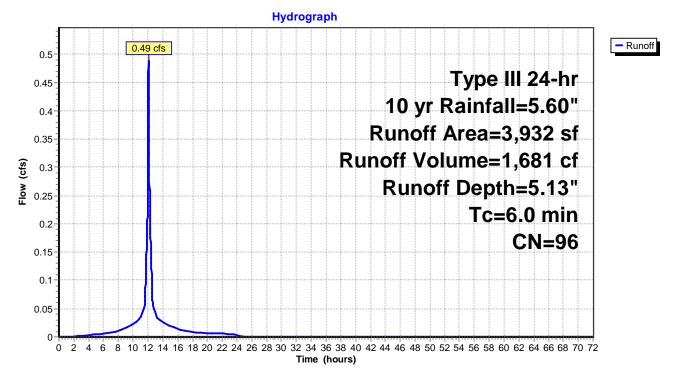
Runoff = 0.83 cfs @ 12.09 hrs, Volume= 2,567 cf, Depth= 3.32"

Area (sf	
7,227 2,037	
9,264	4 79 Weighted Average
7,227	
2,037	21.99% Impervious Area
Tc Leng (min) (fee	
6.0	Direct Entry,
	Subcatchment 12:
1 1	Hydrograph
0.9	0.83 cfs
0.85	
0.75	Type III 24-hr
0.7	10 yr Rainfall=5.60"
0.65	Runoff Area=9,264 sf
0.6 0.55	
(s) 0.55	Runoff Volume=2,567 cf
(\$) 0.5 No 0.45	Runoff Depth=3.32"
Ĕ _{0.4}	Tc=6.0 min
0.35	
0.3	CN≡79
0.25	
0.15	
0.1	
0.05	

Summary for Subcatchment 13:

Runoff = 0.69 cfs @ 12.08 hrs, Volume= 2,230 cf, Depth= 4.46"

/	Area (sf)	CN Descript		
	2,007 3,996		rass cover, Go arking, HSG (
	6,003		d Average	
	2,007		Pervious Area	
	3,996	66.57%	Impervious Ar	rea
Tc (min)	0	Slope Veloc (ft/ft) (ft/se		Description
6.0	· · · ·		(00)	Direct Entry,
			Suk	ocatchment 13:
0.7	5		Нуа	rograph
0.7		0.69 cfs		- Runo
0.6	5			Type III 24-hr
0.	6			10 yr Rainfall=5.60"
0.5	5			
0.				Runoff Area=6,003 sf
(sta	-			Runoff Volume=2,230 cf
Flow (cfs) 0.3				Runoff Depth=4.46"
ш 0.0 0.	-			Tc=6.0 min
0.2	5			CN=90
0.	2			
0.1	5	<u>]</u>]		
0.				
0.0	5			

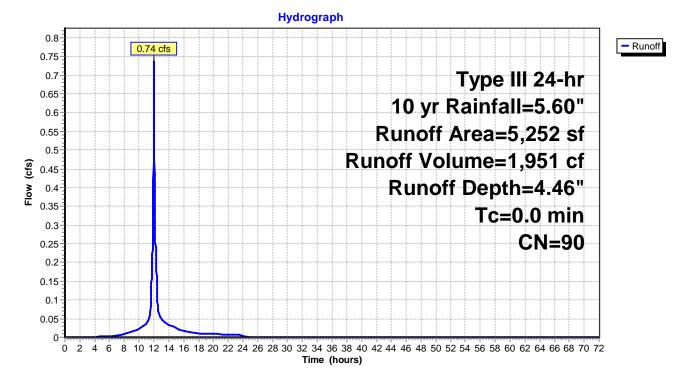

Summary for Subcatchment 14:

Runoff = 0.49 cfs @ 12.08 hrs, Volume= 1,681 cf, Depth= 5.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

A	rea (sf)	CN	Description		
	1,795	98	Roofs, HSC	G C	
	252	70	Woods, Go	od, HSG C	
	1,885	98	Paved park	ing, HSG C	С
	3,932	96	Weighted A	verage	
	252		6.41% Perv	ious Area	
	3,680		93.59% Imp	pervious Ar	rea
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)	
6.0					Direct Entry,

Subcatchment 14:

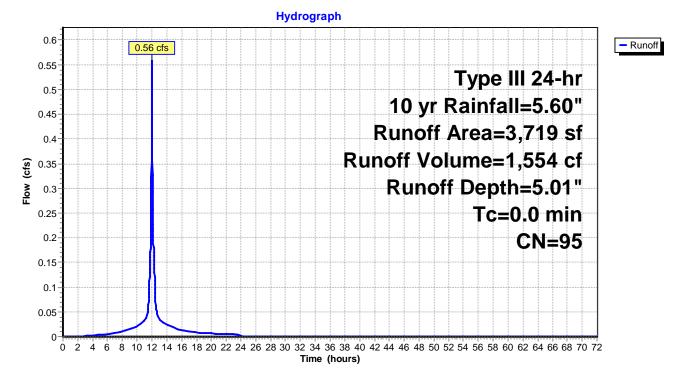

Summary for Subcatchment 15:

Runoff = 0.74 cfs @ 12.00 hrs, Volume= 1,951 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description
1,194	70	Woods, Good, HSG C
3,422	96	Gravel surface, HSG C
 636	98	Paved parking, HSG C
5,252	90	Weighted Average
4,616		87.89% Pervious Area
636		12.11% Impervious Area

Subcatchment 15:

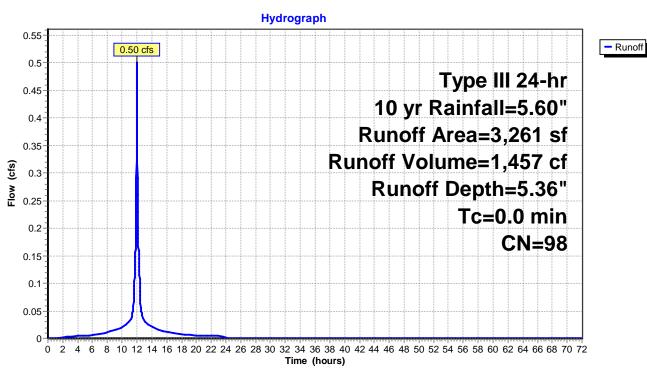

Summary for Subcatchment 16:

Runoff = 0.56 cfs @ 12.00 hrs, Volume= 1,554 cf, Depth= 5.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area (sf)	CN	Description
3,301	98	Paved parking, HSG C
418	74	>75% Grass cover, Good, HSG C
3,719	95	Weighted Average
418		11.24% Pervious Area
3,301		88.76% Impervious Area

Subcatchment 16:



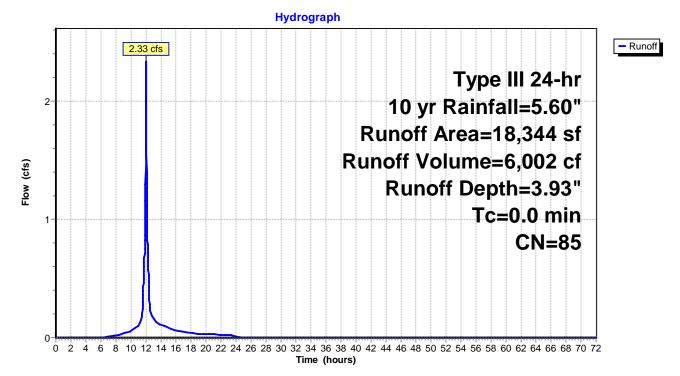
Summary for Subcatchment 17:

Runoff = 0.50 cfs @ 12.00 hrs, Volume= 1,457 cf, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description
3,261	98	Paved parking, HSG C
3,261		100.00% Impervious Area

Subcatchment 17:

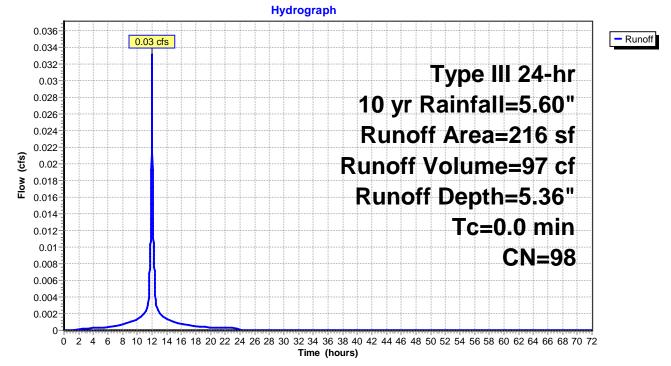

Summary for Subcatchment 18:

Runoff = 2.33 cfs @ 12.00 hrs, Volume= 6,002 cf, Depth= 3.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area (sf)	CN	Description
8,272	98	Paved parking, HSG C
10,072	74	>75% Grass cover, Good, HSG C
18,344	85	Weighted Average
10,072		54.91% Pervious Area
8,272		45.09% Impervious Area

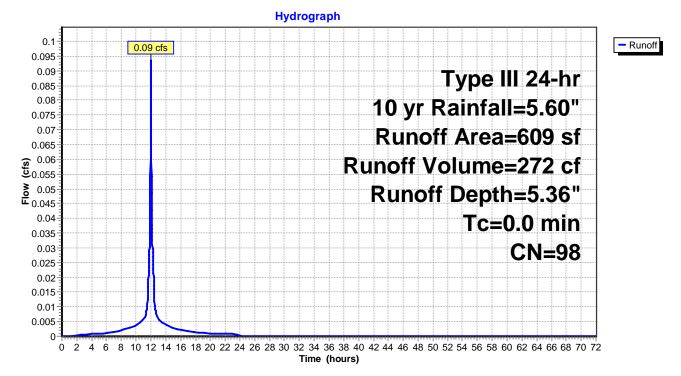
Subcatchment 18:



Summary for Subcatchment 19:

Runoff = 0.03 cfs @ 12.00 hrs, Volume= 97 cf, Depth= 5.36"

 Area (sf)	CN	Description	
216	98	Paved parking, HSG C	
216		100.00% Impervious Area	

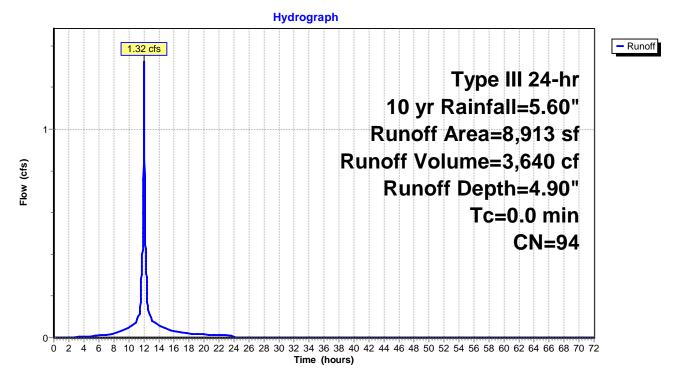

Summary for Subcatchment 20:

Runoff = 0.09 cfs @ 12.00 hrs, Volume= 272 cf, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

	Area (sf)	CN	Description	
	609	98	Paved parking, HSG C	
609 100.00% Impervious Area		100.00% Impervious Area		

Subcatchment 20:

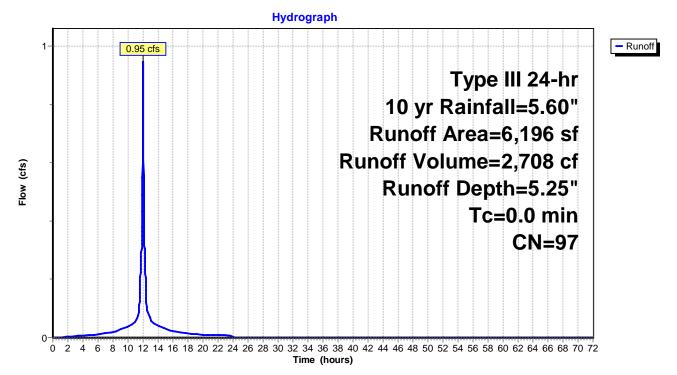

Summary for Subcatchment 21:

Runoff = 1.32 cfs @ 12.00 hrs, Volume= 3,640 cf, Depth= 4.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description			
7,413	98	Paved parking, HSG C			
1,500	74	>75% Grass cover, Good, HSG C			
 8,913	94	Weighted Average			
1,500		16.83% Pervious Area			
7,413		83.17% Impervious Area			

Subcatchment 21:

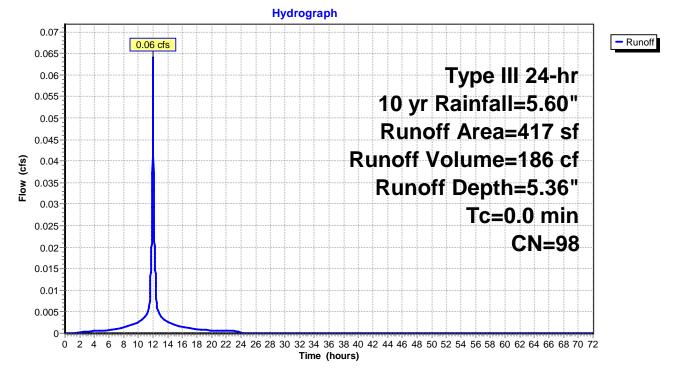

Summary for Subcatchment 22:

Runoff = 0.95 cfs @ 12.00 hrs, Volume= 2,708 cf, Depth= 5.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description	
5,893	98	Paved parking, HSG C	
 303	74	>75% Grass cover, Good, HSG C	
6,196	97	Weighted Average	
303		4.89% Pervious Area	
5,893		95.11% Impervious Area	

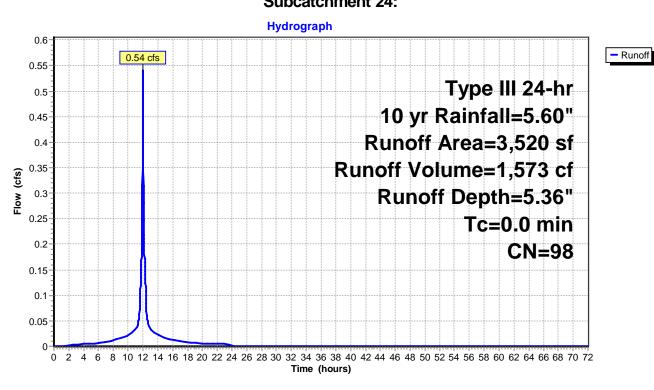
Subcatchment 22:



Summary for Subcatchment 23:

Runoff = 0.06 cfs @ 12.00 hrs, Volume= 186 cf, Depth= 5.36"

 Area (sf)	CN	Description	
417	98	Paved parking, HSG C	
417		100.00% Impervious Area	

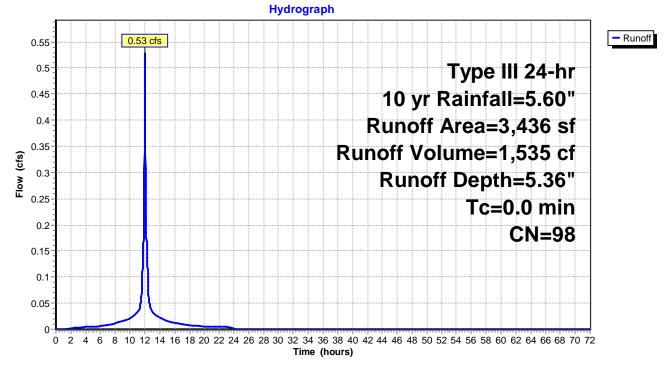


Summary for Subcatchment 24:

Runoff 0.54 cfs @ 12.00 hrs, Volume= 1,573 cf, Depth= 5.36" _

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

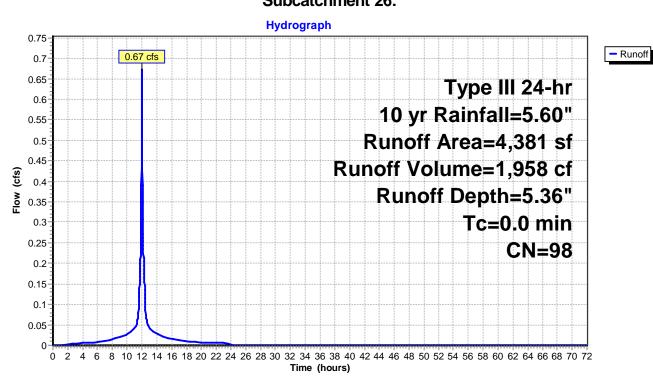
 Area (sf)	CN	Description	
3,520	98	Paved parking, HSG C	
3,520		100.00% Impervious Area	


Subcatchment 24:

Summary for Subcatchment 25:

Runoff = 0.53 cfs @ 12.00 hrs, Volume= 1,535 cf, Depth= 5.36"

 Area (sf)	CN	Description	
3,436	98	Paved parking, HSG C	
3,436		100.00% Impervious Area	

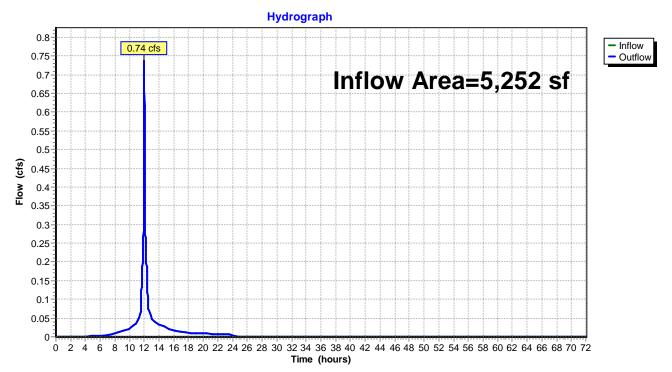


Summary for Subcatchment 26:

Runoff 0.67 cfs @ 12.00 hrs, Volume= 1,958 cf, Depth= 5.36" _

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description	
4,381	98	Roofs, HSG C	
4,381		100.00% Impervious Area	

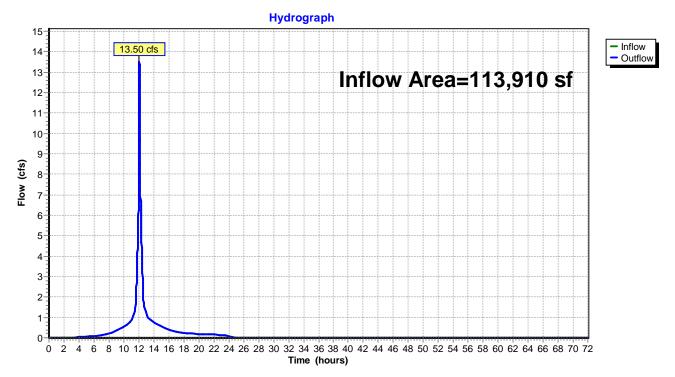


Subcatchment 26:

Summary for Reach OS1:

Inflow Area =	5,252 sf, 12.11% Impervious,	Inflow Depth = 4.46" for 10 yr event
Inflow =	0.74 cfs @ 12.00 hrs, Volume=	1,951 cf
Outflow =	0.74 cfs @ 12.00 hrs, Volume=	1,951 cf, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

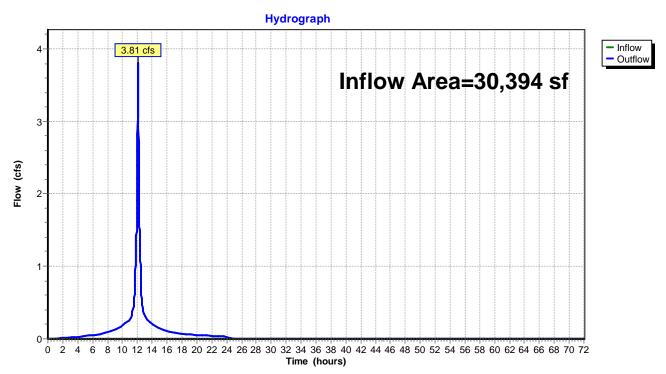


Reach OS1:

Summary for Reach OS2:

Inflow Area =		113,910 sf	, 73.61% Impervious,	Inflow Depth = 4.68"	for 10 yr event
Inflow	=	13.50 cfs @	12.08 hrs, Volume=	44,393 cf	
Outflow	=	13.50 cfs @	12.08 hrs, Volume=	44,393 cf, Atten	= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

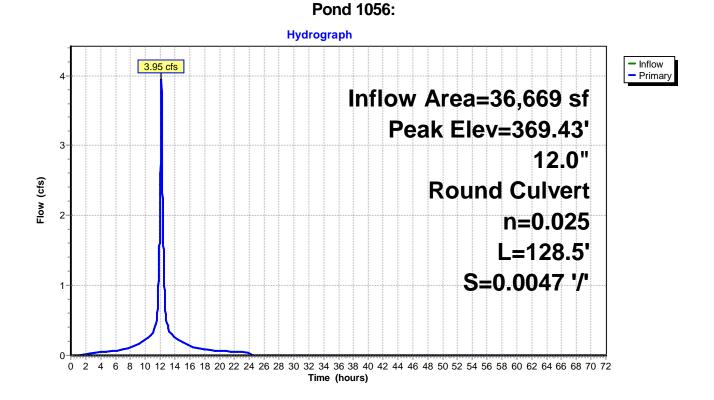


Reach OS2:

Summary for Reach TB:

Inflow Are	a =	30,394 sf, 95.76% Impervious, Inflow Depth = 5.25" for 10 yr event	
Inflow	=	3.81 cfs @ 12.08 hrs, Volume= 13,285 cf	
Outflow	=	3.81 cfs @ 12.08 hrs, Volume= 13,285 cf, Atten= 0%, Lag= 0.0 n	nin

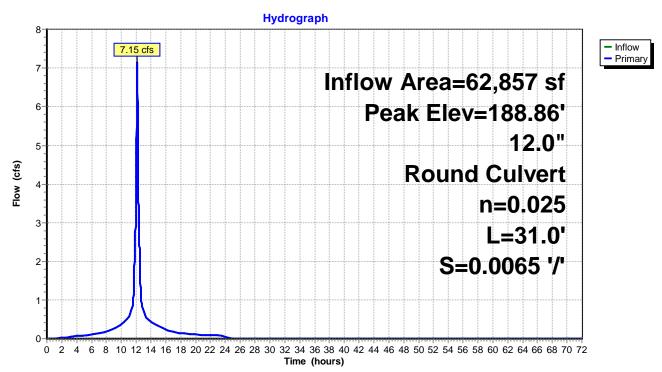
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs



Reach TB:

Summary for Pond 1056:

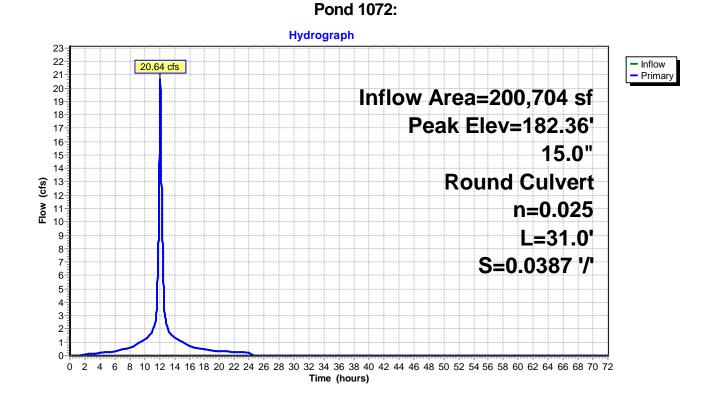
Inflow A Inflow Outflow Primary	=	3.95 cfs @ 12 3.95 cfs @ 12	18.09% Impervious, Inflow Depth = 5.36" for 10 yr event 2.15 hrs, Volume= 16,386 cf 2.15 hrs, Volume= 16,386 cf, Atten= 0%, Lag= 0.0 min 2.15 hrs, Volume= 16,386 cf				
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 369.43' @ 12.11 hrs Flood Elev= 23.30'						
Device	Routing	Invert	Outlet Devices				
#1	Primary	18.30'	12.0" Round Culvert L= 128.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.30' / 17.70' S= 0.0047 '/' Cc= 0.900$ n= 0.025 Corrugated metal, Flow Area= 0.79 sf				


Primary OutFlow Max=6.56 cfs @ 12.15 hrs HW=348.61' TW=330.85' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 6.56 cfs @ 8.35 fps)

Summary for Pond 1071:

Inflow A Inflow Outflow Primary	= =	7.15 cfs @ 12 7.15 cfs @ 12	04.73% Impervious, Inflow Depth = 5.25" for 10 yr event 2.12 hrs, Volume= 27,475 cf 2.12 hrs, Volume= 27,475 cf, Atten= 0%, Lag= 0.0 min 2.12 hrs, Volume= 27,475 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 188.86' @ 12.11 hrs Flood Elev= 22.70'			
Device	Routing	Invert	Outlet Devices
#1	Primary	17.50'	12.0" Round Culvert L= 31.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 17.50' / 17.30' S= 0.0065 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf

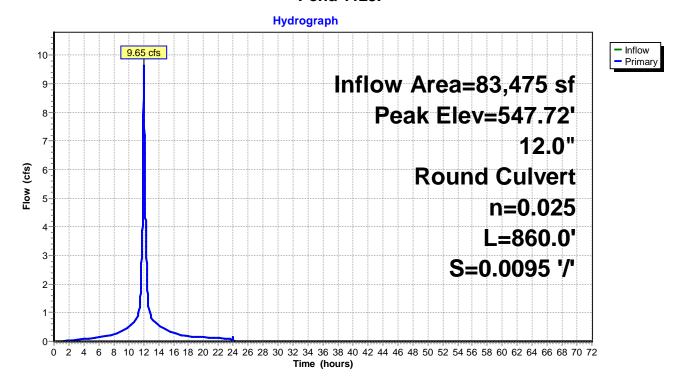
Primary OutFlow Max=8.08 cfs @ 12.12 hrs HW=187.80' TW=179.41' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 8.08 cfs @ 10.29 fps)



Pond 1071:

Summary for Pond 1072:

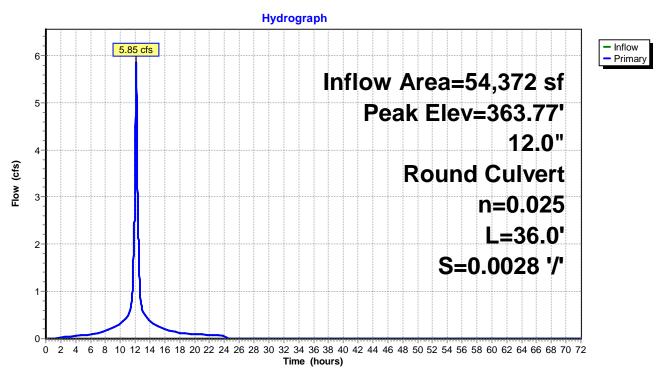
Inflow A Inflow	rea = =		95.31% Impervious, Inflow Depth = 5.25" for 10 yr event 2.09 hrs, Volume= 87,878 cf
Outflow Primary		20.64 cfs @ 12	2.09 hrs, Volume= 87,878 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 87,878 cf
Routing Peak Ele	by Dyn-S	Stor-Ind method, 36' @ 12.10 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
	-	-	
Device	Routing	Invert	Outlet Devices
#1	Primary	y 17.10'	15.0" Round Culvert L= $31.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $17.10' / 15.90'$ S= $0.0387 '/$ Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.23 sf


Primary OutFlow Max=19.37 cfs @ 12.09 hrs HW=180.01' TW=163.87' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 19.37 cfs @ 15.78 fps)

Summary for Pond 1128:

Inflow Area =		83,475 sf, 9	5.62% Impervious, Inflow Depth = 5.24" for 10 yr event		
Inflow	=	9.65 cfs @ 12	2.01 hrs, Volume= 36,450 cf		
Outflow	=	9.65 cfs @ 12	2.01 hrs, Volume= 36,450 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	9.65 cfs @ 12	2.01 hrs, Volume= 36,450 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 547.72' @ 12.06 hrs Flood Elev= 22.70'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	22.90'	12.0" Round Culvert L= $860.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $22.90' / 14.70'$ S= $0.0095 '/'$ Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf	_	

Primary OutFlow Max=9.20 cfs @ 12.01 hrs HW=490.86' TW=274.92' (Dynamic Tailwater) ↓ 1=Culvert (Outlet Controls 9.20 cfs @ 11.71 fps)

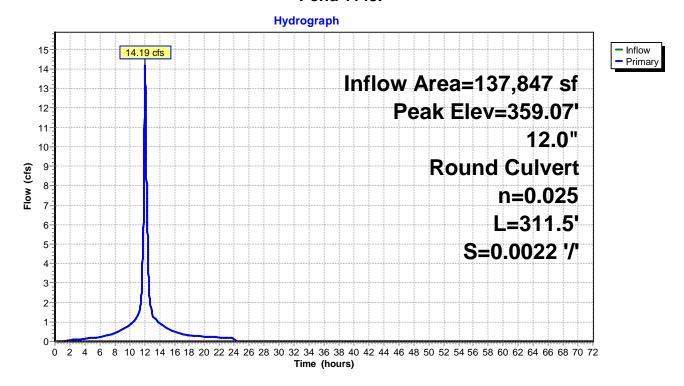


Pond 1128:

Summary for Pond 1147:

Inflow A Inflow Outflow Primary	=	5.85 cfs @ 12 5.85 cfs @ 12	95.51% Impervious, Inflow Depth = 5.29" for 10 yr event 2.12 hrs, Volume= 23,953 cf 2.12 hrs, Volume= 23,953 cf, Atten= 0%, Lag= 0.0 min 2.12 hrs, Volume= 23,953 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 363.77' @ 12.10 hrs Flood Elev= 22.20'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	18.30'	12.0" Round Culvert L= $36.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.30' / 18.20'$ S= $0.0028 '/$ Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf			

Primary OutFlow Max=8.93 cfs @ 12.12 hrs HW=355.86' TW=344.45' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 8.93 cfs @ 11.37 fps)

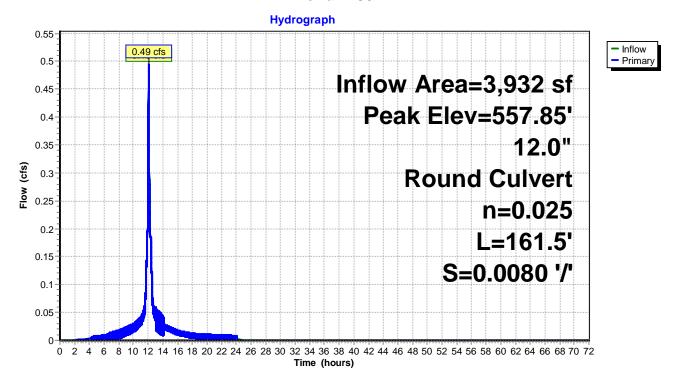


Pond 1147:

Summary for Pond 1148:

Inflow A Inflow Outflow Primary	=	14.19 cfs @ 12 14.19 cfs @ 12	95.58% Impervious, Inflow Depth = 5.26" for 10 yr event 2.07 hrs, Volume= 60,403 cf 2.07 hrs, Volume= 60,403 cf, Atten= 0%, Lag= 0.0 min 2.07 hrs, Volume= 60,403 cf		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 359.07' @ 12.09 hrs Flood Elev= 22.40'					
Device	Routing	Invert	Outlet Devices		
#1	Primary	18.20'	12.0" Round Culvert L= 311.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.20' / 17.50'$ S= $0.0022 '/$ Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf		

Primary OutFlow Max=13.88 cfs @ 12.07 hrs HW=351.10' TW=168.48' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 13.88 cfs @ 17.67 fps)

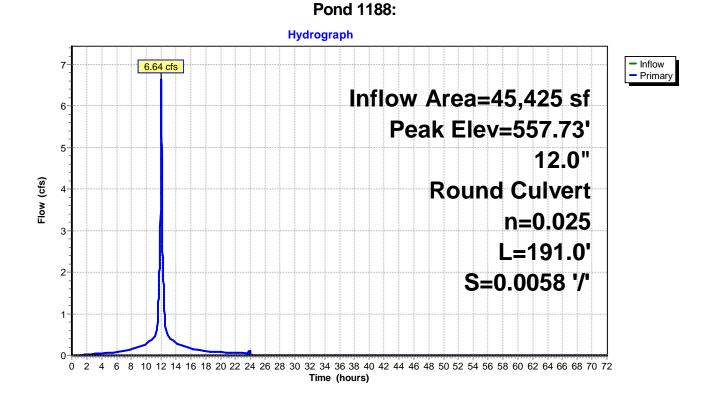


Pond 1148:

Summary for Pond 1186:

Inflow A Inflow Outflow Primary	=	0.49 cfs @ 12 0.49 cfs @ 12	3.59% Impervious, Inflow Depth = 5.13" for 10 yr event 2.08 hrs, Volume= 1,681 cf 2.09 hrs, Volume= 1,680 cf, Atten= 0%, Lag= 0.3 min 2.09 hrs, Volume= 1,680 cf		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 557.85' @ 12.08 hrs Flood Elev= 23.50'					
Device	Routing	Invert	Outlet Devices		
#1	Primary	22.30'	12.0" Round Culvert L= 161.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $22.30' / 21.00'$ S= $0.0080'/$ ' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf		

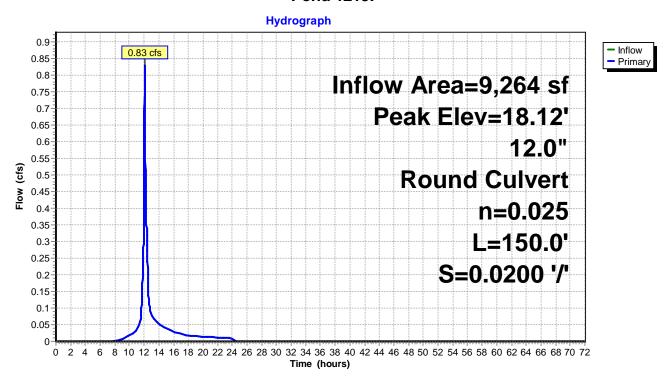
Primary OutFlow Max=3.84 cfs @ 12.09 hrs HW=556.08' TW=548.57' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 3.84 cfs @ 4.88 fps)



Pond 1186:

Summary for Pond 1188:

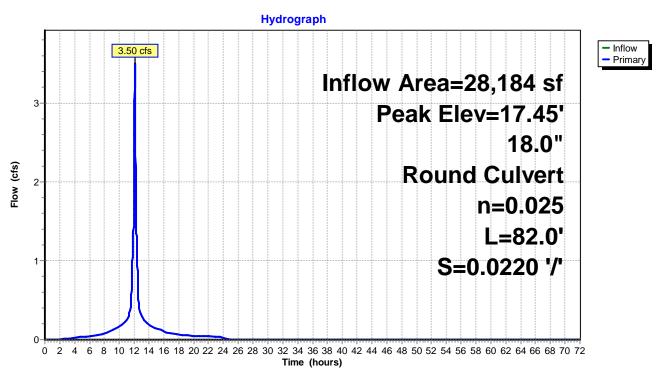
Inflow A Inflow Outflow Primary	=	6.64 cfs @ 12 6.64 cfs @ 12	96.94% Impervious, Inflow Depth = 5.24" for 10 yr event 2.00 hrs, Volume= 19,817 cf 2.00 hrs, Volume= 19,818 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 19,818 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 557.73' @ 12.07 hrs Flood Elev= 25.70'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	20.00'	12.0" Round Culvert L= 191.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.00'$ / 18.90' S= 0.0058 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf			


Primary OutFlow Max=0.00 cfs @ 12.00 hrs HW=450.62' TW=475.27' (Dynamic Tailwater) ↓ 1=Culvert (Controls 0.00 cfs)

Summary for Pond 1213:

Inflow An Inflow Outflow Primary	=	0.83 cfs @ 12 0.83 cfs @ 12	21.99% Impervious, Inflow Depth = 3.32" for 10 yr event 2.09 hrs, Volume= 2,567 cf 2.09 hrs, Volume= 2,567 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 2,567 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 18.12' @ 12.09 hrs Flood Elev= 20.30'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	17.60'	12.0" Round Culvert L= 150.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 17.60' / 14.60' S= 0.0200 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf			

Primary OutFlow Max=0.83 cfs @ 12.09 hrs HW=18.12' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 0.83 cfs @ 2.93 fps)

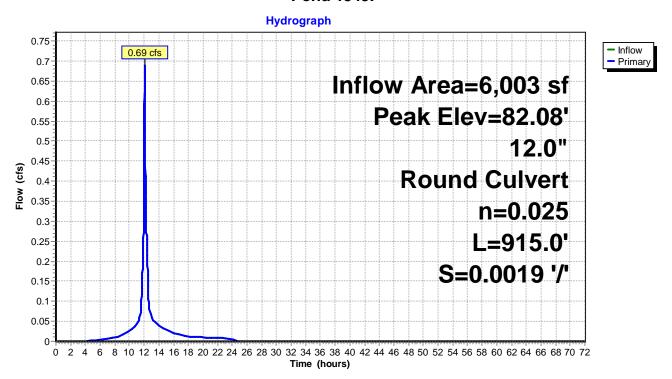


Pond 1213:

Summary for Pond 1251:

Inflow Area =	, ,	92.95% Impervious, Inflow Depth = 5.13" for 10 yr event
Inflow =	3.50 cfs @ 12	2.08 hrs, Volume= 12,047 cf
Outflow =	3.50 cfs @ 12	2.08 hrs, Volume= 12,047 cf, Atten= 0%, Lag= 0.0 min
Primary =	3.50 cfs @ 12	2.08 hrs, Volume= 12,047 cf
Routing by Dyn- Peak Elev= 17.4 Flood Elev= 20.	l5' @ 12.08 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device Routin	g Invert	Outlet Devices
#1 Primai	y 16.50'	18.0" Round Culvert L= 82.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $16.50' / 14.70'$ S= $0.0220' / Cc= 0.900$ n= 0.025 Corrugated metal, Flow Area= 1.77 sf

Primary OutFlow Max=3.50 cfs @ 12.08 hrs HW=17.45' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 3.50 cfs @ 4.24 fps)

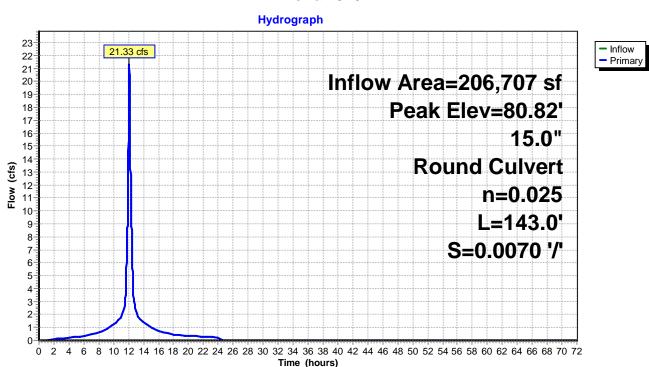


Pond 1251:

Summary for Pond 1345:

Inflow Area =		6,003 sf, 6	66.57% Impervious, Inflow Depth = 4.46" for 10 yr event		
Inflow	=	0.69 cfs @ 12	2.08 hrs, Volume= 2,230 cf		
Outflow	=	0.69 cfs @ 12	2.08 hrs, Volume= 2,230 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	0.69 cfs @ 12	2.08 hrs, Volume= 2,230 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 82.08' @ 12.10 hrs Flood Elev= 23.30'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	19.10'	12.0" Round Culvert L= 915.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.10' / 17.40'$ S= $0.0019 '/$ Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf		

Primary OutFlow Max=0.48 cfs @ 12.08 hrs HW=81.27' TW=80.65' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.48 cfs @ 0.61 fps)

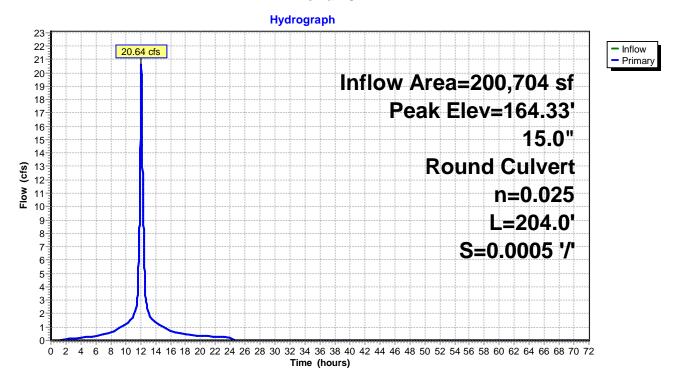


Pond 1345:

Summary for Pond 1346:

Inflow A Inflow Outflow Primary	=	21.33 cfs @ 1 21.33 cfs @ 1	94.48% Impervious, Inflow Depth = 5.23" for 10 yr event 2.09 hrs, Volume= 90,107 cf 2.09 hrs, Volume= 90,107 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 90,107 cf		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 80.82' @ 12.09 hrs Flood Elev= 25.00'					
Device	Routing	Invert	Outlet Devices		
#1	Primary	v 15.70'	15.0" Round Culvert L= 143.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 15.70' / 14.70' S= 0.0070 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.23 sf		

Primary OutFlow Max=21.30 cfs @ 12.09 hrs HW=80.68' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 21.30 cfs @ 17.36 fps)

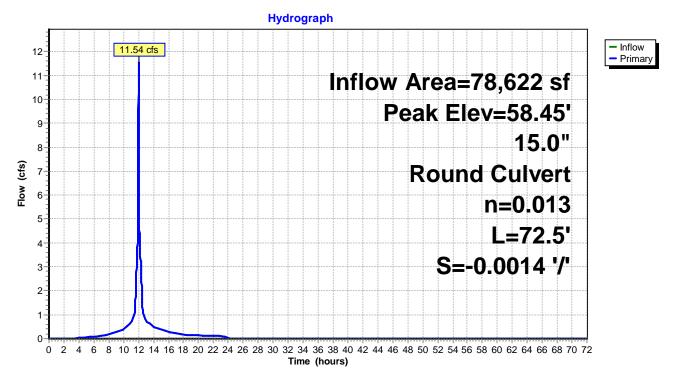


Pond 1346:

Summary for Pond 1347:

Inflow A Inflow Outflow Primary	=	20.64 cfs @ 1 20.64 cfs @ 1	95.31% Impervious, Inflow Depth = 5.25" for 10 yr event 2.09 hrs, Volume= 87,878 cf 2.09 hrs, Volume= 87,878 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 87,878 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 164.33' @ 12.09 hrs Flood Elev= 23.90'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	v 15.90'	15.0" Round Culvert L= 204.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $15.90' / 15.80' S = 0.0005 '/' Cc= 0.900$ n= 0.025 Corrugated metal, Flow Area= 1.23 sf			

Primary OutFlow Max=20.56 cfs @ 12.09 hrs HW=163.87' TW=80.69' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 20.56 cfs @ 16.75 fps)

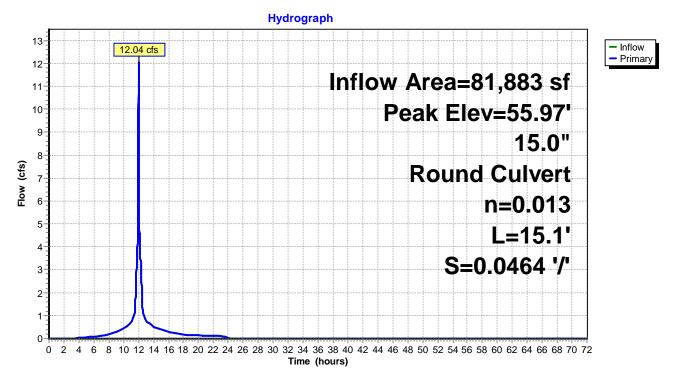

Pond 1347:

Summary for Pond E2347:

Inflow Area = 78,622 sf, 37.70% Impervious, Inflow Depth = 4.79" for 10 yr event Inflow 11.54 cfs @ 12.00 hrs. Volume= 31.371 cf = 11.54 cfs @ 12.00 hrs, Volume= Outflow 31,371 cf, Atten= 0%, Lag= 0.0 min = Primary 11.54 cfs @ 12.00 hrs, Volume= 31,371 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 58.45' @ 12.04 hrs Flood Elev= 13.80' Device Routing Invert Outlet Devices **15.0" Round Culvert** L= 72.5' CPP, square edge headwall, Ke= 0.500 #1 Primary 9.80' Inlet / Outlet Invert= 9.70' / 9.80' S= -0.0014 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 12.00 hrs HW=45.84' TW=46.44' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.00 cfs)

Pond E2347:

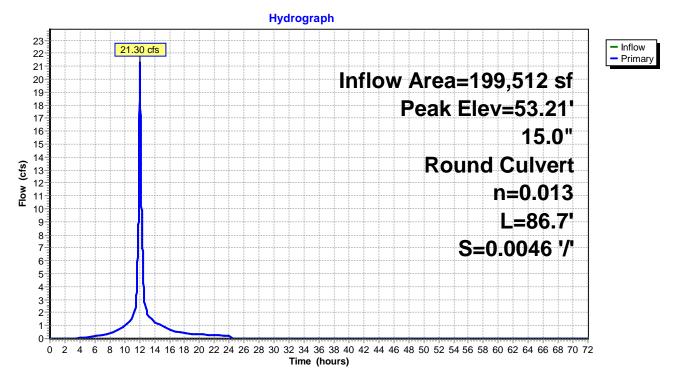


Summary for Pond E2348:

Inflow A Inflow Outflow Primary	= =	12.04 cfs @ 12 12.04 cfs @ 12	40.18% Impervious, Inflow Depth = 4.81" for 10 yr event 2.00 hrs, Volume= 32,828 cf 2.00 hrs, Volume= 32,828 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 32,828 cf
Peak Ele	• •	7' @ 12.03 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	9.80'	15.0" Round Culvert L= 15.1' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $9.80' / 9.10'$ S= 0.0464 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 12.00 hrs HW=46.44' TW=47.26' (Dynamic Tailwater) ←1=Culvert (Controls 0.00 cfs)

Pond E2348:

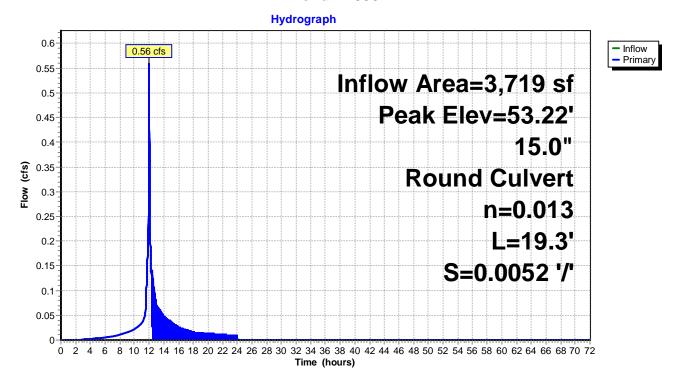


Summary for Pond E2349:

Inflow A	rea =	199,512 sf, 6	60.17% Impervious, Inflow Depth = 4.74" for 10 yr event
Inflow	=	21.30 cfs @ 12	2.04 hrs, Volume= 78,775 cf
Outflow	=	21.30 cfs @ 12	2.04 hrs, Volume= 78,775 cf, Atten= 0%, Lag= 0.0 min
Primary	=	21.30 cfs @ 12	2.04 hrs, Volume= 78,775 cf
Peak Ele		1' @ 12.04 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	y 9.10'	15.0" Round Culvert L= 86.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $9.10' / 8.70'$ S= 0.0046 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=21.33 cfs @ 12.04 hrs HW=53.20' TW=36.68' (Dynamic Tailwater) -1=Culvert (Outlet Controls 21.33 cfs @ 17.38 fps)

Pond E2349:


Summary for Pond E2350:

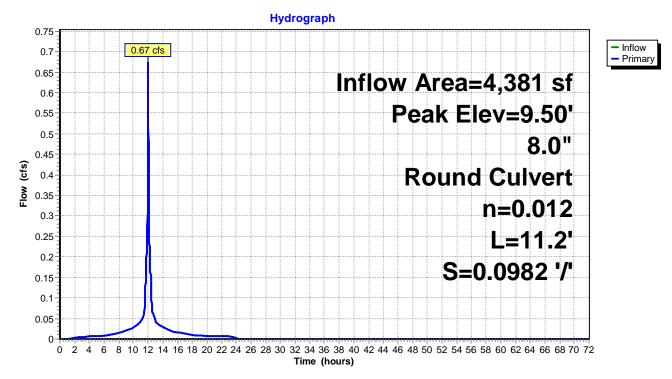
Inflow Area	a =	3,719 sf, 88.76% Impervious,	Inflow Depth = 5.01" for 10 yr event
Inflow	=	0.56 cfs @ 12.00 hrs, Volume=	1,554 cf
Outflow	=	0.56 cfs @ 12.00 hrs, Volume=	1,554 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.56 cfs @ 12.00 hrs, Volume=	1,554 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 53.22' @ 12.05 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	10.40'	15.0" Round Culvert L= 19.3' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $10.40' / 10.30'$ S= $0.0052'/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 12.00 hrs HW=42.26' TW=47.23' (Dynamic Tailwater)

Pond E2350:

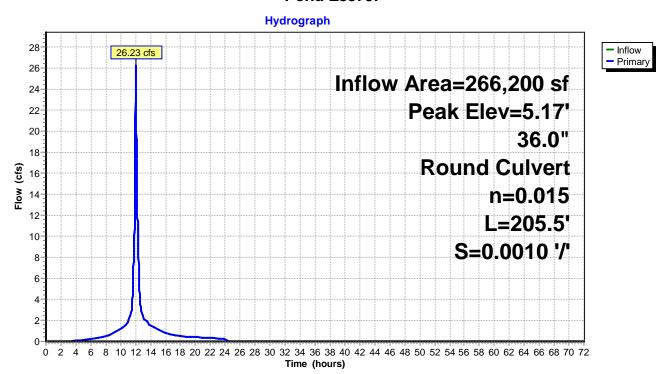

Summary for Pond E3578A:

Inflow Area	a =	4,381 sf,100.00% Impervious, Inflow Depth = 5.36" for 10 yr	event
Inflow	=	0.67 cfs @ 12.00 hrs, Volume= 1,958 cf	
Outflow	=	0.67 cfs @ 12.00 hrs, Volume= 1,958 cf, Atten= 0%, Lag	J= 0.0 min
Primary	=	0.67 cfs @ 12.00 hrs, Volume= 1,958 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 9.50' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.00'	8.0" Round Culvert L= 11.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $9.00' / 7.90'$ S= $0.0982' / Cc= 0.900$ n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.67 cfs @ 12.00 hrs HW=9.50' TW=8.84' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.67 cfs @ 2.40 fps)

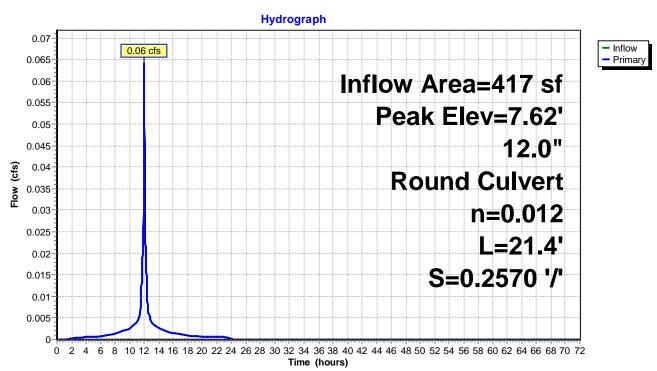


Pond E3578A:

Summary for Pond E3579:

Inflow A	rea =	266,200 sf, 6	5.77% Impervious, Inflow Depth = 4.18" for 10 yr event	
Inflow	=	26.23 cfs @ 12	2.00 hrs, Volume= 92,749 cf	
Outflow	=	26.23 cfs @ 12	2.00 hrs, Volume= 92,749 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	26.23 cfs @ 12	2.00 hrs, Volume= 92,749 cf	
Peak El		@ 12.02 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs	
Device	Routing	Invert	Outlet Devices	
#1	Primary	2.00'	36.0" Round Culvert L= 205.5' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2.00' / 1.80' S= 0.0010 '/' Cc= 0.900	_

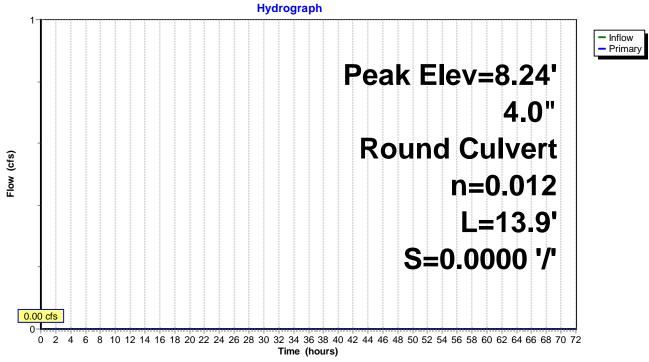
Primary OutFlow Max=25.01 cfs @ 12.00 hrs HW=5.12' TW=4.28' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 25.01 cfs @ 4.22 fps)



Pond E3579:

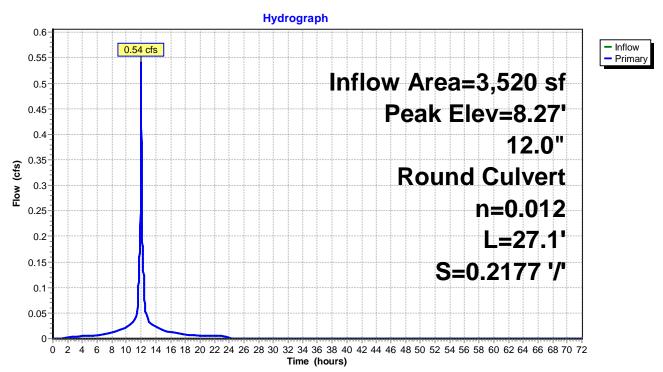
Summary for Pond E3600:

Inflow A Inflow Outflow Primary	= =	0.06 cfs @ 12 0.06 cfs @ 12	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 186 cf 2.00 hrs, Volume= 186 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 186 cf
Peak El	•••	@ 12.00 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	7.50'	12.0" Round Culvert L= 21.4' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.50' / 2.00'$ S= 0.2570 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.06 cfs @ 12.00 hrs HW=7.62' TW=5.09' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.06 cfs @ 1.18 fps)

Pond E3600:

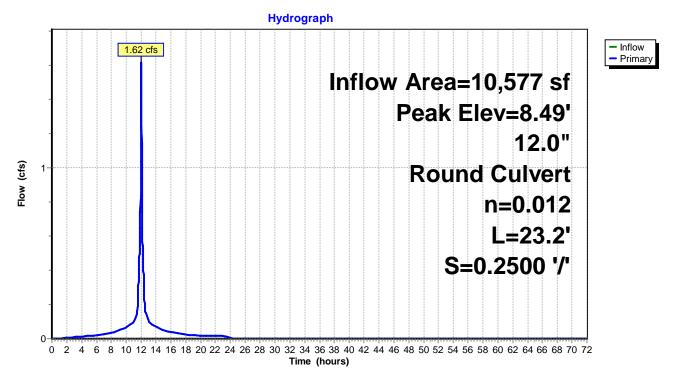
Summary for Pond E3672:


Inflow Outflow Primary	= = =		0.00 hrs, Volume= 0.00 hrs, Volume= 0.00 hrs, Volume=	0 cf 0 cf, Atten= 0%, Lag= 0.0 min 0 cf
Peak Ele		@ 11.99 hrs	Time Span= 0.00-72.00	hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices	
#1	Primary	8.20	Inlet / Outlet Invert= 8.2	L= 13.9' CPP, square edge headwall, Ke= 0.500 20' / 8.20' S= 0.0000 '/' Cc= 0.900 PP, smooth interior, Flow Area= 0.09 sf
		Max=0.00 cfs ontrols 0.00 cfs		W=7.90' (Dynamic Tailwater)
			Pond E36	672:

Summary for Pond E3693:

Inflow A	rea =		00.00% Impervious, Inflow Depth = $5.36"$ for 10 yr event
Inflow	=	0.54 cfs @ 12	2.00 hrs, Volume= 1,573 cf
Outflow	=	0.54 cfs @ 12	2.00 hrs, Volume= 1,573 cf, Atten= 0%, Lag= 0.0 min
Primary	=	0.54 cfs @ 12	2.00 hrs, Volume= 1,573 cf
Peak El		@ 12.00 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	7.90'	12.0" Round Culvert L= 27.1' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.90' / 2.00'$ S= $0.2177' / Cc= 0.900$ n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

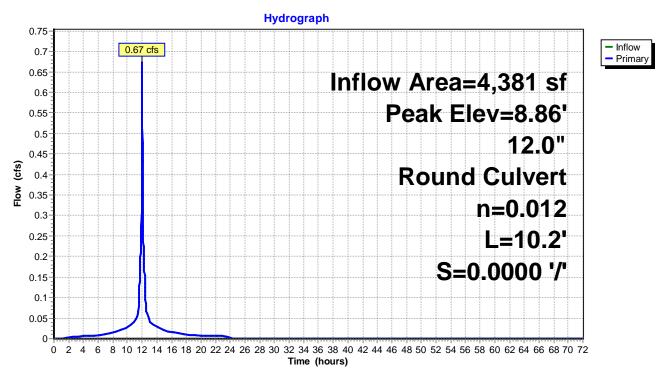
Primary OutFlow Max=0.54 cfs @ 12.00 hrs HW=8.27' TW=5.09' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.54 cfs @ 2.06 fps)


Pond E3693:

Summary for Pond E3756:

Inflow Ar	ea =	10,577 sf, 9	97.14% Impervious, Inflow Depth = 5.29" for 10 yr event
Inflow	=	1.62 cfs @ 12	2.00 hrs, Volume= 4,666 cf
Outflow	=	1.62 cfs @ 12	2.00 hrs, Volume= 4,666 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.62 cfs @ 12	2.00 hrs, Volume= 4,666 cf
Peak Ele	• •	@ 12.00 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	7.80'	12.0" Round Culvert L= 23.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.80' / 2.00'$ S= 0.2500 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

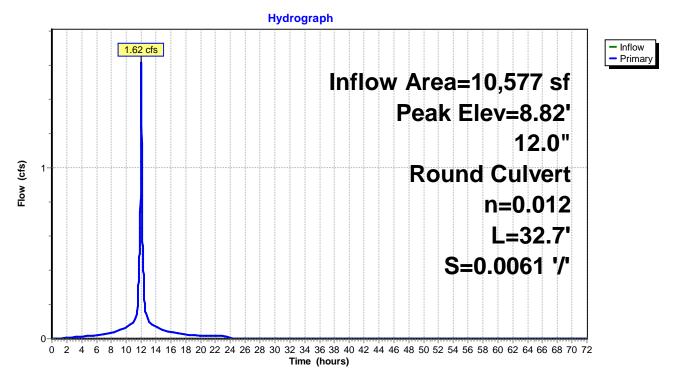
Primary OutFlow Max=1.62 cfs @ 12.00 hrs HW=8.49' TW=5.09' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 1.62 cfs @ 2.82 fps)


Pond E3756:

Summary for Pond E3758:

Inflow A Inflow Outflow Primary	= =	0.67 cfs @ 12 0.67 cfs @ 12	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 1,958 cf 2.00 hrs, Volume= 1,958 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 1,958 cf
Peak Ele		@ 12.01 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	8.00'	12.0" Round Culvert L= $10.2'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $8.00' / 8.00'$ S= $0.0000' / Cc= 0.900$ n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.41 cfs @ 12.00 hrs HW=8.84' TW=8.82' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.41 cfs @ 0.79 fps)

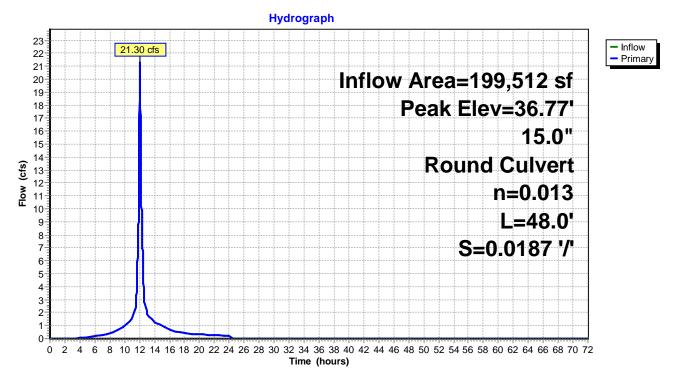

Pond E3758:

Summary for Pond E3760:

Inflow A	rea =	10,577 sf, 9	97.14% Impervious, Inflow Depth = 5.29" for 10 yr event
Inflow	=	1.62 cfs @ 12	2.00 hrs, Volume= 4,666 cf
Outflow	=	1.62 cfs @ 12	2.00 hrs, Volume= 4,666 cf, Atten= 0%, Lag= 0.0 min
Primary	=	1.62 cfs @ 12	2.00 hrs, Volume= 4,666 cf
Routing	by Dyn-St	or-Ind method,	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Peak El	ev= 8.82' @	2 12.00 hrs	
Flood El	lev= 10.70	1	
Flood El	lev= 10.70	1	
Flood El <u>Device</u>	lev= 10.70 Routing	Invert	Outlet Devices
Device	Routing	Invert	Outlet Devices 12.0" Round Culvert L= 32.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 8.00' / 7.80' S= 0.0061 '/' Cc= 0.900
Device	Routing	Invert	12.0" Round Culvert L= 32.7' CPP, square edge headwall, Ke= 0.500

Primary OutFlow Max=1.57 cfs @ 12.00 hrs HW=8.82' TW=8.49' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 1.57 cfs @ 3.10 fps)

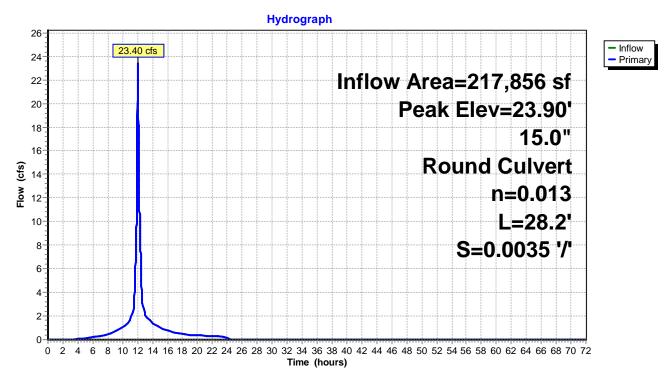
Pond E3760:



Summary for Pond E3772:

Inflow Area =		199,512 sf, 6	60.17% Impervious, Inflow Depth = 4.74" for 10 yr event		
Inflow	=	21.30 cfs @ 12	2.04 hrs, Volume= 78,775 cf		
Outflow	=	21.30 cfs @ 12	2.04 hrs, Volume= 78,775 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	21.30 cfs @ 12	2.04 hrs, Volume= 78,775 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 36.77' @ 12.02 hrs Flood Elev= 12.20'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	8.60'	15.0" Round Culvert L= 48.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $8.60' / 7.70'$ S= 0.0187 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf		

Primary OutFlow Max=21.41 cfs @ 12.04 hrs HW=36.68' TW=23.55' (Dynamic Tailwater) -1=Culvert (Inlet Controls 21.41 cfs @ 17.44 fps)


Pond E3772:

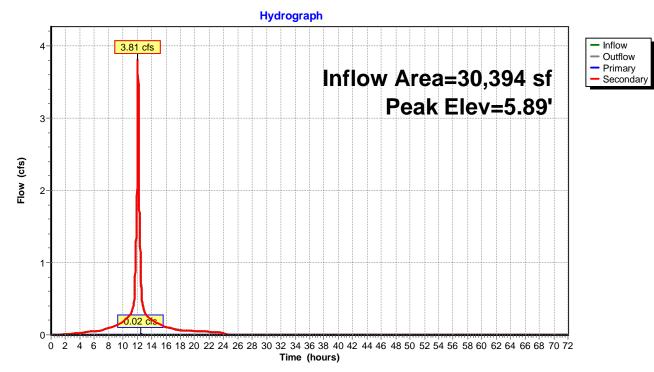
Summary for Pond E3777:

Inflow A Inflow Outflow Primary	= =	23.40 cfs @ 12 23.40 cfs @ 12	58.90% Impervious, Inflow Depth = 4.67" for 10 yr event 2.01 hrs, Volume= 84,777 cf 2.01 hrs, Volume= 84,777 cf, Atten= 0%, Lag= 0.0 min 2.01 hrs, Volume= 84,777 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 23.90' @ 12.01 hrs Flood Elev= 10.70'					
Device	Routing	lnvert	Outlet Devices			
#1	Primary	/ 7.60'	15.0" Round Culvert L= 28.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.60' / 7.50'$ S= 0.0035 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf			

Primary OutFlow Max=23.40 cfs @ 12.01 hrs HW=23.90' TW=7.79' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 23.40 cfs @ 19.06 fps)

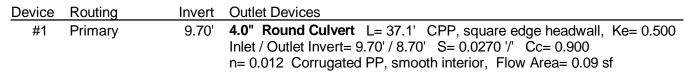
Pond E3777:

Summary for Pond E3866:

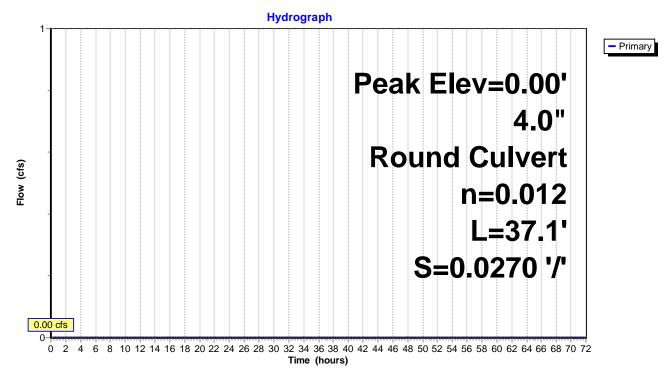

Inflow Area =	30,394 sf, 95.76% Impervious	Inflow Depth = 5.25" for 10 yr event
Inflow =	3.81 cfs @ 12.08 hrs, Volume=	13,285 cf
Outflow =	3.81 cfs @ 12.08 hrs, Volume=	13,285 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.02 cfs @ 12.51 hrs, Volume=	11 cf
Secondary =	3.81 cfs @ 12.08 hrs, Volume=	13,275 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 5.89' @ 12.08 hrs Flood Elev= 10.20'

Device	Routing	Invert	Outlet Devices
#1	Primary	5.40'	24.0" Round Culvert
			L= 35.7' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 5.40' / 4.60' S= 0.0224 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf
#2	Secondary	5.30'	42.0" W x 24.0" H Box Culvert
			L= 83.8' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 5.30' / 5.00' S= 0.0036 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 7.00 sf


Primary OutFlow Max=0.02 cfs @ 12.51 hrs HW=5.48' TW=5.40' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 0.02 cfs @ 0.64 fps)

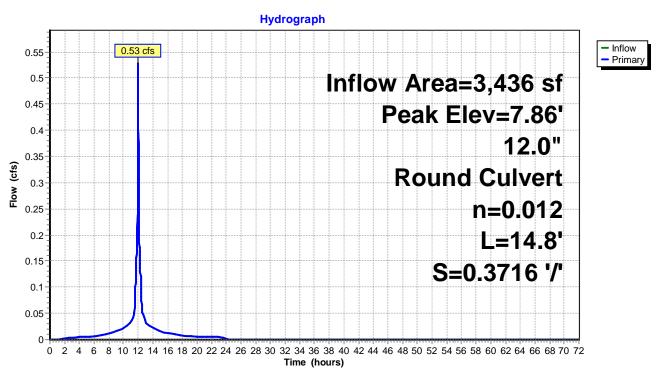
Secondary OutFlow Max=3.84 cfs @ 12.08 hrs HW=5.89' TW=5.61' (Dynamic Tailwater) 2=Culvert (Outlet Controls 3.84 cfs @ 2.48 fps)



Pond E3866:

Summary for Pond E3895:

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' TW=8.20' (Dynamic Tailwater)

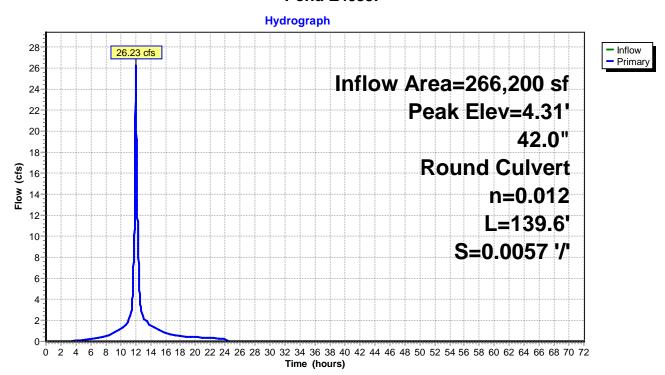


Pond E3895:

Summary for Pond E4034:

Inflow A	rea =	3,436 sf,10	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event		
Inflow	=	0.53 cfs @ 12	2.00 hrs, Volume= 1,535 cf		
Outflow	=	0.53 cfs @ 12	2.00 hrs, Volume= 1,535 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	0.53 cfs @ 12	2.00 hrs, Volume= 1,535 cf		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.86' @ 12.00 hrs Flood Elev= 10.80'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	7.50'	12.0" Round Culvert L= 14.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.50' / 2.00'$ S= 0.3716 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=0.53 cfs @ 12.00 hrs HW=7.86' TW=5.09' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.53 cfs @ 2.05 fps)

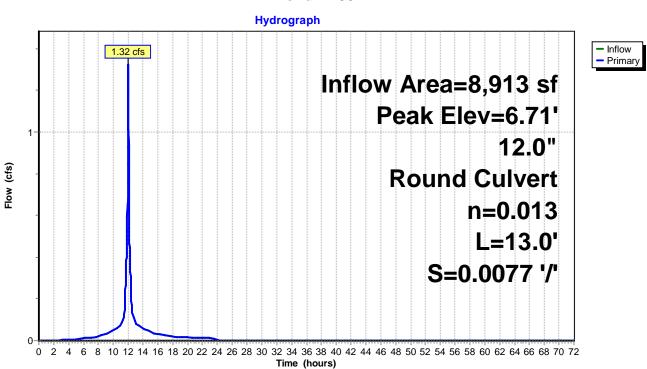


Pond E4034:

Summary for Pond E4035:

Inflow A	rea =	266,200 sf, 6	5.77% Impervious, Inflow Depth = 4.18" for 10 yr event		
Inflow	=	26.23 cfs @ 1	2.00 hrs, Volume= 92,749 cf		
Outflow	=	26.23 cfs @ 1	2.00 hrs, Volume= 92,749 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	26.23 cfs @ 1	2.00 hrs, Volume= 92,749 cf		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 4.31' @ 12.01 hrs Flood Elev= 11.70'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	1.80'	42.0" Round Culvert L= 139.6' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $1.80' / 1.00'$ S= $0.0057 '/$ ' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 9.62 sf		

Primary OutFlow Max=25.40 cfs @ 12.00 hrs HW=4.28' TW=3.48' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 25.40 cfs @ 4.88 fps)

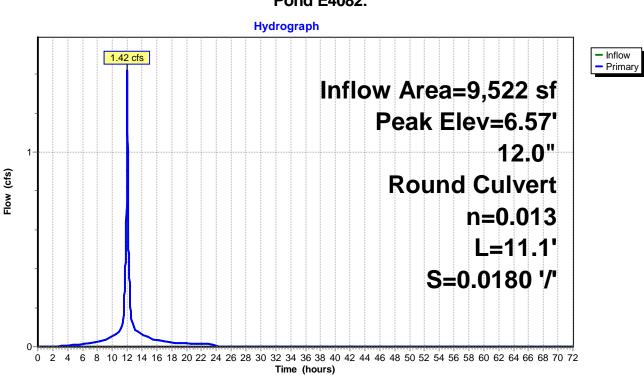


Pond E4035:

Summary for Pond E4081:

Inflow A Inflow	rea = =		33.17% Impervious, Inflow Depth = 4.90" for 10 yr event 2.00 hrs, Volume= 3,640 cf		
Outflow Primary			2.00 hrs, Volume= 3,640 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 3,640 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 6.71' @ 12.01 hrs Flood Elev= 8.70'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	5.80'	12.0" Round Culvert L= 13.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $5.80' / 5.70'$ S= $0.0077 '/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=1.24 cfs @ 12.00 hrs HW=6.71' TW=6.57' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 1.24 cfs @ 2.18 fps)

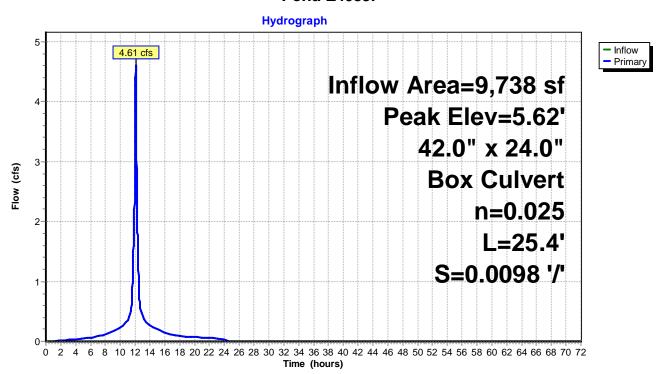


Pond E4081:

Summary for Pond E4082:

Inflow Area = 9,522 s		9,522 sf, 8	4.25% Impervious, Inflow Depth = 4.93" for 10 yr event	
Inflow	=	1.42 cfs @ 12	2.00 hrs, Volume= 3,912 cf	
Outflow	=	1.42 cfs @ 12	2.00 hrs, Volume= 3,912 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	1.42 cfs @ 12	2.00 hrs, Volume= 3,912 cf	
-				
Routing	by Dyn-St	or-Ind method,	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs	
Peak Ele	ev= 6.57' (@ 12.00 hrs		
Flood El	lev= 8 70'			
	0.70			
	0.70			
Device	Routing	Invert	Outlet Devices	_
		Invert 5.90'	Outlet Devices 12.0" Round Culvert L= 11.1' CPP, square edge headwall, Ke= 0.500	_ ว
Device	Routing			_ ጋ
Device	Routing		12.0" Round Culvert L= 11.1' CPP, square edge headwall, Ke= 0.500	_ C

Primary OutFlow Max=1.42 cfs @ 12.00 hrs HW=6.57' TW=5.55' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 1.42 cfs @ 3.58 fps)

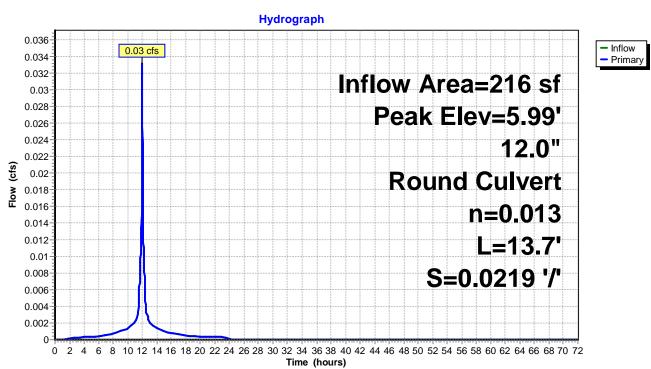


Pond E4082:

Summary for Pond E4083:

Inflow Are Inflow Outflow Primary	ea = = = =	4.61 cfs @ 12 4.61 cfs @ 12	34.60% Impervious, Inflow Depth = 21.30" for 10 yr event 2.07 hrs, Volume= 17,283 cf 2.07 hrs, Volume= 17,283 cf, Atten= 0%, Lag= 0.0 min 2.07 hrs, Volume= 17,283 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 5.62' @ 12.07 hrs Flood Elev= 8.90'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	5.00'	42.0" W x 24.0" H Box Culvert L= 25.4' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $5.00' / 4.75' S= 0.0098 '/' Cc= 0.900$ n= 0.025 Corrugated metal, Flow Area= 7.00 sf	

Primary OutFlow Max=4.60 cfs @ 12.07 hrs HW=5.62' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 4.60 cfs @ 2.83 fps)

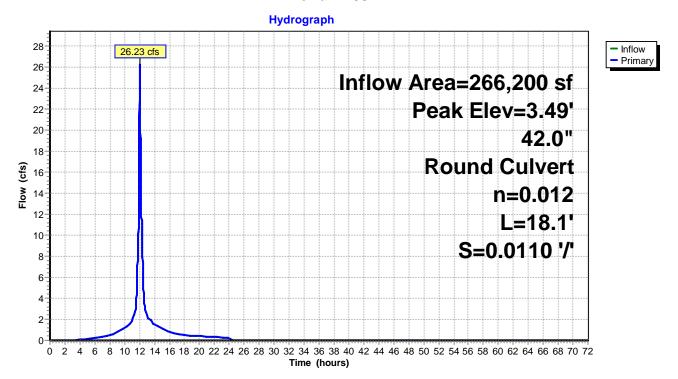


Pond E4083:

Summary for Pond E4093:

Inflow A Inflow			00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 97 cf		
Outflow	=		2.00 hrs, Volume= 97 cf, Atten= 0%, Lag= 0.0 min		
Primary			2.00 hrs, Volume= 97 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 5.99' @ 12.00 hrs Flood Elev= 9.00'				
Device	Routing	Invert	Outlet Devices	_	
#1	Primary	5.90'	12.0" Round Culvert L= 13.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 5.90' / 5.60' S= 0.0219 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	,	

Primary OutFlow Max=0.03 cfs @ 12.00 hrs HW=5.99' TW=5.55' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.03 cfs @ 1.00 fps)

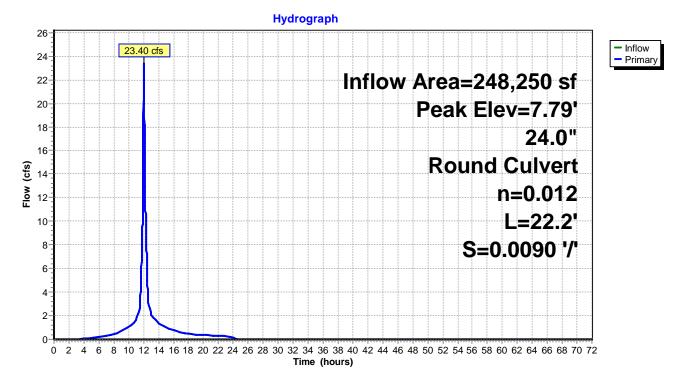


Pond E4093:

Summary for Pond E4604:

Inflow Area = 266,200		266,200 sf, 6	5.77% Impervious, In	nflow Depth = 4.18" for 10 yr event	
Inflow	=	26.23 cfs @ 1	2.00 hrs, Volume=	92,749 cf	
Outflow	=	26.23 cfs @ 1	2.00 hrs, Volume=	92,749 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	26.23 cfs @ 1	2.00 hrs, Volume=	92,749 cf	
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 3.49' @ 12.00 hrs Flood Elev= 10.30'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	1.20'	Inlet / Outlet Invert= ?	t are edge headwall, Ke= 0.500 1.20' / 1.00' S= 0.0110 '/' Cc= 0.900 bipe, finished, Flow Area= 9.62 sf	

Primary OutFlow Max=26.04 cfs @ 12.00 hrs HW=3.48' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 26.04 cfs @ 5.58 fps)



Pond E4604:

Summary for Pond E4605:

Inflow A Inflow Outflow Primary	= =	23.40 cfs @ 1 23.40 cfs @ 1	63.42% Impervious, Inflow Depth = 4.10" for 10 yr event 2.01 hrs, Volume= 84,788 cf 2.01 hrs, Volume= 84,788 cf, Atten= 0%, Lag= 0.0 min 2.01 hrs, Volume= 84,788 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.79' @ 12.01 hrs Flood Elev= 11.00'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	4.40'	24.0" Round Culvert L= 22.2' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $4.40' / 4.20'$ S= $0.0090'/$ ' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 3.14 sf			

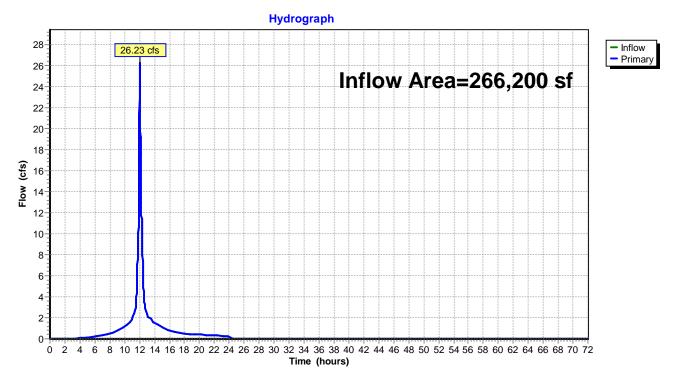
Primary OutFlow Max=23.40 cfs @ 12.01 hrs HW=7.79' TW=5.15' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 23.40 cfs @ 7.45 fps)

Pond E4605:

Summary for Link AP1: Hodgson Brook

Inflow Are	a =	372,586 sf, 70.48% Impervious, Inflow Depth = 4.54" for 10 yr event	
Inflow	=	37.02 cfs @ 12.09 hrs, Volume= 140,865 cf	
Primary	=	37.02 cfs @ 12.09 hrs, Volume= 140,865 cf, Atten= 0%, Lag= 0.0 mi	in

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

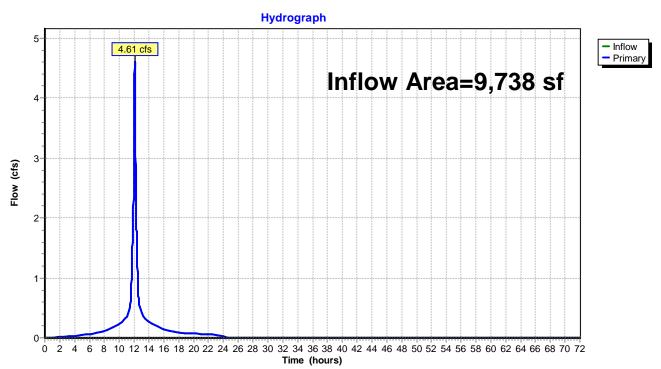

Hydrograph 40 - Inflow 37.02 cfs 38 - Primary 36-Inflow Area=372,586 sf 34 32 30-28-26 24 (sj) 22-8 20 ≝ 18 16-14-12 10-8 6 4 2 0-2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Ó Time (hours)

Link AP1: Hodgson Brook

Summary for Link AP2:

Inflow Are	ea =	266,200 sf, 65.77%	Impervious,	Inflow Depth = 4.18"	for 10 yr event
Inflow	=	26.23 cfs @ 12.00 hr	s, Volume=	92,749 cf	
Primary	=	26.23 cfs @ 12.00 hr	s, Volume=	92,749 cf, Atter	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

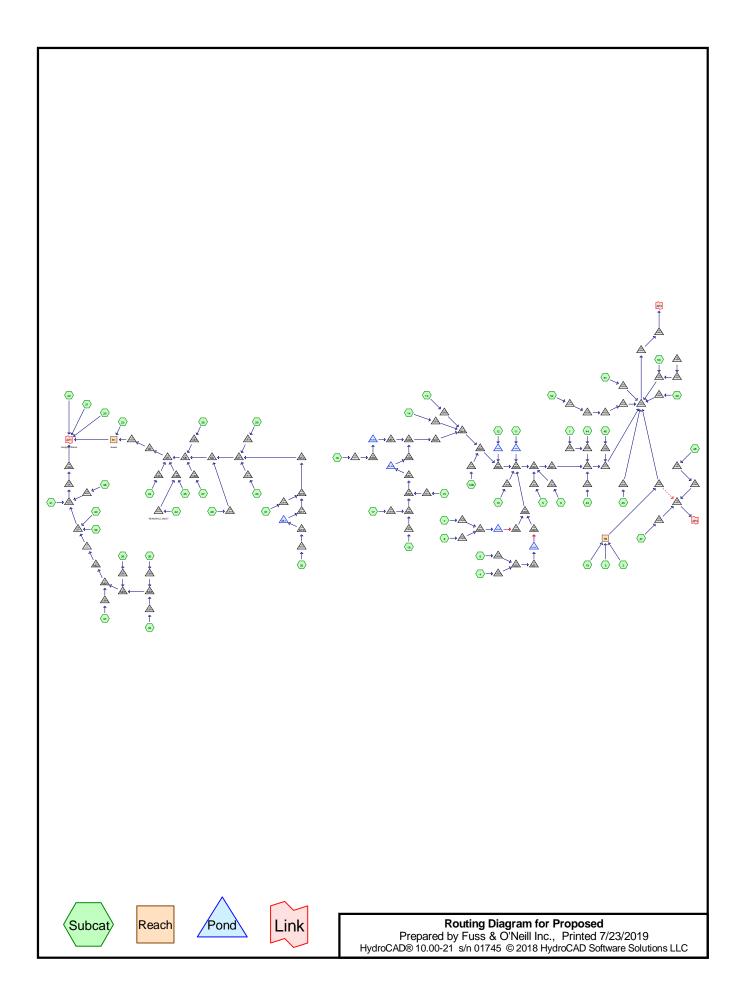


Link AP2:

Summary for Link AP3:

Inflow Area	=	9,738 sf	, 84.60% Impervious,	Inflow Depth = 21.30"	for 10 yr event
Inflow =	=	4.61 cfs @	12.07 hrs, Volume=	17,283 cf	
Primary =	=	4.61 cfs @	12.07 hrs, Volume=	17,283 cf, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs


Link AP3:

Appendix F3.1

Post-Development Hydrologic Analysis: Drainage Diagram, Area Listing & Soil Listing

Area Listing (all nodes)

Area	CN	Description
(sq-ft)		(subcatchment-numbers)
205,286	74	>75% Grass cover, Good, HSG C (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10B, 11, 12, 13, 14, 15,
		16, 17, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 42,
		43, 45, 47)
351,051	98	Paved parking, HSG C (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10B, 11, 12, 13, 14, 15, 16, 17,
		19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 34, 35, 36, 37, 39, 40, 41, 43, 44, 45,
		46, 47, 48, 49, 50, 51)
32,899	98	Roofs, HSG C (18, 52)
59,288	98	Unconnected roofs, HSG C (32, 38)
648,524	90	TOTAL AREA

Soil Listing (all nodes)

Area (sq-ft)	Soil Group	Subcatchment Numbers
0	HSG A	
0	HSG B	
648,524	HSG C	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10B, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52
0	HSG D	
0	Other	
648,524		TOTAL AREA

Prepared by Fuss & O'Neill Inc.	
HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC	

Printed 7/23/2019 Page 4

Ground Covers (all nodes)								
	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatc
	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	(sq-ft)	Cover	Number
	0	0	205,286	0	0	205,286	>75% Grass cover,	-
							Good	
	0	0	351,051	0	0	351,051	Paved parking	
	0	0	32,899	0	0	32,899	Roofs	
	0	0	59,288	0	0	59,288	Unconnected roofs	
	0	0	648,524	0	0	648,524	TOTAL AREA	

Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
4		· · /	. ,	. ,	, ,	0.010	· · · ·	, ,	. ,
1 2	27 BRB1 30 DB1	12.43 13.80	12.30 13.75	26.5 2.0	0.0049 0.0250	0.013 0.013	12.0 12.0	0.0 0.0	0.0 0.0
2	30 DB1 30 DB1	13.80	13.75	2.0 2.0	0.0250	0.013	6.0	0.0	0.0
3 4	36 DB1 36 DB2	12.80	12.80	2.0 2.0	0.0000	0.013	12.0	0.0	0.0
4 5	36 DB2	16.25	16.25	2.0 2.0	0.0200	0.013	6.0	0.0	0.0
6	41 BRB2	14.43	14.33	2.0	0.0050	0.013	12.0	0.0	0.0
7	50 IB3	14.43	14.55	2.0	0.0050	0.013	12.0	0.0	0.0
8	58 IB2	18.60	18.55	2.0	0.0250	0.013	12.0	0.0	0.0
9	60 RD B	20.78	20.20	116.0	0.0250	0.013	6.0	0.0	0.0
10	60 WQU 2	18.05	17.60	90.0	0.0050	0.013	12.0	0.0	0.0
11	1071	17.50	17.30	31.0	0.0065	0.025	12.0	0.0	0.0
12	1072	17.10	15.90	31.0	0.0387	0.025	15.0	0.0	0.0
13	1346	15.70	14.70	143.0	0.0070	0.025	15.0	0.0	0.0
14	1347	15.90	15.80	204.0	0.0005	0.025	15.0	0.0	0.0
15	CB10	18.87	18.37	56.0	0.0089	0.013	12.0	0.0	0.0
16	CB12	19.30	18.87	7.5	0.0573	0.013	12.0	0.0	0.0
17	CB13	19.30	18.87	7.5	0.0573	0.013	12.0	0.0	0.0
18	CB16	20.82	20.50	65.0	0.0049	0.013	12.0	0.0	0.0
19	CB23	13.20	13.13	15.5	0.0045	0.013	12.0	0.0	0.0
20	CB24	13.92	13.53	39.5	0.0099	0.013	12.0	0.0	0.0
21	CB26	13.00	12.20	14.0	0.0571	0.013	12.0	0.0	0.0
22	CB33	15.00	14.65	63.5	0.0055	0.013	12.0	0.0	0.0
23	CB34	15.50	15.15	24.0	0.0146	0.013	12.0	0.0	0.0
24	CB38	18.00	17.95	5.0	0.0100	0.013	12.0	0.0	0.0
25	CB39	19.00	18.74	53.0	0.0049	0.013	12.0	0.0	0.0
26	CB4	18.56	17.71	24.5	0.0347	0.013	12.0	0.0	0.0
27	CB43	13.84	13.35	9.9	0.0495	0.013	12.0	0.0	0.0
28	CB45	19.50	18.50	15.0	0.0667	0.013	12.0	0.0	0.0
29	CB46	19.50	18.50	15.0	0.0667	0.013	12.0	0.0	0.0
30	CB5	17.60	17.43	33.5	0.0051	0.010	12.0	0.0	0.0
31	CB53	20.38	19.95	86.0	0.0050	0.013	12.0	0.0	0.0
32	CB55	20.24	20.02	44.0	0.0050	0.013	12.0	0.0	0.0
33	CB56	20.86	20.02	69.0	0.0122	0.013	12.0	0.0	0.0
34	CB6	17.83	17.49	13.0	0.0262	0.013	12.0	0.0	0.0
35	CB61	7.00	6.38	65.0	0.0095	0.013	12.0	0.0	0.0
36	CB62	4.48	4.41	6.7	0.0104	0.013	12.0	0.0	0.0
37	CB63	5.05	4.92	13.4	0.0097	0.013	12.0	0.0	0.0
38	CB65	19.37	19.12	50.0	0.0050	0.013	12.0	0.0	0.0
39	CB67	20.60	20.57	3.5	0.0086	0.013	12.0	0.0	0.0
40	CB69	20.93	20.89	7.5	0.0053	0.013	12.0	0.0	0.0
41	CB7	18.28	17.49	16.5	0.0479	0.013	12.0	0.0	0.0
42	CB70	21.15	20.89	52.0	0.0050	0.013	12.0	0.0	0.0

Pipe Listing (all nodes) (continued)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
43	E2347	9.70	9.80	72.5	-0.0014	0.013	15.0	0.0	0.0
44	E2348	9.80	9.10	15.1	0.0464	0.013	15.0	0.0	0.0
45	E2349	3.92	3.51	82.7	0.0050	0.013	24.0	0.0	0.0
46	E3578A	9.00	7.90	11.2	0.0982	0.012	8.0	0.0	0.0
47	E3579	2.00	1.80	205.5	0.0010	0.015	36.0	0.0	0.0
48	E3600	7.50	2.00	21.4	0.2570	0.012	12.0	0.0	0.0
49	E3672	8.20	8.20	13.9	0.0000	0.012	4.0	0.0	0.0
50	E3693	7.90	2.00	27.1	0.2177	0.012	12.0	0.0	0.0
51	E3756	7.80	2.00	23.2	0.2500	0.012	12.0	0.0	0.0
52	E3758	8.00	8.00	10.2	0.0000	0.012	12.0	0.0	0.0
53	E3760	8.00	7.80	32.7	0.0061	0.012	12.0	0.0	0.0
54	E3772	3.41	3.00	81.8	0.0050	0.013	24.0	0.0	0.0
55	E3866	5.40	3.00	49.0	0.0490	0.013	24.0	0.0	0.0
56	E3866	5.30	5.00	83.8	0.0036	0.012	42.0	24.0	0.0
57	E3895	9.70	8.70	37.1	0.0270	0.012	4.0	0.0	0.0
58	E4034	7.50	2.00	14.8	0.3716	0.012	12.0	0.0	0.0
59	E4035	1.80	1.00	139.6	0.0057	0.012	42.0	0.0	0.0
60	E4081	5.80	5.70	13.0	0.0077	0.013	12.0	0.0	0.0
61	E4082	5.90	5.70	11.1	0.0180	0.013	12.0	0.0	0.0
62	E4083	5.00	4.75	25.4	0.0098	0.025	42.0	24.0	0.0
63	E4093	5.90	5.60	13.7	0.0219	0.013	12.0	0.0	0.0
64	E4604	1.20	1.00	18.1	0.0110	0.012	42.0	0.0	0.0
65	HW5A	19.00	17.70	39.0	0.0333	0.013	12.0	0.0	0.0
66	IB1	21.10	21.00	6.0	0.0167	0.013	12.0	0.0	0.0
67	M11	18.37	17.87	101.0	0.0050	0.013	18.0	0.0	0.0
68	M14	19.27	18.47	160.0	0.0050	0.013	18.0	0.0	0.0
69	M15	20.00	19.37	122.0	0.0052	0.013	18.0	0.0	0.0
70	M17	20.90	20.50	81.0	0.0049	0.013	12.0	0.0	0.0
71	M19	22.60	22.54	2.0	0.0300	0.013	6.0	0.0	0.0
72	M2	16.26	16.22	10.0	0.0040	0.013	24.0	0.0	0.0
73	M21	9.79	4.02	116.8	0.0494	0.013	24.0	0.0	0.0
74	M22	10.73	9.89	67.1	0.0125	0.013	24.0	0.0	0.0
75	M25	11.10	10.83	54.0	0.0050	0.013	24.0	0.0	0.0
76	M28	12.57	12.31	51.5	0.0050	0.013	18.0	0.0	0.0
77	M29	12.70	12.67	6.0	0.0050	0.013	12.0	0.0	0.0
78	M3	16.71	16.36	70.5	0.0050	0.013	24.0	0.0	0.0
79	M31	14.40	14.34	2.0	0.0300	0.013	12.0	0.0	0.0
80	M32	14.55	14.50	5.0	0.0100	0.013	12.0	0.0	0.0
81	M35	16.15	15.94	43.0	0.0049	0.013	12.0	0.0	0.0
82	M37	17.85	17.79	2.0	0.0300	0.013	12.0	0.0	0.0
83	M40	11.78	11.20	116.5	0.0050	0.013	24.0	0.0	0.0
84	M42	12.35	11.88	93.5	0.0050	0.013	18.0	0.0	0.0

Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Pipe Listing (all nodes) (continued)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Diam/Width (inches)	Height (inches)	Inside-Fill (inches)
85	M44	13.11	12.45	133.0	0.0050	0.013	18.0	0.0	0.0
86	M47	14.21	13.61	119.5	0.0050	0.013	18.0	0.0	0.0
87	M48	14.48	14.31	34.5	0.0049	0.013	18.0	0.0	0.0
88	M49	15.10	15.00	6.5	0.0154	0.013	12.0	0.0	0.0
89	M51	18.92	18.92	2.0	0.0000	0.013	18.0	0.0	0.0
90	M52	18.97	18.92	5.0	0.0100	0.013	18.0	0.0	0.0
91	M54	19.52	19.07	91.0	0.0049	0.013	18.0	0.0	0.0
92	M57	15.80	15.00	160.5	0.0050	0.013	12.0	0.0	0.0
93	M59	20.10	20.04	3.0	0.0200	0.013	6.0	0.0	0.0
94	M6	16.99	16.81	36.0	0.0050	0.013	24.0	0.0	0.0
95	M63	18.18	18.15	3.0	0.0100	0.013	12.0	0.0	0.0
96	M64	19.02	18.28	147.5	0.0050	0.013	12.0	0.0	0.0
97	M66	20.47	19.12	269.5	0.0050	0.013	12.0	0.0	0.0
98	M68	20.79	20.57	45.0	0.0049	0.013	12.0	0.0	0.0
99	M9	17.37	17.09	56.5	0.0050	0.013	24.0	0.0	0.0
100	RD 20	22.78	22.70	15.5	0.0052	0.013	6.0	0.0	0.0
101	RD69	18.16	18.00	31.0	0.0052	0.013	6.0	0.0	0.0
102	WQS1	16.12	16.00	25.0	0.0048	0.013	24.0	0.0	0.0

Appendix F3.2

Post-Development Hydrologic Analysis: Node listing for 2-year, 25-year & 50-year storms

Proposed
Prepared by Fuss & O'Neill Inc.
HvdroCAD® 10.00-21 s/n 01745 © 2018 HvdroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=11,648 sf 68.94% Impervious Runoff Depth=2.72" Tc=0.0 min CN=91 Runoff=1.02 cfs 2,642 cf
Subcatchment 2:	Runoff Area=6,355 sf 44.36% Impervious Runoff Depth=2.18" Tc=6.0 min CN=85 Runoff=0.37 cfs 1,156 cf
Subcatchment 3:	Runoff Area=17,966 sf 63.26% Impervious Runoff Depth=2.53" Tc=6.0 min CN=89 Runoff=1.21 cfs 3,793 cf
Subcatchment 4:	Runoff Area=14,022 sf 87.36% Impervious Runoff Depth=3.13" Tc=6.0 min CN=95 Runoff=1.10 cfs 3,653 cf
Subcatchment 5:	Runoff Area=1,801 sf 96.84% Impervious Runoff Depth=3.34" Tc=6.0 min CN=97 Runoff=0.15 cfs 502 cf
Subcatchment 6:	Runoff Area=7,003 sf 96.19% Impervious Runoff Depth=3.34" Tc=6.0 min CN=97 Runoff=0.57 cfs 1,951 cf
Subcatchment 7:	Runoff Area=2,462 sf 89.85% Impervious Runoff Depth=3.23" Tc=6.0 min CN=96 Runoff=0.20 cfs 663 cf
Subcatchment 8:	Runoff Area=6,973 sf 92.96% Impervious Runoff Depth=3.23" Tc=6.0 min CN=96 Runoff=0.56 cfs 1,879 cf
Subcatchment 9:	Runoff Area=3,616 sf 86.12% Impervious Runoff Depth=3.13" Tc=6.0 min CN=95 Runoff=0.28 cfs 942 cf
Subcatchment 10:	Runoff Area=8,901 sf 80.64% Impervious Runoff Depth=2.92" Tc=6.0 min CN=93 Runoff=0.67 cfs 2,165 cf
Subcatchment 10B:	Runoff Area=8,377 sf 79.03% Impervious Runoff Depth=2.92" Tc=6.0 min CN=93 Runoff=0.63 cfs 2,038 cf
Subcatchment 11:	Runoff Area=5,132 sf 50.00% Impervious Runoff Depth=2.27" Tc=6.0 min CN=86 Runoff=0.31 cfs 970 cf
Subcatchment 12:	Runoff Area=12,705 sf 65.30% Impervious Runoff Depth=2.63" Tc=6.0 min CN=90 Runoff=0.88 cfs 2,781 cf
Subcatchment 13:	Runoff Area=2,486 sf 78.32% Impervious Runoff Depth=2.92" Tc=6.0 min CN=93 Runoff=0.19 cfs 605 cf
Subcatchment 14:	Runoff Area=5,742 sf 40.56% Impervious Runoff Depth=2.10" Tc=6.0 min CN=84 Runoff=0.32 cfs 1,005 cf
Subcatchment 15:	Runoff Area=27,997 sf 82.23% Impervious Runoff Depth=3.02" Tc=6.0 min CN=94 Runoff=2.16 cfs 7,048 cf

Hydrocad® 10.00-21 5/1	TOT745 © 2016 Hydrocad Software Solutions LLC Page 9
Subcatchment 16:	Runoff Area=44,751 sf 69.67% Impervious Runoff Depth=2.72" Tc=6.0 min CN=91 Runoff=3.20 cfs 10,149 cf
Subcatchment 17:	Runoff Area=18,629 sf 55.15% Impervious Runoff Depth=2.35" Tc=6.0 min CN=87 Runoff=1.17 cfs 3,654 cf
Subcatchment 18:	Runoff Area=28,518 sf 100.00% Impervious Runoff Depth=3.46" Tc=6.0 min CN=98 Runoff=2.35 cfs 8,213 cf
Subcatchment 19:	Runoff Area=4,108 sf 17.31% Impervious Runoff Depth=1.64" Tc=6.0 min CN=78 Runoff=0.18 cfs 563 cf
Subcatchment 20:	Runoff Area=1,524 sf 100.00% Impervious Runoff Depth=3.46" Tc=6.0 min CN=98 Runoff=0.13 cfs 439 cf
Subcatchment 21:	Runoff Area=792 sf 66.04% Impervious Runoff Depth=2.63" Tc=6.0 min CN=90 Runoff=0.05 cfs 173 cf
Subcatchment 22:	Runoff Area=41,854 sf 1.22% Impervious Runoff Depth=1.37" Tc=6.0 min CN=74 Runoff=1.50 cfs 4,788 cf
Subcatchment 23:	Runoff Area=14,462 sf 0.00% Impervious Runoff Depth=1.37" Flow Length=115' Slope=0.0011 '/' Tc=6.0 min CN=74 Runoff=0.52 cfs 1,654 cf
Subcatchment 24:	Runoff Area=6,729 sf 56.26% Impervious Runoff Depth=2.44" Flow Length=176' Tc=6.0 min CN=88 Runoff=0.44 cfs 1,370 cf
Subcatchment 25:	Runoff Area=6,442 sf 34.31% Impervious Runoff Depth=1.94" Tc=0.0 min CN=82 Runoff=0.41 cfs 1,042 cf
Subcatchment 26:	Runoff Area=14,265 sf 86.53% Impervious Runoff Depth=3.13" Tc=0.0 min CN=95 Runoff=1.37 cfs 3,716 cf
Subcatchment 27:	Runoff Area=5,289 sf 76.01% Impervious Runoff Depth=2.82" Flow Length=71' Slope=0.1342 '/' Tc=7.7 min CN=92 Runoff=0.37 cfs 1,242 cf
Subcatchment 28:	Runoff Area=18,464 sf 86.68% Impervious Runoff Depth=3.13" Tc=6.0 min CN=95 Runoff=1.45 cfs 4,810 cf
Subcatchment 29:	Runoff Area=8,912 sf 80.50% Impervious Runoff Depth=2.92" Tc=0.0 min CN=93 Runoff=0.82 cfs 2,168 cf
Subcatchment 30:	Runoff Area=18,830 sf 38.59% Impervious Runoff Depth=2.02" Flow Length=349' Slope=0.0138 '/' Tc=6.0 min CN=83 Runoff=1.02 cfs 3,169 cf
Subcatchment 31:	Runoff Area=15,371 sf 10.01% Impervious Runoff Depth=1.50" Tc=6.0 min CN=76 Runoff=0.61 cfs 1,927 cf
Subcatchment 32:	Runoff Area=37,137 sf 100.00% Impervious Runoff Depth=3.46" Tc=6.0 min CN=98 Runoff=3.06 cfs 10,695 cf

Ρ	ro	n	05	ed	
	10	v	00		

TIYUIOCAD® 10.00-21 3/1101743 @ 2010 TIYUIOC	AD Software Solutions LEC Fage 10
Subcatchment 34:	Runoff Area=10,350 sf 83.59% Impervious Runoff Depth=3.02" Tc=6.0 min CN=94 Runoff=0.80 cfs 2,606 cf
Subcatchment 35:	Runoff Area=10,664 sf 91.11% Impervious Runoff Depth=3.23" Tc=6.0 min CN=96 Runoff=0.86 cfs 2,873 cf
Subcatchment 36:	Runoff Area=35,753 sf 88.57% Impervious Runoff Depth=3.13" Tc=6.0 min CN=95 Runoff=2.82 cfs 9,313 cf
Subcatchment 37:	Runoff Area=49,536 sf 84.69% Impervious Runoff Depth=3.02" Tc=6.0 min CN=94 Runoff=3.82 cfs 12,471 cf
Subcatchment 38:	Runoff Area=22,151 sf 100.00% Impervious Runoff Depth=3.46" Tc=6.0 min CN=98 Runoff=1.83 cfs 6,379 cf
Subcatchment 39:	Runoff Area=11,218 sf 43.45% Impervious Runoff Depth=2.10" Tc=6.0 min CN=84 Runoff=0.63 cfs 1,963 cf
Subcatchment 40:	Runoff Area=13,195 sf 78.02% Impervious Runoff Depth=2.92" Tc=6.0 min CN=93 Runoff=0.99 cfs 3,209 cf
Subcatchment 41:	Runoff Area=7,175 sf 49.39% Impervious Runoff Depth=2.27" Tc=6.0 min CN=86 Runoff=0.44 cfs 1,356 cf
Subcatchment 42:	Runoff Area=6,762 sf 0.00% Impervious Runoff Depth=1.37" Tc=6.0 min CN=74 Runoff=0.24 cfs 774 cf
Subcatchment 43:	Runoff Area=2,510 sf 79.04% Impervious Runoff Depth=2.92" Tc=0.0 min CN=93 Runoff=0.23 cfs 611 cf
Subcatchment 44:	Runoff Area=3,738 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.38 cfs 1,077 cf
Subcatchment 45:	Runoff Area=16,888 sf 28.75% Impervious Runoff Depth=1.86" Tc=0.0 min CN=81 Runoff=1.04 cfs 2,623 cf
Subcatchment 46:	Runoff Area=2,200 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.22 cfs 634 cf
Subcatchment 47:	Runoff Area=2,924 sf 67.78% Impervious Runoff Depth=2.63" Tc=0.0 min CN=90 Runoff=0.25 cfs 640 cf
Subcatchment 48:	Runoff Area=14,033 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=1.41 cfs 4,041 cf
Subcatchment 49:	Runoff Area=417 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.04 cfs 120 cf
Subcatchment 50:	Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.35 cfs 1,014 cf

Proposed Prepared by Fuss & O'N HydroCAD® 10.00-21 s/n 01	eill Inc. Type III 24-hr 2 yr Rainfall=3.69" Printed 7/23/2019 745 © 2018 HydroCAD Software Solutions LLC Page 11
Subcatchment 51:	Runoff Area=1,846 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.19 cfs 532 cf
Subcatchment 52:	Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=3.46" Tc=0.0 min CN=98 Runoff=0.44 cfs 1,262 cf
Reach R1: Swale	Avg. Flow Depth=0.43' Max Vel=2.92 fps Inflow=6.70 cfs 26,335 cf n=0.035 L=100.0' S=0.0200 '/' Capacity=333.24 cfs Outflow=6.68 cfs 26,335 cf
Reach TB:	Inflow=1.76 cfs 5,511 cf Outflow=1.76 cfs 5,511 cf
Pond 27 BRB1:	Peak Elev=15.74' Storage=253 cf Inflow=0.31 cfs 970 cf Outflow=0.07 cfs 970 cf
Pond 30 DB1:	Peak Elev=14.00' Storage=881 cf Inflow=1.68 cfs 5,604 cf Primary=0.14 cfs 95 cf Secondary=0.76 cfs 5,506 cf Outflow=0.90 cfs 5,602 cf
Pond 36 DB2:	Peak Elev=16.93' Storage=282 cf Inflow=0.76 cfs 2,542 cf Primary=0.00 cfs 0 cf Secondary=0.52 cfs 2,541 cf Outflow=0.52 cfs 2,541 cf
Pond 41 BRB2:	Peak Elev=18.04' Storage=900 cf Inflow=0.88 cfs 2,781 cf Outflow=0.20 cfs 2,781 cf
Pond 50 IB3:	Peak Elev=19.29' Storage=7,403 cf Inflow=6.53 cfs 20,852 cf Discarded=0.46 cfs 14,699 cf Primary=1.25 cfs 6,153 cf Outflow=1.71 cfs 20,852 cf
Pond 58 IB2:	Peak Elev=19.33' Storage=1,965 cf Inflow=2.35 cfs 8,213 cf Discarded=0.12 cfs 4,561 cf Primary=1.37 cfs 3,653 cf Outflow=1.49 cfs 8,213 cf
Pond 60 RD B:	Peak Elev=50.26' Inflow=2.35 cfs 8,213 cf 6.0" Round Culvert n=0.013 L=116.0' S=0.0050 '/' Outflow=2.35 cfs 8,213 cf
Pond 60 WQU 2:	Peak Elev=90.95' Inflow=8.29 cfs 27,263 cf 12.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=8.29 cfs 27,263 cf
Pond 1071:	Peak Elev=84.26' Inflow=9.92 cfs 32,436 cf 12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=9.92 cfs 32,436 cf
Pond 1072:	Peak Elev=72.38' Inflow=12.18 cfs 40,171 cf 15.0" Round Culvert n=0.025 L=31.0' S=0.0387 '/' Outflow=12.18 cfs 40,171 cf
Pond 1346:	Peak Elev=37.12' Inflow=12.18 cfs 40,171 cf 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow=12.18 cfs 40,171 cf
Pond 1347:	Peak Elev=66.17' Inflow=12.18 cfs 40,171 cf 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow=12.18 cfs 40,171 cf
Pond CB10:	Peak Elev=19.55' Inflow=1.45 cfs 4,810 cf 12.0" Round Culvert n=0.013 L=56.0' S=0.0089 '/' Outflow=1.45 cfs 4,810 cf

Proposed Prepared by Fuss & O'Neill	Inc.	<i>Type III 24-hr 2 yr Rainfall</i> =3.69" Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745	© 2018 HydroCAD Software Solutions LLC	Page 12
Pond CB12:		ak Elev=19.76' Inflow=0.82 cfs 2,168 cf S=0.0573 '/' Outflow=0.82 cfs 2,168 cf
Pond CB13:		ak Elev=19.82' Inflow=1.02 cfs 3,169 cf

	12.0" Round Culvert n=0.013 L=7.5' S=0.0573 '/' Outflow=1.02 cfs 3,169 cf
Pond CB16:	Peak Elev=21.28' Inflow=0.61 cfs 1,927 cf 12.0" Round Culvert n=0.013 L=65.0' S=0.0049 '/' Outflow=0.61 cfs 1,927 cf
Pond CB23:	Peak Elev=13.52' Inflow=0.28 cfs 942 cf 12.0" Round Culvert n=0.013 L=15.5' S=0.0045 '/' Outflow=0.28 cfs 942 cf
Pond CB24:	Peak Elev=14.11' Inflow=0.15 cfs 502 cf 12.0" Round Culvert n=0.013 L=39.5' S=0.0099 '/' Outflow=0.15 cfs 502 cf
Pond CB26:	Peak Elev=13.41' Inflow=0.67 cfs 2,165 cf 12.0" Round Culvert n=0.013 L=14.0' S=0.0571 '/' Outflow=0.67 cfs 2,165 cf
Pond CB33:	Peak Elev=15.75' Inflow=1.10 cfs 3,653 cf 12.0" Round Culvert n=0.013 L=63.5' S=0.0055 '/' Outflow=1.10 cfs 3,653 cf
Pond CB34:	Peak Elev=15.88' Inflow=0.57 cfs 1,951 cf 12.0" Round Culvert n=0.013 L=24.0' S=0.0146 '/' Outflow=0.57 cfs 1,951 cf
Pond CB38:	Peak Elev=18.39' Inflow=0.20 cfs 663 cf 12.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=0.20 cfs 663 cf
Pond CB39:	Peak Elev=19.44' Inflow=0.56 cfs 1,879 cf 12.0" Round Culvert n=0.013 L=53.0' S=0.0049 '/' Outflow=0.56 cfs 1,879 cf
Pond CB4:	Peak Elev=18.89' Inflow=0.44 cfs 1,370 cf 12.0" Round Culvert n=0.013 L=24.5' S=0.0347 '/' Outflow=0.44 cfs 1,370 cf
Pond CB43:	Peak Elev=14.24' Inflow=0.63 cfs 2,038 cf 12.0" Round Culvert n=0.013 L=9.9' S=0.0495 '/' Outflow=0.63 cfs 2,038 cf
Pond CB45:	Peak Elev=19.78' Inflow=0.32 cfs 1,005 cf 12.0" Round Culvert n=0.013 L=15.0' S=0.0667 '/' Outflow=0.32 cfs 1,005 cf
Pond CB46:	Peak Elev=19.71' Inflow=0.19 cfs 605 cf 12.0" Round Culvert n=0.013 L=15.0' S=0.0667 '/' Outflow=0.19 cfs 605 cf

 Pond CB5:
 Peak Elev=18.32'
 Inflow=0.54 cfs
 1,815 cf

 12.0"
 Round Culvert
 n=0.010
 L=33.5'
 S=0.0051 '/'
 Outflow=0.54 cfs
 1,815 cf

 Pond CB53:
 Peak Elev=21.61'
 Inflow=2.16 cfs
 7,048 cf

12.0" Round Culvert n=0.013 L=86.0' S=0.0050 '/' Outflow=2.16 cfs 7,048 cf

 Pond CB55:
 Peak Elev=22.14'
 Inflow=3.20 cfs
 10,149 cf

 12.0"
 Round Culvert
 n=0.013
 L=44.0'
 S=0.0050 '/'
 Outflow=3.20 cfs
 10,149 cf

Proposed Prepared by Fuss & O'Neill Inc.	
Hydrocade 10.00-21 S/1101745 @2	2018 HydroCAD Software Solutions LLC Page 13
Pond CB56:	Peak Elev=21.69' Inflow=1.17 cfs 3,654 cf 12.0" Round Culvert n=0.013 L=69.0' S=0.0122 '/' Outflow=1.17 cfs 3,654 cf
Pond CB6:	Peak Elev=18.54' Inflow=0.37 cfs 1,242 cf 12.0" Round Culvert n=0.013 L=13.0' S=0.0262 '/' Outflow=0.37 cfs 1,242 cf
Pond CB61:	Peak Elev=7.54' Inflow=1.04 cfs 2,623 cf 12.0" Round Culvert n=0.013 L=65.0' S=0.0095 '/' Outflow=1.04 cfs 2,623 cf
Pond CB62:	Peak Elev=4.74' Inflow=0.22 cfs 634 cf 12.0" Round Culvert n=0.013 L=6.7' S=0.0104 '/' Outflow=0.22 cfs 634 cf
Pond CB63:	Peak Elev=5.31' Inflow=0.23 cfs 611 cf 12.0" Round Culvert n=0.013 L=13.4' S=0.0097 '/' Outflow=0.23 cfs 611 cf
Pond CB65:	Peak Elev=104.02' Inflow=3.82 cfs 12,471 cf 12.0" Round Culvert n=0.013 L=50.0' S=0.0050 '/' Outflow=3.82 cfs 12,471 cf
Pond CB67:	Peak Elev=107.16' Inflow=2.82 cfs 9,313 cf 12.0" Round Culvert n=0.013 L=3.5' S=0.0086 '/' Outflow=2.82 cfs 9,313 cf
Pond CB69:	Peak Elev=106.96' Inflow=0.86 cfs 2,873 cf 12.0" Round Culvert n=0.013 L=7.5' S=0.0053 '/' Outflow=0.86 cfs 2,873 cf
Pond CB7:	Peak Elev=18.90' Inflow=1.37 cfs 3,716 cf 12.0" Round Culvert n=0.013 L=16.5' S=0.0479 '/' Outflow=1.37 cfs 3,716 cf
Pond CB70:	Peak Elev=106.96' Inflow=0.80 cfs 2,606 cf 12.0" Round Culvert n=0.013 L=52.0' S=0.0050 '/' Outflow=0.80 cfs 2,606 cf
Pond E2347:	Peak Elev=10.51' Inflow=1.02 cfs 2,642 cf 15.0" Round Culvert n=0.013 L=72.5' S=-0.0014 '/' Outflow=1.02 cfs 2,642 cf
Pond E2348:	Peak Elev=10.37' Inflow=1.39 cfs 3,718 cf 15.0" Round Culvert n=0.013 L=15.1' S=0.0464 '/' Outflow=1.39 cfs 3,718 cf
Pond E2349:	Peak Elev=5.23' Inflow=5.91 cfs 33,283 cf 24.0" Round Culvert n=0.013 L=82.7' S=0.0050 '/' Outflow=5.91 cfs 33,283 cf
Pond E3578A:	Peak Elev=9.38' Inflow=0.44 cfs 1,262 cf 8.0" Round Culvert n=0.012 L=11.2' S=0.0982 '/' Outflow=0.44 cfs 1,262 cf
Pond E3579:	Peak Elev=3.52' Inflow=7.27 cfs 39,689 cf 36.0" Round Culvert n=0.015 L=205.5' S=0.0010 '/' Outflow=7.27 cfs 39,689 cf
Pond E3600:	Peak Elev=7.60' Inflow=0.04 cfs 120 cf 12.0" Round Culvert n=0.012 L=21.4' S=0.2570 '/' Outflow=0.04 cfs 120 cf
Pond E3672:	Peak Elev=8.20' Inflow=0.00 cfs 0 cf 4.0" Round Culvert n=0.012 L=13.9' S=0.0000 '/' Outflow=0.00 cfs 0 cf

Proposed Prepared by Fuss & O'Neill Inc		e <i>III 24-hr 2 yr Rainfall</i> =3.69" Printed 7/23/2019
	2018 HydroCAD Software Solutions LLC	Page 14
Pond E3693:	Peak Ele 12.0" Round Culvert n=0.012 L=27.1' S=0.2'	v=8.19' Inflow=0.35 cfs 1,014 cf
Pond E3756:	Peak Ele 12.0" Round Culvert n=0.012 L=23.2' S=0.25	v=8.13' Inflow=0.44 cfs 1,262 cf 500 '/' Outflow=0.44 cfs 1,262 cf
Pond E3758:	Peak Ele 12.0" Round Culvert n=0.012 L=10.2' S=0.00	v=8.47' Inflow=0.44 cfs 1,262 cf 000 '/' Outflow=0.44 cfs 1,262 cf
Pond E3760:	Peak Ele 12.0" Round Culvert n=0.012 L=32.7' S=0.00	v=8.38' Inflow=0.44 cfs 1,262 cf 061 '/' Outflow=0.44 cfs 1,262 cf
Pond E3772:	Peak Elev 24.0" Round Culvert n=0.013 L=81.8' S=0.005	=4.64' Inflow=6.00 cfs 33,917 cf 50 '/' Outflow=6.00 cfs 33,917 cf
Pond E3866:	Peak Ele Primary=0.29 cfs 223 cf Secondary=1.48 cfs 5,2	v=5.62' Inflow=1.76 cfs 5,511 cf 289 cf Outflow=1.76 cfs 5,511 cf
Pond E3895:	4.0" Round Culvert n=0.012 L=37.1' S=	Peak Elev=0.00' =0.0270 '/' Primary=0.00 cfs 0 cf
Pond E4034:	Peak E 12.0" Round Culvert n=0.012 L=14.8' S=0.	lev=7.71' Inflow=0.19 cfs 532 cf 3716 '/' Outflow=0.19 cfs 532 cf
Pond E4035:	Peak Eleve 42.0" Round Culvert n=0.012 L=139.6' S=0.005	=2.97' Inflow=7.27 cfs 39,689 cf 57 '/' Outflow=7.27 cfs 39,689 cf
Pond E4081:	Peak Ele 12.0" Round Culvert n=0.013 L=13.0' S=0.00	v=6.72' Inflow=1.41 cfs 4,041 cf)77 '/' Outflow=1.41 cfs 4,041 cf
Pond E4082:	Peak Ele 12.0" Round Culvert n=0.013 L=11.1' S=0.0'	v=6.57' Inflow=1.41 cfs 4,041 cf 180 '/' Outflow=1.41 cfs 4,041 cf
Pond E4083: 4	Peak Ele 2.0" x 24.0" Box Culvert n=0.025 L=25.4' S=0.00	v=5.42' Inflow=2.57 cfs 9,970 cf 098 '/' Outflow=2.57 cfs 9,970 cf
Pond E4093:	Peak E 12.0" Round Culvert n=0.013 L=13.7' S=0.	lev=6.14' Inflow=0.25 cfs 640 cf 0219 '/' Outflow=0.25 cfs 640 cf
Pond E4604:	Peak Elev 42.0" Round Culvert n=0.012 L=18.1' S=0.012	=2.29' Inflow=7.27 cfs 39,689 cf 10 '/' Outflow=7.27 cfs 39,690 cf
Pond HW5A: HEADWALL INLET	Peak Ele 12.0" Round Culvert n=0.013 L=39.0' S=0.	ev=19.24' Inflow=0.24 cfs 774 cf 0333 '/' Outflow=0.24 cfs 774 cf
Pond IB1: Dis	Peak Elev=21.78' Storage=3, carded=0.12 cfs 6,232 cf Primary=1.17 cfs 4,46	246 cf Inflow=3.06 cfs 10,695 cf 33 cf Outflow=1.29 cfs 10,695 cf
Pond M11:	Peak Elev= 18.0" Round Culvert n=0.013 L=101.0' S=0.005	19.33' Inflow=2.77 cfs 11,727 cf 50 '/' Outflow=2.77 cfs 11,727 cf

Proposed	Type III 24-hr 2 yr Rainfall=3.69"
Prepared by Fuss & O'Neill Inc.	Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC	Page 15

Pond M14:	Peak Elev=19.97' Inflow=1.53 cfs 6,391 cf 18.0" Round Culvert n=0.013 L=160.0' S=0.0050 '/' Outflow=1.53 cfs 6,391 cf
Pond M15:	Peak Elev=20.66' Inflow=1.53 cfs 6,391 cf 18.0" Round Culvert n=0.013 L=122.0' S=0.0052 '/' Outflow=1.53 cfs 6,391 cf
Pond M17:	Peak Elev=21.56' Inflow=1.17 cfs 4,463 cf 12.0" Round Culvert n=0.013 L=81.0' S=0.0049 '/' Outflow=1.17 cfs 4,463 cf
Pond M19:	Peak Elev=33.35' Inflow=3.06 cfs 10,695 cf 6.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=3.06 cfs 10,695 cf
Pond M2:	Peak Elev=17.93' Inflow=6.19 cfs 24,680 cf 24.0" Round Culvert n=0.013 L=10.0' S=0.0040 '/' Outflow=6.19 cfs 24,680 cf
Pond M21:	Peak Elev=10.78' Inflow=5.30 cfs 28,954 cf 24.0" Round Culvert n=0.013 L=116.8' S=0.0494 '/' Outflow=5.30 cfs 28,954 cf
Pond M22:	Peak Elev=11.74' Inflow=5.30 cfs 28,954 cf 24.0" Round Culvert n=0.013 L=67.1' S=0.0125 '/' Outflow=5.30 cfs 28,954 cf
Pond M25:	Peak Elev=12.25' Inflow=4.96 cfs 27,510 cf 24.0" Round Culvert n=0.013 L=54.0' S=0.0050 '/' Outflow=4.96 cfs 27,511 cf
Pond M28:	Peak Elev=13.20' Inflow=1.41 cfs 8,142 cf 18.0" Round Culvert n=0.013 L=51.5' S=0.0050 '/' Outflow=1.41 cfs 8,143 cf
Pond M29:	Peak Elev=13.35' Inflow=0.90 cfs 5,602 cf 12.0" Round Culvert n=0.013 L=6.0' S=0.0050 '/' Outflow=0.90 cfs 5,602 cf
Pond M3:	Peak Elev=18.28' Inflow=6.19 cfs 24,680 cf 24.0" Round Culvert n=0.013 L=70.5' S=0.0050 '/' Outflow=6.19 cfs 24,680 cf
Pond M31:	Peak Elev=15.22' Inflow=1.68 cfs 5,604 cf 12.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=1.68 cfs 5,604 cf
Pond M32:	Peak Elev=15.44' Inflow=1.68 cfs 5,604 cf 12.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=1.68 cfs 5,604 cf
Pond M35:	Peak Elev=16.58' Inflow=0.52 cfs 2,541 cf 12.0" Round Culvert n=0.013 L=43.0' S=0.0049 '/' Outflow=0.52 cfs 2,541 cf
Pond M37:	Peak Elev=18.36' Inflow=0.76 cfs 2,542 cf 12.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=0.76 cfs 2,542 cf
Pond M40:	Peak Elev=12.74' Inflow=3.03 cfs 16,233 cf 24.0" Round Culvert n=0.013 L=116.5' S=0.0050 '/' Outflow=3.03 cfs 16,233 cf
Pond M42:	Peak Elev=13.32' Inflow=2.92 cfs 13,453 cf 18.0" Round Culvert n=0.013 L=93.5' S=0.0050 '/' Outflow=2.92 cfs 13,453 cf

_				-
D	rn	\mathbf{n}	20	$\sim d$
	IU	DU	72	ed

Type III 24-hr 2 yr Rainfall=3.69" Printed 7/23/2019 Page 16

Pond M44:	Peak Elev=14.02' Inflow=2.55 cfs 11,415 cf 18.0" Round Culvert n=0.013 L=133.0' S=0.0050 '/' Outflow=2.55 cfs 11,415 cf
Pond M47:	Peak Elev=15.01' Inflow=2.31 cfs 9,806 cf 18.0" Round Culvert n=0.013 L=119.5' S=0.0050 '/' Outflow=2.31 cfs 9,806 cf
Pond M48:	Peak Elev=15.35' Inflow=2.31 cfs 9,806 cf 18.0" Round Culvert n=0.013 L=34.5' S=0.0049 '/' Outflow=2.31 cfs 9,806 cf
Pond M49:	Peak Elev=15.77' Inflow=1.25 cfs 6,153 cf 12.0" Round Culvert n=0.013 L=6.5' S=0.0154 '/' Outflow=1.25 cfs 6,153 cf
Pond M51:	Peak Elev=20.58' Inflow=6.53 cfs 20,852 cf 18.0" Round Culvert n=0.013 L=2.0' S=0.0000 '/' Outflow=6.53 cfs 20,852 cf
Pond M52:	Peak Elev=21.16' Inflow=6.53 cfs 20,852 cf 18.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=6.53 cfs 20,852 cf
Pond M54:	Peak Elev=21.44' Inflow=4.37 cfs 13,803 cf 18.0" Round Culvert n=0.013 L=91.0' S=0.0049 '/' Outflow=4.37 cfs 13,803 cf
Pond M57:	Peak Elev=16.52' Inflow=1.37 cfs 3,653 cf 12.0" Round Culvert n=0.013 L=160.5' S=0.0050 '/' Outflow=1.37 cfs 3,653 cf
Pond M59:	Peak Elev=26.54' Inflow=2.35 cfs 8,213 cf 6.0" Round Culvert n=0.013 L=3.0' S=0.0200 '/' Outflow=2.35 cfs 8,213 cf
Pond M6:	Peak Elev=18.52' Inflow=5.28 cfs 21,495 cf 24.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/' Outflow=5.28 cfs 21,495 cf
Pond M63:	Peak Elev=94.96' Inflow=8.29 cfs 27,263 cf 12.0" Round Culvert n=0.013 L=3.0' S=0.0100 '/' Outflow=8.29 cfs 27,263 cf
Pond M64:	Peak Elev=103.20' Inflow=8.29 cfs 27,263 cf 12.0" Round Culvert n=0.013 L=147.5' S=0.0050 '/' Outflow=8.29 cfs 27,263 cf
Pond M66:	Peak Elev=106.80' Inflow=4.47 cfs 14,792 cf 12.0" Round Culvert n=0.013 L=269.5' S=0.0050 '/' Outflow=4.47 cfs 14,792 cf
Pond M68:	Peak Elev=106.93' Inflow=1.65 cfs 5,479 cf 12.0" Round Culvert n=0.013 L=45.0' S=0.0049 '/' Outflow=1.65 cfs 5,479 cf
Pond M9:	Peak Elev=18.74' Inflow=4.21 cfs 16,537 cf 24.0" Round Culvert n=0.013 L=56.5' S=0.0050 '/' Outflow=4.21 cfs 16,537 cf
Pond RD 20:	Peak Elev=43.77' Inflow=3.06 cfs 10,695 cf 6.0" Round Culvert n=0.013 L=15.5' S=0.0052 '/' Outflow=3.06 cfs 10,695 cf
Pond RD69:	Peak Elev=77.30' Inflow=1.83 cfs 6,379 cf 6.0" Round Culvert n=0.013 L=31.0' S=0.0052 '/' Outflow=1.83 cfs 6,379 cf

Proposed	Type III 24-hr 2 yr Rainfall=3.69"
Prepared by Fuss & O'Neill Inc.	Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC	Page 17
	k Elev=17.71' Inflow=6.19 cfs 24,680 cf S=0.0048 '/' Outflow=6.19 cfs 24,680 cf

Inflow=20.53 cfs 71,906 cf Primary=20.53 cfs 71,906 cf

Inflow=7.27 cfs 39,690 cf Primary=7.27 cfs 39,690 cf

Inflow=2.57 cfs 9,970 cf Primary=2.57 cfs 9,970 cf

Link AP1: Hodgson Brook

Link AP2:

Link AP3:

Total Runoff Area = 648,524 sf Runoff Volume = 147,058 cf Average Runoff Depth = 2.72" 31.65% Pervious = 205,286 sf 68.35% Impervious = 443,238 sf

Proposed
Prepared by Fuss & O'Neill Inc.
HvdroCAD® 10.00-21 s/n 01745 © 2018 HvdroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=11,648 sf 68.94% Impervious Runoff Depth=6.04" Tc=0.0 min CN=91 Runoff=2.16 cfs 5,860 cf
Subcatchment 2:	Runoff Area=6,355 sf 44.36% Impervious Runoff Depth=5.35" Tc=6.0 min CN=85 Runoff=0.89 cfs 2,832 cf
Subcatchment 3:	Runoff Area=17,966 sf 63.26% Impervious Runoff Depth=5.81" Tc=6.0 min CN=89 Runoff=2.66 cfs 8,692 cf
Subcatchment 4:	Runoff Area=14,022 sf 87.36% Impervious Runoff Depth=6.51" Tc=6.0 min CN=95 Runoff=2.21 cfs 7,601 cf
Subcatchment 5:	Runoff Area=1,801 sf 96.84% Impervious Runoff Depth=6.74" Tc=6.0 min CN=97 Runoff=0.29 cfs 1,012 cf
Subcatchment 6:	Runoff Area=7,003 sf 96.19% Impervious Runoff Depth=6.74" Tc=6.0 min CN=97 Runoff=1.12 cfs 3,934 cf
Subcatchment 7:	Runoff Area=2,462 sf 89.85% Impervious Runoff Depth=6.62" Tc=6.0 min CN=96 Runoff=0.39 cfs 1,359 cf
Subcatchment 8:	Runoff Area=6,973 sf 92.96% Impervious Runoff Depth=6.62" Tc=6.0 min CN=96 Runoff=1.11 cfs 3,849 cf
Subcatchment 9:	Runoff Area=3,616 sf 86.12% Impervious Runoff Depth=6.51" Tc=6.0 min CN=95 Runoff=0.57 cfs 1,960 cf
Subcatchment 10:	Runoff Area=8,901 sf 80.64% Impervious Runoff Depth=6.27" Tc=6.0 min CN=93 Runoff=1.38 cfs 4,651 cf
Subcatchment 10B:	Runoff Area=8,377 sf 79.03% Impervious Runoff Depth=6.27" Tc=6.0 min CN=93 Runoff=1.30 cfs 4,377 cf
Subcatchment 11:	Runoff Area=5,132 sf 50.00% Impervious Runoff Depth=5.46" Tc=6.0 min CN=86 Runoff=0.73 cfs 2,336 cf
Subcatchment 12:	Runoff Area=12,705 sf 65.30% Impervious Runoff Depth=5.92" Tc=6.0 min CN=90 Runoff=1.91 cfs 6,269 cf
Subcatchment 13:	Runoff Area=2,486 sf 78.32% Impervious Runoff Depth=6.27" Tc=6.0 min CN=93 Runoff=0.39 cfs 1,299 cf
Subcatchment 14:	Runoff Area=5,742 sf 40.56% Impervious Runoff Depth=5.23" Tc=6.0 min CN=84 Runoff=0.79 cfs 2,505 cf
Subcatchment 15:	Runoff Area=27,997 sf 82.23% Impervious Runoff Depth=6.39" Tc=6.0 min CN=94 Runoff=4.38 cfs 14,903 cf

Ρ	ro	n	05	ed	
	10	v	00		

HydroCAD® 10.00-21 s/n	01745 © 2018 HydroCAD Software Solutions LLC Page 19
Subcatchment 16:	Runoff Area=44,751 sf 69.67% Impervious Runoff Depth=6.04" Tc=6.0 min CN=91 Runoff=6.80 cfs 22,514 cf
Subcatchment 17:	Runoff Area=18,629 sf 55.15% Impervious Runoff Depth=5.58" Tc=6.0 min CN=87 Runoff=2.69 cfs 8,656 cf
Subcatchment 18:	Runoff Area=28,518 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=4.56 cfs 16,305 cf
Subcatchment 19:	Runoff Area=4,108 sf 17.31% Impervious Runoff Depth=4.57" Tc=6.0 min CN=78 Runoff=0.50 cfs 1,563 cf
Subcatchment 20:	Runoff Area=1,524 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=0.24 cfs 871 cf
Subcatchment 21:	Runoff Area=792 sf 66.04% Impervious Runoff Depth=5.92" Tc=6.0 min CN=90 Runoff=0.12 cfs 391 cf
Subcatchment 22:	Runoff Area=41,854 sf 1.22% Impervious Runoff Depth=4.13" Tc=6.0 min CN=74 Runoff=4.65 cfs 14,403 cf
Subcatchment 23:	Runoff Area=14,462 sf 0.00% Impervious Runoff Depth=4.13" Flow Length=115' Slope=0.0011 '/' Tc=6.0 min CN=74 Runoff=1.61 cfs 4,977 cf
Subcatchment 24:	Runoff Area=6,729 sf 56.26% Impervious Runoff Depth=5.69" Flow Length=176' Tc=6.0 min CN=88 Runoff=0.98 cfs 3,191 cf
Subcatchment 25:	Runoff Area=6,442 sf 34.31% Impervious Runoff Depth=5.01" Tc=0.0 min CN=82 Runoff=1.04 cfs 2,690 cf
Subcatchment 26:	Runoff Area=14,265 sf 86.53% Impervious Runoff Depth=6.51" Tc=0.0 min CN=95 Runoff=2.74 cfs 7,733 cf
Subcatchment 27:	Runoff Area=5,289 sf 76.01% Impervious Runoff Depth=6.15" Flow Length=71' Slope=0.1342 '/' Tc=7.7 min CN=92 Runoff=0.77 cfs 2,712 cf
Subcatchment 28:	Runoff Area=18,464 sf 86.68% Impervious Runoff Depth=6.51" Tc=6.0 min CN=95 Runoff=2.91 cfs 10,009 cf
Subcatchment 29:	Runoff Area=8,912 sf 80.50% Impervious Runoff Depth=6.27" Tc=0.0 min CN=93 Runoff=1.69 cfs 4,657 cf
Subcatchment 30:	Runoff Area=18,830 sf 38.59% Impervious Runoff Depth=5.12" Flow Length=349' Slope=0.0138 '/' Tc=6.0 min CN=83 Runoff=2.54 cfs 8,038 cf
Subcatchment 31:	Runoff Area=15,371 sf 10.01% Impervious Runoff Depth=4.35" Tc=6.0 min CN=76 Runoff=1.79 cfs 5,567 cf
Subcatchment 32:	Runoff Area=37,137 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=5.94 cfs 21,233 cf

Ρ	ro	n	05	ed	
	10	v	00		

HydroCAD® 10.00-21 s/n 01745 © 2018 HydroC/	AD Software Solutions LLC Page 20
Subcatchment 34:	Runoff Area=10,350 sf 83.59% Impervious Runoff Depth=6.39" Tc=6.0 min CN=94 Runoff=1.62 cfs 5,509 cf
Subcatchment 35:	Runoff Area=10,664 sf 91.11% Impervious Runoff Depth=6.62" Tc=6.0 min CN=96 Runoff=1.69 cfs 5,886 cf
Subcatchment 36:	Runoff Area=35,753 sf 88.57% Impervious Runoff Depth=6.51" Tc=6.0 min CN=95 Runoff=5.63 cfs 19,382 cf
Subcatchment 37:	Runoff Area=49,536 sf 84.69% Impervious Runoff Depth=6.39" Tc=6.0 min CN=94 Runoff=7.75 cfs 26,368 cf
Subcatchment 38:	Runoff Area=22,151 sf 100.00% Impervious Runoff Depth=6.86" Tc=6.0 min CN=98 Runoff=3.54 cfs 12,665 cf
Subcatchment 39:	Runoff Area=11,218 sf 43.45% Impervious Runoff Depth=5.23" Tc=6.0 min CN=84 Runoff=1.54 cfs 4,894 cf
Subcatchment 40:	Runoff Area=13,195 sf 78.02% Impervious Runoff Depth=6.27" Tc=6.0 min CN=93 Runoff=2.05 cfs 6,895 cf
Subcatchment 41:	Runoff Area=7,175 sf 49.39% Impervious Runoff Depth=5.46" Tc=6.0 min CN=86 Runoff=1.02 cfs 3,266 cf
Subcatchment 42:	Runoff Area=6,762 sf 0.00% Impervious Runoff Depth=4.13" Tc=6.0 min CN=74 Runoff=0.75 cfs 2,327 cf
Subcatchment 43:	Runoff Area=2,510 sf 79.04% Impervious Runoff Depth=6.27" Tc=0.0 min CN=93 Runoff=0.47 cfs 1,312 cf
Subcatchment 44:	Runoff Area=3,738 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.73 cfs 2,137 cf
Subcatchment 45:	Runoff Area=16,888 sf 28.75% Impervious Runoff Depth=4.90" Tc=0.0 min CN=81 Runoff=2.69 cfs 6,893 cf
Subcatchment 46:	Runoff Area=2,200 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.43 cfs 1,258 cf
Subcatchment 47:	Runoff Area=2,924 sf 67.78% Impervious Runoff Depth=5.92" Tc=0.0 min CN=90 Runoff=0.54 cfs 1,443 cf
Subcatchment 48:	Runoff Area=14,033 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=2.74 cfs 8,023 cf
Subcatchment 49:	Runoff Area=417 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.08 cfs 238 cf
Subcatchment 50:	Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.69 cfs 2,013 cf

Proposed Prepared by Fuss & O HydroCAD® 10.00-21 s/n	Type III 24-hr25 yr Rainfall=7.10"'Neill Inc.Printed 7/23/201901745 © 2018 HydroCAD Software Solutions LLCPage 21
Subcatchment 51:	Runoff Area=1,846 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.36 cfs 1,055 cf
Subcatchment 52:	Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=6.86" Tc=0.0 min CN=98 Runoff=0.85 cfs 2,505 cf
Reach R1: Swale	Avg. Flow Depth=0.70' Max Vel=3.80 fps Inflow=16.15 cfs 64,719 cf n=0.035 L=100.0' S=0.0200 '/' Capacity=333.24 cfs Outflow=16.08 cfs 64,719 cf
Reach TB:	Inflow=4.06 cfs 13,087 cf Outflow=4.06 cfs 13,087 cf
Pond 27 BRB1:	Peak Elev=16.07' Storage=637 cf Inflow=0.73 cfs 2,336 cf Outflow=0.30 cfs 2,336 cf
Pond 30 DB1:	Peak Elev=14.71' Storage=1,497 cf Inflow=3.32 cfs 11,536 cf Primary=1.91 cfs 2,001 cf Secondary=0.85 cfs 9,533 cf Outflow=2.43 cfs 11,534 cf
Pond 36 DB2:	Peak Elev=17.51' Storage=646 cf Inflow=1.50 cfs 5,208 cf Primary=0.00 cfs 0 cf Secondary=0.85 cfs 5,206 cf Outflow=0.85 cfs 5,206 cf
Pond 41 BRB2:	Peak Elev=18.23' Storage=1,256 cf Inflow=1.91 cfs 6,269 cf Outflow=1.55 cfs 6,269 cf
Pond 50 IB3:	Peak Elev=20.47' Storage=14,787 cf Inflow=13.86 cfs 46,073 cf Discarded=0.71 cfs 22,269 cf Primary=4.43 cfs 23,804 cf Outflow=5.14 cfs 46,073 cf
Pond 58 IB2:	Peak Elev=19.90' Storage=2,915 cf Inflow=4.56 cfs 16,305 cf Discarded=0.15 cfs 6,380 cf Primary=3.09 cfs 9,925 cf Outflow=3.24 cfs 16,305 cf
Pond 60 RD B:	Peak Elev=132.78' Inflow=4.56 cfs 16,305 cf 6.0" Round Culvert n=0.013 L=116.0' S=0.0050 '/' Outflow=4.56 cfs 16,305 cf
Pond 60 WQU 2:	Peak Elev=327.16' Inflow=16.69 cfs 57,145 cf 12.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=16.69 cfs 57,145 cf
Pond 1071:	Peak Elev=300.04' Inflow=20.28 cfs 68,934 cf 12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=20.28 cfs 68,934 cf
Pond 1072:	Peak Elev=250.44' Inflow=24.84 cfs 84,864 cf 15.0" Round Culvert n=0.025 L=31.0' S=0.0387 '/' Outflow=24.84 cfs 84,864 cf
Pond 1346:	Peak Elev=103.93' Inflow=24.84 cfs 84,864 cf 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow=24.84 cfs 84,864 cf
Pond 1347:	Peak Elev=224.62' Inflow=24.84 cfs 84,864 cf 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow=24.84 cfs 84,864 cf
Pond CB10:	Peak Elev=22.13' Inflow=2.91 cfs 10,009 cf 12.0" Round Culvert n=0.013 L=56.0' S=0.0089 '/' Outflow=2.91 cfs 10,009 cf

Proposed Prepared by Fuss & O'Neill Inc.	<i>Type III 24-hr 25 yr Rainfall=7.10"</i> Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745 © 2	018 HydroCAD Software Solutions LLC Page 22
Pond CB12:	Peak Elev=22.12' Inflow=1.69 cfs 4,657 cf 12.0" Round Culvert n=0.013 L=7.5' S=0.0573 '/' Outflow=1.69 cfs 4,657 cf
Pond CB13:	Peak Elev=22.52' Inflow=2.54 cfs 8,038 cf 12.0" Round Culvert n=0.013 L=7.5' S=0.0573 '/' Outflow=2.54 cfs 8,038 cf
Pond CB16:	Peak Elev=22.61' Inflow=1.79 cfs 5,567 cf 12.0" Round Culvert n=0.013 L=65.0' S=0.0049 '/' Outflow=1.79 cfs 5,567 cf
Pond CB23:	Peak Elev=13.66' Inflow=0.57 cfs 1,960 cf 12.0" Round Culvert n=0.013 L=15.5' S=0.0045 '/' Outflow=0.57 cfs 1,960 cf
Pond CB24:	Peak Elev=14.19' Inflow=0.29 cfs 1,012 cf 12.0" Round Culvert n=0.013 L=39.5' S=0.0099 '/' Outflow=0.29 cfs 1,012 cf
Pond CB26:	Peak Elev=14.00' Inflow=1.38 cfs 4,651 cf 12.0" Round Culvert n=0.013 L=14.0' S=0.0571 '/' Outflow=1.38 cfs 4,651 cf
Pond CB33:	Peak Elev=16.96' Inflow=2.21 cfs 7,601 cf 12.0" Round Culvert n=0.013 L=63.5' S=0.0055 '/' Outflow=2.21 cfs 7,601 cf
Pond CB34:	Peak Elev=16.63' Inflow=1.12 cfs 3,934 cf 12.0" Round Culvert n=0.013 L=24.0' S=0.0146 '/' Outflow=1.12 cfs 3,934 cf
Pond CB38:	Peak Elev=18.64' Inflow=0.39 cfs 1,359 cf 12.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=0.39 cfs 1,359 cf
Pond CB39:	Peak Elev=19.65' Inflow=1.11 cfs 3,849 cf 12.0" Round Culvert n=0.013 L=53.0' S=0.0049 '/' Outflow=1.11 cfs 3,849 cf
Pond CB4:	Peak Elev=20.52' Inflow=0.98 cfs 3,191 cf 12.0" Round Culvert n=0.013 L=24.5' S=0.0347 '/' Outflow=0.98 cfs 3,191 cf
Pond CB43:	Peak Elev=15.73' Inflow=1.30 cfs 4,377 cf 12.0" Round Culvert n=0.013 L=9.9' S=0.0495 '/' Outflow=1.30 cfs 4,377 cf
Pond CB45:	Peak Elev=19.95' Inflow=0.79 cfs 2,505 cf 12.0" Round Culvert n=0.013 L=15.0' S=0.0667 '/' Outflow=0.79 cfs 2,505 cf
Pond CB46:	Peak Elev=19.81' Inflow=0.39 cfs 1,299 cf 12.0" Round Culvert n=0.013 L=15.0' S=0.0667 '/' Outflow=0.39 cfs 1,299 cf
Pond CB5:	Peak Elev=20.58' Inflow=1.48 cfs 5,016 cf 12.0" Round Culvert n=0.010 L=33.5' S=0.0051 '/' Outflow=1.48 cfs 5,016 cf
Pond CB53:	Peak Elev=27.06' Inflow=4.38 cfs 14,903 cf 12.0" Round Culvert n=0.013 L=86.0' S=0.0050 '/' Outflow=4.38 cfs 14,903 cf
Pond CB55:	Peak Elev=29.63' Inflow=6.80 cfs 22,514 cf 12.0" Round Culvert n=0.013 L=44.0' S=0.0050 '/' Outflow=6.80 cfs 22,514 cf

Proposed Prepared by Fuss & O'Neill Inc. HydroCAD® 10 00-21 s/p 01745 © 2	Type III 24-hr 25 yr Rainfall=7.10" Printed 7/23/2019 2018 HydroCAD Software Solutions LLC Page 23
	Tage 25
Pond CB56:	Peak Elev=27.09' Inflow=2.69 cfs 8,656 cf 12.0" Round Culvert n=0.013 L=69.0' S=0.0122 '/' Outflow=2.69 cfs 8,656 cf
Pond CB6:	Peak Elev=21.10' Inflow=0.77 cfs 2,712 cf 12.0" Round Culvert n=0.013 L=13.0' S=0.0262 '/' Outflow=0.77 cfs 2,712 cf
Pond CB61:	Peak Elev=8.01' Inflow=2.69 cfs 6,893 cf 12.0" Round Culvert n=0.013 L=65.0' S=0.0095 '/' Outflow=2.69 cfs 6,893 cf
Pond CB62:	Peak Elev=6.17' Inflow=0.43 cfs 1,258 cf 12.0" Round Culvert n=0.013 L=6.7' S=0.0104 '/' Outflow=0.43 cfs 1,258 cf
Pond CB63:	Peak Elev=7.43' Inflow=0.47 cfs 1,312 cf 12.0" Round Culvert n=0.013 L=13.4' S=0.0097 '/' Outflow=0.47 cfs 1,312 cf
Pond CB65:	Peak Elev=380.10' Inflow=7.75 cfs 26,368 cf 12.0" Round Culvert n=0.013 L=50.0' S=0.0050 '/' Outflow=7.75 cfs 26,368 cf
Pond CB67:	Peak Elev=392.56' Inflow=5.63 cfs 19,382 cf 12.0" Round Culvert n=0.013 L=3.5' S=0.0086 '/' Outflow=5.63 cfs 19,382 cf
Pond CB69:	Peak Elev=391.76' Inflow=1.69 cfs 5,886 cf 12.0" Round Culvert n=0.013 L=7.5' S=0.0053 '/' Outflow=1.69 cfs 5,886 cf
Pond CB7:	Peak Elev=21.20' Inflow=2.74 cfs 7,733 cf 12.0" Round Culvert n=0.013 L=16.5' S=0.0479 '/' Outflow=2.74 cfs 7,733 cf
Pond CB70:	Peak Elev=391.77' Inflow=1.62 cfs 5,509 cf 12.0" Round Culvert n=0.013 L=52.0' S=0.0050 '/' Outflow=1.62 cfs 5,509 cf
Pond E2347:	Peak Elev=10.89' Inflow=2.16 cfs 5,860 cf 15.0" Round Culvert n=0.013 L=72.5' S=-0.0014 '/' Outflow=2.16 cfs 5,860 cf
Pond E2348:	Peak Elev=10.67' Inflow=2.89 cfs 7,997 cf 15.0" Round Culvert n=0.013 L=15.1' S=0.0464 '/' Outflow=2.89 cfs 7,997 cf
Pond E2349:	Peak Elev=7.43' Inflow=17.01 cfs 84,188 cf 24.0" Round Culvert n=0.013 L=82.7' S=0.0050 '/' Outflow=17.01 cfs 84,188 cf
Pond E3578A:	Peak Elev=9.59' Inflow=0.85 cfs 2,505 cf 8.0" Round Culvert n=0.012 L=11.2' S=0.0982 '/' Outflow=0.85 cfs 2,505 cf
Pond E3579: 30	Peak Elev=4.68' Inflow=19.94 cfs 99,315 cf 6.0" Round Culvert n=0.015 L=205.5' S=0.0010 '/' Outflow=19.94 cfs 99,315 cf
Pond E3600:	Peak Elev=7.64' Inflow=0.08 cfs 238 cf 12.0" Round Culvert n=0.012 L=21.4' S=0.2570 '/' Outflow=0.08 cfs 238 cf
Pond E3672:	Peak Elev=8.31' Inflow=0.00 cfs 0 cf 4.0" Round Culvert n=0.012 L=13.9' S=0.0000 '/' Outflow=0.00 cfs 0 cf

Proposed Prepared by Fuss & O'Neill	Inc.	rpe III 24-hr 25 yr Rainfall=7.10" Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745	© 2018 HydroCAD Software Solutions LLC	Page 24
Pond E3693:	Peak 12.0" Round Culvert n=0.012 L=27.1' S=	Elev=8.32' Inflow=0.69 cfs 2,013 cf 0.2177 '/' Outflow=0.69 cfs 2,013 cf
Pond E3756:	Peak 12.0" Round Culvert n=0.012 L=23.2' S=	Elev=8.27' Inflow=0.85 cfs 2,505 cf 0.2500 '/' Outflow=0.85 cfs 2,505 cf
Pond E3758:	Peak 12.0" Round Culvert n=0.012 L=10.2' S=	Elev=8.67' Inflow=0.85 cfs 2,505 cf 0.0000 '/' Outflow=0.85 cfs 2,505 cf
Pond E3760:	Peak 12.0" Round Culvert n=0.012 L=32.7' S=	Elev=8.56' Inflow=0.85 cfs 2,505 cf 0.0061 '/' Outflow=0.85 cfs 2,505 cf
Pond E3772:	Peak El 24.0" Round Culvert n=0.013 L=81.8' S=0.0	lev=6.17' Inflow=17.17 cfs 85,446 cf 0050 '/' Outflow=17.17 cfs 85,446 cf
Pond E3866: F	Peak E rimary=1.14 cfs 1,165 cf Secondary=2.93 cfs 1	Elev=5.84' Inflow=4.06 cfs 13,087 cf 1,922 cf Outflow=4.06 cfs 13,087 cf
Pond E3895:	4.0" Round Culvert n=0.012 L=37.1	Peak Elev=0.00' ' S=0.0270 '/' Primary=0.00 cfs 0 cf
Pond E4034:	Peak 12.0" Round Culvert n=0.012 L=14.8' S=	Elev=7.80' Inflow=0.36 cfs 1,055 cf =0.3716 '/' Outflow=0.36 cfs 1,055 cf
Pond E4035:	Peak El 42.0" Round Culvert n=0.012 L=139.6' S=0.0	lev=3.92' Inflow=19.94 cfs 99,315 cf 0057 '/' Outflow=19.94 cfs 99,315 cf
Pond E4081:	Peak 12.0" Round Culvert n=0.013 L=13.0' S=	Elev=7.45' Inflow=2.74 cfs 8,023 cf 0.0077 '/' Outflow=2.74 cfs 8,023 cf
Pond E4082:	Peak 12.0" Round Culvert n=0.013 L=11.1' S=	Elev=6.95' Inflow=2.74 cfs 8,023 cf 0.0180 '/' Outflow=2.74 cfs 8,023 cf
Pond E4083:	Peak E 42.0" x 24.0" Box Culvert n=0.025 L=25.4' S=0	Elev=5.66' Inflow=5.04 cfs 21,388 cf 0.0098 '/' Outflow=5.04 cfs 21,388 cf
Pond E4093:	Peak 12.0" Round Culvert n=0.013 L=13.7' S=	Elev=6.27' Inflow=0.54 cfs 1,443 cf 0.0219 '/' Outflow=0.54 cfs 1,443 cf
Pond E4604:	Peak El 42.0" Round Culvert n=0.012 L=18.1' S=0.0	lev=3.15' Inflow=19.94 cfs 99,315 cf 0110 '/' Outflow=19.94 cfs 99,315 cf
Pond HW5A: HEADWALL INL	ET Peak E 12.0" Round Culvert n=0.013 L=39.0' S=	Elev=20.61' Inflow=0.75 cfs 2,327 cf =0.0333 '/' Outflow=0.75 cfs 2,327 cf
Pond IB1:	Peak Elev=22.75' Storage Discarded=0.14 cfs 8,415 cf Primary=4.05 cfs 1	e=5,981 cf Inflow=5.94 cfs 21,233 cf 2,819 cf Outflow=4.19 cfs 21,233 cf
Pond M11:	Peak El 18.0" Round Culvert n=0.013 L=101.0' S=0	lev=22.07' Inflow=7.07 cfs 31,080 cf 0.0050 '/' Outflow=7.07 cfs 31,080 cf

Proposed Prepared by Fuss & O'Neill	Type III 24-hr 25 yr Rainfa Inc. Printed 7/2	
		Page 25
Pond M14:	Peak Elev=22.23' Inflow=4.88 cfs 1 18.0" Round Culvert n=0.013 L=160.0' S=0.0050 '/' Outflow=4.88 cfs 1	
Pond M15:	Peak Elev=22.32' Inflow=4.88 cfs 1 18.0" Round Culvert n=0.013 L=122.0' S=0.0052 '/' Outflow=4.88 cfs 1	
Pond M17:	Peak Elev=23.17' Inflow=4.05 cfs 1 12.0" Round Culvert n=0.013 L=81.0' S=0.0049 '/' Outflow=4.05 cfs 1	,
Pond M19:	Peak Elev=62.31' Inflow=5.94 cfs 2 6.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=5.94 cfs 2	
Pond M2:	Peak Elev=19.54' Inflow=14.64 cfs 5 24.0" Round Culvert n=0.013 L=10.0' S=0.0040 '/' Outflow=14.65 cfs 5	
Pond M21:	Peak Elev=11.87' Inflow=15.73 cfs 7 24.0" Round Culvert n=0.013 L=116.8' S=0.0494 '/' Outflow=15.73 cfs 7	,
Pond M22:	Peak Elev=12.95' Inflow=15.73 cfs 7 24.0" Round Culvert n=0.013 L=67.1' S=0.0125 '/' Outflow=15.73 cfs 7	
Pond M25:	Peak Elev=13.92' Inflow=14.99 cfs 7 24.0" Round Culvert n=0.013 L=54.0' S=0.0050 '/' Outflow=14.99 cfs 7	
Pond M28:	Peak Elev=14.09' Inflow=3.27 cfs 1 18.0" Round Culvert n=0.013 L=51.5' S=0.0050 '/' Outflow=3.27 cfs 1	
Pond M29:	Peak Elev=14.47' Inflow=2.43 cfs 1 12.0" Round Culvert n=0.013 L=6.0' S=0.0050 '/' Outflow=2.43 cfs 1	
Pond M3:	Peak Elev=20.45' Inflow=14.64 cfs 5 24.0" Round Culvert n=0.013 L=70.5' S=0.0050 '/' Outflow=14.64 cfs 5	,
Pond M31:	Peak Elev=15.77' Inflow=3.32 cfs 1 12.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=3.32 cfs 1	
Pond M32:	Peak Elev=16.54' Inflow=3.32 cfs 1 12.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=3.32 cfs 1	
Pond M35:	Peak Elev=16.71' Inflow=0.85 cfs 12.0" Round Culvert n=0.013 L=43.0' S=0.0049 '/' Outflow=0.85 cfs	,
Pond M37:	Peak Elev=18.61' Inflow=1.50 cfs 12.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=1.50 cfs	
Pond M40:	- Peak Elev=14.41' Inflow=10.50 cfs 24.0" Round Culvert n=0.013 L=116.5' S=0.0050 '/' Outflow=10.50 cfs	
Pond M42:	- Peak Elev=15.66' Inflow=8.97 cfs 18.0" Round Culvert n=0.013 L=93.5' S=0.0050 '/' Outflow=8.97 cfs	

Proposed Prepared by Fuss & O'Neill Ir	
HydroCAD® 10.00-21 s/n 01745	© 2018 HydroCAD Software Solutions LLC Page 26
Pond M44:	Peak Elev=16.85' Inflow=8.05 cfs 37,533 cf 18.0" Round Culvert n=0.013 L=133.0' S=0.0050 '/' Outflow=8.05 cfs 37,533 cf
Pond M47:	Peak Elev=17.67' Inflow=7.43 cfs 33,729 cf 18.0" Round Culvert n=0.013 L=119.5' S=0.0050 '/' Outflow=7.43 cfs 33,729 cf
Pond M48:	Peak Elev=18.31' Inflow=7.43 cfs 33,729 cf 18.0" Round Culvert n=0.013 L=34.5' S=0.0049 '/' Outflow=7.43 cfs 33,729 cf
Pond M49:	Peak Elev=19.38' Inflow=4.43 cfs 23,804 cf 12.0" Round Culvert n=0.013 L=6.5' S=0.0154 '/' Outflow=4.43 cfs 23,804 cf
Pond M51:	Peak Elev=22.52' Inflow=13.86 cfs 46,073 cf 18.0" Round Culvert n=0.013 L=2.0' S=0.0000 '/' Outflow=13.86 cfs 46,073 cf
Pond M52:	Peak Elev=25.12' Inflow=13.86 cfs 46,073 cf 18.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=13.86 cfs 46,073 cf
Pond M54:	Peak Elev=26.48' Inflow=9.49 cfs 31,170 cf 18.0" Round Culvert n=0.013 L=91.0' S=0.0049 '/' Outflow=9.49 cfs 31,170 cf
Pond M57:	Peak Elev=19.74' Inflow=3.09 cfs 9,925 cf 12.0" Round Culvert n=0.013 L=160.5' S=0.0050 '/' Outflow=3.09 cfs 9,925 cf
Pond M59:	Peak Elev=43.62' Inflow=4.56 cfs 16,305 cf 6.0" Round Culvert n=0.013 L=3.0' S=0.0200 '/' Outflow=4.56 cfs 16,305 cf
Pond M6:	Peak Elev=21.06' Inflow=12.31 cfs 51,535 cf 24.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/' Outflow=12.31 cfs 51,535 cf
Pond M63:	Peak Elev=343.40' Inflow=16.69 cfs 57,145 cf 12.0" Round Culvert n=0.013 L=3.0' S=0.0100 '/' Outflow=16.69 cfs 57,145 cf
Pond M64:	Peak Elev=376.80' Inflow=16.69 cfs 57,145 cf 12.0" Round Culvert n=0.013 L=147.5' S=0.0050 '/' Outflow=16.69 cfs 57,145 cf
Pond M66:	Peak Elev=391.14' Inflow=8.94 cfs 30,777 cf 12.0" Round Culvert n=0.013 L=269.5' S=0.0050 '/' Outflow=8.94 cfs 30,777 cf
Pond M68:	Peak Elev=391.65' Inflow=3.31 cfs 11,395 cf 12.0" Round Culvert n=0.013 L=45.0' S=0.0049 '/' Outflow=3.31 cfs 11,395 cf
Pond M9:	Peak Elev=21.43' Inflow=9.83 cfs 41,090 cf 24.0" Round Culvert n=0.013 L=56.5' S=0.0050 '/' Outflow=9.83 cfs 41,090 cf
Pond RD 20:	Peak Elev=101.48' Inflow=5.94 cfs 21,233 cf 6.0" Round Culvert n=0.013 L=15.5' S=0.0052 '/' Outflow=5.94 cfs 21,233 cf
Pond RD69:	Peak Elev=269.04' Inflow=3.54 cfs 12,665 cf 6.0" Round Culvert n=0.013 L=31.0' S=0.0052 '/' Outflow=3.54 cfs 12,665 cf

Proposed Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC		Type III 24-hr 25 yr Rainfall=7.10" Printed 7/23/2019 Page 27
Pond WQS1:		CElev=18.63' Inflow=14.65 cfs 59,743 cf S=0.0048 '/' Outflow=14.65 cfs 59,743 cf
Link AP1: Hodgson Brook		Inflow=45.49 cfs 165,248 cf Primary=45.49 cfs 165,248 cf
Link AP2:		Inflow=19.94 cfs 99,315 cf Primary=19.94 cfs 99,315 cf

Link AP3:

Inflow=5.04 cfs 21,388 cf Primary=5.04 cfs 21,388 cf

Total Runoff Area = 648,524 sf Runoff Volume = 323,017 cf Average Runoff Depth = 5.98" 31.65% Pervious = 205,286 sf 68.35% Impervious = 443,238 sf

Proposed
Prepared by Fuss & O'Neill Inc.
HvdroCAD® 10.00-21 s/n 01745 © 2018 HvdroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=11,648 sf 68.94% Impervious Runoff Depth=7.42" Tc=0.0 min CN=91 Runoff=2.62 cfs 7,201 cf
Subcatchment 2:	Runoff Area=6,355 sf 44.36% Impervious Runoff Depth=6.70" Tc=6.0 min CN=85 Runoff=1.10 cfs 3,546 cf
Subcatchment 3:	Runoff Area=17,966 sf 63.26% Impervious Runoff Depth=7.18" Tc=6.0 min CN=89 Runoff=3.25 cfs 10,746 cf
Subcatchment 4:	Runoff Area=14,022 sf 87.36% Impervious Runoff Depth=7.90" Tc=6.0 min CN=95 Runoff=2.66 cfs 9,231 cf
Subcatchment 5:	Runoff Area=1,801 sf 96.84% Impervious Runoff Depth=8.14" Tc=6.0 min CN=97 Runoff=0.34 cfs 1,222 cf
Subcatchment 6:	Runoff Area=7,003 sf 96.19% Impervious Runoff Depth=8.14" Tc=6.0 min CN=97 Runoff=1.34 cfs 4,750 cf
Subcatchment 7:	Runoff Area=2,462 sf 89.85% Impervious Runoff Depth=8.02" Tc=6.0 min CN=96 Runoff=0.47 cfs 1,645 cf
Subcatchment 8:	Runoff Area=6,973 sf 92.96% Impervious Runoff Depth=8.02" Tc=6.0 min CN=96 Runoff=1.33 cfs 4,660 cf
Subcatchment 9:	Runoff Area=3,616 sf 86.12% Impervious Runoff Depth=7.90" Tc=6.0 min CN=95 Runoff=0.69 cfs 2,380 cf
Subcatchment 10:	Runoff Area=8,901 sf 80.64% Impervious Runoff Depth=7.66" Tc=6.0 min CN=93 Runoff=1.67 cfs 5,681 cf
Subcatchment 10B:	Runoff Area=8,377 sf 79.03% Impervious Runoff Depth=7.66" Tc=6.0 min CN=93 Runoff=1.57 cfs 5,347 cf
Subcatchment 11:	Runoff Area=5,132 sf 50.00% Impervious Runoff Depth=6.82" Tc=6.0 min CN=86 Runoff=0.90 cfs 2,915 cf
Subcatchment 12:	Runoff Area=12,705 sf 65.30% Impervious Runoff Depth=7.30" Tc=6.0 min CN=90 Runoff=2.32 cfs 7,727 cf
Subcatchment 13:	Runoff Area=2,486 sf 78.32% Impervious Runoff Depth=7.66" Tc=6.0 min CN=93 Runoff=0.47 cfs 1,587 cf
Subcatchment 14:	Runoff Area=5,742 sf 40.56% Impervious Runoff Depth=6.58" Tc=6.0 min CN=84 Runoff=0.98 cfs 3,147 cf
Subcatchment 15:	Runoff Area=27,997 sf 82.23% Impervious Runoff Depth=7.78" Tc=6.0 min CN=94 Runoff=5.28 cfs 18,150 cf

_				
D	rn	n	nc	22
Г	IU	D	os	ea

Page 29

HydroCAD® 10.00-21	s/n 01745 © 2018 HydroCAD Software Solutions LLC Page 29
Subcatchment 16:	Runoff Area=44,751 sf 69.67% Impervious Runoff Depth=7.42" Tc=6.0 min CN=91 Runoff=8.26 cfs 27,665 cf
Subcatchment 17:	Runoff Area=18,629 sf 55.15% Impervious Runoff Depth=6.94" Tc=6.0 min CN=87 Runoff=3.30 cfs 10,769 cf
Subcatchment 18:	Runoff Area=28,518 sf 100.00% Impervious Runoff Depth=8.26" Tc=6.0 min CN=98 Runoff=5.46 cfs 19,630 cf
Subcatchment 19:	Runoff Area=4,108 sf 17.31% Impervious Runoff Depth=5.85" Tc=6.0 min CN=78 Runoff=0.64 cfs 2,004 cf
Subcatchment 20:	Runoff Area=1,524 sf 100.00% Impervious Runoff Depth=8.26" Tc=6.0 min CN=98 Runoff=0.29 cfs 1,049 cf
Subcatchment 21:	Runoff Area=792 sf 66.04% Impervious Runoff Depth=7.30" Tc=6.0 min CN=90 Runoff=0.14 cfs 482 cf
Subcatchment 22:	Runoff Area=41,854 sf 1.22% Impervious Runoff Depth=5.38" Tc=6.0 min CN=74 Runoff=6.03 cfs 18,748 cf
Subcatchment 23:	Runoff Area=14,462 sf 0.00% Impervious Runoff Depth=5.38" Flow Length=115' Slope=0.0011 '/' Tc=6.0 min CN=74 Runoff=2.08 cfs 6,478 cf
Subcatchment 24:	Runoff Area=6,729 sf 56.26% Impervious Runoff Depth=7.06" Flow Length=176' Tc=6.0 min CN=88 Runoff=1.21 cfs 3,958 cf
Subcatchment 25:	Runoff Area=6,442 sf 34.31% Impervious Runoff Depth=6.34" Tc=0.0 min CN=82 Runoff=1.31 cfs 3,401 cf
Subcatchment 26:	Runoff Area=14,265 sf 86.53% Impervious Runoff Depth=7.90" Tc=0.0 min CN=95 Runoff=3.30 cfs 9,390 cf
Subcatchment 27:	Runoff Area=5,289 sf 76.01% Impervious Runoff Depth=7.54" Flow Length=71' Slope=0.1342 '/' Tc=7.7 min CN=92 Runoff=0.93 cfs 3,323 cf
Subcatchment 28:	Runoff Area=18,464 sf 86.68% Impervious Runoff Depth=7.90" Tc=6.0 min CN=95 Runoff=3.50 cfs 12,155 cf
Subcatchment 29:	Runoff Area=8,912 sf 80.50% Impervious Runoff Depth=7.66" Tc=0.0 min CN=93 Runoff=2.04 cfs 5,688 cf
Subcatchment 30:	Runoff Area=18,830 sf 38.59% Impervious Runoff Depth=6.46" Flow Length=349' Slope=0.0138 '/' Tc=6.0 min CN=83 Runoff=3.17 cfs 10,130 cf
Subcatchment 31:	Runoff Area=15,371 sf 10.01% Impervious Runoff Depth=5.61" Tc=6.0 min CN=76 Runoff=2.30 cfs 7,192 cf
Subcatchment 32:	Runoff Area=37,137 sf 100.00% Impervious Runoff Depth=8.26" Tc=6.0 min CN=98 Runoff=7.12 cfs 25,562 cf

Ρ	ro	n	05	ed	
	10	v	00		

Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

TIYUIOCAD® 10.00-21 S/1101743 @ 2010 TIYUIOC	AD Soltwale Solutions LLC Faye 30
Subcatchment 34:	Runoff Area=10,350 sf 83.59% Impervious Runoff Depth=7.78" Tc=6.0 min CN=94 Runoff=1.95 cfs 6,710 cf
Subcatchment 35:	Runoff Area=10,664 sf 91.11% Impervious Runoff Depth=8.02" Tc=6.0 min CN=96 Runoff=2.03 cfs 7,127 cf
Subcatchment 36:	Runoff Area=35,753 sf 88.57% Impervious Runoff Depth=7.90" Tc=6.0 min CN=95 Runoff=6.78 cfs 23,536 cf
Subcatchment 37:	Runoff Area=49,536 sf 84.69% Impervious Runoff Depth=7.78" Tc=6.0 min CN=94 Runoff=9.34 cfs 32,113 cf
Subcatchment 38:	Runoff Area=22,151 sf 100.00% Impervious Runoff Depth=8.26" Tc=6.0 min CN=98 Runoff=4.24 cfs 15,247 cf
Subcatchment 39:	Runoff Area=11,218 sf 43.45% Impervious Runoff Depth=6.58" Tc=6.0 min CN=84 Runoff=1.92 cfs 6,148 cf
Subcatchment 40:	Runoff Area=13,195 sf 78.02% Impervious Runoff Depth=7.66" Tc=6.0 min CN=93 Runoff=2.47 cfs 8,422 cf
Subcatchment 41:	Runoff Area=7,175 sf 49.39% Impervious Runoff Depth=6.82" Tc=6.0 min CN=86 Runoff=1.26 cfs 4,076 cf
Subcatchment 42:	Runoff Area=6,762 sf 0.00% Impervious Runoff Depth=5.38" Tc=6.0 min CN=74 Runoff=0.97 cfs 3,029 cf
Subcatchment 43:	Runoff Area=2,510 sf 79.04% Impervious Runoff Depth=7.66" Tc=0.0 min CN=93 Runoff=0.57 cfs 1,602 cf
Subcatchment 44:	Runoff Area=3,738 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.87 cfs 2,573 cf
Subcatchment 45:	Runoff Area=16,888 sf 28.75% Impervious Runoff Depth=6.22" Tc=0.0 min CN=81 Runoff=3.38 cfs 8,747 cf
Subcatchment 46:	Runoff Area=2,200 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.51 cfs 1,514 cf
Subcatchment 47:	Runoff Area=2,924 sf 67.78% Impervious Runoff Depth=7.30" Tc=0.0 min CN=90 Runoff=0.65 cfs 1,778 cf
Subcatchment 48:	Runoff Area=14,033 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=3.28 cfs 9,659 cf
Subcatchment 49:	Runoff Area=417 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.10 cfs 287 cf
Subcatchment 50:	Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.82 cfs 2,423 cf

Proposed Prepared by Fuss & O'N HydroCAD® 10.00-21 s/n 0	Type III 24-hr50 yr Rainfall=8.50"Neill Inc.Printed 7/23/20191745 © 2018 HydroCAD Software Solutions LLCPage 31
Subcatchment 51:	Runoff Area=1,846 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=0.43 cfs 1,271 cf
Subcatchment 52:	Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=8.26" Tc=0.0 min CN=98 Runoff=1.02 cfs 3,016 cf
Reach R1: Swale	Avg. Flow Depth=0.77' Max Vel=4.00 fps Inflow=20.73 cfs 81,269 cf n=0.035 L=100.0' S=0.0200 '/' Capacity=333.24 cfs Outflow=19.40 cfs 81,269 cf
Reach TB:	Inflow=4.99 cfs 16,297 cf Outflow=4.99 cfs 16,297 cf
Pond 27 BRB1:	Peak Elev=16.11' Storage=690 cf Inflow=0.90 cfs 2,915 cf Outflow=0.55 cfs 2,915 cf
Pond 30 DB1:	Peak Elev=15.29' Storage=1,936 cf Inflow=4.00 cfs 13,981 cf Primary=3.68 cfs 3,144 cf Secondary=0.99 cfs 10,835 cf Outflow=4.60 cfs 13,979 cf
Pond 36 DB2:	Peak Elev=17.80' Storage=823 cf Inflow=1.80 cfs 6,305 cf Primary=0.00 cfs 0 cf Secondary=0.97 cfs 6,304 cf Outflow=0.97 cfs 6,304 cf
Pond 41 BRB2:	Peak Elev=18.28' Storage=1,348 cf Inflow=2.32 cfs 7,727 cf Outflow=2.03 cfs 7,727 cf
Pond 50 IB3:	Peak Elev=21.42' Storage=18,554 cf Inflow=16.84 cfs 56,584 cf Discarded=0.92 cfs 25,069 cf Primary=5.76 cfs 31,515 cf Outflow=6.68 cfs 56,584 cf
Pond 58 IB2:	Peak Elev=20.46' Storage=3,765 cf Inflow=5.46 cfs 19,630 cf Discarded=0.18 cfs 6,958 cf Primary=4.42 cfs 12,672 cf Outflow=4.59 cfs 19,630 cf
Pond 60 RD B:	Peak Elev=181.78' Inflow=5.46 cfs 19,630 cf 6.0" Round Culvert n=0.013 L=116.0' S=0.0050 '/' Outflow=5.46 cfs 19,630 cf
Pond 60 WQU 2:	Peak Elev=469.46' Inflow=20.10 cfs 69,485 cf 12.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=20.10 cfs 69,485 cf
Pond 1071:	Peak Elev=430.13' Inflow=24.49 cfs 84,054 cf 12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=24.49 cfs 84,054 cf
Pond 1072:	Peak Elev=357.79' Inflow=29.99 cfs 103,377 cf 15.0" Round Culvert n=0.025 L=31.0' S=0.0387 '/' Outflow=29.99 cfs 103,378 cf
Pond 1346:	Peak Elev=144.21' Inflow=29.99 cfs 103,378 cf 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow=29.99 cfs 103,378 cf
Pond 1347:	Peak Elev=320.14' Inflow=29.99 cfs 103,378 cf 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow=29.99 cfs 103,378 cf
Pond CB10:	Peak Elev=23.77' Inflow=3.50 cfs 12,155 cf 12.0" Round Culvert n=0.013 L=56.0' S=0.0089 '/' Outflow=3.50 cfs 12,155 cf

Proposed Prepared by Fuss & O'Neill Inc. HydroCAD® 10 00-21 s/n 01745 © 1	<i>Type III 24-hr 50 yr Rainfall=8.50"</i> Printed 7/23/2019 2018 HydroCAD Software Solutions LLC Page 32
Pond CB12:	Peak Elev=24.13' Inflow=2.04 cfs 5,688 cf 12.0" Round Culvert n=0.013 L=7.5' S=0.0573 '/' Outflow=2.04 cfs 5,688 cf
Pond CB13:	Peak Elev=24.72' Inflow=3.17 cfs 10,130 cf 12.0" Round Culvert n=0.013 L=7.5' S=0.0573 '/' Outflow=3.17 cfs 10,130 cf
Pond CB16:	Peak Elev=24.71' Inflow=2.30 cfs 7,192 cf 12.0" Round Culvert n=0.013 L=65.0' S=0.0049 '/' Outflow=2.30 cfs 7,192 cf
Pond CB23:	Peak Elev=13.77' Inflow=0.69 cfs 2,380 cf 12.0" Round Culvert n=0.013 L=15.5' S=0.0045 '/' Outflow=0.69 cfs 2,380 cf
Pond CB24:	Peak Elev=14.22' Inflow=0.34 cfs 1,222 cf 12.0" Round Culvert n=0.013 L=39.5' S=0.0099 '/' Outflow=0.34 cfs 1,222 cf
Pond CB26:	Peak Elev=15.03' Inflow=1.67 cfs 5,681 cf 12.0" Round Culvert n=0.013 L=14.0' S=0.0571 '/' Outflow=1.67 cfs 5,681 cf
Pond CB33:	Peak Elev=17.73' Inflow=2.66 cfs 9,231 cf 12.0" Round Culvert n=0.013 L=63.5' S=0.0055 '/' Outflow=2.66 cfs 9,231 cf
Pond CB34:	Peak Elev=17.25' Inflow=1.34 cfs 4,750 cf 12.0" Round Culvert n=0.013 L=24.0' S=0.0146 '/' Outflow=1.34 cfs 4,750 cf
Pond CB38:	Peak Elev=18.73' Inflow=0.47 cfs 1,645 cf 12.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=0.47 cfs 1,645 cf
Pond CB39:	Peak Elev=19.72' Inflow=1.33 cfs 4,660 cf 12.0" Round Culvert n=0.013 L=53.0' S=0.0049 '/' Outflow=1.33 cfs 4,660 cf
Pond CB4:	Peak Elev=21.62' Inflow=1.21 cfs 3,958 cf 12.0" Round Culvert n=0.013 L=24.5' S=0.0347 '/' Outflow=1.21 cfs 3,958 cf
Pond CB43:	Peak Elev=17.08' Inflow=1.57 cfs 5,347 cf 12.0" Round Culvert n=0.013 L=9.9' S=0.0495 '/' Outflow=1.57 cfs 5,347 cf
Pond CB45:	Peak Elev=20.01' Inflow=0.98 cfs 3,147 cf 12.0" Round Culvert n=0.013 L=15.0' S=0.0667 '/' Outflow=0.98 cfs 3,147 cf
Pond CB46:	Peak Elev=19.84' Inflow=0.47 cfs 1,587 cf 12.0" Round Culvert n=0.013 L=15.0' S=0.0667 '/' Outflow=0.47 cfs 1,587 cf
Pond CB5:	Peak Elev=21.73' Inflow=1.89 cfs 6,430 cf 12.0" Round Culvert n=0.010 L=33.5' S=0.0051 '/' Outflow=1.89 cfs 6,430 cf
Pond CB53:	Peak Elev=30.81' Inflow=5.28 cfs 18,150 cf 12.0" Round Culvert n=0.013 L=86.0' S=0.0050 '/' Outflow=5.28 cfs 18,150 cf
Pond CB55:	Peak Elev=34.65' Inflow=8.26 cfs 27,665 cf 12.0" Round Culvert n=0.013 L=44.0' S=0.0050 '/' Outflow=8.26 cfs 27,665 cf

Proposed Prepared by Fuss & O'Neill HydroCAD® 10 00-21 s/p 01745		<i>III 24-hr 50 yr Rainfall=</i> 8.50" Printed 7/23/2019 <u>Page 33</u>
Pond CB56:	Peak Elev=3 12.0" Round Culvert n=0.013 L=69.0' S=0.012	30.93' Inflow=3.30 cfs 10,769 cf 22 '/' Outflow=3.30 cfs 10,769 cf
Pond CB6:	-Peak Elev 12.0" Round Culvert n=0.013 L=13.0' S=0.02	=22.36' Inflow=0.93 cfs 3,323 cf 262 '/' Outflow=0.93 cfs 3,323 cf
Pond CB61:	Peak Elev 12.0" Round Culvert n=0.013 L=65.0' S=0.00	v=8.40' Inflow=3.38 cfs 8,747 cf 095 '/' Outflow=3.38 cfs 8,747 cf
Pond CB62:	Peak Elev 12.0" Round Culvert n=0.013 L=6.7' S=0.01	v=6.90' Inflow=0.51 cfs 1,514 cf 104 '/' Outflow=0.51 cfs 1,514 cf
Pond CB63:	Peak Elev 12.0" Round Culvert n=0.013 L=13.4' S=0.00	v=8.64' Inflow=0.57 cfs 1,602 cf 097 '/' Outflow=0.57 cfs 1,602 cf
Pond CB65:	Peak Elev=54 12.0" Round Culvert n=0.013 L=50.0' S=0.005	46.26' Inflow=9.34 cfs 32,113 cf 50 '/' Outflow=9.34 cfs 32,113 cf
Pond CB67:	Peak Elev=56 12.0" Round Culvert n=0.013 L=3.5' S=0.008	64.28' Inflow=6.78 cfs 23,536 cf 86 '/' Outflow=6.78 cfs 23,536 cf
Pond CB69:	Peak Elev=5 12.0" Round Culvert n=0.013 L=7.5' S=0.00	563.14' Inflow=2.03 cfs 7,127 cf 053 '/' Outflow=2.03 cfs 7,127 cf
Pond CB7:	=Peak Elev 12.0" Round Culvert n=0.013 L=16.5' S=0.04	=22.55' Inflow=3.30 cfs 9,390 cf 479 '/' Outflow=3.30 cfs 9,390 cf
Pond CB70:	Peak Elev=5 12.0" Round Culvert n=0.013 L=52.0' S=0.00	563.14' Inflow=1.95 cfs 6,710 cf 050 '/' Outflow=1.95 cfs 6,710 cf
Pond E2347:	Peak Elev= 15.0" Round Culvert n=0.013 L=72.5' S=-0.00	=11.03' Inflow=2.62 cfs 7,201 cf 014 '/' Outflow=2.62 cfs 7,201 cf
Pond E2348:	Peak Elev= 15.0" Round Culvert n=0.013 L=15.1' S=0.04	=10.78' Inflow=3.50 cfs 9,774 cf 464 '/' Outflow=3.50 cfs 9,774 cf
Pond E2349:		.64' Inflow=20.99 cfs 105,852 cf
Pond E3578A:	Peak Elev 8.0" Round Culvert n=0.012 L=11.2' S=0.09	v=9.70' Inflow=1.02 cfs 3,016 cf 982 '/' Outflow=1.02 cfs 3,016 cf
Pond E3579:	./Peak Elev=5 36.0" Round Culvert n=0.015 L=205.5' S=0.0010	.09' Inflow=25.02 cfs 124,799 cf '/' Outflow=25.02 cfs 124,799 cf
Pond E3600:	Peak El 12.0" Round Culvert n=0.012 L=21.4' S=0.2	lev=7.65' Inflow=0.10 cfs 287 cf 2570 '/' Outflow=0.10 cfs 287 cf
Pond E3672:	Peak 4.0" Round Culvert n=0.012 L=13.9' S=	< Elev=8.35' Inflow=0.00 cfs 0 cf =0.0000 '/' Outflow=0.00 cfs 0 cf

Proposed Prepared by Fuss & O'Neill Ind	-	/pe III 24-hr 50 yr Rainfall=8.50" Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745 @	2018 HydroCAD Software Solutions LLC	Page 34
Pond E3693:	Peak 12.0" Round Culvert_n=0.012 L=27.1' S=	K Elev=8.36' Inflow=0.82 cfs 2,423 cf =0.2177 '/' Outflow=0.82 cfs 2,423 cf
Pond E3756:	Peak 12.0" Round Culvert n=0.012 L=23.2' S=	Elev=8.32' Inflow=1.02 cfs 3,016 cf =0.2500 '/' Outflow=1.02 cfs 3,016 cf
Pond E3758:	Peak 12.0" Round Culvert n=0.012 L=10.2' S=	x Elev=8.75' Inflow=1.02 cfs 3,016 cf =0.0000 '/' Outflow=1.02 cfs 3,016 cf
Pond E3760:	Peak 12.0" Round Culvert n=0.012 L=32.7' S=	x Elev=8.62' Inflow=1.02 cfs 3,016 cf =0.0061 '/' Outflow=1.02 cfs 3,016 cf
Pond E3772:	Peak Ele 24.0" Round Culvert n=0.013 L=81.8' S=0.0	ev=6.90' Inflow=21.17 cfs 107,366 cf 050 '/' Outflow=21.17 cfs 107,366 cf
Pond E3866: Prin	Peak l nary=1.56 cfs 1,689 cf Secondary=3.46 cfs 1	Elev=5.91' Inflow=4.99 cfs 16,297 cf 4,608 cf Outflow=4.99 cfs 16,297 cf
Pond E3895:	4.0" Round Culvert n=0.012 L=37.1	Peak Elev=0.00' S=0.0270 '/' Primary=0.00 cfs 0 cf
Pond E4034:	Peak 12.0" Round Culvert n=0.012 L=14.8' S=	CElev=7.83' Inflow=0.43 cfs 1,271 cf =0.3716 '/' Outflow=0.43 cfs 1,271 cf
Pond E4035:	Peak Ele 2.0" Round Culvert n=0.012 L=139.6' S=0.0	ev=4.24' Inflow=25.02 cfs 124,799 cf 057 '/' Outflow=25.02 cfs 124,799 cf
Pond E4081:	Peak 12.0" Round Culvert n=0.013 L=13.0' S=	Elev=7.86' Inflow=3.28 cfs 9,659 cf =0.0077 '/' Outflow=3.28 cfs 9,659 cf
Pond E4082:	Peak 12.0" Round Culvert n=0.013 L=11.1' S=	CElev=7.15' Inflow=3.28 cfs 9,659 cf =0.0180 '/' Outflow=3.28 cfs 9,659 cf
Pond E4083 : 42	Peak 2.0" x 24.0" Box Culvert n=0.025 L=25.4' S=0	Elev=5.74' Inflow=5.98 cfs 26,046 cf 0.0098 '/' Outflow=5.98 cfs 26,046 cf
Pond E4093:	Peak 12.0" Round Culvert n=0.013 L=13.7' S=	Elev=6.31' Inflow=0.65 cfs 1,778 cf =0.0219 '/' Outflow=0.65 cfs 1,778 cf
Pond E4604:	Peak Ele 42.0" Round Culvert n=0.012 L=18.1' S=0.0	ev=3.43' Inflow=25.02 cfs 124,799 cf 110 '/' Outflow=25.02 cfs 124,799 cf
Pond HW5A: HEADWALL INLE	F Peak 12.0" Round Culvert n=0.013 L=39.0' S=	Elev=21.80' Inflow=0.97 cfs 3,029 cf =0.0333 '/' Outflow=0.97 cfs 3,029 cf
Pond IB1: Dis	Peak Elev=23.48' Storage carded=0.16 cfs 9,039 cf Primary=5.17 cfs 1	e=7,524 cf Inflow=7.12 cfs 25,562 cf 6,525 cf Outflow=5.33 cfs 25,563 cf
Pond M11:	Peak E 18.0" Round Culvert n=0.013 L=101.0' S=0	lev=24.04' Inflow=9.56 cfs 39,536 cf 0.0050 '/' Outflow=9.56 cfs 39,536 cf

Proposed Prepared by Fuss & O'Neill In HydroCAD® 10.00-21 s/n 01745	nc. © 2018 HydroCAD Software Solutions LLC	Type III 24-hr 50 yr Rainfall= Printed 7/23 Pa	
Pond M14:		k Elev=24.14' Inflow=6.38 cfs 23	
	18.0" Round Culvert n=0.013 L=160.0'	S=0.0050 '/' Outflow=6.38 cfs 23	,717 cf
Pond M15:	Pea 18.0" Round Culvert n=0.013 L=122.0'	k Elev=24.24' Inflow=6.38 cfs 23 S=0.0052 '/' Outflow=6.38 cfs 23	
Pond M17:	Pea 12.0" Round Culvert n=0.013 L=81.0'	k Elev=24.52' Inflow=5.17 cfs 16 S=0.0049 '/' Outflow=5.17 cfs 16	
Pond M19:	Pea 6.0" Round Culvert n=0.013 L=2.0'	k Elev=79.51' Inflow=7.12 cfs 25 S=0.0300 '/' Outflow=7.12 cfs 25	
Pond M2:		Elev=20.40' Inflow=18.78 cfs 74	
	24.0" Round Culvert n=0.013 L=10.0' S	=0.0040 '/' Outflow=18.79 cfs 74	,791 cf
Pond M21:	Peak 24.0" Round Culvert n=0.013 L=116.8' S	Elev=12.47' Inflow=19.61 cfs 94 =0.0494 '/' Outflow=19.61 cfs 94	
Pond M22:	Deal	Elev=13.62' Inflow=19.61 cfs 94	176 of
	24.0" Round Culvert n=0.013 L=67.1' S		,
Pond M25:		Elev=14.85' Inflow=19.16 cfs 90	
	24.0" Round Culvert n=0.013 L=54.0' S	=0.0050 7 Outflow=19.16 cts 90	,874 CT
Pond M28:	Pea 18.0" Round Culvert_n=0.013 L=51.5'	k Elev=14.93' Inflow=5.56 cfs 20 S=0.0050 '/' Outflow=5.56 cfs 20	
Pond M29:	Pea	k Elev=16.13' Inflow=4.60 cfs 13	.979 cf
	12.0" Round Culvert n=0.013 L=6.0'		
Pond M3:	Peak	Elev=21.52' Inflow=18.78 cfs 74	,791 cf
	24.0" Round Culvert n=0.013 L=70.5' S	=0.0050 '/' Outflow=18.78 cfs 74	,791 cf
Pond M31:	Pea 12.0" Round Culvert n=0.013 L=2.0'	k Elev=16.02' Inflow=4.00 cfs 13 S=0.0300 '/' Outflow=4.00 cfs 13	
Pond M32:	Dea	k Elev=17.13' Inflow=4.00 cfs 13	981 cf
	12.0" Round Culvert n=0.013 L=5.0'		,
Pond M35:	Pe 12.0" Round Culvert n=0.013 L=43.0	ak Elev=16.75' Inflow=0.97 cfs 6 S=0.0049 '/' Outflow=0.97 cfs 6	
Pond M37:	Pe	ak Elev=18.71' Inflow=1.80 cfs 6	,305 cf
	12.0" Round Culvert n=0.013 L=2.0'	5=0.03007 Outriow=1.80 cfs 6	JUD CT
Pond M40:	Peak 24.0" Round Culvert n=0.013 L=116.5' S	Elev=15.48' Inflow=12.61 cfs 61 =0.0050 '/' Outflow=12.61 cfs 61	
Pond M42:	Peak 18.0" Round Culvert n=0.013 L=93.5' S	Elev=16.93' Inflow=11.30 cfs 54	

Proposed Prepared by Fuss & O'Neill I HydroCAD® 10.00-21 s/n 01745		<i>hr 50 yr Rainfall</i> =8.50 Printed 7/23/2019 Page 30
Pond M44:		Inflow=10.65 cfs 48,921 c
	18.0" Round Culvert n=0.013 L=133.0' S=0.0050 '/' Ou	
Pond M47:	Peak Elev=18.77'	Inflow=10.08 cfs 44,187 c
	18.0" Round Culvert n=0.013 L=119.5' S=0.0050 '/' Ou	utflow=10.08 cfs 44,187 c
Pond M48:		Inflow=10.08 cfs 44,187 c
	18.0" Round Culvert n=0.013 L=34.5' S=0.0049 '/' Ou	utflow=10.08 cfs 44,187 c
Pond M49:		Inflow=5.76 cfs 31,515 c
	12.0" Round Culvert n=0.013 L=6.5' S=0.0154 '/' C	
Pond M51:	Peak Elev=24.13 18.0" Round Culvert n=0.013 L=2.0' S=0.0000 '/' Ou	Inflow=16.84 cfs 56,584 c utflow=16.84 cfs 56,584 c
Pond M52:	Peak Elev=27.97 18.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Ou	Inflow=16.84 cfs 56,584 c utflow=16.84 cfs 56,584 c
Pond M54:	Book Flove 30 00'	Inflow=11.56 cfs 38,435 c
	18.0" Round Culvert n=0.013 L=91.0' S=0.0049 '/' Ou	
Pond M57:	Peak Elev=22.22'	Inflow=4.42 cfs 12,672 c
	12.0" Round Culvert n=0.013 L=160.5' S=0.0050 '/' C	
Pond M59:	Peak Elev=53.76'	Inflow=5.46 cfs 19,630 c
	6.0" Round Culvert n=0.013 L=3.0' S=0.0200 '/' C	Outflow=5.46 cfs 19,630 c
Pond M6:		Inflow=15.85 cfs 64,403 c
	24.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/' Ou	utflow=15.85 cfs 64,403 c
Pond M63:		Inflow=20.10 cfs 69,485 c
	12.0" Round Culvert n=0.013 L=3.0' S=0.0100 '/' Ou	uttiow=20.10 cts 69,485 c
Pond M64:	Peak Elev=541.48 12.0" Round Culvert n=0.013 L=147.5' S=0.0050 // Ou	Inflow=20.10 cfs 69,485 c
Pond M66:	Peak Elev=562.23 12.0" Round Culvert n=0.013 L=269.5' S=0.0050	Inflow=10.76 cfs 37,372 c utflow=10.76 cfs 37,372 c
Danal MCO.		
Pond M68:	12.0" Round Culvert n=0.013 L=45.0' S=0.0049 '/' C	Inflow=3.98 cfs 13,836 c Dutflow=3.98 cfs 13,836 c
Pond M9:	Peak Elev-22 78'	Inflow=12.91 cfs 51,690 c
	24.0" Round Culvert n=0.013 L=56.5' S=0.0050 '/' O	
Pond RD 20:	Peak Elev=135.76'	Inflow=7.12 cfs 25,562 c
	6.0" Round Culvert n=0.013 L=15.5' S=0.0052 '/ C	
Pond RD69:	Peak Elev=384.52'	Inflow=4.24 cfs 15,247 c
	6.0" Round Culvert n=0.013 L=31.0' S=0.0052 '/' C	Dutflow=4.24 cfs 15,247 c

Proposed Prepared by Fuss & O'Neill Inc HydroCAD® 10.00-21 s/n 01745 ©	2018 HydroCAD Software Solutions LLC	Type III 24-hr 50 yr Rainfall=8.50" Printed 7/23/2019 Page 37
Pond WQS1:		k Elev=19.27' Inflow=18.79 cfs 74,791 cf S=0.0048 '/' Outflow=18.76 cfs 74,791 cf
Link AP1: Hodgson Brook		Inflow=55.15 cfs 204,925 cf Primary=55.15 cfs 204,925 cf
Link AP2:		Inflow=25.02 cfs 124,799 cf Primary=25.02 cfs 124,799 cf
Link AP3:		Inflow=5.98 cfs 26,046 cf

Total Runoff Area = 648,524 sf Runoff Volume = 396,837 cf Average Runoff Depth = 7.34" 31.65% Pervious = 205,286 sf 68.35% Impervious = 443,238 sf

Primary=5.98 cfs 26,046 cf

Appendix F3.3

Post-Development Hydrologic Analysis: Full summary for 10-year storm

Proposed
Prepared by Fuss & O'Neill Inc.
HvdroCAD® 10.00-21 s/n 01745 © 2018 HvdroCAD Software Solutions LLC

Time span=0.00-72.00 hrs, dt=0.01 hrs, 7201 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 1:	Runoff Area=11,648 sf 68.94% Impervious Runoff Depth=4.57" Tc=0.0 min CN=91 Runoff=1.66 cfs 4,432 cf
Subcatchment 2:	Runoff Area=6,355 sf 44.36% Impervious Runoff Depth=3.93" Tc=6.0 min CN=85 Runoff=0.66 cfs 2,079 cf
Subcatchment 3:	Runoff Area=17,966 sf 63.26% Impervious Runoff Depth=4.35" Tc=6.0 min CN=89 Runoff=2.03 cfs 6,511 cf
Subcatchment 4:	Runoff Area=14,022 sf 87.36% Impervious Runoff Depth=5.01" Tc=6.0 min CN=95 Runoff=1.73 cfs 5,859 cf
Subcatchment 5:	Runoff Area=1,801 sf 96.84% Impervious Runoff Depth=5.25" Tc=6.0 min CN=97 Runoff=0.23 cfs 787 cf
Subcatchment 6:	Runoff Area=7,003 sf 96.19% Impervious Runoff Depth=5.25" Tc=6.0 min CN=97 Runoff=0.88 cfs 3,061 cf
Subcatchment 7:	Runoff Area=2,462 sf 89.85% Impervious Runoff Depth=5.13" Tc=6.0 min CN=96 Runoff=0.31 cfs 1,052 cf
Subcatchment 8:	Runoff Area=6,973 sf 92.96% Impervious Runoff Depth=5.13" Tc=6.0 min CN=96 Runoff=0.87 cfs 2,981 cf
Subcatchment 9:	Runoff Area=3,616 sf 86.12% Impervious Runoff Depth=5.01" Tc=6.0 min CN=95 Runoff=0.45 cfs 1,511 cf
Subcatchment 10:	Runoff Area=8,901 sf 80.64% Impervious Runoff Depth=4.79" Tc=6.0 min CN=93 Runoff=1.07 cfs 3,552 cf
Subcatchment 10B:	Runoff Area=8,377 sf 79.03% Impervious Runoff Depth=4.79" Tc=6.0 min CN=93 Runoff=1.01 cfs 3,343 cf
Subcatchment 11:	Runoff Area=5,132 sf 50.00% Impervious Runoff Depth=4.03" Tc=6.0 min CN=86 Runoff=0.55 cfs 1,724 cf
Subcatchment 12:	Runoff Area=12,705 sf 65.30% Impervious Runoff Depth=4.46" Tc=6.0 min CN=90 Runoff=1.46 cfs 4,719 cf
Subcatchment 13:	Runoff Area=2,486 sf 78.32% Impervious Runoff Depth=4.79" Tc=6.0 min CN=93 Runoff=0.30 cfs 992 cf
Subcatchment 14:	Runoff Area=5,742 sf 40.56% Impervious Runoff Depth=3.82" Tc=6.0 min CN=84 Runoff=0.58 cfs 1,830 cf
Subcatchment 15:	Runoff Area=27,997 sf 82.23% Impervious Runoff Depth=4.90" Tc=6.0 min CN=94 Runoff=3.41 cfs 11,434 cf

Tc=6.0 min CN=98 Runoff=4.68 cfs 16,595 cf

Proposed	Type III 24-nr 10 yr Raintai=5.60"
Prepared by Fuss & O'Nei HydroCAD® 10 00-21 s/n 0174	II Inc.Printed 7/23/201945 © 2018 HydroCAD Software Solutions LLCPage 9
Subcatchment 16:	Runoff Area=44,751 sf 69.67% Impervious Runoff Depth=4.57"
	Tc=6.0 min CN=91 Runoff=5.23 cfs 17,029 cf
Subcatchment 17:	Runoff Area=18,629 sf 55.15% Impervious Runoff Depth=4.14"
Subcatchment 17.	Tc=6.0 min CN=87 Runoff=2.02 cfs 6,420 cf
Subcatchment 18:	Runoff Area=28,518 sf 100.00% Impervious Runoff Depth=5.36"
	Tc=6.0 min CN=98 Runoff=3.59 cfs 12,744 cf
Subcatchment 19:	Runoff Area=4,108 sf 17.31% Impervious Runoff Depth=3.23"
	Tc=6.0 min CN=78 Runoff=0.36 cfs 1,105 cf
Subcatchment 20:	Runoff Area=1,524 sf 100.00% Impervious Runoff Depth=5.36" Tc=6.0 min CN=98 Runoff=0.19 cfs 681 cf
Subcatchment 21:	Runoff Area=792 sf 66.04% Impervious Runoff Depth=4.46"
	Tc=6.0 min CN=90 Runoff=0.09 cfs 294 cf
Subcatchment 22:	Runoff Area=41,854 sf 1.22% Impervious Runoff Depth=2.85"
Subcatchment 22.	Tc=6.0 min $CN=74$ Runoff=3.21 cfs 9,946 cf
Subcatchment 23:	Runoff Area=14,462 sf 0.00% Impervious Runoff Depth=2.85"
	Flow Length=115' Slope=0.0011 '/' Tc=6.0 min CN=74 Runoff=1.11 cfs 3,437 cf
Subcatchment 24:	Runoff Area=6,729 sf 56.26% Impervious Runoff Depth=4.24"
	Flow Length=176' Tc=6.0 min CN=88 Runoff=0.75 cfs 2,378 cf
Subcatchment 25:	Runoff Area=6,442 sf 34.31% Impervious Runoff Depth=3.62" Tc=0.0 min CN=82 Runoff=0.76 cfs 1,944 cf
Subcatchment 26:	Runoff Area=14,265 sf 86.53% Impervious Runoff Depth=5.01"
	Tc=0.0 min CN=95 Runoff=2.14 cfs 5,961 cf
Subcatchment 27:	Runoff Area=5,289 sf 76.01% Impervious Runoff Depth=4.68"
Cubcatonnicht 27.	Flow Length=71' Slope=0.1342 '/ Tc=7.7 min CN=92 Runoff=0.59 cfs 2,061 cf
Subcatchment 28:	Runoff Area=18,464 sf 86.68% Impervious Runoff Depth=5.01" Tc=6.0 min CN=95 Runoff=2.27 cfs 7,716 cf
	TC=0.0 THIT CN=95 RUHOIT=2.27 CIS 7,718 CI
Subcatchment 29:	Runoff Area=8,912 sf 80.50% Impervious Runoff Depth=4.79"
	Tc=0.0 min CN=93 Runoff=1.31 cfs 3,556 cf
Subcatchment 30:	Runoff Area=18,830 sf 38.59% Impervious Runoff Depth=3.72"
	Flow Length=349' Slope=0.0138 '/' Tc=6.0 min CN=83 Runoff=1.87 cfs 5,840 cf
Subcatchment 31:	Runoff Area=15,371 sf 10.01% Impervious Runoff Depth=3.04"
	Tc=6.0 min CN=76 Runoff=1.26 cfs 3,891 cf
Subcatchment 32:	Runoff Area=37,137 sf 100.00% Impervious Runoff Depth=5.36"
	Tc-6.0 min CN-98 Rupoff-4.68 cfs 16 595 cf

Ρ	ro	n	05	ed	
	10	v	00		

Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2018 HydroCAD Software Solutions LLC

Type III 24-hr 10 yr Rainfall=5.60" Printed 7/23/2019 Page 10

	· · · · · · · · · · · · · · · · · · ·
Subcatchment 34:	Runoff Area=10,350 sf 83.59% Impervious Runoff Depth=4.90" Tc=6.0 min CN=94 Runoff=1.26 cfs 4,227 cf
Subcatchment 35:	Runoff Area=10,664 sf 91.11% Impervious Runoff Depth=5.13" Tc=6.0 min CN=96 Runoff=1.32 cfs 4,558 cf
Subcatchment 36:	Runoff Area=35,753 sf 88.57% Impervious Runoff Depth=5.01" Tc=6.0 min CN=95 Runoff=4.40 cfs 14,940 cf
Subcatchment 37:	Runoff Area=49,536 sf 84.69% Impervious Runoff Depth=4.90" Tc=6.0 min CN=94 Runoff=6.03 cfs 20,230 cf
Subcatchment 38:	Runoff Area=22,151 sf 100.00% Impervious Runoff Depth=5.36" Tc=6.0 min CN=98 Runoff=2.79 cfs 9,898 cf
Subcatchment 39:	Runoff Area=11,218 sf 43.45% Impervious Runoff Depth=3.82" Tc=6.0 min CN=84 Runoff=1.14 cfs 3,574 cf
Subcatchment 40:	Runoff Area=13,195 sf 78.02% Impervious Runoff Depth=4.79" Tc=6.0 min CN=93 Runoff=1.59 cfs 5,265 cf
Subcatchment 41:	Runoff Area=7,175 sf 49.39% Impervious Runoff Depth=4.03" Tc=6.0 min CN=86 Runoff=0.76 cfs 2,410 cf
Subcatchment 42:	Runoff Area=6,762 sf 0.00% Impervious Runoff Depth=2.85" Tc=6.0 min CN=74 Runoff=0.52 cfs 1,607 cf
Subcatchment 43:	Runoff Area=2,510 sf 79.04% Impervious Runoff Depth=4.79" Tc=0.0 min CN=93 Runoff=0.37 cfs 1,002 cf
Subcatchment 44:	Runoff Area=3,738 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.57 cfs 1,670 cf
Subcatchment 45:	Runoff Area=16,888 sf 28.75% Impervious Runoff Depth=3.52" Tc=0.0 min CN=81 Runoff=1.95 cfs 4,955 cf
Subcatchment 46:	Runoff Area=2,200 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.34 cfs 983 cf
Subcatchment 47:	Runoff Area=2,924 sf 67.78% Impervious Runoff Depth=4.46" Tc=0.0 min CN=90 Runoff=0.41 cfs 1,086 cf
Subcatchment 48:	Runoff Area=14,033 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=2.16 cfs 6,271 cf
Subcatchment 49:	Runoff Area=417 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.06 cfs 186 cf
Subcatchment 50:	Runoff Area=3,520 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.54 cfs 1,573 cf

Proposed Prepared by Fuss & O' HydroCAD® 10.00-21 s/n	Type III 24-hr10 yr Rainfall=5.60"Neill Inc.Printed 7/23/201901745 © 2018 HydroCAD Software Solutions LLCPage 11
Subcatchment 51:	Runoff Area=1,846 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.28 cfs 825 cf
Subcatchment 52:	Runoff Area=4,381 sf 100.00% Impervious Runoff Depth=5.36" Tc=0.0 min CN=98 Runoff=0.67 cfs 1,958 cf
Reach R1: Swale	Avg. Flow Depth=0.60' Max Vel=3.51 fps Inflow=12.27 cfs 47,410 cf n=0.035 L=100.0' S=0.0200 '/' Capacity=333.24 cfs Outflow=12.23 cfs 47,410 cf
Reach TB:	Inflow=3.05 cfs 9,695 cf Outflow=3.05 cfs 9,695 cf
Pond 27 BRB1:	Peak Elev=16.01' Storage=565 cf Inflow=0.55 cfs 1,724 cf Outflow=0.09 cfs 1,724 cf
Pond 30 DB1:	Peak Elev=14.42' Storage=1,250 cf Inflow=2.60 cfs 8,920 cf Primary=1.03 cfs 957 cf Secondary=0.83 cfs 7,961 cf Outflow=1.84 cfs 8,918 cf
Pond 36 DB2:	Peak Elev=17.23' Storage=470 cf Inflow=1.17 cfs 4,033 cf Primary=0.00 cfs 0 cf Secondary=0.71 cfs 4,032 cf Outflow=0.71 cfs 4,032 cf
Pond 41 BRB2:	Peak Elev=18.15' Storage=1,113 cf Inflow=1.46 cfs 4,719 cf Outflow=0.89 cfs 4,719 cf
Pond 50 IB3:	Peak Elev=19.92' Storage=11,574 cf Inflow=10.66 cfs 34,882 cf Discarded=0.60 cfs 19,218 cf Primary=3.11 cfs 15,665 cf Outflow=3.71 cfs 34,882 cf
Pond 58 IB2:	Peak Elev=19.64' Storage=2,492 cf Inflow=3.59 cfs 12,744 cf Discarded=0.13 cfs 5,691 cf Primary=2.36 cfs 7,053 cf Outflow=2.49 cfs 12,744 cf
Pond 60 RD B:	Peak Elev=90.05' Inflow=3.59 cfs 12,744 cf 6.0" Round Culvert n=0.013 L=116.0' S=0.0050 '/' Outflow=3.59 cfs 12,744 cf
Pond 60 WQU 2:	Peak Elev=203.84' Inflow=13.02 cfs 43,956 cf 12.0" Round Culvert n=0.013 L=90.0' S=0.0050 '/' Outflow=13.02 cfs 43,956 cf
Pond 1071:	Peak Elev=187.35' Inflow=15.74 cfs 52,795 cf 12.0" Round Culvert n=0.025 L=31.0' S=0.0065 '/' Outflow=15.74 cfs 52,795 cf
Pond 1072:	Peak Elev=157.45' Inflow=19.29 cfs 65,104 cf 15.0" Round Culvert n=0.025 L=31.0' S=0.0387 '/' Outflow=19.29 cfs 65,104 cf
Pond 1346:	Peak Elev=69.04' Inflow=19.29 cfs 65,104 cf 15.0" Round Culvert n=0.025 L=143.0' S=0.0070 '/' Outflow=19.29 cfs 65,104 cf
Pond 1347:	Peak Elev=141.87' Inflow=19.29 cfs 65,104 cf 15.0" Round Culvert n=0.025 L=204.0' S=0.0005 '/' Outflow=19.29 cfs 65,104 cf
Pond CB10:	Peak Elev=20.25' Inflow=2.27 cfs 7,716 cf 12.0" Round Culvert n=0.013 L=56.0' S=0.0089 '/' Outflow=2.27 cfs 7,716 cf

Proposed Prepared by Fuss & O'Neill Ind).	Type III 24-hr 10 yr Rainfall=5.60" Printed 7/23/2019
HydroCAD® 10.00-21 s/n 01745 @	2018 HydroCAD Software Solutions LLC	Page 12
Pond CB12:		k Elev=20.34' Inflow=1.31 cfs 3,556 cf S=0.0573 '/' Outflow=1.31 cfs 3,556 cf
Pond CB13:		k Elev=20.54' Inflow=1.87 cfs 5,840 cf S=0.0573 '/' Outflow=1.87 cfs 5,840 cf
Pond CB16:	Pea 12.0" Round Culvert n=0.013 L=65.0'	k Elev=21.54' Inflow=1.26 cfs 3,891 cf S=0.0049 '/' Outflow=1.26 cfs 3,891 cf
Pond CB23:	Pea 12.0" Round Culvert n=0.013 L=15.5'	k Elev=13.61' Inflow=0.45 cfs 1,511 cf S=0.0045 '/' Outflow=0.45 cfs 1,511 cf
Pond CB24:		eak Elev=14.16' Inflow=0.23 cfs 787 cf ' S=0.0099 '/' Outflow=0.23 cfs 787 cf
Pond CB26:	Pea 12.0" Round Culvert n=0.013 L=14.0'	k Elev=13.54' Inflow=1.07 cfs 3,552 cf S=0.0571 '/' Outflow=1.07 cfs 3,552 cf
Pond CB33:	Pea 12.0" Round Culvert n=0.013 L=63.5	k Elev=16.22' Inflow=1.73 cfs 5,859 cf S=0.0055 '/' Outflow=1.73 cfs 5,859 cf
Pond CB34:	Pea 12.0" Round Culvert n=0.013 L=24.0	k Elev=16.15' Inflow=0.88 cfs 3,061 cf S=0.0146 '/' Outflow=0.88 cfs 3,061 cf
Pond CB38:		k Elev=18.54' Inflow=0.31 cfs 1,052 cf S=0.0100 '/' Outflow=0.31 cfs 1,052 cf
Pond CB39:	Pea 12.0" Round Culvert n=0.013 L=53.0	k Elev=19.56' Inflow=0.87 cfs 2,981 cf S=0.0049 '/' Outflow=0.87 cfs 2,981 cf
Pond CB4:	Pea 12.0" Round Culvert n=0.013 L=24.5	k Elev=19.30' Inflow=0.75 cfs 2,378 cf S=0.0347 '/' Outflow=0.75 cfs 2,378 cf
Pond CB43:		k Elev=14.36' Inflow=1.01 cfs 3,343 cf S=0.0495 '/' Outflow=1.01 cfs 3,343 cf
Pond CB45:	Pea 12.0" Round Culvert n=0.013 L=15.0	k Elev=19.88' Inflow=0.58 cfs 1,830 cf S=0.0667 '/' Outflow=0.58 cfs 1,830 cf
Pond CB46:		eak Elev=19.77' Inflow=0.30 cfs 992 cf ' S=0.0667 '/' Outflow=0.30 cfs 992 cf
Pond CB5:	Pea 12.0" Round Culvert n=0.010 L=33.5	k Elev=19.26' Inflow=1.06 cfs 3,551 cf S=0.0051 '/' Outflow=1.06 cfs 3,551 cf
Pond CB53:	Peak 12.0" Round Culvert n=0.013 L=86.0' S	Elev=24.05' Inflow=3.41 cfs 11,434 cf =0.0050 '/' Outflow=3.41 cfs 11,434 cf
Pond CB55:	Peak 12.0" Round Culvert n=0.013 L=44.0' S	Elev=25.56' Inflow=5.23 cfs 17,029 cf =0.0050 '/' Outflow=5.23 cfs 17,029 cf

Proposed Prepared by Fuss & O'Neill Inc. HydroCAD® 10.00-21 s/n 01745 © 2	Type III 24-hr 10 yr Rainfall=5.60" Printed 7/23/2019 2018 HydroCAD Software Solutions LLC Page 13
Pond CB56:	Peak Elev=24.02' Inflow=2.02 cfs 6,420 cf 12.0" Round Culvert n=0.013 L=69.0' S=0.0122 '/' Outflow=2.02 cfs 6,420 cf
Pond CB6:	Peak Elev=19.61' Inflow=0.59 cfs 2,061 cf 12.0" Round Culvert n=0.013 L=13.0' S=0.0262 '/' Outflow=0.59 cfs 2,061 cf
Pond CB61:	Peak Elev=7.79' Inflow=1.95 cfs 4,955 cf 12.0" Round Culvert n=0.013 L=65.0' S=0.0095 '/' Outflow=1.95 cfs 4,955 cf
Pond CB62:	Peak Elev=5.36' Inflow=0.34 cfs 983 cf 12.0" Round Culvert n=0.013 L=6.7' S=0.0104 '/' Outflow=0.34 cfs 983 cf
Pond CB63:	Peak Elev=6.07' Inflow=0.37 cfs 1,002 cf 12.0" Round Culvert n=0.013 L=13.4' S=0.0097 '/' Outflow=0.37 cfs 1,002 cf
Pond CB65:	Peak Elev=236.04' Inflow=6.03 cfs 20,230 cf 12.0" Round Culvert n=0.013 L=50.0' S=0.0050 '/' Outflow=6.03 cfs 20,230 cf
Pond CB67:	Peak Elev=243.66' Inflow=4.40 cfs 14,940 cf 12.0" Round Culvert n=0.013 L=3.5' S=0.0086 '/' Outflow=4.40 cfs 14,940 cf
Pond CB69:	Peak Elev=243.17' Inflow=1.32 cfs 4,558 cf 12.0" Round Culvert n=0.013 L=7.5' S=0.0053 '/' Outflow=1.32 cfs 4,558 cf
Pond CB7:	Peak Elev=19.64' Inflow=2.14 cfs 5,961 cf 12.0" Round Culvert n=0.013 L=16.5' S=0.0479 '/' Outflow=2.14 cfs 5,961 cf
Pond CB70:	Peak Elev=243.17' Inflow=1.26 cfs 4,227 cf 12.0" Round Culvert n=0.013 L=52.0' S=0.0050 '/' Outflow=1.26 cfs 4,227 cf
Pond E2347:	Peak Elev=10.73' Inflow=1.66 cfs 4,432 cf 15.0" Round Culvert n=0.013 L=72.5' S=-0.0014 '/' Outflow=1.66 cfs 4,432 cf
Pond E2348:	Peak Elev=10.54' Inflow=2.24 cfs 6,103 cf 15.0" Round Culvert n=0.013 L=15.1' S=0.0464 '/' Outflow=2.24 cfs 6,103 cf
Pond E2349:	Peak Elev=6.07' Inflow=12.19 cfs 61,228 cf 24.0" Round Culvert n=0.013 L=82.7' S=0.0050 '/' Outflow=12.19 cfs 61,228 cf
Pond E3578A:	Peak Elev=9.50' Inflow=0.67 cfs 1,958 cf 8.0" Round Culvert n=0.012 L=11.2' S=0.0982 '/' Outflow=0.67 cfs 1,958 cf
Pond E3579: 30	Peak Elev=4.19' Inflow=14.18 cfs 72,393 cf 6.0" Round Culvert n=0.015 L=205.5' S=0.0010 '/' Outflow=14.18 cfs 72,393 cf
Pond E3600:	Peak Elev=7.62' Inflow=0.06 cfs 186 cf 12.0" Round Culvert n=0.012 L=21.4' S=0.2570 '/' Outflow=0.06 cfs 186 cf
Pond E3672:	Peak Elev=8.24' Inflow=0.00 cfs 0 cf 4.0" Round Culvert n=0.012 L=13.9' S=0.0000 '/' Outflow=0.00 cfs 0 cf

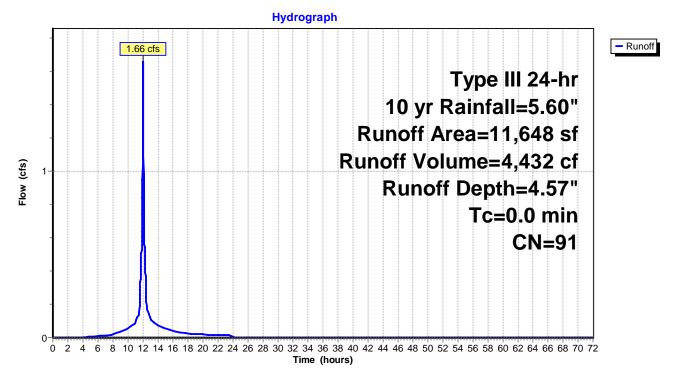
Proposed Prepared by Fuss & O'Neil	l Inc.	e III 24-hr 10 yr Rainfall=5.60" Printed 7/23/2019
HydroCAD® 10.00-21 s/n 0174	5 © 2018 HydroCAD Software Solutions LLC	Page 14
Pond E3693:	Peak E 12.0" Round Culvert n=0.012 L=27.1' S=0.	lev=8.27' Inflow=0.54 cfs 1,573 cf 2177 '/' Outflow=0.54 cfs 1,573 cf
Pond E3756:	Peak E 12.0" Round Culvert n=0.012 L=23.2' S=0.	lev=8.21' Inflow=0.67 cfs 1,958 cf 2500 '/' Outflow=0.67 cfs 1,958 cf
Pond E3758:	Peak E 12.0" Round Culvert n=0.012 L=10.2' S=0.	lev=8.59' Inflow=0.67 cfs 1,958 cf 0000 '/' Outflow=0.67 cfs 1,958 cf
Pond E3760:	Peak E 12.0" Round Culvert n=0.012 L=32.7' S=0.	lev=8.49' Inflow=0.67 cfs 1,958 cf 0061 '/' Outflow=0.67 cfs 1,958 cf
Pond E3772:	Peak Elev 24.0" Round Culvert n=0.013 L=81.8' S=0.00	/=5.36' Inflow=12.31 cfs 62,212 cf 50 '/' Outflow=12.31 cfs 62,212 cf
Pond E3866:	Peak E Primary=0.73 cfs 684 cf Secondary=2.33 cfs 9	lev=5.75' Inflow=3.05 cfs 9,695 cf 9,011 cf Outflow=3.05 cfs 9,695 cf
Pond E3895:	4.0" Round Culvert n=0.012 L=37.1' \$	Peak Elev=0.00' S=0.0270 '/' Primary=0.00 cfs 0 cf
Pond E4034:	Peak 12.0" Round Culvert_n=0.012 L=14.8' S=	Elev=7.76' Inflow=0.28 cfs 825 cf 0.3716 '/' Outflow=0.28 cfs 825 cf
Pond E4035:	Peak Elev 42.0" Round Culvert n=0.012 L=139.6' S=0.00	/=3.53' Inflow=14.18 cfs 72,393 cf 57 '/' Outflow=14.18 cfs 72,393 cf
Pond E4081:	Peak E 12.0" Round Culvert n=0.013 L=13.0' S=0.	lev=7.09' Inflow=2.16 cfs 6,271 cf 0077 '/' Outflow=2.15 cfs 6,271 cf
Pond E4082:	Peak E 12.0" Round Culvert n=0.013 L=11.1' S=0.	lev=6.78' Inflow=2.15 cfs 6,271 cf 0180 '/' Outflow=2.15 cfs 6,271 cf
Pond E4083:	Peak Ele 42.0" x 24.0" Box Culvert n=0.025 L=25.4' S=0.0	ev=5.56' Inflow=3.99 cfs 16,368 cf 098 '/' Outflow=3.99 cfs 16,368 cf
Pond E4093:	Peak E 12.0" Round Culvert n=0.013 L=13.7' S=0.	lev=6.22' Inflow=0.41 cfs 1,086 cf 0219 '/' Outflow=0.41 cfs 1,086 cf
Pond E4604:	Peak Elev 42.0" Round Culvert n=0.012 L=18.1' S=0.01	/=2.80' Inflow=14.18 cfs 72,393 cf 10 '/' Outflow=14.18 cfs 72,394 cf
Pond HW5A: HEADWALL IN	ILET Peak Ele 12.0" Round Culvert n=0.013 L=39.0' S=0.	ev=19.47' Inflow=0.52 cfs 1,607 cf 0333 '/' Outflow=0.52 cfs 1,607 cf
Pond IB1:	Peak Elev=22.20' Storage= Discarded=0.13 cfs 7,576 cf Primary=2.39 cfs 9,0	4,500 cf Inflow=4.68 cfs 16,595 cf 020 cf Outflow=2.52 cfs 16,596 cf
Pond M11:	Peak Elev 18.0" Round Culvert n=0.013 L=101.0' S=0.0	/=20.32' Inflow=5.52 cfs 22,307 cf 050 '/' Outflow=5.52 cfs 22,307 cf

Proposed Prepared by Fuss & O'Neill I HydroCAD® 10.00-21 s/n 01745	Type III 24-hr 10 yr Rainfall=5.60" nc. Printed 7/23/2019 © 2018 HydroCAD Software Solutions LLC Page 15
Pond M14:	Peak Elev=20.66' Inflow=3.16 cfs 12,911 cf 18.0" Round Culvert n=0.013 L=160.0' S=0.0050 '/' Outflow=3.16 cfs 12,911 cf
Pond M15:	Peak Elev=21.15' Inflow=3.16 cfs 12,911 cf 18.0" Round Culvert n=0.013 L=122.0' S=0.0052 '/' Outflow=3.16 cfs 12,911 cf
Pond M17:	Peak Elev=21.97' Inflow=2.39 cfs 9,020 cf 12.0" Round Culvert n=0.013 L=81.0' S=0.0049 '/' Outflow=2.39 cfs 9,020 cf
Pond M19:	Peak Elev=47.31' Inflow=4.68 cfs 16,595 cf 6.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=4.68 cfs 16,595 cf
Pond M2:	Peak Elev=18.68' Inflow=11.16 cfs 43,974 cf 24.0" Round Culvert n=0.013 L=10.0' S=0.0040 '/' Outflow=11.18 cfs 43,974 cf
Pond M21:	Peak Elev=11.35' Inflow=11.22 cfs 54,124 cf 24.0" Round Culvert n=0.013 L=116.8' S=0.0494 '/' Outflow=11.22 cfs 54,124 cf
Pond M22:	Peak Elev=12.38' Inflow=11.22 cfs 54,124 cf 24.0" Round Culvert n=0.013 L=67.1' S=0.0125 '/' Outflow=11.22 cfs 54,124 cf
Pond M25:	Peak Elev=13.01' Inflow=10.71 cfs 51,826 cf 24.0" Round Culvert n=0.013 L=54.0' S=0.0050 '/' Outflow=10.71 cfs 51,826 cf
Pond M28:	Peak Elev=13.46' Inflow=2.55 cfs 12,950 cf 18.0" Round Culvert n=0.013 L=51.5' S=0.0050 '/' Outflow=2.55 cfs 12,950 cf
Pond M29:	Peak Elev=13.69' Inflow=1.84 cfs 8,918 cf 12.0" Round Culvert n=0.013 L=6.0' S=0.0050 '/' Outflow=1.84 cfs 8,918 cf
Pond M3:	Peak Elev=19.21' Inflow=11.16 cfs 43,974 cf 24.0" Round Culvert n=0.013 L=70.5' S=0.0050 '/' Outflow=11.16 cfs 43,974 cf
Pond M31:	Peak Elev=15.50' Inflow=2.60 cfs 8,920 cf 12.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=2.60 cfs 8,920 cf
Pond M32:	Peak Elev=15.98' Inflow=2.60 cfs 8,920 cf 12.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' Outflow=2.60 cfs 8,920 cf
Pond M35:	Peak Elev=16.66' Inflow=0.71 cfs 4,032 cf 12.0" Round Culvert n=0.013 L=43.0' S=0.0049 '/' Outflow=0.71 cfs 4,032 cf
Pond M37:	Peak Elev=18.51' Inflow=1.17 cfs 4,033 cf 12.0" Round Culvert n=0.013 L=2.0' S=0.0300 '/' Outflow=1.17 cfs 4,033 cf
Pond M40:	Peak Elev=13.50' Inflow=7.31 cfs 33,600 cf 24.0" Round Culvert n=0.013 L=116.5' S=0.0050 '/' Outflow=7.31 cfs 33,600 cf
Pond M42:	Peak Elev=14.15' Inflow=6.45 cfs 28,881 cf 18.0" Round Culvert n=0.013 L=93.5' S=0.0050 '/' Outflow=6.45 cfs 28,881 cf

Proposed		-hr 10 yr Rainfall=5.60"
Prepared by Fuss & O'Neill HvdroCAD® 10.00-21 s/n 01745	Inc. © 2018 HydroCAD Software Solutions LLC	Printed 7/23/2019 Page 16
		-
Pond M44:	// Peak Elev=14.82 18.0" Round Culvert n=0.013 L=133.0' S=0.0050	Inflow=5.75 cfs 25,539 cf Outflow=5.75 cfs 25,539 cf
Pond M47:	'Peak Elev=15.61 18.0" Round Culvert n=0.013 L=119.5' S=0.0050 '/'	Inflow=5.22 cfs 22,717 cf Outflow=5.22 cfs 22,717 cf
Pond M48:	'Peak Elev=16.01 '/' 18.0" Round Culvert n=0.013 L=34.5' S=0.0049	Inflow=5.22 cfs 22,717 cf Outflow=5.22 cfs 22,717 cf
Pond M49:	// Peak Elev=16.64 Elev=16.64 12.0" Round Culvert n=0.013 L=6.5' S=0.0154	Inflow=3.11 cfs 15,665 cf Outflow=3.11 cfs 15,665 cf
Pond M51:	Peak Elev=21.29' 18.0" Round Culvert n=0.013 L=2.0' S=0.0000 '/' O	Inflow=10.66 cfs 34,882 cf Dutflow=10.66 cfs 34,882 cf
Pond M52:	Peak Elev=22.85' 18.0" Round Culvert n=0.013 L=5.0' S=0.0100 '/' O	Inflow=10.66 cfs 34,882 cf Dutflow=10.66 cfs 34,882 cf
Pond M54:	Peak Elev=23.66' 18.0" Round Culvert n=0.013 L=91.0' S=0.0049 '/'	Inflow=7.25 cfs 23,449 cf Outflow=7.25 cfs 23,449 cf
Pond M57:	Peak Elev=16.92 12.0" Round Culvert n=0.013 L=160.5' S=0.0050 '/'	2' Inflow=2.36 cfs 7,053 cf Outflow=2.36 cfs 7,053 cf
Pond M59:	Peak Elev=34.78' 6.0" Round Culvert n=0.013 L=3.0' S=0.0200 '/'	Inflow=3.59 cfs 12,744 cf Outflow=3.59 cfs 12,744 cf
Pond M6:	Peak Elev=19.59' 24.0" Round Culvert n=0.013 L=36.0' S=0.0050 '/'	Inflow=9.47 cfs 38,045 cf Outflow=9.47 cfs 38,045 cf
Pond M63:	Peak Elev=213.72' 12.0" Round Culvert n=0.013 L=3.0' S=0.0100 '/' O	Inflow=13.02 cfs 43,956 cf 0utflow=13.02 cfs 43,956 cf
Pond M64:	Peak Elev=234.04' 12.0" Round Culvert n=0.013 L=147.5' S=0.0050 '/' O	Inflow=13.02 cfs 43,956 cf 0utflow=13.02 cfs 43,956 cf
Pond M66:	Peak Elev=242.79' 12.0" Round Culvert n=0.013 L=269.5' S=0.0050 '/'	Inflow=6.99 cfs 23,726 cf Outflow=6.99 cfs 23,726 cf
Pond M68:	Peak Elev=243.10 12.0" Round Culvert n=0.013 L=45.0' S=0.0049 '/')' Inflow=2.58 cfs 8,786 cf Outflow=2.58 cfs 8,786 cf
Pond M9:	Peak Elev=19.85' 24.0" Round Culvert n=0.013 L=56.5' S=0.0050 '/'	Inflow=7.78 cfs 30,023 cf Outflow=7.78 cfs 30,023 cf
Pond RD 20:	Peak Elev=71.60' 6.0" Round Culvert n=0.013 L=15.5' S=0.0052 '/'	Inflow=4.68 cfs 16,595 cf Outflow=4.68 cfs 16,595 cf
Pond RD69:	Peak Elev=168.97 6.0" Round Culvert n=0.013 L=31.0' S=0.0052 '/'	7' Inflow=2.79 cfs 9,898 cf Outflow=2.79 cfs 9,898 cf

Proposed Prepared by Fuss & O'Neill In HydroCAD® 10.00-21 s/n 01745 (c. © 2018 HydroCAD Software Solutions LLC	Type III 24-hr 10 yr Rainfall=5.60" Printed 7/23/2019 Page 17
Pond WQS1:		ak Elev=18.14' Inflow=11.18 cfs 43,974 cf S=0.0048 '/' Outflow=11.19 cfs 43,974 cf
Link AP1: Hodgson Brook		Inflow=34.99 cfs 123,435 cf Primary=34.99 cfs 123,435 cf
Link AP2:		Inflow=14.18 cfs 72,394 cf Primary=14.18 cfs 72,394 cf
Link AP3:		Inflow=3.99 cfs 16,368 cf Primary=3.99 cfs 16,368 cf
Total Dunoff Are	a CAR EDA of Dunoff Volume DAA	694 of Average Duneff Donth 4.52"

Total Runoff Area = 648,524 sfRunoff Volume = 244,681 cfAverage Runoff Depth = 4.53"31.65% Pervious = 205,286 sf68.35% Impervious = 443,238 sf


Summary for Subcatchment 1:

Runoff = 1.66 cfs @ 12.00 hrs, Volume= 4,432 cf, Depth= 4.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

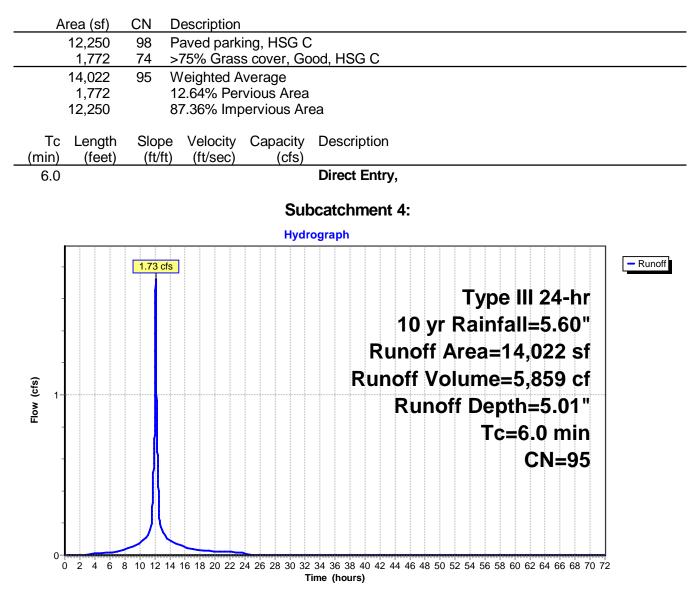
Area (sf)) CN	Description
3,618	3 74	>75% Grass cover, Good, HSG C
8,030) 98	Paved parking, HSG C
11,648	3 91	Weighted Average
3,618	3	31.06% Pervious Area
8,030)	68.94% Impervious Area

Subcatchment 1:

Summary for Subcatchment 2:

Runoff	=	0.66 cfs @	12.09 hrs, V	/olume=	2,079 cf,	Depth= 3.93"
--------	---	------------	--------------	---------	-----------	--------------

			Description							
	2,819 3,536			ing, HSG C s cover. Go	; bod, HSG C					
	6,355 3,536 2,819	85 V	Weighted A 55.64% Per		l					
Tc l (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptio	ו				
6.0					Direct Ent	у,				
				Sul	bcatchmer	t 2:				
				Hydi	rograph					
0.7		0.66 cfs	s							– Runo
0.65							Ту	pe II	l 24-hr	
0.55						10 yr	-		=5.60"	
0.5						Runof	f Are	a=6,	355 sf	
0.45					Ru	noff Vo	olum	e=2.	079 cf	
(\$j) 0.4									=3.93"	
й 0.3									.0 min	
0.25									CN=85	
0.2									511-03	
0.15										
0.1		T,								
0.05		ノ								


Summary for Subcatchment 3:

Runoff = 2.03 cfs @ 12.09 hrs, Volume= 6,511 cf, Depth= 4.35"

Area (sf) CN Description
11,365	
6,60	
17,960 6,601	
11,365	
Tc Leng	
<u>(min)</u> (fee 6.0	et) (ft/ft) (ft/sec) (cfs) Direct Entry,
0.0	Direct Linty,
	Subcatchment 3:
	Hydrograph
-	2.03 cfs
2	Type III 24-hr
	10 yr Rainfall=5.60"
	Runoff Area=17,966 sf
	Runoff Volume=6,511 cf
How (cfs)	
о ш 1	Runoff Depth=4.35"
	Tc=6.0 min
	CN=89
-	
-	
_	
_	
0 	6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72
	Time (hours)

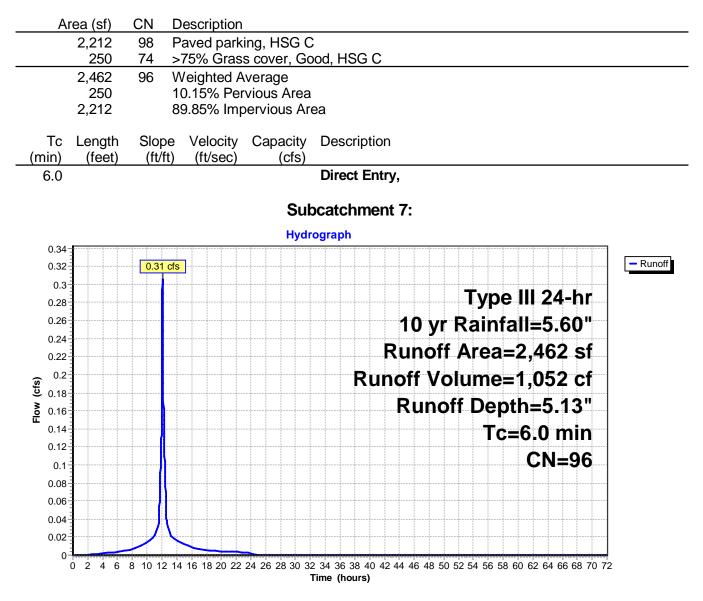
Summary for Subcatchment 4:

Runoff = 1.73 cfs @ 12.08 hrs, Volume= 5,859 cf, Depth= 5.01"

Summary for Subcatchment 5:

Runoff = 0.23 cfs @ 12.08 hrs, Volume= 787 cf, Depth= 5.25"

A	rea (sf)	CN Description	n		
	1,744		rking, HSG C		
	57		ass cover, Go	ood, HSG C	
	1,801	97 Weighted			
	57		rvious Area		
	1,744	96.84% Ir	npervious Ar	ea	
Tc	Length	Slope Velocit		Description	
(min)	(feet)	(ft/ft) (ft/sec) (cfs)		
6.0				Direct Entry,	
			Sub	ocatchment 5:	
			Hydr	ograph	
0.25]
0.24 0.23		0.23 cfs			- Runoff
0.22				Type III 24 br	
0.21 0.2				Type III 24-hr	
0.19 0.18				10 yr Rainfall=5.60"	
0.17 0.16				Runoff Area=1,801 sf	
0.15					
ອ 0.14 0.13				Runoff Volume=787 cf	
8 0.12 ■ 0.11				Runoff Depth=5.25"	
0.1				Tc=6.0 min	
0.09 0.08					
0.07				CN=97	
0.06 0.05	-				
0.04					
0.03 0.02		1			
0.01					
0	0 2 4 6	8 10 12 14 16 18 20 2	22 24 26 28 30 32	2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 7	¶ ′2


Summary for Subcatchment 6:

Runoff = 0.88 cfs @ 12.08 hrs, Volume= 3,061 cf, Depth= 5.25"

A	rea (sf)	CN	Description		<u></u>	
	6,736 267	98 74	Paved park >75% Gras			
	7,003	97	Weighted A		500, 1156 C	
	267	57	3.81% Perv			
	6,736		96.19% Imp		ea	
	,					
Тс	Length	Slop		Capacity	Description	
(min)	(feet)	(ft/ft	t) (ft/sec)	(cfs)		
6.0					Direct Entry,	
				Sul	bcatchment 6:	
				Hydi	rograph	
0.95						
0.9		0.88	<mark>cfs</mark>			- Runo
0.85					ТипаШОАЬя	
0.8					Type III 24-hr	
0.75					10 yr Rainfall=5.60"	
0.7	3 1 1 1					
0.65					Runoff Area=7,003 sf	
	3				Runoff Volume=3,061 cf	
5 0.5						
(sj) 0.55 0.5 0.45		····			Runoff Depth=5.25"	
0.4	3				Tc=6.0 min	
0.35						
0.3					CN=97	
0.25						
0.15	3 1 1 1					
0.13	<u></u>					
0.05	1					
0						

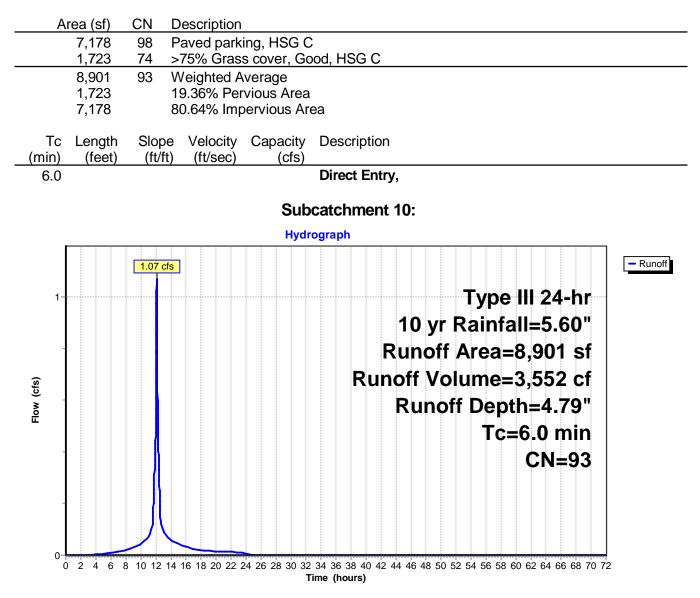
Summary for Subcatchment 7:

Runoff = 0.31 cfs @ 12.08 hrs, Volume= 1,052 cf, Depth= 5.13"

Summary for Subcatchment 8:

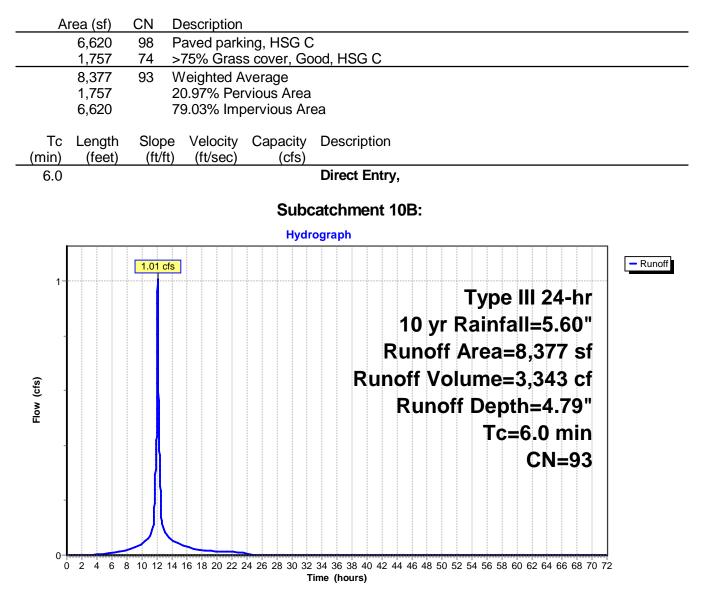
Runoff	=	0.87 cfs @	12.08 hrs,	Volume=	2,981 cf, Depth= 5.13"
--------	---	------------	------------	---------	------------------------

Ar	ea (sf)		Description			
	6,482 491	98 F	Paved park	ing, HSG C		
	6,973 491 6,482	96 V 7	Veighted A '.04% Perv	verage	ea	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0					Direct Entry,	
				Sub	ocatchment 8:	
					rograph	
0.95		0.87 cfs			- Ru	inoff
0.9					······································	
0.8					Type III 24-hr	
0.75 0.7					10 yr Rainfall=5.60"	
0.65					Runoff Area=6,973 sf	
0.6 (<u>(</u> 0.55					Runoff Volume=2,981 cf	
0.55 0.5 0.45					Runoff Depth=5.13"	
0.4					Tc=6.0 min	
0.35 0.3					CN=96	
0.25					011-30	
0.2 0.15						
0.13 0.1 0.05		Л				
E0)) 2 4 6	8 10 12 1	4 16 18 20 22		2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)	


Summary for Subcatchment 9:

Runoff = 0.45 cfs @ 12.08 hrs, Volume= 1,511 cf, Depth= 5.01"

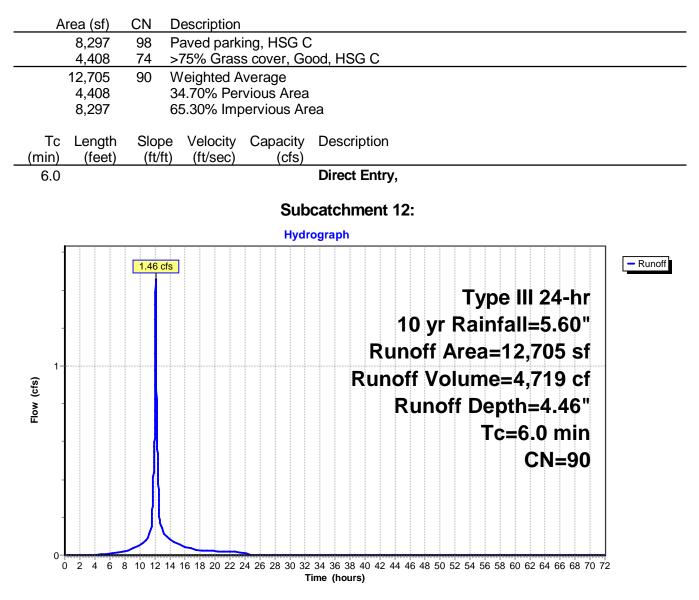
Are	ea (sf)		Description			
	3,114			ing, HSG (
	502			· · · ·	bod, HSG C	
	3,616 502		Veighted A	verage vious Area		
	3,114			pervious Area		
	0,114	0	0.1270 1116			
Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry,	
				•		
				Su	bcatchment 9:	
				Hydi	rograph	
0.48		0.45 -	_			– Runof
0.46 0.44		0.45 cfs				
0.42					Type III 24-hr	
0.4 0.38						
0.36					10 yr Rainfall=5.60"	
0.34 0.32					Runoff Area=3,616 sf	
0.3					Runoff Volume=1,511 cf	
(s) 0.28 0.26						
0.24 0.22					Runoff Depth=5.01"	
0.2		<mark> </mark>			Tc=6.0 min	
0.18 0.16						
0.14		<mark> </mark>			CN=95	
0.12 0.1						
0.08						
0.06 0.04						
0.04						


Summary for Subcatchment 10:

Runoff = 1.07 cfs @ 12.08 hrs, Volume= 3,552 cf, Depth= 4.79"

Summary for Subcatchment 10B:

Runoff = 1.01 cfs @ 12.08 hrs, Volume= 3,343 cf, Depth= 4.79"


Summary for Subcatchment 11:

Runoff = 0.55 cfs @ 12.09 hrs, Volume= 1,724 cf, Depth= 4.03"

Aı	rea (sf)	CN	Description							
	2,566	98	Paved park			0				
	2,566	74	>75% Gras		bod, HSG	C				
	5,132 2,566	86	Weighted A 50.00% Per							
	2,566		50.00% Im							
_										
Tc (min)	Length	Slop		Capacity	Descript	tion				
<u>(min)</u> 6.0	(feet)	(ft/f	t) (ft/sec)	(cfs)	Direct E	ntry				
0.0					Direct	iiuy,				
				Sub	catchme	ent 11:				
				Hyd	ograph					
0.6										- Runoff
0.55-		0.55								
0.5-	-						Ту	/pe	III 24-hr	
0.45-						10 \			ll=5.60"	
0.45										
0.4-						Runo	TT Are	ea=:	5,132 sf	
و 0.35					R	unoff V	/olun	1e='	1,724 cf	
(cts) 0.35 0.3						Run	off D	ent	h=4.03"	
음 0.25-										
								I C=	6.0 min	
0.2-									CN=86	
0.15-	1									
0.1-										
0.05-		<u>_</u> \								
0-	0 2 4 6	8 10 12	14 16 18 20 22		2 34 36 38 4 Time (hours)		50 52 54 5	56 58 60	0 62 64 66 68 7	0 72

Summary for Subcatchment 12:

Runoff = 1.46 cfs @ 12.08 hrs, Volume= 4,719 cf, Depth= 4.46"

Summary for Subcatchment 13:

Runoff = 0.30 cfs @ 12.08 hrs, Volume= 992 cf, Depth= 4.79"

Are	ea (sf)		Description			
	1,947			ing, HSG C		
	539		75% Gras Veighted A		bod, HSG C	
	2,486 539			rvious Area		
	1,947			pervious Ar		
т.	Lawath	Classe	Valasita	O an a site	Description	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0	(1001)	(1214)	(10000)	(0.0)	Direct Entry,	
				Sub	catchment 13:	
-				Hydr	rograph	-
0.32		0.30 cfs	5			- Runoff
0.3			_		– – – –	
0.28					Type III 24-hr	
0.26 0.24					10 yr Rainfall=5.60"	
0.22					Runoff Area=2,486 sf	
0.2						
C(;) 0.18 (c(;) 0.16					Runoff Volume=992 cf	
8 0.16					Runoff Depth=4.79"	-
• 0.14 0.12					Tc=6.0 min	-
0.12						
0.08					CN=93	-
0.06						
0.04		-				-
0.02						

Summary for Subcatchment 14:

Runoff = 0.58 cfs @ 12.09 hrs, Volume= 1,830 cf, Depth= 3.82"

Ai	rea (sf) 2,329		Description Paved park		2	
	3,413				bod, HSG C	
	5,742 3,413 2,329		Weighted A 59.44% Per 40.56% Imp	rvious Area		
Tc min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
6.0					Direct Entry,	
				Sub	catchment 14:	
				Hydr	rograph	
0.65						- Runot
0.6		0.58 (//s			
0.55					Type III 24-hr	-
0.5					10 yr Rainfall=5.60"	-
0.45					Runoff Area=5,742 sf	-
0.4-					Runoff Volume=1,830 cf	-
(sj 0.35 MOL 0.3						-
0.3 -					Runoff Depth=3.82"	-
0.25					Tc=6.0 min	-
0.2-					CN=84	-
0.15						-
0.1-						-
0.05						
0-	0 2 4 6	8 10 12	14 16 18 20 22	24 26 28 30 3	2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 7	<mark>,</mark> 72

Summary for Subcatchment 15:

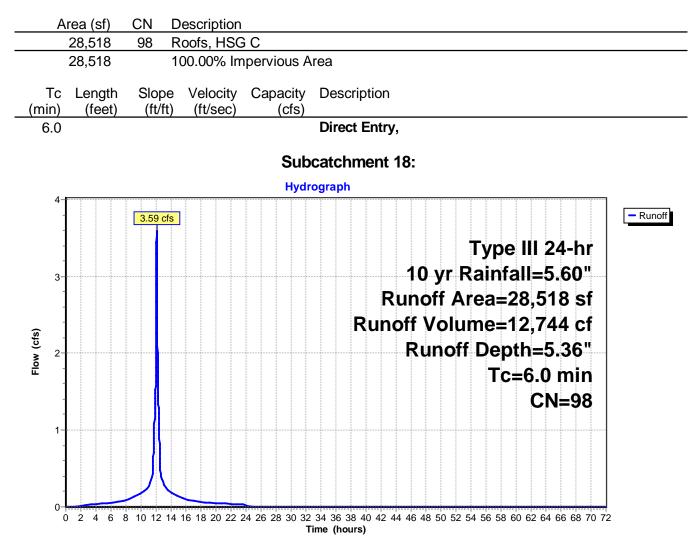
Runoff = 3.41 cfs @ 12.08 hrs, Volume= 11,434 cf, Depth= 4.90"

Area	(sf) CN	Description			
		Paved park			
		>75% Gras Weighted A		bod, HSG C	
	976 94	17.77% Pei			
		82.23% Imp	pervious Are	ea	
	ength Slope (feet) (ft/ft		Capacity (cfs)	Description	
6.0				Direct Entry,	
			Sub	catchment 15:	
				ograph	
1			nyu]
-	3.41 cf	5			- Runoff
-				Type III 24-hr	
3				10 yr Rainfall=5.60"	
-				Runoff Area=27,997 sf	
fs)				Runoff Volume=11,434 cf	
Llow (cfs)				Runoff Depth=4.90"	
Ê.				Tc=6.0 min	
-				CN=94	
1					
'-					
-					
0	4 6 8 10 12 1	4 16 19 20 20		2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 7	
0 2	4 0 0 10 12 1	4 10 10 20 22 3		2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 7 Fime (hours)	۷

Summary for Subcatchment 16:

Runoff = 5.23 cfs @ 12.08 hrs, Volume= 17,029 cf, Depth= 4.57"

Area	(sf) CN	Description			
			ing, HSG C		
				bod, HSG C	
		Weighted A	verage vious Area		
			pervious Area		
	ength Slope		Capacity	Description	
<u>(min)</u> 6.0	(feet) (ft/ft)	(ft/sec)	(cfs)	Direct Entry,	
0.0				Direct Littry,	
			Sub	catchment 16:	
			Hydr	rograph	
	5.23 cfs				- Runoff
-	5.23 CIS				rtanon
5				Type III 24-hr	
-				10 yr Rainfall=5.60"	
4				Runoff Area=44,751 sf	
-					
lts)				Runoff Volume=17,029 cf	
- - - - - - - - - - - - - - - - - - -				Runoff Depth=4.57"	
Ë				Tc=6.0 min	
2				CN=91	
-					
-					
1					
-					
0					
0 2	4 6 8 10 12 14	16 18 20 22 2		2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Fime (hours)	
			-		


Summary for Subcatchment 17:

Runoff = 2.02 cfs @ 12.09 hrs, Volume= 6,420 cf, Depth= 4.14"

Area	a (sf) C	N D	escription									
				ing, HSG C		~ ~						
	,			s cover, Go	od, HS	GC						
	8,629 8,356		eighted A 85% Per	verage vious Area								
	0,273			ervious Ar	ea							
Tc L (min)	_ength (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descri	iption						
6.0	(1001)		(14000)	(010)	Direct	Entry	Ι,					
						-	·					
				Sub	catchn	nent	17:					
_				Hydr	ograph							
2	C	2.02 cfs										- Runoff
-								1	Тур	e III	24-hr	
1							10	vr R	ain	fall=	=5.60"	
-						Rı		-			629 sf	
-					-					•		
(cfs)					ľ	Kun	ΟΠ	νοιι	Ime	=6,4	420 cf	
Flow (cfs)							Ru	noff	Dej	oth=	:4.14"	
L 1-1									Т	:=6.	0 min	
-											N=87	
-										Y		
1		$\backslash \setminus$										
0-	24681	0 12 14	16 18 20 22 2	24 26 28 30 32	34 36 38	40 42 4	4 46 4	8 50 52	54 56 5	8 60 62	64 66 68 70	
					ime (hour							

Summary for Subcatchment 18:

Runoff = 3.59 cfs @ 12.08 hrs, Volume= 12,744 cf, Depth= 5.36"

Summary for Subcatchment 19:

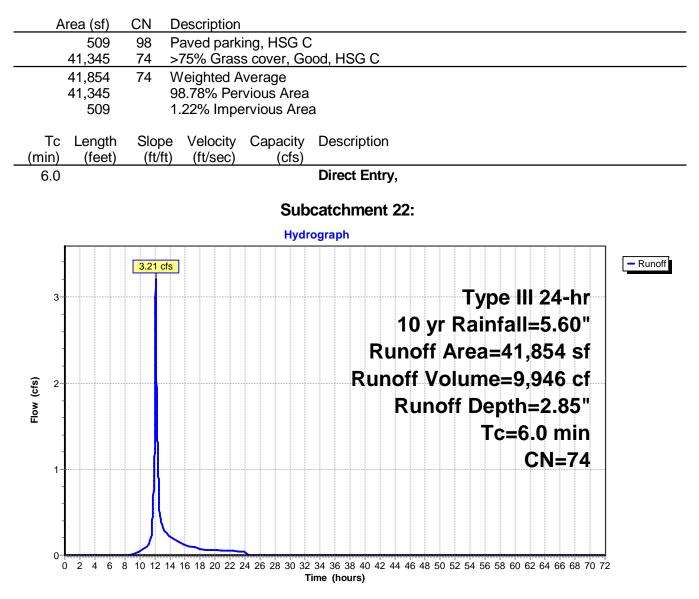
Runoff = 0.36 cfs @ 12.09 hrs, Volume= 1,105 cf, Depth= 3.23"

Are	ea (sf)		Description							
	711		Paved park							
	3,397			· · · · ·	ood, HSG C					
	4,108		Weighted A							
	3,397 711		82.69% Pei							
	/ 1 1		17.31% lmp	Dervious Ar	ea					
	Length	Slope		• •	Descriptic	n				
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
6.0					Direct Ent	ry,				
				Sub	catchmer	t 19:				
				Hydi	rograph					
0.38										– Runof
0.36		0.36 c	ts _							
0.34							Tvr		24-hr	
0.32										
0.3						10 yr	Rain	fall=	5.60"	
0.28 0.26						Runoff	Area	a=4.1	08 sf	
0.24										
(S) 0.22					Ru	noff Vo	olume) =1,1	U5 CI	
(cls) 0.22 0.2 0.18		<mark>-</mark>				Runo	ff De	pth=	3.23"	
0.16 0.14								C=0.l) min	
0.12								C	N=78	
0.1		<u> </u> -								
0.08										
0.06		 								
0.04 0.02										
0.02										

Summary for Subcatchment 20:

Runoff = 0.19 cfs @ 12.08 hrs, Volume= 681 cf, Depth= 5.36"

	<u>1,524</u> 1,524			ing, HSG C pervious A		
	1,024		0.00 /0 III			
Τc	Length	Slope	Velocity	Capacity	Description	
nin)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Entry	
6.0					Direct Entry,	
				Sub	catchment 20:	
				Hydr	ograph	
0.21 0.2		0.19 cfs	1			- Run
0.2						
0.18					Type III 24-hr	
0.17						
0.16 0.15					10 yr Rainfall=5.60"	
0.15					Runoff Area=1,524 sf	
0.13						
0.12					Runoff Volume=681 cf	
0.1		<mark> </mark>			Runoff Depth=5.36"	
0.09						
0.08 0.07					Tc=6.0 min	
0.06		 			CN=98	
0.05					011-30	
0.04						
0.03						
0.02						
0.01 0-						


Summary for Subcatchment 21:

Runoff = 0.09 cfs @ 12.08 hrs, Volume= 294 cf, Depth= 4.46"

	523			ing, HSG C		
	269	74 >7	75% Gras	s cover, Go	ood, HSG C	
	792	90 W	eighted A	verage		
	269			vious Area		
	523	66	6.04% Imp	pervious Ar	ea	
т.	Lawath	Olama	\/_l!t	0	Description	
	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Direct Frater	
6.0					Direct Entry,	
				Sub	catchment 21:	
				Hydr	ograph	
0.1						D
0.095		0.09 cfs				Runo
0.09						
0.085 0.08					Type III 24-hr	
0.08					10 yr Rainfall=5.60"	
0.07						
0.065					Runoff Area=792 sf	
. 0.06					Runoff Volume=294 cf	
(5) 0.055						
8 0.05 6 0.045					Runoff Depth=4.46"	
0.045 0.04						
0.035					Tc=6.0 min	
0.03					CN1-00	
0.025		(CN=90	
0.02						
0.015		 				
0.01						
0.005		\nearrow				
0-	0 2 4 6	8 10 12 14	16 18 20 22	24 26 28 30 33	2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72	

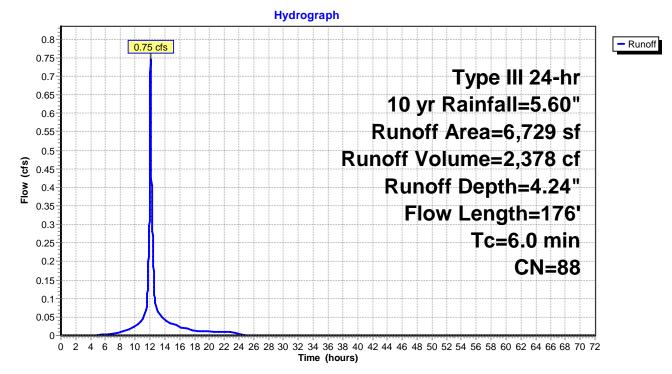
Summary for Subcatchment 22:

Runoff = 3.21 cfs @ 12.09 hrs, Volume= 9,946 cf, Depth= 2.85"

Summary for Subcatchment 23:

Runoff = 1.11 cfs @ 12.09 hrs, Volume= 3,437 cf, Depth= 2.85"

A	rea (sf)	CN D	escription						
	14,462	74 >	75% Gras	s cover, Go	ood, HSG C				
	14,462	1	00.00% Pe	ervious Area	a				
Tc (min)	Length (feet)	Slope (ft/ft)							
2.8	115	0.0011	0.67		Shallow Concentrated Flow,				
2.0					Paved Kv= 20.3 fps				
<u> </u>	115	Total			Direct Entry,				
0.0	115	Total							
				Sub	catchment 23:				
				Hydro	ograph				
-		1.11 cfs			Type III 24-hr	- Runoff			
					10 yr Rainfall=5.60" Runoff Area=14,462 sf				
-									
cfs)					Runoff Volume=3,437 cf				
Flow (cfs)					Runoff Depth=2.85"				
Ē					Flow Length=115'				
-					Slope=0.0011 '/'				
					- Tc=6.0 min				
					CN=74				
-					CN=74				
0-									
0	2468	8 10 12 14	16 18 20 22 2		34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 7 ime (hours)	2			

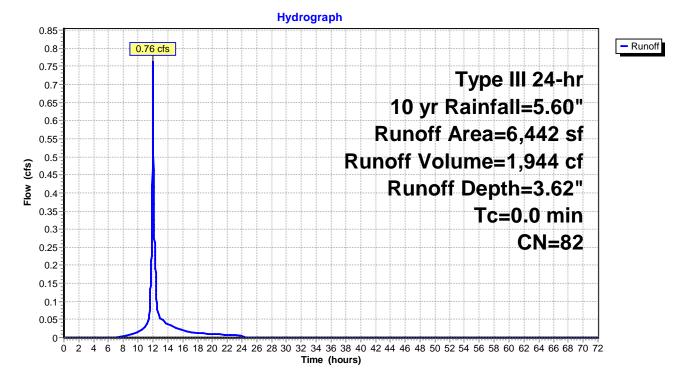

Summary for Subcatchment 24:

Runoff = 0.75 cfs @ 12.09 hrs, Volume= 2,378 cf, Depth= 4.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

A	rea (sf)	CN E	Description							
	3,786	98 F	Paved park	ing, HSG C	;					
	2,943	74 >	>75% Grass cover, Good, HSG C							
	6,729	88 V	8 Weighted Average							
	2,943	4	43.74% Pervious Area							
	3,786	5	6.26% Imp	pervious Are	ea					
Тс	Length	Slope	Velocity	Capacity	Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
3.1	50	0.0894	0.27		Sheet Flow,					
					Grass: Short n= 0.150 P2= 3.10"					
0.9	126	0.0138	2.38		Shallow Concentrated Flow,					
					Paved Kv= 20.3 fps					
2.0					Direct Entry,					
6.0	176	Total								

Subcatchment 24:

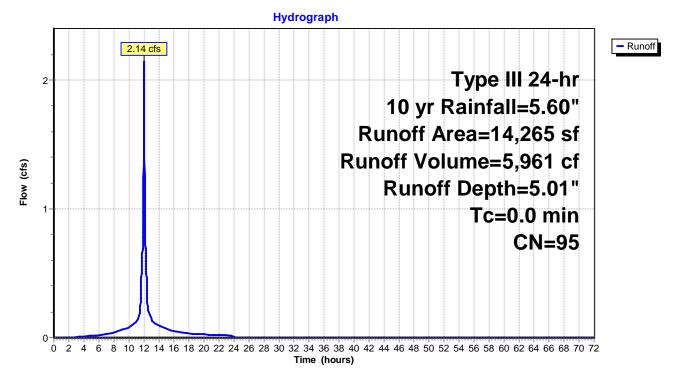

Summary for Subcatchment 25:

Runoff = 0.76 cfs @ 12.00 hrs, Volume= 1,944 cf, Depth= 3.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Are	ea (sf)	CN	Description
	2,210	98	Paved parking, HSG C
	4,232	74	>75% Grass cover, Good, HSG C
	6,442	82	Weighted Average
	4,232		65.69% Pervious Area
	2,210		34.31% Impervious Area

Subcatchment 25:

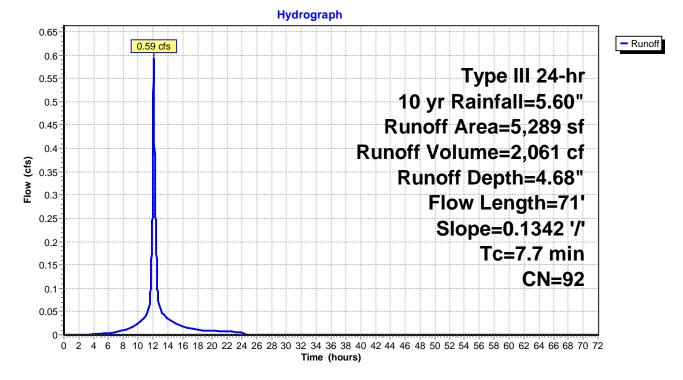

Summary for Subcatchment 26:

Runoff = 2.14 cfs @ 12.00 hrs, Volume= 5,961 cf, Depth= 5.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description
12,344	98	Paved parking, HSG C
 1,921	74	>75% Grass cover, Good, HSG C
14,265	95	Weighted Average
1,921		13.47% Pervious Area
12,344		86.53% Impervious Area

Subcatchment 26:



Summary for Subcatchment 27:

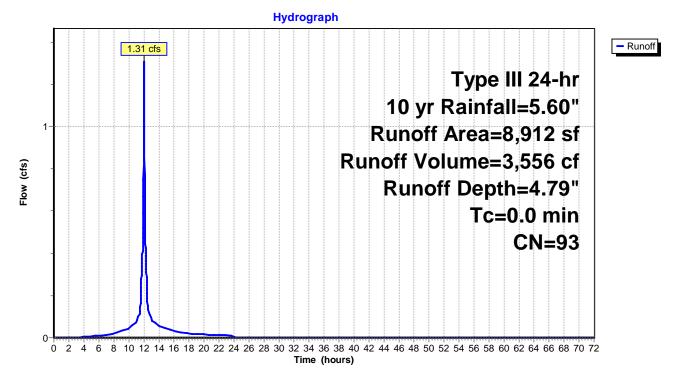
Runoff = 0.59 cfs @ 12.11 hrs, Volume= 2,061 cf, Depth= 4.68"

Α	rea (sf)	CN	Description								
	4,020	98	Paved park	ved parking, HSG C							
	1,269	74	>75% Gras	75% Grass cover, Good, HSG C							
	5,289	92	Weighted Average								
	1,269		23.99% Pervious Area								
	4,020		76.01% Imp	pervious Are	ea						
-			N/ 1 ⁻	0							
TC	Length	Slop		Capacity	Description						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)							
7.7	71	0.134	2 0.15		Sheet Flow, sheet into hodgson brook						
					Woods: Light underbrush n= 0.400 P2= 3.10"						

Summary for Subcatchment 28:

Runoff = 2.27 cfs @ 12.08 hrs, Volume= 7,716 cf, Depth= 5.01"

16,004 98 Paved parking, HSG C 2,460 74 >75% Grass cover, Good, HSG C 18,464 95 Weighted Average 2,460 13.32% Pervious Area 16,004 86.68% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/fsec) (cfs) 6.0 Direct Entry, Subcatchment 28: Hydrograph 0 0 Velocity Capacity Description 10 yr Rainfall=5.60" Runoff Area=18,464 sf Runoff Volume=7,716 cf Runoff Depth=5.01" Tc=6.0 min CN=95	Area	(sf) CN	Description			
18,464 95 Weighted Average 2,460 13.32% Pervious Area 16,004 86.68% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment 28: Hydrograph						
2,460 13.32% Pervious Area 16,004 86.68% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment 28: Hydrograph Type III 24-hr 10 yr Rainfall=5.60" Runoff Area=18,464 sf Runoff Area=18,464 sf Runoff Depth=5.01" Tc=6.0 min CN=95					bod, HSG C	
16,004 86.68% Impervious Area <u>Tc Length Slope Velocity Capacity Description</u> (ftert) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment 28: Hydrograph Type III 24-hr 10 yr Rainfall=5.60" Runoff Area=18,464 sf Runoff Volume=7,716 cf Runoff Depth=5.01" Tc=6.0 min CN=95						
Tc Length (feet) Slope Velocity (ft/sec) Description (ft/sec) 6.0 Direct Entry, Subcatchment 28: Hydrograph Hydrograph Type III 24-hr 10 yr Rainfall=5.60" Runoff Area=18,464 sf Runoff Volume=7,716 cf Runoff Depth=5.01" 10 yr Chainfall=5.60 Tc=6.0 min 0 CN=95						
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Subcatchment 28: Hydrograph						
6.0 Direct Entry, Subcatchment 28: Hydrograph Type III 24-hr 10 yr Rainfall=5.60" Runoff Area=18,464 sf Runoff Volume=7,716 cf Runoff Depth=5.01" Tc=6.0 min CN=95					Description	
Enderstein Subcatchment 28: Fylograph Type III 24-hr 10 yr Rainfall=5.60" Runoff Area=18,464 sf Runoff Depth=5.01" Tc=6.0 min CN=95			(11/360)	(015)	Direct Entry.	
Putrograph	0.0				<u> </u>	
(g) Mg (g) Mg				Sub	ocatchment 28:	
Type III 24-hr 10 yr Rainfall=5.60" Runoff Area=18,464 sf Runoff Volume=7,716 cf Runoff Depth=5.01" Tc=6.0 min CN=95				Hydr	rograph	
Runoff Area=18,464 sf Runoff Volume=7,716 cf Runoff Depth=5.01" Tc=6.0 min CN=95	2	2.27 cfs				- Runoff
Runoff Volume=7,716 cf Runoff Depth=5.01" Tc=6.0 min CN=95	-					
Runoff Depth=5.01" Tc=6.0 min CN=95	-				Runoff Area=18,464 sf	
Runoff Depth=5.01" Tc=6.0 min CN=95	(s				Runoff Volume=7,716 cf	
Tc=6.0 min CN=95	5 ×					
CN=95	윤					
	1					
	-				CN=95	
	-					
	-					
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)		4 6 8 10 12 14	1 16 18 20 22 2			

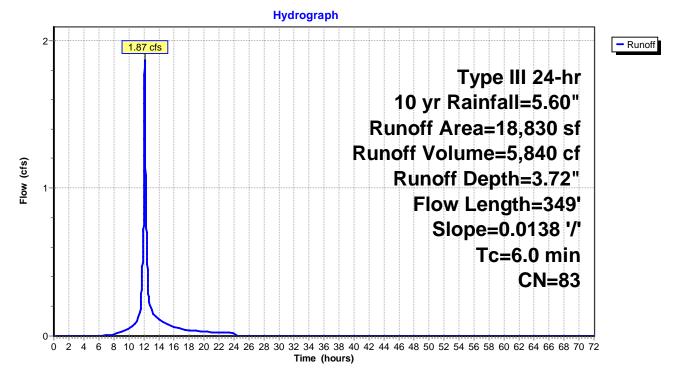

Summary for Subcatchment 29:

Runoff = 1.31 cfs @ 12.00 hrs, Volume= 3,556 cf, Depth= 4.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

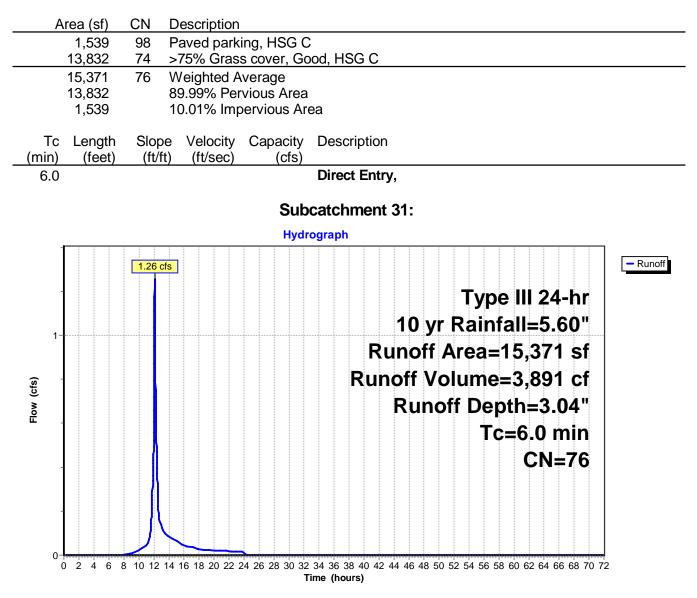
 Area (sf)	CN	Description
7,174	98	Paved parking, HSG C
 1,738	74	>75% Grass cover, Good, HSG C
8,912	93	Weighted Average
1,738		19.50% Pervious Area
7,174		80.50% Impervious Area

Subcatchment 29:

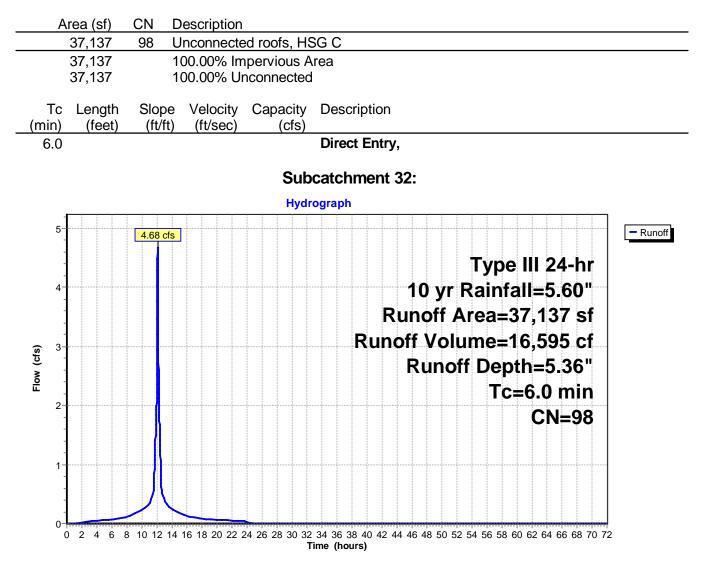

Summary for Subcatchment 30:

Runoff = 1.87 cfs @ 12.09 hrs, Volume= 5,840 cf, Depth= 3.72"

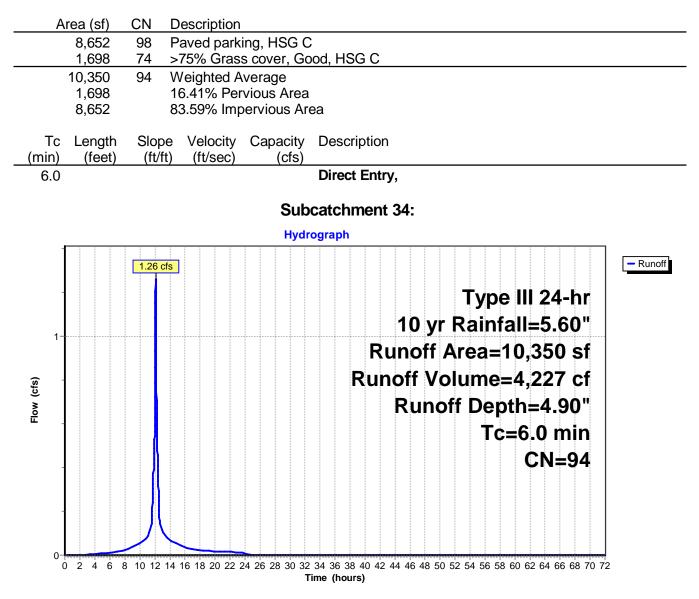
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"


A	rea (sf)	CN	Description				
	7,266	98	Paved parking, HSG C				
	11,564	74	>75% Gras	s cover, Go	ood, HSG C		
	18,830	83	Weighted A	verage			
	11,564		61.41% Per	vious Area			
	7,266	:	38.59% lmp	pervious Are	ea		
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
2.4	349	0.0138	2.38		Shallow Concentrated Flow,		
					Paved Kv= 20.3 fps		
3.6					Direct Entry,		
6.0	349	Total					

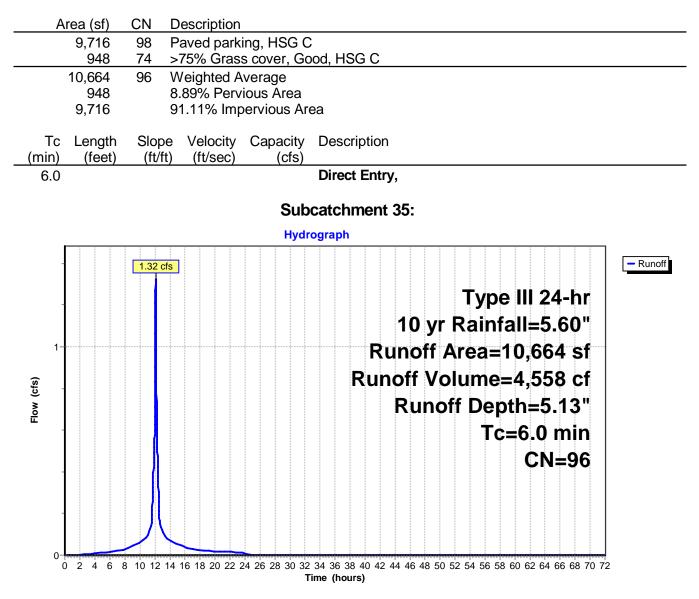
Subcatchment 30:


Summary for Subcatchment 31:

Runoff = 1.26 cfs @ 12.09 hrs, Volume= 3,891 cf, Depth= 3.04"


Summary for Subcatchment 32:

Runoff = 4.68 cfs @ 12.08 hrs, Volume= 16,595 cf, Depth= 5.36"


Summary for Subcatchment 34:

Runoff = 1.26 cfs @ 12.08 hrs, Volume= 4,227 cf, Depth= 4.90"

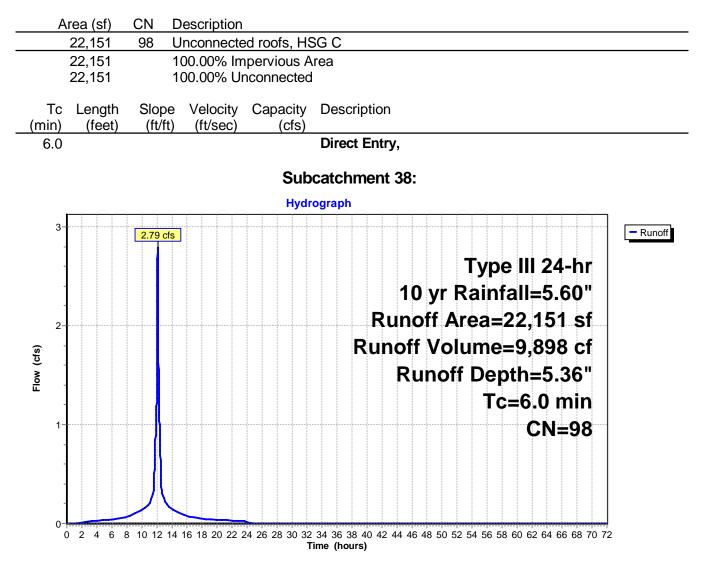
Summary for Subcatchment 35:

Runoff = 1.32 cfs @ 12.08 hrs, Volume= 4,558 cf, Depth= 5.13"

Summary for Subcatchment 36:

Runoff = 4.40 cfs @ 12.08 hrs, Volume= 14,940 cf, Depth= 5.01"

31,667 98 Paved parking, HSG C 4,086 74 >75% Grass cover, Good, HSG C 35,753 95 Weighted Average 4,086 11.43% Pervious Area 31,667 88.57% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)
35,75395Weighted Average4,08611.43% Pervious Area31,66788.57% Impervious AreaTcLengthSlopeVelocityCapacityDescription
4,086 11.43% Pervious Area 31,667 88.57% Impervious Area Tc Length Slope Velocity Capacity Description
31,667 88.57% Impervious Area Tc Length Slope Velocity Capacity Description
Tc Length Slope Velocity Capacity Description
(min) (feet) (ft/ft) (ft/sec) (cfs)
6.0 Direct Entry,
0.0 Dilect Entry,
Subcatchment 36:
Hydrograph
4.40 cfs
Type III 24-hr
10 yr Rainfall=5.60"
Runoff Area=35,753 sf
ੂ ³ Runoff Volume=14,940 cf
Runoff Depth=5.01"
[™] 2 Tc=6.0 min
CN=95
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 Time (hours)

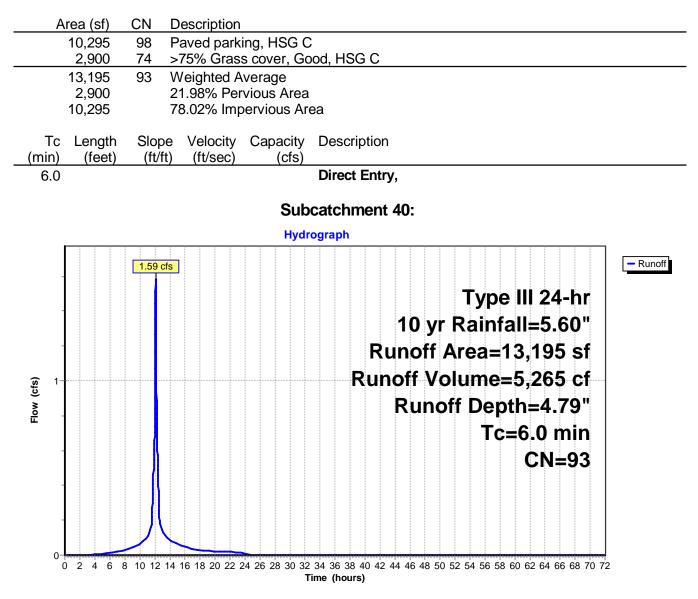

Summary for Subcatchment 37:

Runoff = 6.03 cfs @ 12.08 hrs, Volume= 20,230 cf, Depth= 4.90"

A	rea (sf)	CN D	escription											
	41,954			ing, HSG C										
	7,582 49,536 7,582 41,954	94 V 1	/eighted A 5.31% Per	<u>s cover, Go</u> verage vious Area pervious Ar		<u>56 C</u>								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Desc	-								
6.0					Direc	ct En	t ry ,							
				Sub	catch	nmer	nt 37:							
				Hydr	ograph	1								
- - 		6.03 cfs												- Runoff
5- 5-							1	0 VI				24-ł 5.60		
Flow (cfs) ∽						Ru	Rur nofi	noff F Vo	Aro Iun	ea= ne=	49, ! 20,2	536 s 230 c :4.90	sf Cf	
▲ 3- - - - 2-											=6.	0 mi :N=9	n	
- - - - 1- - -														
0-) 2 4 6 8	3 10 12 14	16 18 20 22 2	24 26 28 30 32 T	34 36 3 ime (ho		2 44 46	3 48 50	52 54	56 58	60 62	64 66 68	3 70 72	2

Summary for Subcatchment 38:

Runoff = 2.79 cfs @ 12.08 hrs, Volume= 9,898 cf, Depth= 5.36"

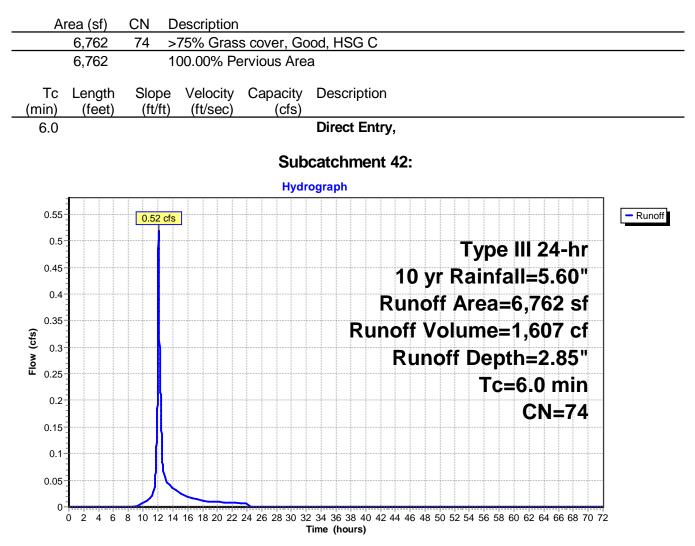

Summary for Subcatchment 39:

Runoff = 1.14 cfs @ 12.09 hrs, Volume= 3,574 cf, Depth= 3.82"

Area (s	if) CN [Description			
6,34				ood, HSG C	
4,87			ing, HSG C	<u>}</u>	
11,21 6,34		Veighted A	verage vious Area		
4,87			pervious Are		
Tc Leng (min) (fe		Velocity (ft/sec)	Capacity (cfs)	Description	
6.0				Direct Entry,	
			Sub	catchment 39:	
				ograph	
					1
-	1.14 cfs]			- Runoff
1				Type III 24-hr	
1-				10 yr Rainfall=5.60"	
				Runoff Area=11,218 sf	
<u>@</u>				Runoff Volume=3,574 cf	
Flow (cfs)					
- Ho				Runoff Depth=3.82"	
				Tc=6.0 min	
-				CN=84	
-					
	K				
0			•••••••••		
024	6 8 10 12 14	16 18 20 22 2		2 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 7 Time (hours)	72

Summary for Subcatchment 40:

Runoff = 1.59 cfs @ 12.08 hrs, Volume= 5,265 cf, Depth= 4.79"

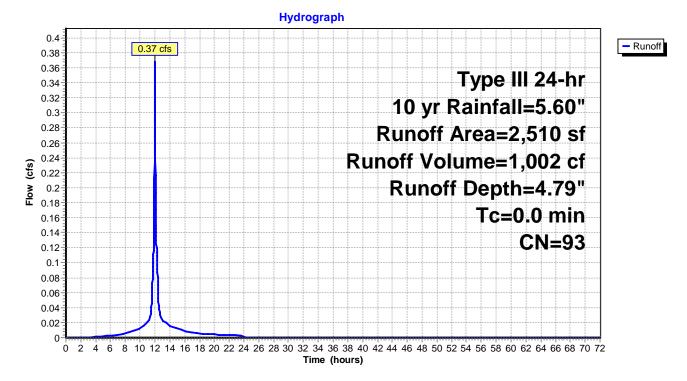

Summary for Subcatchment 41:

Runoff = 0.76 cfs @ 12.09 hrs, Volume= 2,410 cf, Depth= 4.03"

A	rea (sf)		Description			
	3,631				pod, HSG C	
	<u>3,544</u> 7,175		Veighted A	<u>ting, HSG C</u>	,	
	3,631			rvious Area		
	3,544			pervious Ar		
Та	l o o o th	Clana	Valasiti	Conocity	Description	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
6.0	(1001)	(1-1-1)	()	()	Direct Entry,	
				Sub	catchment 41:	
				Hydi	rograph	_
0.85 0.8		0.76 cf				– Runof
0.75	3	0.70 0	>			
0.7	1				Type III 24-hr	
0.65					10 yr Rainfall=5.60"	
0.6					Runoff Area=7,175 sf	
0.55						
0.5 (sj) 0.45					Runoff Volume=2,410 cf	
(5) 0.45	-				Runoff Depth=4.03"	
Ē 0.35	-				Tc=6.0 min	
0.3						
0.25					CN=86	
0.2						
0.15						
0.1	3 1 1 1					
0.05						

Summary for Subcatchment 42:

Runoff = 0.52 cfs @ 12.09 hrs, Volume= 1,607 cf, Depth= 2.85"

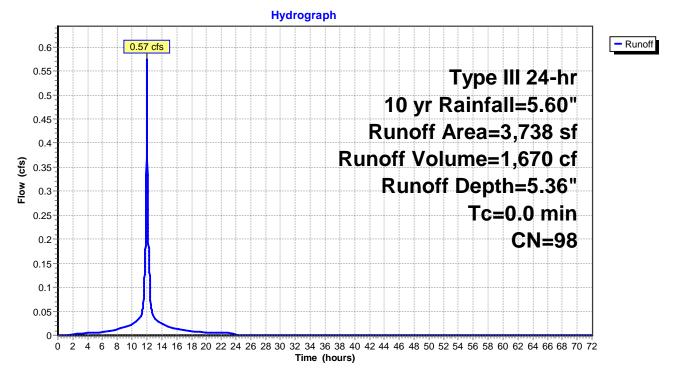

Summary for Subcatchment 43:

Runoff = 0.37 cfs @ 12.00 hrs, Volume= 1,002 cf, Depth= 4.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area (sf) CN	Description
1,984	1 98	Paved parking, HSG C
526	6 74	>75% Grass cover, Good, HSG C
2,510) 93	Weighted Average
526	6	20.96% Pervious Area
1,984	1	79.04% Impervious Area

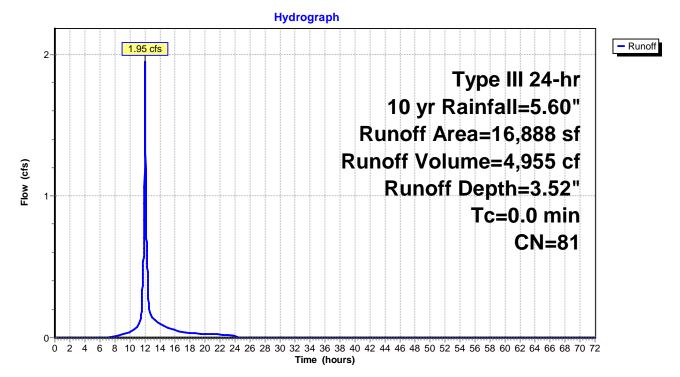
Subcatchment 43:



Summary for Subcatchment 44:

Runoff = 0.57 cfs @ 12.00 hrs, Volume= 1,670 cf, Depth= 5.36"

 Area (sf)	CN	Description
3,738	98	Paved parking, HSG C
3,738		100.00% Impervious Area

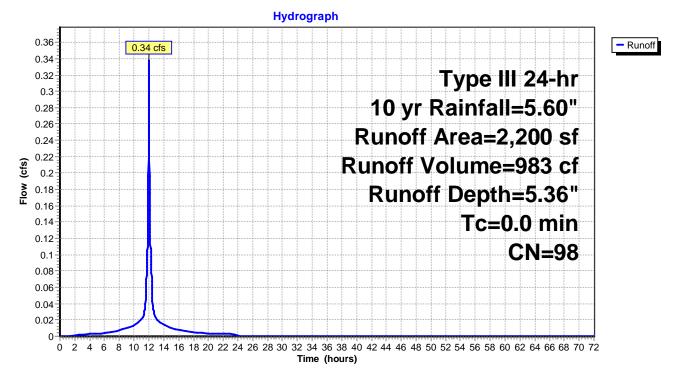

Summary for Subcatchment 45:

Runoff = 1.95 cfs @ 12.00 hrs, Volume= 4,955 cf, Depth= 3.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area	(sf)	CN	Description
4,	856	98	Paved parking, HSG C
12,	032	74	>75% Grass cover, Good, HSG C
16,	888	81	Weighted Average
12,	032		71.25% Pervious Area
4,	856		28.75% Impervious Area

Subcatchment 45:

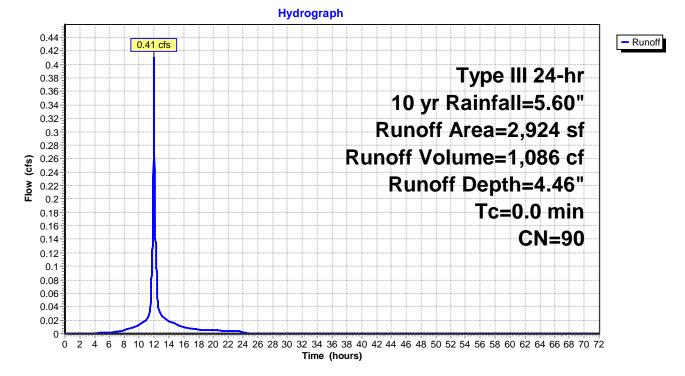

Summary for Subcatchment 46:

Runoff = 0.34 cfs @ 12.00 hrs, Volume= 983 cf, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description
2,200	98	Paved parking, HSG C
2,200		100.00% Impervious Area

Subcatchment 46:

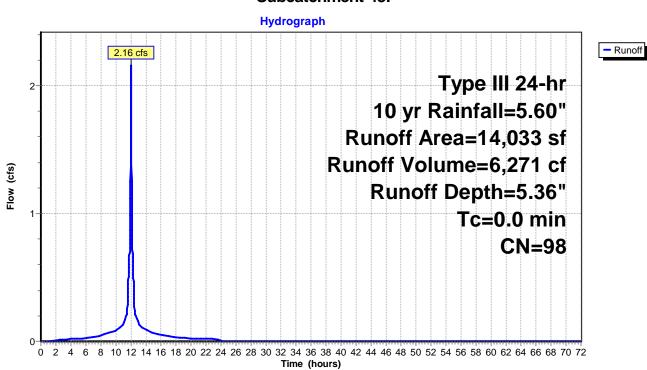

Summary for Subcatchment 47:

Runoff = 0.41 cfs @ 12.00 hrs, Volume= 1,086 cf, Depth= 4.46"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

Area (sf) CN	Description
1,982	2 98	Paved parking, HSG C
942	2 74	>75% Grass cover, Good, HSG C
2,924	4 90	Weighted Average
942	2	32.22% Pervious Area
1,982	2	67.78% Impervious Area

Subcatchment 47:

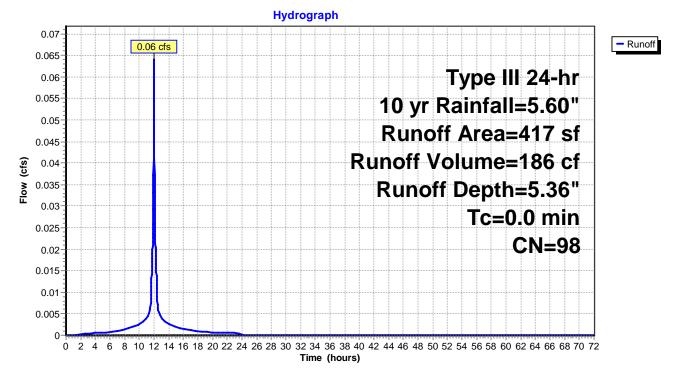


Summary for Subcatchment 48:

Runoff = 2.16 cfs @ 12.00 hrs, Volume= 6,271 cf, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

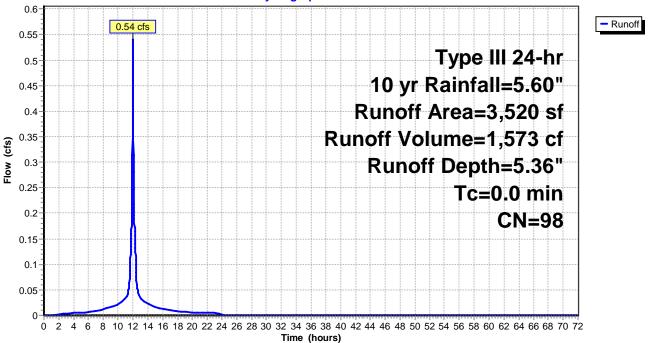
 Area (sf)	CN	Description
14,033	98	Paved parking, HSG C
14,033		100.00% Impervious Area


Subcatchment 48:

Summary for Subcatchment 49:

Runoff = 0.06 cfs @ 12.00 hrs, Volume= 186 cf, Depth= 5.36"

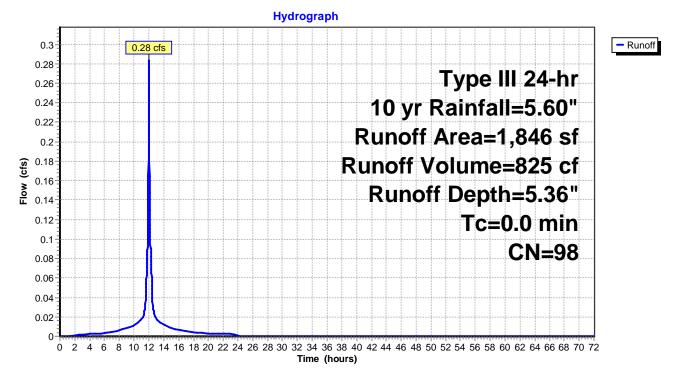
 Area (sf)	CN	Description
417	98	Paved parking, HSG C
417		100.00% Impervious Area



Summary for Subcatchment 50:

Runoff = 0.54 cfs @ 12.00 hrs, Volume= 1,573 cf, Depth= 5.36"

 Area (sf)	CN	Description
3,520	98	Paved parking, HSG C
3,520		100.00% Impervious Area

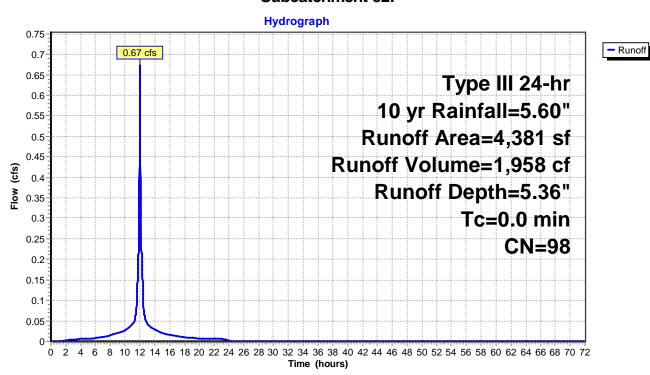

Summary for Subcatchment 51:

Runoff = 0.28 cfs @ 12.00 hrs, Volume= 825 cf, Depth= 5.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

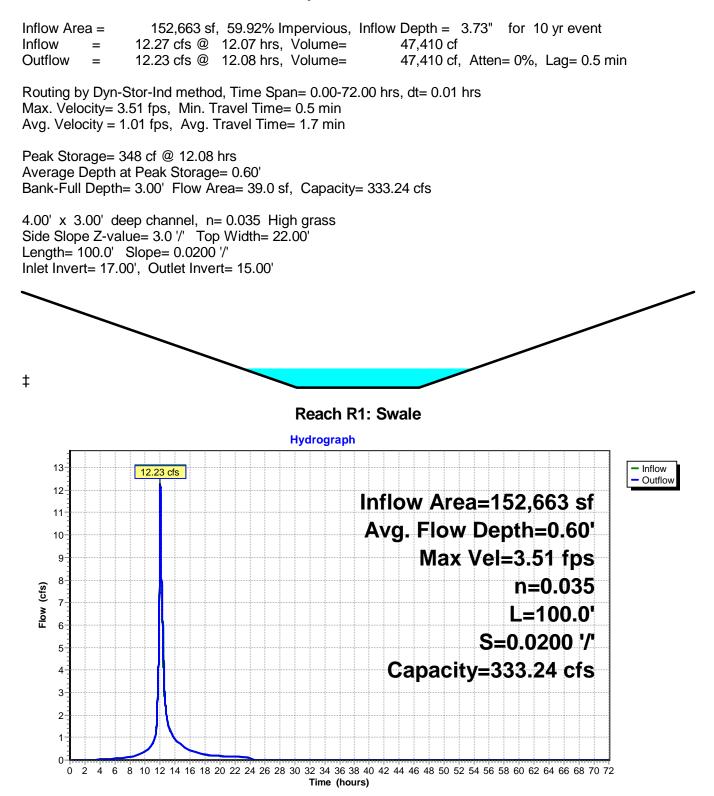
 Area (sf)	CN	Description
1,846	98	Paved parking, HSG C
1,846		100.00% Impervious Area

Subcatchment 51:



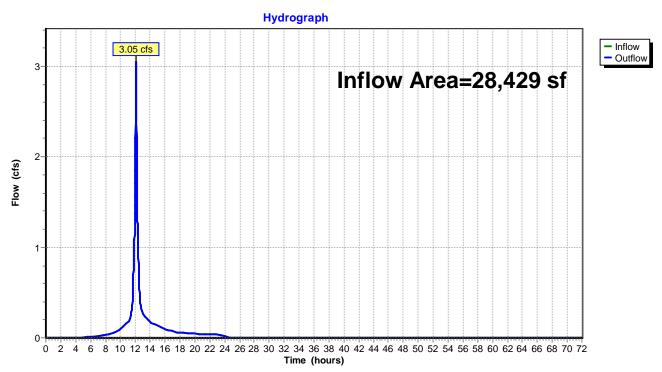
Summary for Subcatchment 52:

Runoff = 0.67 cfs @ 12.00 hrs, Volume= 1,958 cf, Depth= 5.36"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Type III 24-hr 10 yr Rainfall=5.60"

 Area (sf)	CN	Description
4,381	98	Roofs, HSG C
4,381		100.00% Impervious Area

Subcatchment 52:


Summary for Reach R1: Swale

Summary for Reach TB:

Inflow Are	a =	28,429 sf, 52.39% Impervious, Inflow Depth = 4.09" for 10 yr event	
Inflow	=	3.05 cfs @ 12.09 hrs, Volume= 9,695 cf	
Outflow	=	3.05 cfs @ 12.09 hrs, Volume= 9,695 cf, Atten= 0%, Lag= 0.0 mi	n

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Reach TB:

Summary for Pond 27 BRB1:

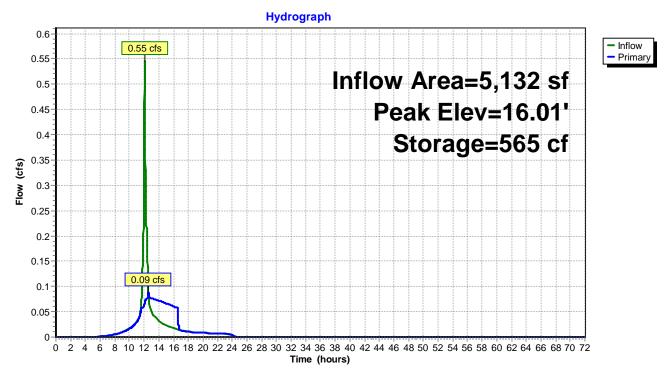
Inflow Area =	5,132 sf, 50.00% Impervious,	Inflow Depth = 4.03 " for 10 yr event
Inflow =	0.55 cfs @ 12.09 hrs, Volume=	1,724 cf
Outflow =	0.09 cfs @ 12.57 hrs, Volume=	1,724 cf, Atten= 84%, Lag= 28.8 min
Primary =	0.09 cfs @ 12.57 hrs, Volume=	1,724 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 16.01' @ 12.57 hrs Surf.Area= 1,212 sf Storage= 565 cf Flood Elev= 16.00' Surf.Area= 1,209 sf Storage= 555 cf

Plug-Flow detention time= 54.4 min calculated for 1,723 cf (100% of inflow) Center-of-Mass det. time= 54.4 min (854.6 - 800.2)

Volume	Inve	rt Avail.Sto	orage	Storage Description	n		
#1	15.50)' 1,9	66 cf	Custom Stage Data	a (Irregular) Listed	below (Recalc)	
Elevatio		Surf.Area F (sq-ft)	Perim. (feet)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
15.5	50	1,013	192.9	0	0	1,013	
16.0	00	1,209	199.1	555	555	1,230	
16.5	50	1,411	205.5	654	1,209	1,459	
17.0	00	1,620	211.7	757	1,966	1,690	
Device #1	Routing Primary	Invert 12.43		et Devices " Round Culvert L	= 26.5' CPP. sau	are edge headwall, Ke= 0.5	500
	, mildiy	12110	Inlet	/ Outlet Invert= 12.4 0.013 Corrugated PE	13' / 12.30' S= 0.0	049 '/' Cc= 0.900	
#2	Device 1	12.91'		Vert. Orifice/Grate			
#3	Device 2	15.50'	2.41	0 in/hr Exfiltration o	over Surface area		
#4	Device 1	16.00'				2.40' Phase-In= 0.01' ited to weir flow at low head	ls

Primary OutFlow Max=0.09 cfs @ 12.57 hrs HW=16.01' TW=12.37' (Dynamic Tailwater)


-1=Culvert (Passes 0.09 cfs of 6.64 cfs potential flow)

-2=Orifice/Grate (Passes 0.08 cfs of 1.60 cfs potential flow)

1-3=Exfiltration (Controls 0.08 cfs)

-4=Orifice/Grate (Weir Controls 0.01 cfs @ 0.30 fps)

Pond 27 BRB1:

Summary for Pond 30 DB1:

Inflow Area =	21,025 sf, 90.30% Impervious,	Inflow Depth = 5.09" for 10 yr event
Inflow =	2.60 cfs @ 12.08 hrs, Volume=	8,920 cf
Outflow =	1.84 cfs @ 12.16 hrs, Volume=	8,918 cf, Atten= 29%, Lag= 4.3 min
Primary =	1.03 cfs @ 12.16 hrs, Volume=	957 cf
Secondary =	0.83 cfs @ 12.11 hrs, Volume=	7,961 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 14.42' @ 12.16 hrs Surf.Area= 1,170 sf Storage= 1,250 cf

Plug-Flow detention time= 19.0 min calculated for 8,918 cf (100% of inflow) Center-of-Mass det. time= 18.8 min (780.1 - 761.3)

Volume	Invert	Avail.Storage	Storage Description
#1A	12.80'	1,087 cf	25.25'W x 46.34'L x 3.50'H Field A
			4,095 cf Overall - 1,378 cf Embedded = 2,717 cf x 40.0% Voids
#2A	13.30'	1,378 cf	ADS_StormTech SC-740 +Cap x 30 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			5 Rows of 6 Chambers
		2,465 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	13.80'	12.0" Round Culvert L= 2.0' CPP, square edge headwall, Ke= 0.500
	-		Inlet / Outlet Invert= 13.80' / 13.75' S= 0.0250 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	12.80'	6.0" Round Culvert L= 2.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 12.80' / 12.80' S= 0.0000 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=1.02 cfs @ 12.16 hrs HW=14.42' TW=13.69' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 1.02 cfs @ 2.89 fps)

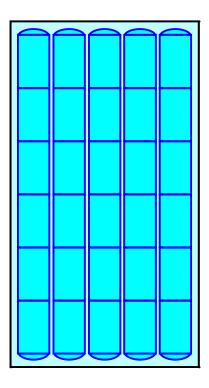
Secondary OutFlow Max=0.81 cfs @ 12.11 hrs HW=14.32' TW=13.58' (Dynamic Tailwater) -2=Culvert (Inlet Controls 0.81 cfs @ 4.15 fps)

Pond 30 DB1: - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

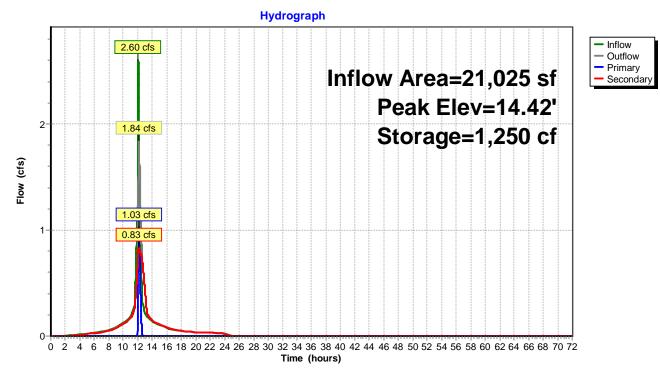
Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


6 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 44.34' Row Length +12.0" End Stone x 2 = 46.34' Base Length 5 Rows x 51.0" Wide + 6.0" Spacing x 4 + 12.0" Side Stone x 2 = 25.25' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

30 Chambers x 45.9 cf = 1,378.2 cf Chamber Storage

4,095.0 cf Field - 1,378.2 cf Chambers = 2,716.8 cf Stone x 40.0% Voids = 1,086.7 cf Stone Storage


Chamber Storage + Stone Storage = 2,464.9 cf = 0.057 afOverall Storage Efficiency = 60.2%Overall System Size = $46.34' \times 25.25' \times 3.50'$

30 Chambers 151.7 cy Field 100.6 cy Stone

Pond 30 DB1:

Summary for Pond 36 DB2:

Inflow Area =	9,435 sf, 92.15% Impervious,	Inflow Depth = 5.13" for 10 yr event
Inflow =	1.17 cfs @ 12.08 hrs, Volume=	4,033 cf
Outflow =	0.71 cfs @ 12.18 hrs, Volume=	4,032 cf, Atten= 39%, Lag= 5.9 min
Primary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Secondary =	0.71 cfs @ 12.18 hrs, Volume=	4,032 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 17.23' @ 12.18 hrs Surf.Area= 823 sf Storage= 470 cf

Plug-Flow detention time= 17.7 min calculated for 4,032 cf (100% of inflow) Center-of-Mass det. time= 17.5 min (777.3 - 759.8)

Volume	Invert	Avail.Storage	Storage Description
#1A	16.25'	785 cf	11.00'W x 74.82'L x 3.50'H Field A
			2,880 cf Overall - 919 cf Embedded = 1,962 cf x 40.0% Voids
#2A	16.75'	919 cf	ADS_StormTech SC-740 +Cap x 20 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			2 Rows of 10 Chambers
		1,703 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	17.79'	12.0" Round Culvert L= 2.0' CPP, square edge headwall, Ke= 0.500
	-		Inlet / Outlet Invert= 17.79' / 17.75' S= 0.0200 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Secondary	16.25'	6.0" Round Culvert L= 2.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 16.25' / 16.25' S= 0.0000 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=16.25' TW=16.15' (Dynamic Tailwater) ←1=Culvert (Controls 0.00 cfs)

Secondary OutFlow Max=0.71 cfs @ 12.18 hrs HW=17.23' TW=16.66' (Dynamic Tailwater) -2=Culvert (Inlet Controls 0.71 cfs @ 3.63 fps)

Pond 36 DB2: - Chamber Wizard Field A

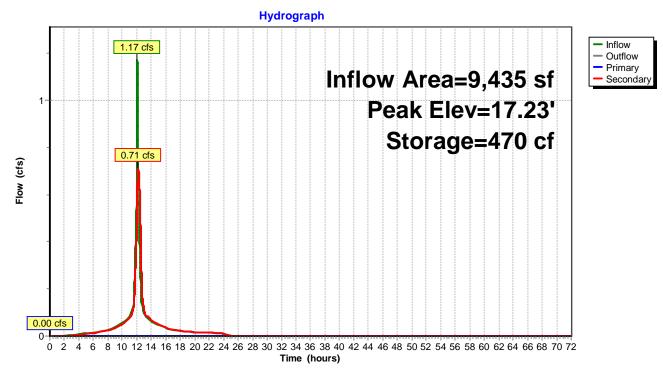
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

10 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 72.82' Row Length +12.0" End Stone x 2 = 74.82' Base Length 2 Rows x 51.0" Wide + 6.0" Spacing x 1 + 12.0" Side Stone x 2 = 11.00' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

20 Chambers x 45.9 cf = 918.8 cf Chamber Storage


2,880.4 cf Field - 918.8 cf Chambers = 1,961.6 cf Stone x 40.0% Voids = 784.7 cf Stone Storage

Chamber Storage + Stone Storage = 1,703.5 cf = 0.039 af Overall Storage Efficiency = 59.1%Overall System Size = 74.82' x 11.00' x 3.50'

20 Chambers 106.7 cy Field 72.7 cy Stone

Pond 36 DB2:

Summary for Pond 41 BRB2:

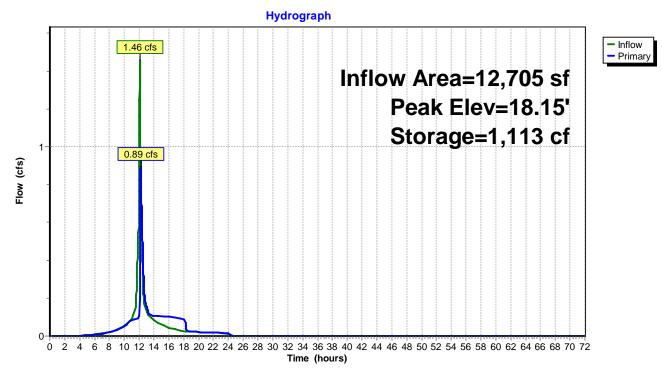
Inflow Area =	12,705 sf, 65.30% Impervious,	Inflow Depth = 4.46" for 10 yr event
Inflow =	1.46 cfs @ 12.08 hrs, Volume=	4,719 cf
Outflow =	0.89 cfs @ 12.19 hrs, Volume=	4,719 cf, Atten= 39%, Lag= 6.0 min
Primary =	0.89 cfs @ 12.19 hrs, Volume=	4,719 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 18.15' @ 12.19 hrs Surf.Area= 1,840 sf Storage= 1,113 cf Flood Elev= 19.50' Surf.Area= 2,215 sf Storage= 2,826 cf

Plug-Flow detention time= 49.6 min calculated for 4,719 cf (100% of inflow) Center-of-Mass det. time= 49.6 min (836.5 - 786.9)

Volume	Inve	ert Avail	.Storage	Storage Descripti	on	
#1	17.5	50'	2,826 cf	Rain Garden 5 (Ir	regular) Listed bel	ow (Recalc)
_						
Elevatio	on	Surf.Area	Perim.	Inc.Store	Cum.Store	Wet.Area
(fee	et)	(sq-ft)	(feet)	(cubic-feet)	(cubic-feet)	<u>(sq-ft)</u>
17.5	50	1,563	208.2	0	0	1,563
18.0	00	1,774	214.5	834	834	1,800
18.5	50	1,992	220.7	941	1,775	2,041
19.0	00	2,215	227.0	1,051	2,826	2,291
Device	Routing	Inv	vert Outle	et Devices		
<u>#1</u>	Primary				L = 20.0' CPP cc	uare edge headwall, Ke= 0.500
#1	Filliary	2				.0050 '/' Cc= 0.900
						r, Flow Area= 0.79 sf
#2	Device 1	14		Vert. Orifice/Grate		, 110W Alea - 0.79 SI
#3	Device 2	. 17.			over Surface area	
						12.40' Phase-In= 0.01'
#4	Device 1	18.	.00' 15.0	" Horiz. Orifice/Gr	ate C= 0.600 Li	mited to weir flow at low heads

Primary OutFlow Max=0.89 cfs @ 12.19 hrs HW=18.15' TW=13.49' (Dynamic Tailwater)


-1=Culvert (Passes 0.89 cfs of 6.79 cfs potential flow)

-2=Orifice/Grate (Passes 0.11 cfs of 1.63 cfs potential flow)

1-3=Exfiltration (Controls 0.11 cfs)

-4=Orifice/Grate (Weir Controls 0.78 cfs @ 1.28 fps)

Pond 41 BRB2:

Summary for Pond 50 IB3:

Inflow Area =	91,377 sf, 70.56% Impervious,	Inflow Depth = 4.58" for 10 yr event
Inflow =	10.66 cfs @ 12.08 hrs, Volume=	34,882 cf
Outflow =	3.71 cfs @ 12.35 hrs, Volume=	34,882 cf, Atten= 65%, Lag= 16.2 min
Discarded =	0.60 cfs @ 12.35 hrs, Volume=	19,218 cf
Primary =	3.11 cfs @ 12.35 hrs, Volume=	15,665 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.92' @ 12.35 hrs Surf.Area= 8,685 sf Storage= 11,574 cf

Plug-Flow detention time= 77.6 min calculated for 34,882 cf (100% of inflow) Center-of-Mass det. time= 77.6 min (859.1 - 781.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	18.00'	7,712 cf	106.00'W x 81.94'L x 3.50'H Field A
			30,399 cf Overall - 11,117 cf Embedded = 19,281 cf x 40.0% Voids
#2A	18.50'	11,117 cf	ADS_StormTech SC-740 +Cap x 242 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			22 Rows of 11 Chambers
		18,830 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	18.00'	0.970 in/hr Exfiltration over Wetted area
			Conductivity to Groundwater Elevation = 17.00' Phase-In= 0.01'
#2	Primary	18.60'	12.0" Round Overflow
			L= 2.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 18.60' / 18.55' S= 0.0250 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Discarded OutFlow Max=0.60 cfs @ 12.35 hrs HW=19.92' (Free Discharge) ←1=Exfiltration (Controls 0.60 cfs)

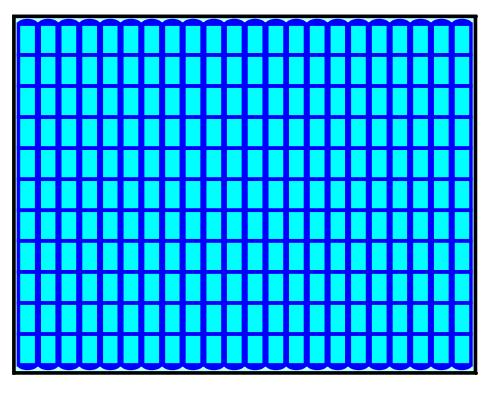
Primary OutFlow Max=3.11 cfs @ 12.35 hrs HW=19.92' TW=16.57' (Dynamic Tailwater) ←2=Overflow (Barrel Controls 3.11 cfs @ 3.97 fps)

Pond 50 IB3: - Chamber Wizard Field A

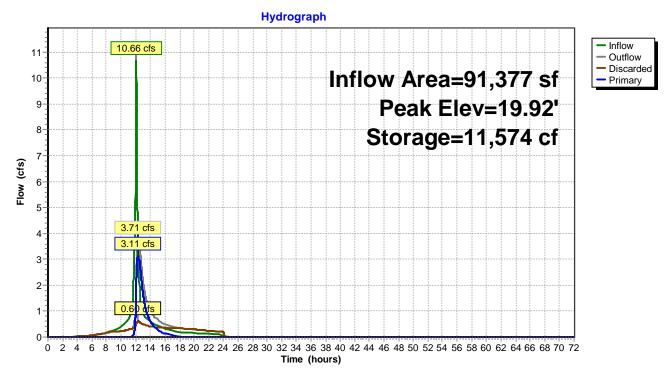
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing


11 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 79.94' Row Length +12.0" End Stone x 2 = 81.94' Base Length 22 Rows x 51.0" Wide + 6.0" Spacing x 21 + 12.0" Side Stone x 2 = 106.00' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

242 Chambers x 45.9 cf = 11,117.5 cf Chamber Storage


30,398.5 cf Field - 11,117.5 cf Chambers = 19,281.0 cf Stone x 40.0% Voids = 7,712.4 cf Stone Storage

Chamber Storage + Stone Storage = 18,829.9 cf = 0.432 afOverall Storage Efficiency = 61.9%Overall System Size = $81.94' \times 106.00' \times 3.50'$

242 Chambers 1,125.9 cy Field 714.1 cy Stone

Pond 50 IB3:

Summary for Pond 58 IB2:

Inflow Area =	28,518 sf,100.00% Impervious,	Inflow Depth = 5.36" for 10 yr event
Inflow =	3.59 cfs @ 12.08 hrs, Volume=	12,744 cf
Outflow =	2.49 cfs @ 12.16 hrs, Volume=	12,744 cf, Atten= 31%, Lag= 4.8 min
Discarded =	0.13 cfs @ 12.16 hrs, Volume=	5,691 cf
Primary =	2.36 cfs @ 12.16 hrs, Volume=	7,053 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.64' @ 12.16 hrs Surf.Area= 2,264 sf Storage= 2,492 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 52.5 min (798.7 - 746.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	18.00'	2,066 cf	20.50'W x 110.42'L x 3.50'H Field A
			7,922 cf Overall - 2,756 cf Embedded = 5,166 cf x 40.0% Voids
#2A	18.50'	2,756 cf	
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			4 Rows of 15 Chambers
		4,823 cf	Total Available Storage

Storage Group A created with Chamber Wizard

Routing	Invert	Outlet Devices
Discarded	18.00'	0.970 in/hr Exfiltration over Surface area
		Conductivity to Groundwater Elevation = 17.00'
Primary	18.60'	12.0" Round Overflow
		L= 2.0' CPP, square edge headwall, Ke= 0.500
		Inlet / Outlet Invert= 18.60' / 18.55' S= 0.0250 '/' Cc= 0.900
		n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
		Discarded 18.00'

Discarded OutFlow Max=0.13 cfs @ 12.16 hrs HW=19.64' (Free Discharge) **1=Exfiltration** (Controls 0.13 cfs)

Primary OutFlow Max=2.36 cfs @ 12.16 hrs HW=19.64' TW=16.90' (Dynamic Tailwater) ←2=Overflow (Barrel Controls 2.36 cfs @ 3.59 fps)

Pond 58 IB2: - Chamber Wizard Field A

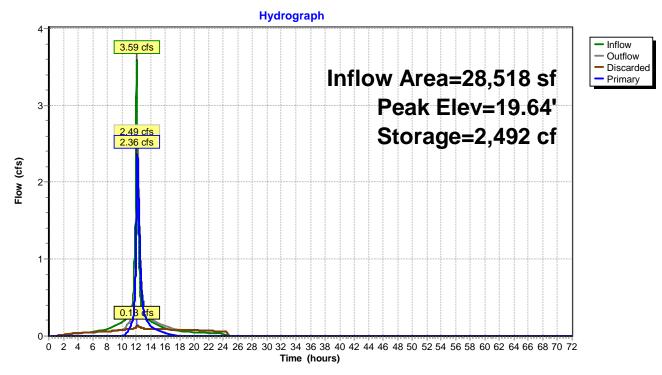
Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

15 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 108.42' Row Length +12.0" End Stone x 2 = 110.42' Base Length 4 Rows x 51.0" Wide + 6.0" Spacing x 3 + 12.0" Side Stone x 2 = 20.50' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

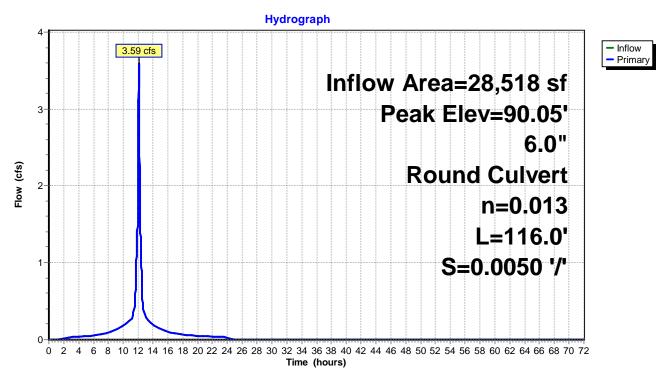
60 Chambers x 45.9 cf = 2,756.4 cf Chamber Storage


7,922.4 cf Field - 2,756.4 cf Chambers = 5,166.0 cf Stone x 40.0% Voids = 2,066.4 cf Stone Storage

Chamber Storage + Stone Storage = 4,822.8 cf = 0.111 afOverall Storage Efficiency = 60.9%Overall System Size = $110.42' \times 20.50' \times 3.50'$

60 Chambers 293.4 cy Field 191.3 cy Stone

Pond 58 IB2:

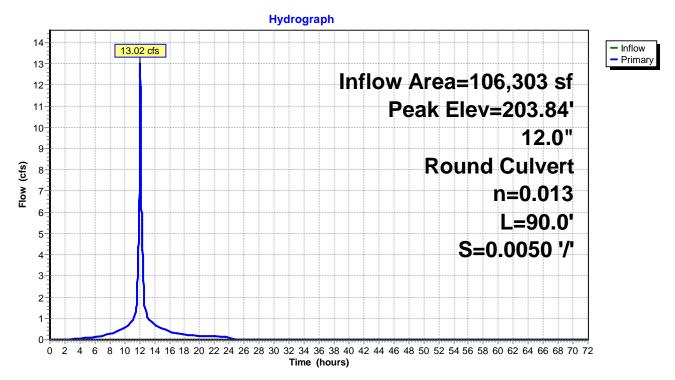

Summary for Pond 60 RD B:

Inflow Area	a =	28,518 sf,100.00% Impervious, Inflow Depth = 5.36" for 10 yr ever	nt
Inflow	=	3.59 cfs @ 12.08 hrs, Volume= 12,744 cf	
Outflow	=	3.59 cfs @ 12.08 hrs, Volume= 12,744 cf, Atten= 0%, Lag= 0.0	0 min
Primary	=	3.59 cfs @ 12.08 hrs, Volume= 12,744 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 90.05' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	20.78'	6.0" Round Culvert
			L= 116.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 20.78' / 20.20' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=3.58 cfs @ 12.08 hrs HW=89.78' TW=34.73' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 3.58 cfs @ 18.22 fps)

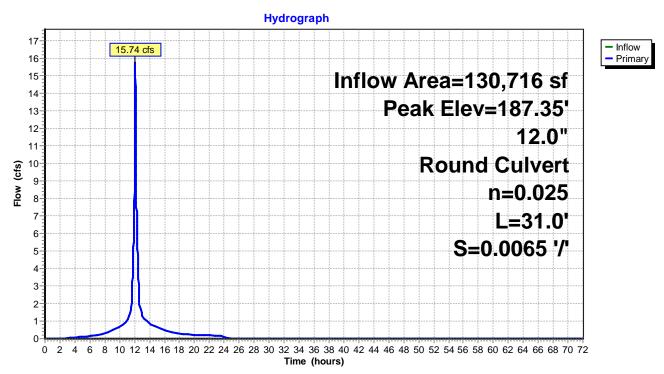


Pond 60 RD B:

Summary for Pond 60 WQU 2:

Inflow A	rea =	106,303 sf, 8	36.53% Impervious, Inflow Depth = 4.96" for 10 yr event
Inflow	=	13.02 cfs @ 12	2.08 hrs, Volume= 43,956 cf
Outflow	=	13.02 cfs @ 12	2.08 hrs, Volume= 43,956 cf, Atten= 0%, Lag= 0.0 min
Primary	=	13.02 cfs @ 12	2.08 hrs, Volume= 43,956 cf
Peak El		34' @ 12.11 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	18.05'	12.0" Round Culvert L= 90.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.05' / 17.60'$ S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=8.07 cfs @ 12.08 hrs HW=184.88' TW=177.79' (Dynamic Tailwater) ☐—1=Culvert (Outlet Controls 8.07 cfs @ 10.28 fps)

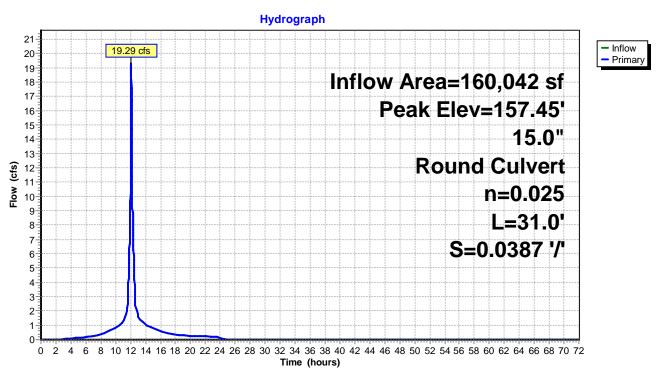


Pond 60 WQU 2:

Summary for Pond 1071:

Inflow A Inflow Outflow	= =	15.74 cfs @ 12 15.74 cfs @ 12	31.98% Impervious, Inflow Depth = 4.85" for 10 yr event 2.08 hrs, Volume= 52,795 cf 2.08 hrs, Volume= 52,795 cf, Atten= 0%, Lag= 0.0 min 52.08 hrs, Volume= 52,795 cf, Atten= 0%, Lag= 0.0 min
0	by Dyn-S		2.08 hrs, Volume= 52,795 cf Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Flood El Device	ev= 22.7 Routing	-	Outlet Devices
#1	Primary		12.0" Round Culvert L= 31.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 17.50' / 17.30' S= 0.0065 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 0.79 sf

Primary OutFlow Max=13.78 cfs @ 12.08 hrs HW=177.99' TW=153.60' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 13.78 cfs @ 17.55 fps)

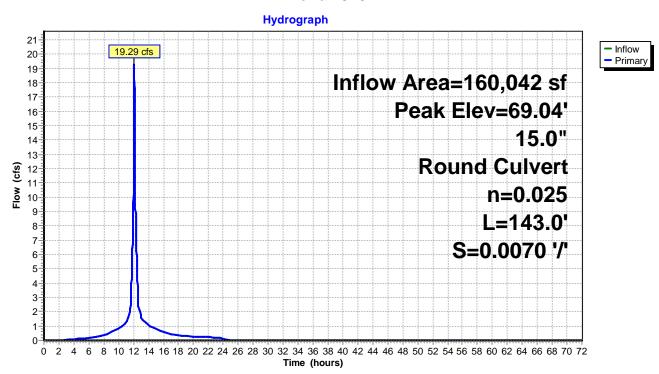


Pond 1071:

Summary for Pond 1072:

Inflow A	rea =	160,042 sf, 8	33.01% Impervious, Inflow Depth = 4.88" for 10 yr event
Inflow	=	19.29 cfs @ 12	2.08 hrs, Volume= 65,104 cf
Outflow	=	19.29 cfs @ 12	2.08 hrs, Volume= 65,104 cf, Atten= 0%, Lag= 0.0 min
Primary	=	19.29 cfs @ 12	2.08 hrs, Volume= 65,104 cf
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 157.45' @ 12.10 hrs Flood Elev= 22.70'		
Device	Routing	Invert	Outlet Devices
#1	Primary	17.10'	15.0" Round Culvert L= 31.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $17.10' / 15.90'$ S= 0.0387 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.23 sf

Primary OutFlow Max=17.04 cfs @ 12.08 hrs HW=153.59' TW=141.09' (Dynamic Tailwater) ☐—1=Culvert (Outlet Controls 17.04 cfs @ 13.89 fps)

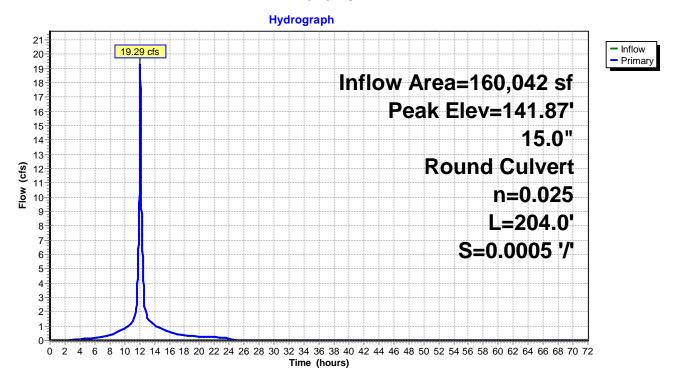


Pond 1072:

Summary for Pond 1346:

Inflow Ar	ea =	160,042 sf, 8	33.01% Impervious, Inflow Depth = 4.88" for 10 yr event
Inflow	=	19.29 cfs @ 12	2.08 hrs, Volume= 65,104 cf
Outflow	=	19.29 cfs @ 12	2.08 hrs, Volume= 65,104 cf, Atten= 0%, Lag= 0.0 min
Primary	=	19.29 cfs @ 12	2.08 hrs, Volume= 65,104 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 69.04' @ 12.08 hrs Flood Elev= 25.00'			
Device	Routing	Invert	Outlet Devices
#1	Primary	15.70'	15.0" Round Culvert L= 143.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 15.70' / 14.70' S= 0.0070 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.23 sf

Primary OutFlow Max=19.26 cfs @ 12.08 hrs HW=68.85' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 19.26 cfs @ 15.69 fps)

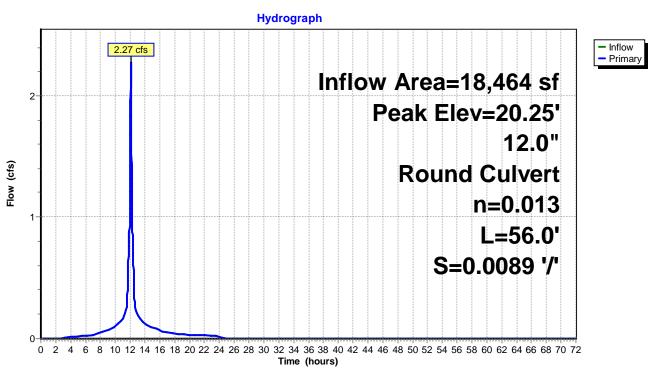


Pond 1346:

Summary for Pond 1347:

Inflow A Inflow Outflow Primary	= =	19.29 cfs @ 12 19.29 cfs @ 12	33.01% Impervious, Inflow Depth = 4.88" for 10 yr event 2.08 hrs, Volume= 65,104 cf 2.08 hrs, Volume= 65,104 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 65,104 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 141.87' @ 12.09 hrs Flood Elev= 23.90'			
Device	Routing	Invert	Outlet Devices
#1	Primary	y 15.90'	15.0" Round Culvert L= 204.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 15.90' / 15.80' S= 0.0005 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.23 sf

Primary OutFlow Max=19.16 cfs @ 12.08 hrs HW=141.09' TW=68.85' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 19.16 cfs @ 15.61 fps)

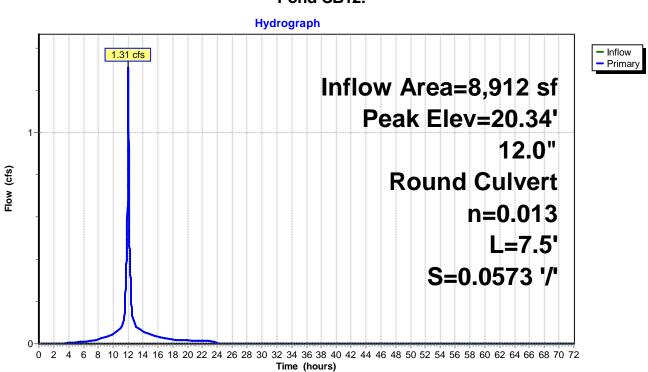


Pond 1347:

Summary for Pond CB10:

Inflow A Inflow Outflow Primary	= =	2.27 cfs @ 12 2.27 cfs @ 12	36.68% Impervious, Inflow Depth = 5.01" for 10 yr event 2.08 hrs, Volume= 7,716 cf 2.08 hrs, Volume= 7,716 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 7,716 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 20.25' @ 12.10 hrs Flood Elev= 24.11'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	18.87'	12.0" Round Culvert L= 56.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.87' / 18.37'$ S= 0.0089 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=2.09 cfs @ 12.08 hrs HW=20.14' TW=19.80' (Dynamic Tailwater) -1=Culvert (Outlet Controls 2.09 cfs @ 2.70 fps)

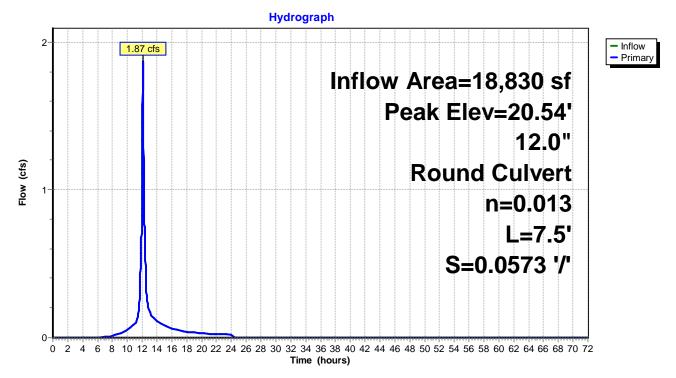


Pond CB10:

Summary for Pond CB12:

Inflow Area =			30.50% Impervious, Inflow Depth = 4.79" for 10 yr event			
Inflow	=	1.31 cfs @ 12	2.00 hrs, Volume= 3,556 cf			
Outflow	=	1.31 cfs @ 12	2.00 hrs, Volume= 3,556 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	1.31 cfs @ 12	2.00 hrs, Volume= 3,556 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 20.34' @ 12.12 hrs Flood Elev= 24.07'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	19.30'	12.0" Round Culvert L= 7.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.30' / 18.87'$ S= $0.0573'/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

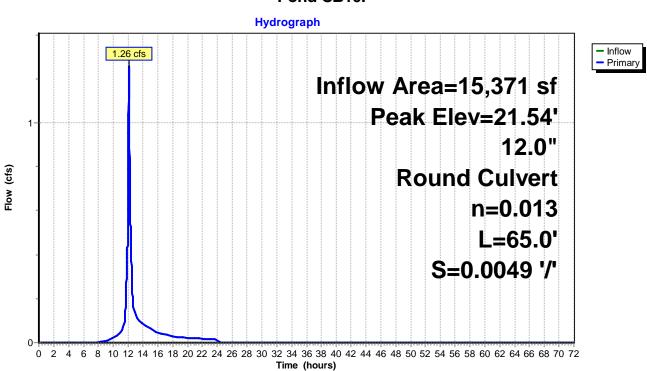
Primary OutFlow Max=1.18 cfs @ 12.00 hrs HW=19.92' TW=19.61' (Dynamic Tailwater) ☐—1=Culvert (Outlet Controls 1.18 cfs @ 3.33 fps)


Pond CB12:

Summary for Pond CB13:

Inflow Area =			38.59% Impervious, Inflow Depth = 3.72" for 10 yr event			
Inflow	=	1.87 cfs @ 12	2.09 hrs, Volume= 5,840 cf			
Outflow	=	1.87 cfs @ 12	2.09 hrs, Volume= 5,840 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	1.87 cfs @ 12	2.09 hrs, Volume= 5,840 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 20.54' @ 12.11 hrs Flood Elev= 24.07'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	19.30'	12.0" Round Culvert L= 7.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.30' / 18.87'$ S= $0.0573' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

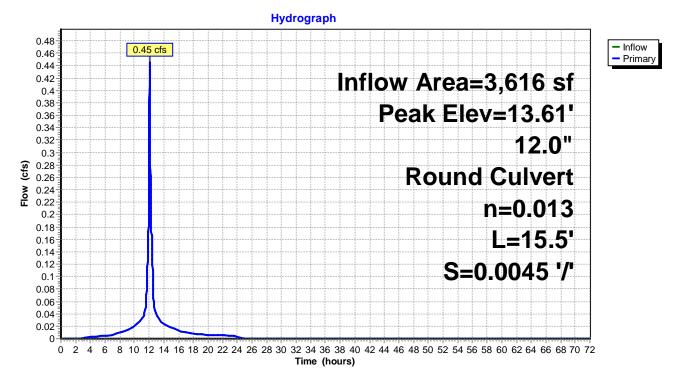
Primary OutFlow Max=1.57 cfs @ 12.09 hrs HW=20.41' TW=20.24' (Dynamic Tailwater) -1=Culvert (Inlet Controls 1.57 cfs @ 2.00 fps)


Pond CB13:

Summary for Pond CB16:

Inflow A Inflow	rea = =		0.01% Impervious, Inflow Depth = 3.04" for 10 yr event 2.09 hrs, Volume= 3,891 cf
Outflow Primary			2.09 hrs, Volume= 3,891 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 3,891 cf
Routing Peak Ele	by Dyn-St	or-Ind method, ⁻ @ 12.11 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	20.82'	12.0" Round Culvert L= $65.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.82' / 20.50'$ S= $0.0049' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

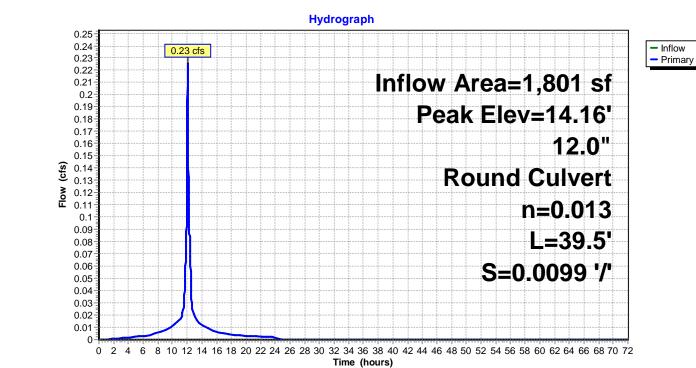
Primary OutFlow Max=1.21 cfs @ 12.09 hrs HW=21.52' TW=21.07' (Dynamic Tailwater) -1=Culvert (Outlet Controls 1.21 cfs @ 2.90 fps)


Pond CB16:

Summary for Pond CB23:

Inflow Area =			36.12% Impervious, Inflow Depth = 5.01" for 10 yr event			
Inflow	=	0.45 cfs @ 12	2.08 hrs, Volume= 1,511 cf			
Outflow	=	0.45 cfs @ 12	2.08 hrs, Volume= 1,511 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	0.45 cfs @ 12	2.08 hrs, Volume= 1,511 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 13.61' @ 12.08 hrs Flood Elev= 16.16'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	13.20'	12.0" Round Culvert L= 15.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $13.20' / 13.13'$ S= 0.0045 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

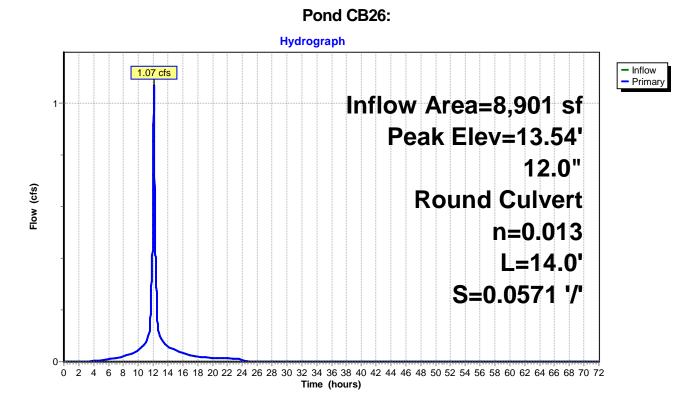
Primary OutFlow Max=0.44 cfs @ 12.08 hrs HW=13.61' TW=12.20' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 0.44 cfs @ 2.19 fps)


Pond CB23:

Summary for Pond CB24:

Inflow Area =		, ,	6.84% Impervious, Inflow Depth = 5.25	" for 10 yr event		
Inflow	=	0.23 cfs @ 12	.08 hrs, Volume= 787 cf			
Outflow	=	0.23 cfs @ 12	.08 hrs, Volume= 787 cf, Att	en= 0%, Lag= 0.0 min		
Primary	=	0.23 cfs @ 12	.08 hrs, Volume= 787 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 14.16' @ 12.08 hrs Flood Elev= 18.42'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	13.92'	12.0" Round Culvert L= 39.5 ' CPP, s Inlet / Outlet Invert= 13.92 ' / 13.53 ' S= $n = 0.013$ Corrugated PE, smooth interior	0.0099 '/' Cc= 0.900		

Primary OutFlow Max=0.23 cfs @ 12.08 hrs HW=14.16' TW=12.20' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 0.23 cfs @ 2.35 fps)

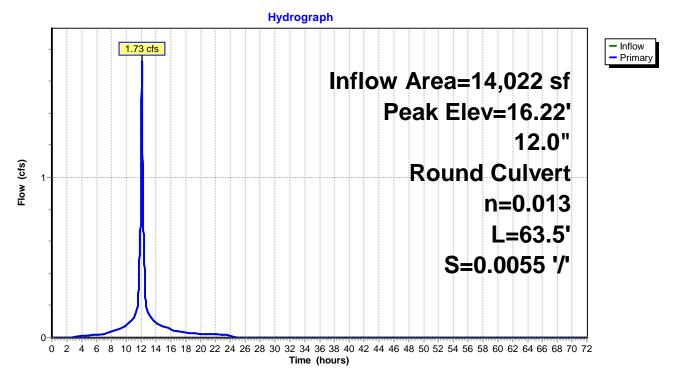


Pond CB24:

Summary for Pond CB26:

Inflow A Inflow Outflow Primary	=	1.07 cfs @ 12 1.07 cfs @ 12	80.64% Impervious, Inflow Depth = 4.79" for 10 yr event 2.08 hrs, Volume= 3,552 cf 2.08 hrs, Volume= 3,552 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 3,552 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 13.54' @ 12.08 hrs Flood Elev= 18.43'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	13.00'	12.0" Round Culvert L= 14.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $13.00' / 12.20'$ S= 0.0571 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

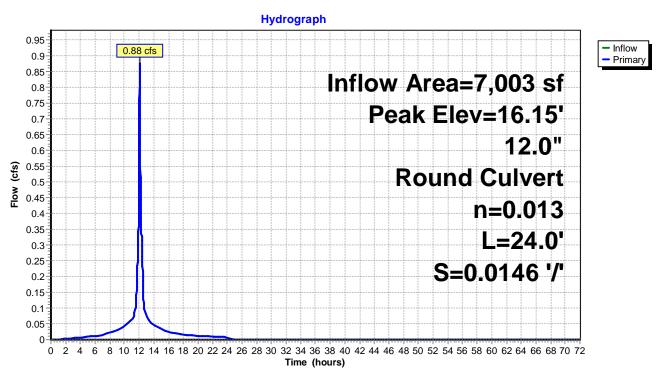
Primary OutFlow Max=1.07 cfs @ 12.08 hrs HW=13.54' TW=12.77' (Dynamic Tailwater) ☐—1=Culvert (Inlet Controls 1.07 cfs @ 2.49 fps)



Summary for Pond CB33:

Inflow A Inflow Outflow Primary	= =	1.73 cfs @ 12 1.73 cfs @ 12	37.36% Impervious, Inflow Depth = 5.01" for 10 yr event 2.08 hrs, Volume= 5,859 cf 2.08 hrs, Volume= 5,859 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 5,859 cf		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 16.22' @ 12.10 hrs Flood Elev= 19.26'					
Device	Routing	Invert	Outlet Devices		
#1	Primary	15.00'	12.0" Round Culvert L= 63.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 15.00' / 14.65' S= 0.0055 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

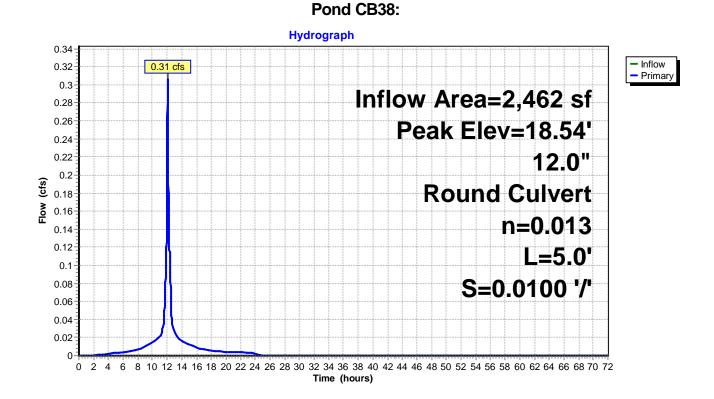
Primary OutFlow Max=1.63 cfs @ 12.08 hrs HW=16.20' TW=15.97' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 1.63 cfs @ 2.20 fps)


Pond CB33:

Summary for Pond CB34:

Inflow A Inflow Outflow Primary	= =	0.88 cfs @ 12 0.88 cfs @ 12	96.19% Impervious, Inflow Depth = 5.25" for 10 yr event 2.08 hrs, Volume= 3,061 cf 2.08 hrs, Volume= 3,061 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 3,061 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 16.15' @ 12.10 hrs Flood Elev= 19.74'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	15.50'	12.0" Round Culvert L= 24.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $15.50' / 15.15'$ S= 0.0146 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

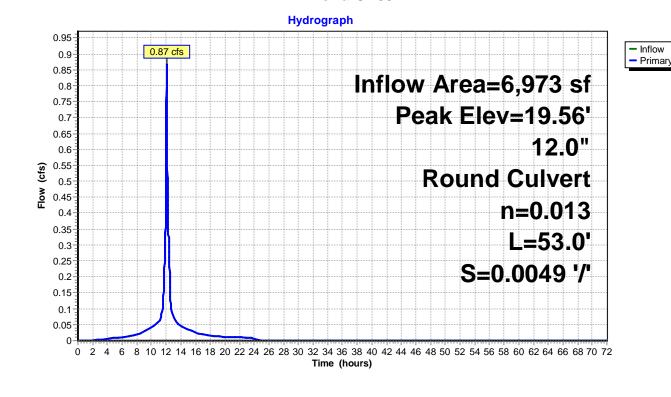
Primary OutFlow Max=0.81 cfs @ 12.08 hrs HW=16.14' TW=15.97' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.81 cfs @ 2.19 fps)



Pond CB34:

Summary for Pond CB38:

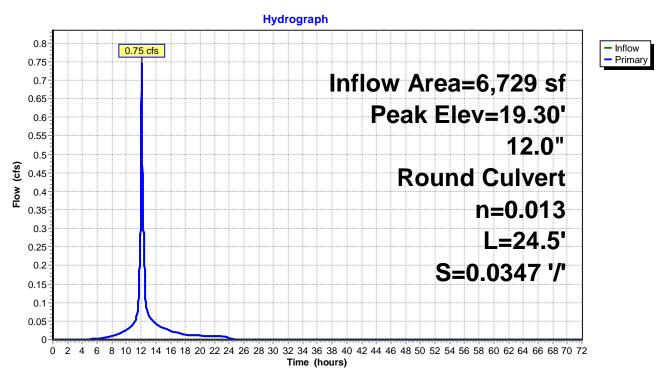
Inflow Area =		2,462 sf, 8	9.85% Impervious, Inflow Depth = 5.13" for 10 yr event			
Inflow	=	0.31 cfs @ 12	.08 hrs, Volume= 1,052 cf			
Outflow	=	0.31 cfs @ 12	.08 hrs, Volume= 1,052 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	0.31 cfs @ 12	1,052 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 18.54' @ 12.09 hrs Flood Elev= 22.07'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	18.00'	12.0" Round Culvert $L= 5.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 18.00' / 17.95' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			


Primary OutFlow Max=0.29 cfs @ 12.08 hrs HW=18.53' TW=18.51' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.29 cfs @ 0.99 fps)

Summary for Pond CB39:

Inflow A Inflow Outflow Primary	=	0.87 cfs @ 12 0.87 cfs @ 12	02.96% Impervious, Inflow Depth = 5.13" for 10 yr event 2.08 hrs, Volume= 2,981 cf 2.08 hrs, Volume= 2,981 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 2,981 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.56' @ 12.08 hrs Flood Elev= 23.28'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	19.00'	12.0" Round Culvert L= 53.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.00' / 18.74'$ S= $0.0049' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=0.86 cfs @ 12.08 hrs HW=19.56' TW=18.51' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 0.86 cfs @ 2.74 fps)

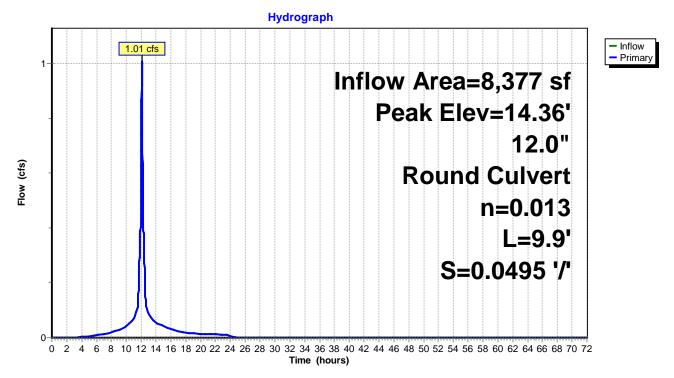


Pond CB39:

Summary for Pond CB4:

Inflow A Inflow Outflow Primary	= =	0.75 cfs @ 12 0.75 cfs @ 12	56.26% Impervious, Inflow Depth = 4.24" for 10 yr event 2.09 hrs, Volume= 2,378 cf 2.09 hrs, Volume= 2,378 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 2,378 cf
Routing Peak Ele	by Dyn-St	tor-Ind method, ⁻ @ 12.09 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	18.56'	12.0" Round Culvert L= 24.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.56' / 17.71'$ S= $0.0347' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

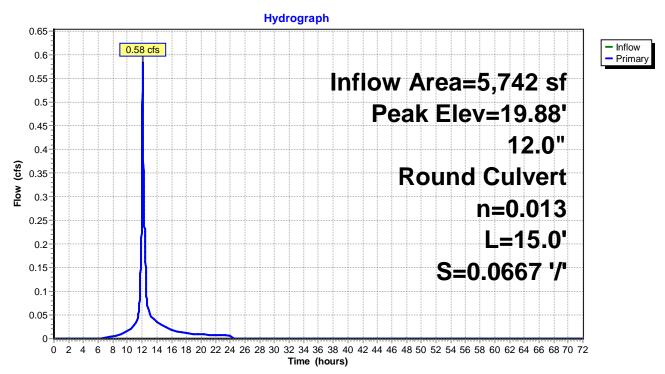
Primary OutFlow Max=0.70 cfs @ 12.09 hrs HW=19.29' TW=19.21' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.70 cfs @ 1.57 fps)


Pond CB4:

Summary for Pond CB43:

Inflow Area =		, ,	9.03% Impervious, Inflow Depth = 4.79" for 10 yr event			
Inflow	=	1.01 cfs @ 12	2.08 hrs, Volume= 3,343 cf			
Outflow	=	1.01 cfs @ 12	2.08 hrs, Volume= 3,343 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	1.01 cfs @ 12	2.08 hrs, Volume= 3,343 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 14.36' @ 12.08 hrs Flood Elev= 22.42'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	13.84'	12.0" Round Culvert L= $9.9'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $13.84' / 13.35'$ S= $0.0495 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

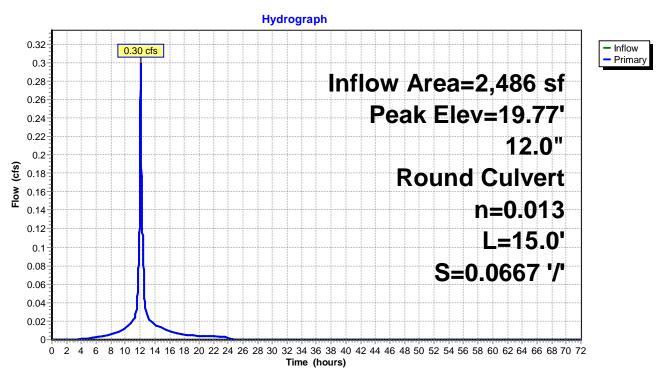
Primary OutFlow Max=1.01 cfs @ 12.08 hrs HW=14.36' TW=13.85' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 1.01 cfs @ 2.45 fps)


Pond CB43:

Summary for Pond CB45:

Inflow Area =			10.56% Impervious, Inflow Depth = 3.82" for 10 yr event			
Inflow	=	0.58 cfs @ 12	2.09 hrs, Volume= 1,830 cf			
Outflow	=	0.58 cfs @ 12	2.09 hrs, Volume= 1,830 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	0.58 cfs @ 12	2.09 hrs, Volume= 1,830 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.88' @ 12.09 hrs Flood Elev= 24.90'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	19.50'	12.0" Round Culvert L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.50' / 18.50'$ S= $0.0667 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=0.58 cfs @ 12.09 hrs HW=19.88' TW=14.50' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.58 cfs @ 2.11 fps)

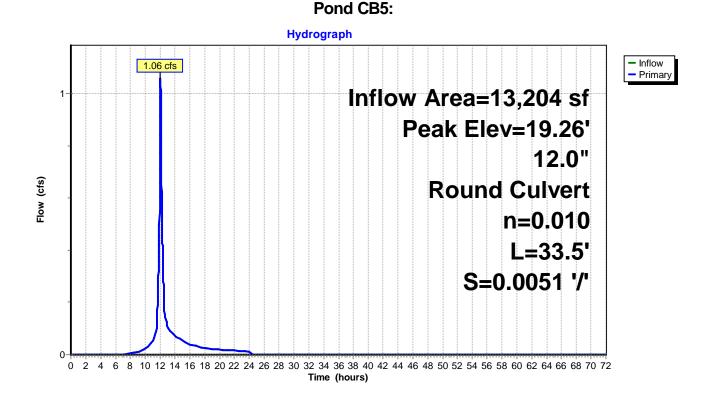


Pond CB45:

Summary for Pond CB46:

Inflow A Inflow Outflow Primary	= =	0.30 cfs @ 12 0.30 cfs @ 12	78.32% Impervious, Inflow Depth = 4.79" for 10 yr event 2.08 hrs, Volume= 992 cf 2.08 hrs, Volume= 992 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 992 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.77' @ 12.08 hrs Flood Elev= 24.90'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	19.50'	12.0" Round Culvert L= 15.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.50' / 18.50'$ S= $0.0667 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

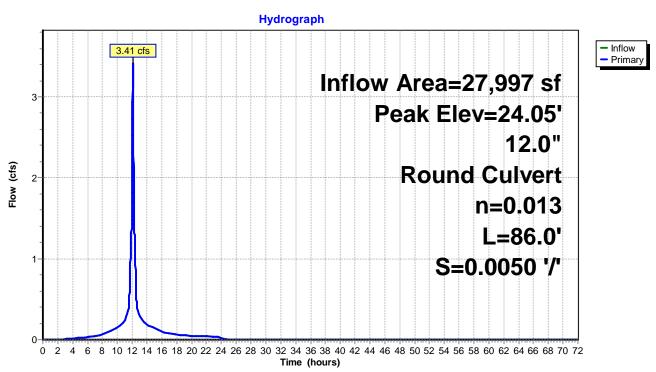
Primary OutFlow Max=0.30 cfs @ 12.08 hrs HW=19.77' TW=14.49' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 0.30 cfs @ 1.76 fps)



Pond CB46:

Summary for Pond CB5:

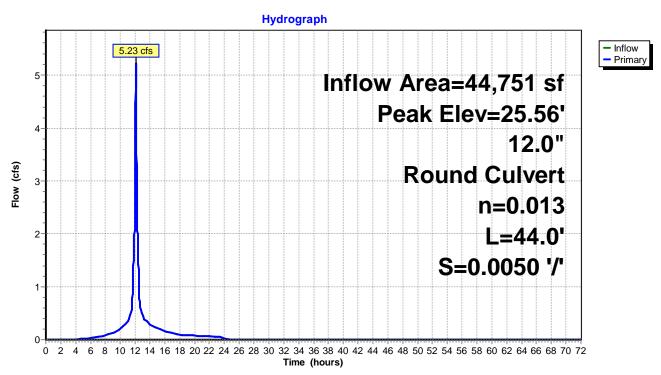
Inflow Area = 13,204 sf, 16.74% Impervious, Inflow Depth = 3.23" for 10 yr event Inflow 1.06 cfs @ 12.01 hrs. Volume= 3.551 cf = Outflow 1.06 cfs @ 12.01 hrs, Volume= 3,551 cf, Atten= 0%, Lag= 0.0 min = Primary 1.06 cfs @ 12.01 hrs, Volume= 3,551 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.26' @ 12.09 hrs Flood Elev= 20.32'Device Routing Invert Outlet Devices 12.0" Round Culvert L= 33.5' CPP, square edge headwall, Ke= 0.500 17.60' #1 Primary Inlet / Outlet Invert= 17.60' / 17.43' S= 0.0051 '/' Cc= 0.900 n= 0.010 PVC, smooth interior, Flow Area= 0.79 sf


Primary OutFlow Max=0.00 cfs @ 12.01 hrs HW=18.75' TW=18.76' (Dynamic Tailwater) -1=Culvert (Controls 0.00 cfs)

Summary for Pond CB53:

Inflow Area = 27,997 sf, 82.23% Impervious, Inflow Depth = 4.90" for 10 yr event Inflow 3.41 cfs @ 12.08 hrs. Volume= 11.434 cf = Outflow 3.41 cfs @ 12.08 hrs, Volume= 11,434 cf, Atten= 0%, Lag= 0.0 min = Primary 3.41 cfs @ 12.08 hrs, Volume= 11,434 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 24.05' @ 12.09 hrs Flood Elev= 25.14' Device Routing Invert Outlet Devices 12.0" Round Culvert L= 86.0' CPP, square edge headwall, Ke= 0.500 Primary 20.38' #1 Inlet / Outlet Invert= 20.38' / 19.95' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.31 cfs @ 12.08 hrs HW=23.99' TW=22.83' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 3.31 cfs @ 4.21 fps)

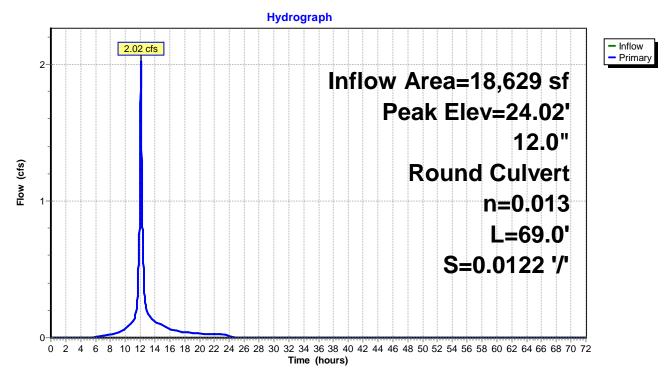


Pond CB53:

Summary for Pond CB55:

Inflow A Inflow Outflow Primary	= =	5.23 cfs @ 12 5.23 cfs @ 12	69.67% Impervious, Inflow Depth = 4.57" for 10 yr event 2.08 hrs, Volume= 17,029 cf 2.08 hrs, Volume= 17,029 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 17,029 cf		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 25.56' @ 12.10 hrs Flood Elev= 23.71'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	20.24'	12.0" Round Culvert L= 44.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.24' / 20.02'$ S= $0.0050' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

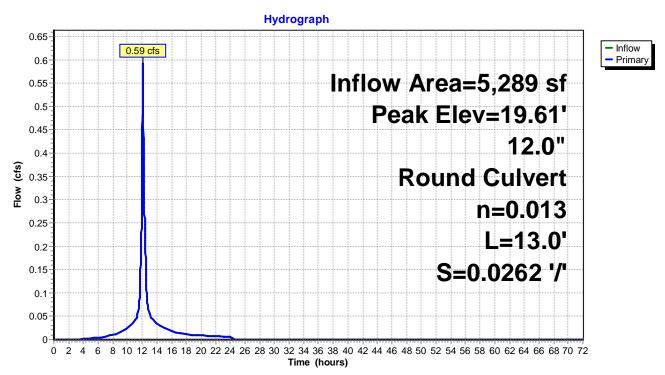
Primary OutFlow Max=5.02 cfs @ 12.08 hrs HW=25.42' TW=23.60' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 5.02 cfs @ 6.39 fps)


Pond CB55:

Summary for Pond CB56:

Inflow A Inflow Outflow	=	2.02 cfs @ 12	55.15% Impervious, Inflow Depth = 4.14" for 10 yr event 2.09 hrs, Volume= 6,420 cf 2.09 hrs, Volume= 6,420 cf, Atten= 0%, Lag= 0.0 min			
Primary			2.09 hrs, Volume= 6,420 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 24.02' @ 12.10 hrs Flood Elev= 24.43'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	20.86'	12.0" Round Culvert L= 69.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 20.86' / 20.02' S= 0.0122 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

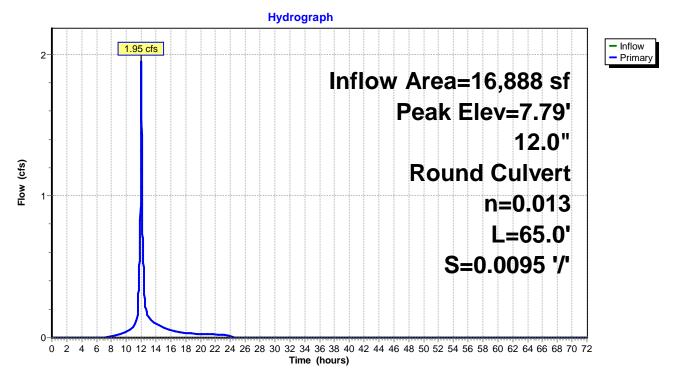
Primary OutFlow Max=1.62 cfs @ 12.09 hrs HW=23.85' TW=23.61' (Dynamic Tailwater) ☐—1=Culvert (Outlet Controls 1.62 cfs @ 2.06 fps)


Pond CB56:

Summary for Pond CB6:

	=	0.59 cfs @ 12 0.59 cfs @ 12	'6.01% Impervious, Inflow Depth = 4.68" for 10 yr event 2.11 hrs, Volume= 2,061 cf 2.11 hrs, Volume= 2,061 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	0.59 cfs @ 12	2.11 hrs, Volume= 2,061 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.61' @ 12.10 hrs Flood Elev= 22.65'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	17.83'	12.0" Round Culvert L= 13.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $17.83' / 17.49'$ S= 0.0262 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

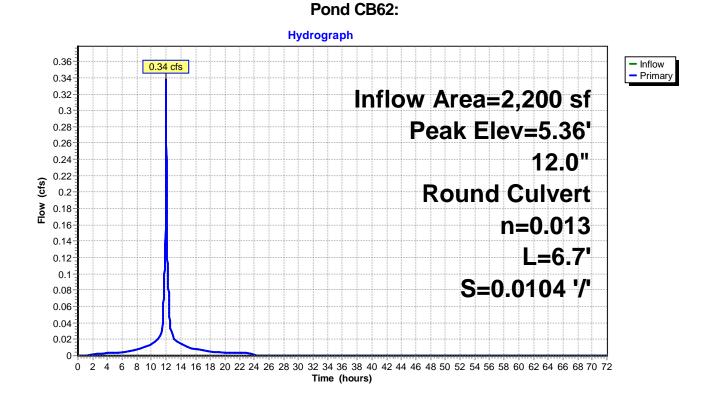
Primary OutFlow Max=0.92 cfs @ 12.11 hrs HW=19.60' TW=19.55' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.92 cfs @ 1.17 fps)


Pond CB6:

Summary for Pond CB61:

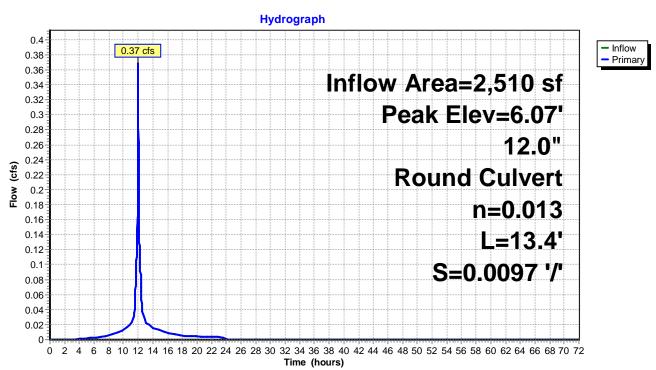
Inflow A Inflow Outflow Primary	= =	1.95 cfs @ 12 1.95 cfs @ 12	28.75% Impervious, Inflow Depth = 3.52" for 10 yr event 2.00 hrs, Volume= 4,955 cf 2.00 hrs, Volume= 4,955 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 4,955 cf
Peak Ele		@ 12.00 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	7.00'	12.0" Round Culvert L= 65.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.00' / 6.38'$ S= $0.0095 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.94 cfs @ 12.00 hrs HW=7.79' TW=4.00' (Dynamic Tailwater) ☐—1=Culvert (Barrel Controls 1.94 cfs @ 4.00 fps)


Pond CB61:

Summary for Pond CB62:

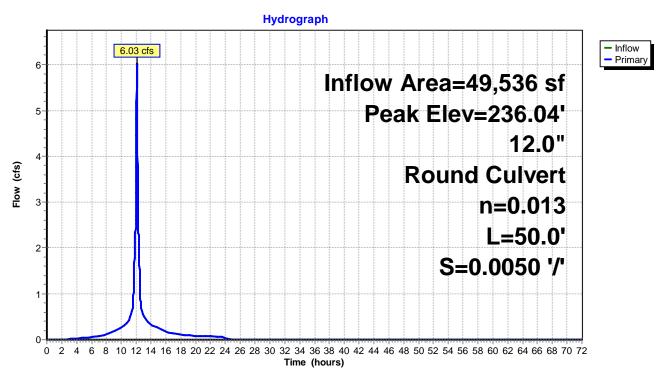
Inflow Area =		2,200 sf,10	0.00% Impervious, Inflow Depth = 5.36" for 10 yr event			
Inflow	=	0.34 cfs @ 12	2.00 hrs, Volume= 983 cf			
Outflow	=	0.34 cfs @ 12	2.00 hrs, Volume= 983 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	0.34 cfs @ 12	2.00 hrs, Volume= 983 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 5.36' @ 12.15 hrs Flood Elev= 12.22'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	4.48'	12.0" Round Culvert $L= 6.7'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $4.48' / 4.41'$ S= $0.0104' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			


Primary OutFlow Max=0.07 cfs @ 12.00 hrs HW=4.94' TW=4.93' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.07 cfs @ 0.30 fps)

Summary for Pond CB63:

Inflow Area =			79.04% Impervious, Inflow Depth = 4.79° for 10 yr event		
Inflow Outflow	=		2.00 hrs, Volume= 1,002 cf 2.00 hrs, Volume= 1,002 cf, Atten= 0%, Lag= 0.0 min		
Primary			2.00 hrs, Volume= 1,002 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 6.07' @ 12.16 hrs Flood Elev= 13.64'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	5.05'	12.0" Round Culvert L= 13.4' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 5.05' / 4.92' S= 0.0097 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=0.11 cfs @ 12.00 hrs HW=5.53' TW=5.52' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.11 cfs @ 0.44 fps)

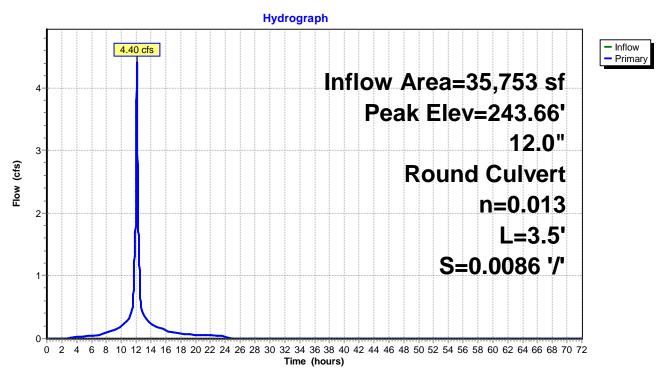


Pond CB63:

Summary for Pond CB65:

Inflow Area =		49,536 sf, 8	34.69% Impervious, Inflow Depth = 4.90" for 10 yr event
Inflow	=	6.03 cfs @ 12	2.08 hrs, Volume= 20,230 cf
Outflow	=	6.03 cfs @ 12	2.08 hrs, Volume= 20,230 cf, Atten= 0%, Lag= 0.0 min
Primary	=	6.03 cfs @ 12	2.08 hrs, Volume= 20,230 cf
Peak Ele		4' @ 12.13 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	19.37'	12.0" Round Culvert L= $50.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.37' / 19.12'$ S= $0.0050' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=175.72' TW=191.28' (Dynamic Tailwater) ↓ 1=Culvert (Controls 0.00 cfs)

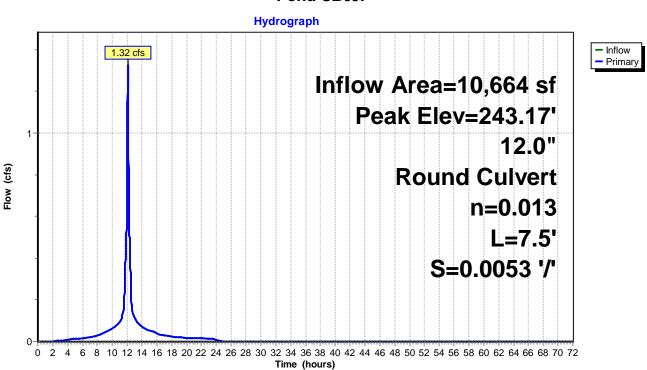


Pond CB65:

Summary for Pond CB67:

Inflow Area =		35,753 sf, 8	38.57% Impervious, Inflow Depth = 5.01" for 10 yr event			
Inflow	=	4.40 cfs @ 12	2.08 hrs, Volume= 14,940 cf			
Outflow	=	4.40 cfs @ 12	2.08 hrs, Volume= 14,940 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	4.40 cfs @ 12	2.08 hrs, Volume= 14,940 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 243.66' @ 12.14 hrs Flood Elev= 24.24'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	20.60'	12.0" Round Culvert L= $3.5'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.60' / 20.57'$ S= $0.0086 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=167.08' TW=184.76' (Dynamic Tailwater) ↓ 1=Culvert (Controls 0.00 cfs)

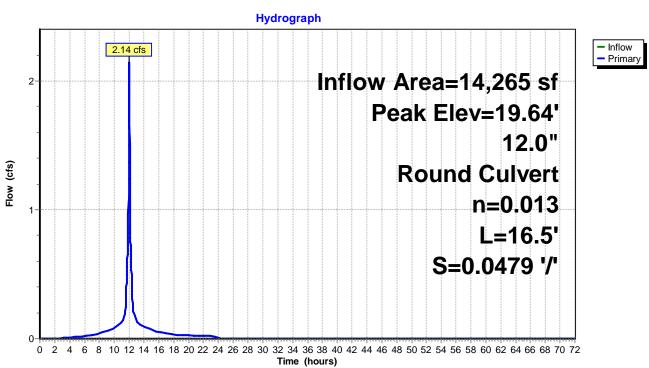


Pond CB67:

Summary for Pond CB69:

Inflow A Inflow Outflow Primary	= =	1.32 cfs @ 12 1.32 cfs @ 12	11.11% Impervious, Inflow Depth = 5.13" for 10 yr event 2.08 hrs, Volume= 4,558 cf 2.08 hrs, Volume= 4,558 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 4,558 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 243.17' @ 12.15 hrs Flood Elev= 25.12'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	20.93'	12.0" Round Culvert L= 7.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.93' / 20.89'$ S= $0.0053' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=147.29' TW=165.90' (Dynamic Tailwater) ☐ 1=Culvert (Controls 0.00 cfs)

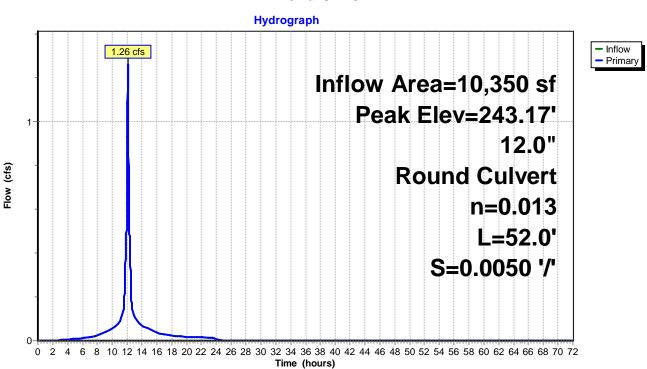


Pond CB69:

Summary for Pond CB7:

Inflow A Inflow	rea = =		36.53% Impervious, Inflow Depth = 5.01" for 10 yr event 2.00 hrs, Volume= 5,961 cf
		2.14 cfs @ 12	2.00 hrs, Volume= 5,961 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 5,961 cf
Routing Peak Ele	by Dyn-St	tor-Ind method, ⁻ ' @ 12.10 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	18.28'	12.0" Round Culvert L= 16.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 18.28' / 17.49' S= 0.0479 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.86 cfs @ 12.00 hrs HW=19.23' TW=18.94' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 1.86 cfs @ 3.13 fps)

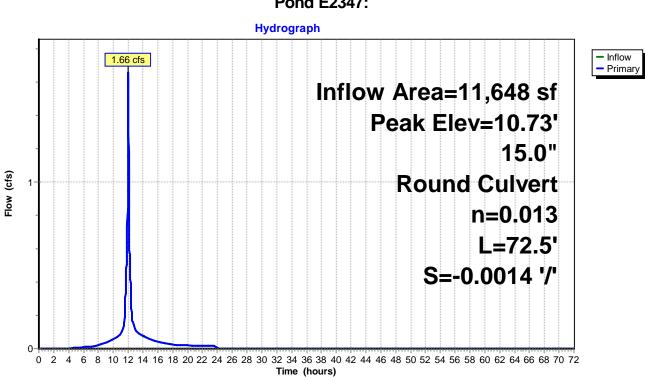


Pond CB7:

Summary for Pond CB70:

Inflow A Inflow Outflow Primary	=	1.26 cfs @ 12 1.26 cfs @ 12	33.59% Impervious, Inflow Depth = 4.90" for 10 yr event 2.08 hrs, Volume= 4,227 cf 2.08 hrs, Volume= 4,227 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 4,227 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 243.17' @ 12.15 hrs Flood Elev= 25.17'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	21.15'	12.0" Round Culvert L= 52.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $21.15' / 20.89'$ S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=147.95' TW=166.59' (Dynamic Tailwater) ←1=Culvert (Controls 0.00 cfs)

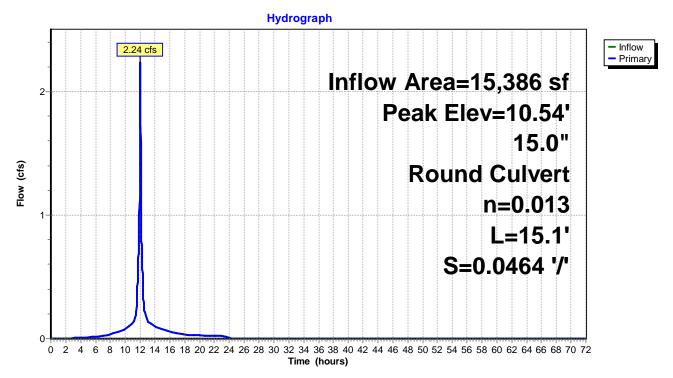


Pond CB70:

Summary for Pond E2347:

Inflow Area =		, ,	68.94% Impervious, Inflow Depth = 4.57" for 10 yr event			
	=	1.66 cfs @ 12	2.00 hrs, Volume= 4,432 cf			
Outflow	=	1.66 cfs @ 12	2.00 hrs, Volume= 4,432 cf, Atten= 0%, Lag= 0.0 min			
Primary	=	1.66 cfs @ 12	2.00 hrs, Volume= 4,432 cf			
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 10.73' @ 12.01 hrs Flood Elev= 13.80'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	9.80'	15.0" Round Culvert L= 72.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.70' / 9.80' S= -0.0014 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf			

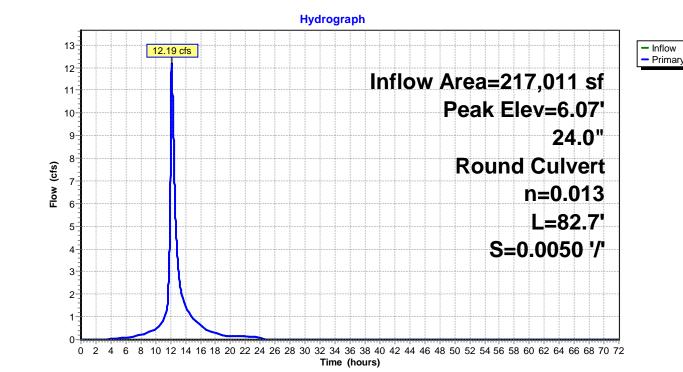
Primary OutFlow Max=1.57 cfs @ 12.00 hrs HW=10.72' TW=10.54' (Dynamic Tailwater) ☐—1=Culvert (Outlet Controls 1.57 cfs @ 1.99 fps)


Pond E2347:

Summary for Pond E2348:

Inflow A Inflow Outflow Primary	= =	2.24 cfs @ 12 2.24 cfs @ 12	76.49% Impervious, Inflow Depth = 4.76" for 10 yr event 2.00 hrs, Volume= 6,103 cf 2.00 hrs, Volume= 6,103 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 6,103 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 10.54' @ 12.00 hrs Flood Elev= 13.60'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	9.80'	15.0" Round Culvert L= 15.1' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $9.80' / 9.10'$ S= $0.0464 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.23 sf			

Primary OutFlow Max=2.23 cfs @ 12.00 hrs HW=10.54' TW=5.52' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.23 cfs @ 2.94 fps)

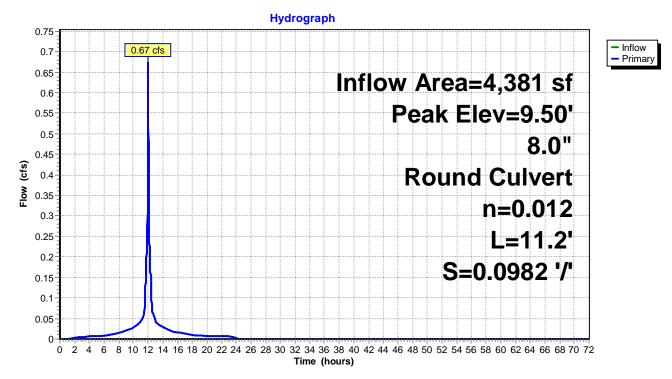

Pond E2348:

Summary for Pond E2349:

Inflow Area = 217,011 sf, 77.52% Impervious, Inflow Depth = 3.39" for 10 yr event Inflow 12.19 cfs @ 12.14 hrs. Volume= 61.228 cf = Outflow 12.19 cfs @ 12.14 hrs, Volume= 61,228 cf, Atten= 0%, Lag= 0.0 min = Primary 12.19 cfs @ 12.14 hrs, Volume= 61,228 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 6.07' @ 12.15 hrs Flood Elev= 13.94' Device Routing Invert Outlet Devices 24.0" Round Culvert L= 82.7' CPP, square edge headwall, Ke= 0.500 #1 Primary 3.92' Inlet / Outlet Invert= 3.92' / 3.51' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=12.14 cfs @ 12.14 hrs HW=6.07' TW=5.36' (Dynamic Tailwater) -1=Culvert (Outlet Controls 12.14 cfs @ 4.48 fps)

Pond E2349:

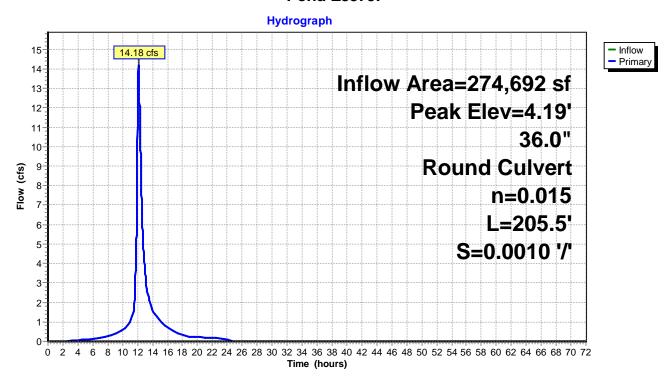

Summary for Pond E3578A:

Inflow Area	a =	4,381 sf,100.00% Impervious, Inflow Depth = 5.36" for 10 yr	event
Inflow	=	0.67 cfs @ 12.00 hrs, Volume= 1,958 cf	
Outflow	=	0.67 cfs @ 12.00 hrs, Volume= 1,958 cf, Atten= 0%, Lag	J= 0.0 min
Primary	=	0.67 cfs @ 12.00 hrs, Volume= 1,958 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 9.50' @ 12.00 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	9.00'	8.0" Round Culvert L= 11.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.00' / 7.90' S= 0.0982 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.35 sf

Primary OutFlow Max=0.67 cfs @ 12.00 hrs HW=9.50' TW=8.59' (Dynamic Tailwater) -1=Culvert (Inlet Controls 0.67 cfs @ 2.40 fps)

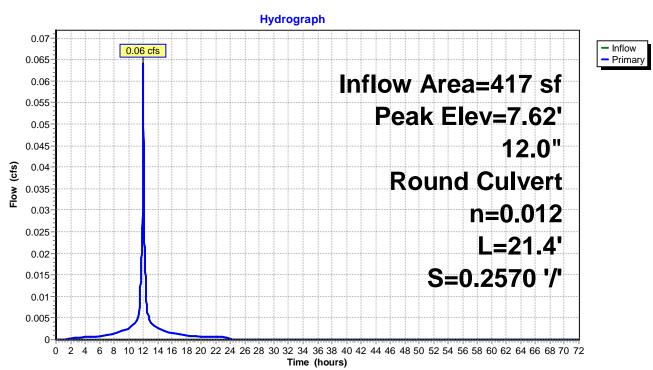

Pond E3578A:

Summary for Pond E3579:

Inflow Area = 274,692 sf, 72.93% Impervious, Inflow Depth = 3.16" for 10 yr event Inflow 14.18 cfs @ 12.13 hrs. Volume= 72.393 cf = 14.18 cfs @ 12.13 hrs, Volume= Outflow = 72,393 cf, Atten= 0%, Lag= 0.0 min Primary = 14.18 cfs @ 12.13 hrs, Volume= 72,393 cf Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 4.19' @ 12.14 hrs Flood Elev= 10.77' Invert Outlet Devices

Device	Routing	Invert	Outlet Devices
#1	Primary	2.00'	36.0" Round Culvert
	-		L= 205.5' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 2.00' / 1.80' S= 0.0010 '/' Cc= 0.900 n= 0.015 Brickwork, Flow Area= 7.07 sf

Primary OutFlow Max=14.11 cfs @ 12.13 hrs HW=4.19' TW=3.52' (Dynamic Tailwater) -1=Culvert (Outlet Controls 14.11 cfs @ 3.57 fps)

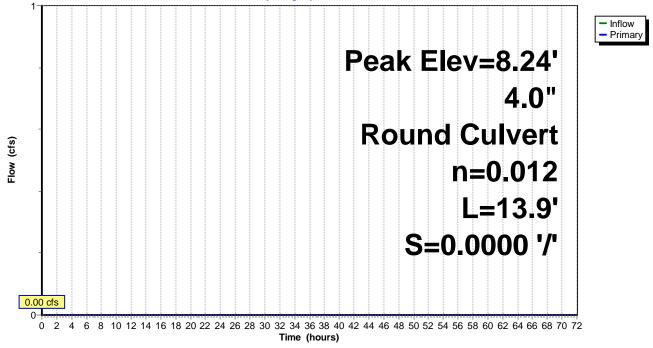


Pond E3579:

Summary for Pond E3600:

Inflow A Inflow Outflow Primary	= =	0.06 cfs @ 12 0.06 cfs @ 12	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 186 cf 2.00 hrs, Volume= 186 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 186 cf				
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.62' @ 12.00 hrs Flood Elev= 11.10'						
Device	Routing	Invert	Outlet Devices				
#1	Primary	7.50'	12.0" Round Culvert L= 21.4' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.50' / 2.00'$ S= 0.2570 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf				

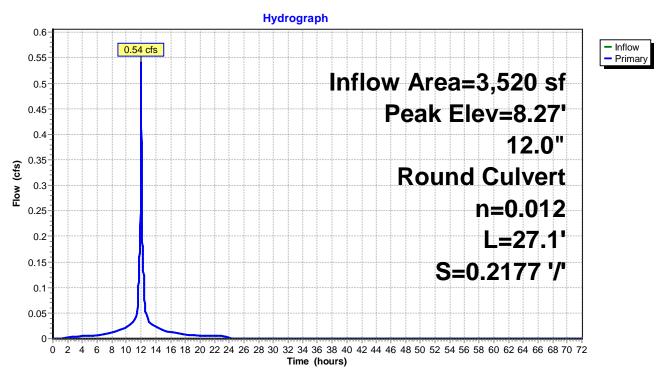
Primary OutFlow Max=0.06 cfs @ 12.00 hrs HW=7.62' TW=4.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.06 cfs @ 1.18 fps)



Pond E3600:

Summary for Pond E3672:

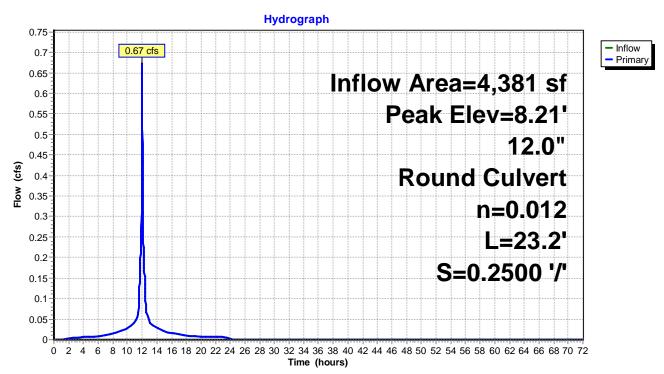
Inflow Outflow Primary	= = =	0.00 cfs @	0.00 hrs, Volume= 0.00 hrs, Volume= 0.00 hrs, Volume=	0 cf 0 cf, Atten= 0%, Lag= 0.0 min 0 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 8.24' @ 11.99 hrs Flood Elev= 11.90'					
Device	Routing	Inver	Outlet Devices		
#1	Primary	8.20	Inlet / Outlet Invert= 8.20' /	3.9' CPP, square edge headwall, Ke= 0.500 '8.20' S= 0.0000 '/' Cc= 0.900 smooth interior, Flow Area= 0.09 sf	
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=8.20' TW=7.90' (Dynamic Tailwater) ↑ 1=Culvert (Controls 0.00 cfs)					
Pond E3672:					


Hydrograph

Summary for Pond E3693:

Inflow Area = Inflow =		, ,	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 1,573 cf			
Outflow	=		2.00 hrs, Volume= 1,573 cf, Atten= 0%, Lag= 0.0 min			
Primary			2.00 hrs, Volume= 1,573 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 8.27' @ 12.00 hrs Flood Elev= 11.00'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	7.90'	12.0" Round Culvert L= 27.1' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.90' / 2.00'$ S= $0.2177 '/$ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=0.54 cfs @ 12.00 hrs HW=8.27' TW=4.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.54 cfs @ 2.06 fps)

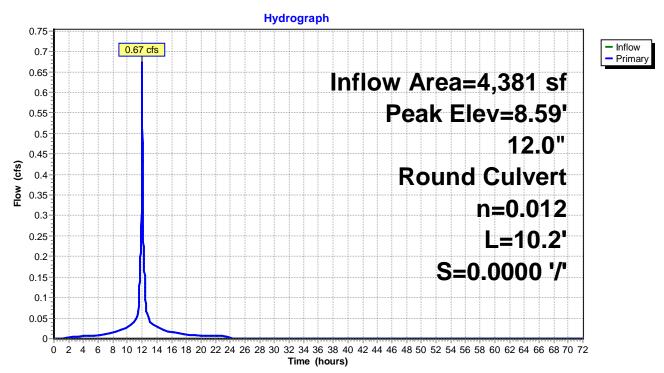


Pond E3693:

Summary for Pond E3756:

Inflow A Inflow Outflow Primary	= =	0.67 cfs @ 12 0.67 cfs @ 12	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 1,958 cf 2.00 hrs, Volume= 1,958 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 1,958 cf			
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 8.21' @ 12.00 hrs Flood Elev= 11.60'					
Device	Routing	Invert	Outlet Devices			
#1	Primary	7.80'	12.0" Round Culvert L= 23.2' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.80' / 2.00'$ S= 0.2500 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf			

Primary OutFlow Max=0.67 cfs @ 12.00 hrs HW=8.21' TW=4.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.67 cfs @ 2.19 fps)

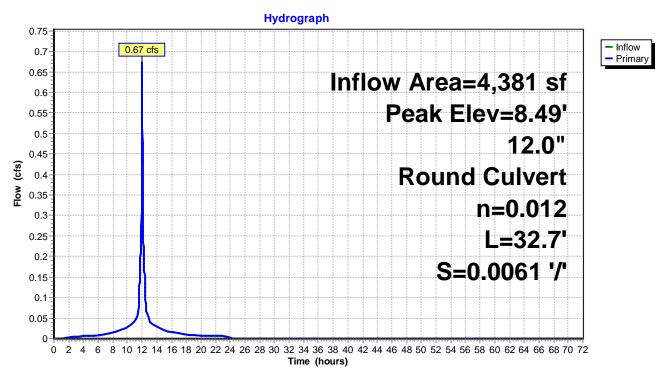


Pond E3756:

Summary for Pond E3758:

Inflow A Inflow Outflow Primary	= =	0.67 cfs @ 12 0.67 cfs @ 12	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 1,958 cf 2.00 hrs, Volume= 1,958 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 1,958 cf				
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 8.59' @ 12.01 hrs Flood Elev= 10.90'						
Device	Routing	Invert	Outlet Devices				
#1	Primary	8.00'	12.0" Round Culvert L= $10.2'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $8.00' / 8.00'$ S= $0.0000' / Cc= 0.900$ n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf				

Primary OutFlow Max=0.63 cfs @ 12.00 hrs HW=8.59' TW=8.49' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.63 cfs @ 1.89 fps)

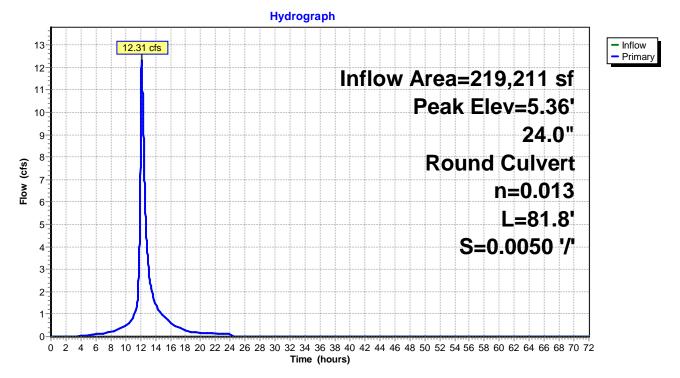


Pond E3758:

Summary for Pond E3760:

Inflow A Inflow Outflow Primary	= =	0.67 cfs @ 12 0.67 cfs @ 12	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 1,958 cf 2.00 hrs, Volume= 1,958 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 1,958 cf		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 8.49' @ 12.00 hrs Flood Elev= 10.70'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	8.00'	12.0" Round Culvert L= $32.7'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $8.00' / 7.80'$ S= $0.0061 '/$ Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=0.66 cfs @ 12.00 hrs HW=8.49' TW=8.21' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.66 cfs @ 2.55 fps)


Pond E3760:

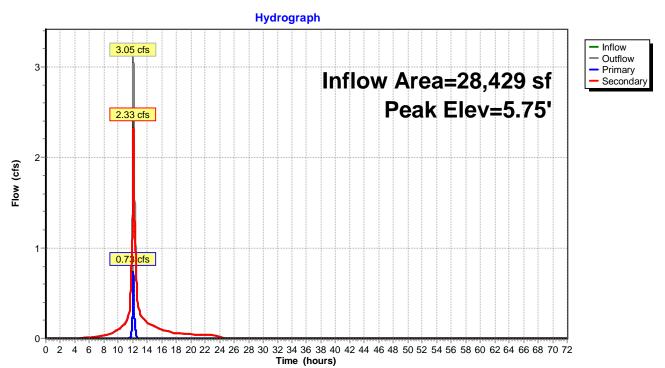
Summary for Pond E3772:

Inflow A Inflow Outflow Primary	= =	12.31 cfs @ 12.31	77.74% Impervious, Inflow Depth = 3.41" for 10 yr event 2.14 hrs, Volume= 62,212 cf 2.14 hrs, Volume= 62,212 cf, Atten= 0%, Lag= 0.0 min 2.14 hrs, Volume= 62,212 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 5.36' @ 12.14 hrs Flood Elev= 12.38'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	y 3.41'	24.0" Round Culvert L= 81.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $3.41' / 3.00'$ S= $0.0050' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf	

Primary OutFlow Max=12.30 cfs @ 12.14 hrs HW=5.36' TW=4.19' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 12.30 cfs @ 5.01 fps)

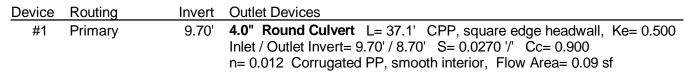
Pond E3772:

Summary for Pond E3866:

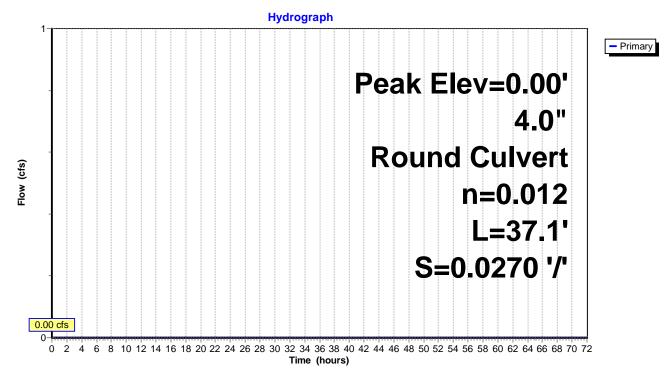

Inflow Area =	28,429 sf, 52.39% Impervious,	Inflow Depth = 4.09" for 10 yr event
Inflow =	3.05 cfs @ 12.09 hrs, Volume=	9,695 cf
Outflow =	3.05 cfs @ 12.09 hrs, Volume=	9,695 cf, Atten= 0%, Lag= 0.0 min
Primary =	0.73 cfs @ 12.08 hrs, Volume=	684 cf
Secondary =	2.33 cfs @ 12.09 hrs, Volume=	9,011 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 5.75' @ 12.08 hrs Flood Elev= 10.04'

Device	Routing	Invert	Outlet Devices
#1	Primary	5.40'	24.0" Round Culvert L= 49.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 5.40' / 3.00' S= 0.0490 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf
#2	Secondary	5.30'	42.0" W x 24.0" H Box Culvert
	-		L= 83.8' RCP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 5.30' / 5.00' S= 0.0036 '/' Cc= 0.900
			n= 0.012 Concrete pipe, finished, Flow Area= 7.00 sf


Primary OutFlow Max=0.73 cfs @ 12.08 hrs HW=5.75' TW=4.13' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.73 cfs @ 2.00 fps)

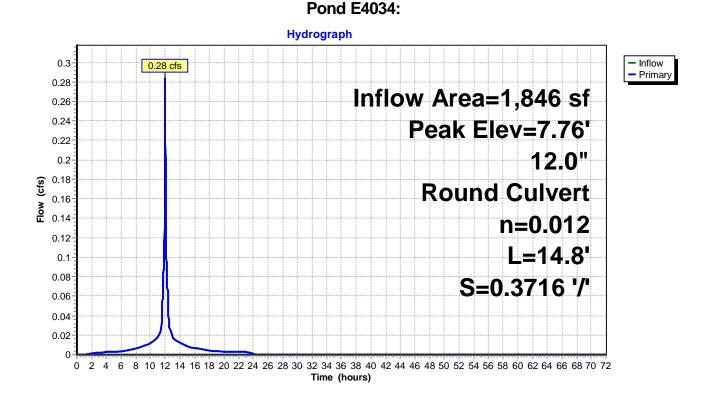
Secondary OutFlow Max=2.40 cfs @ 12.09 hrs HW=5.74' TW=5.52' (Dynamic Tailwater) -2=Culvert (Outlet Controls 2.40 cfs @ 2.06 fps)



Pond E3866:

Summary for Pond E3895:

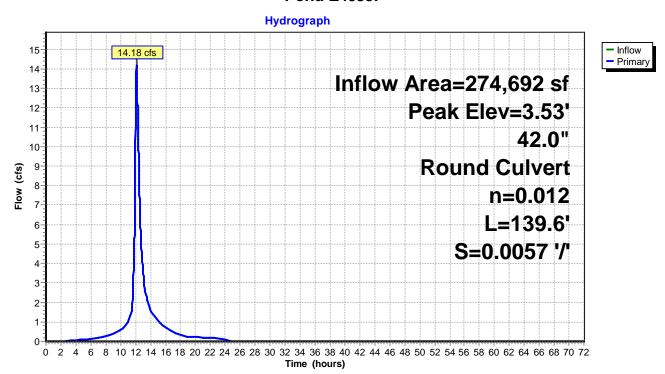
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=0.00' TW=8.20' (Dynamic Tailwater)



Pond E3895:

Summary for Pond E4034:

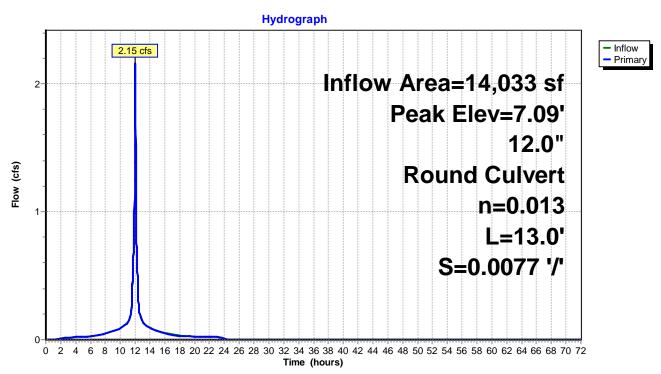
Inflow A Inflow Outflow Primary	= =	0.28 cfs @ 12 0.28 cfs @ 12	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event 2.00 hrs, Volume= 825 cf 2.00 hrs, Volume= 825 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 825 cf		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.76' @ 12.00 hrs Flood Elev= 10.80'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	7.50'	12.0" Round Culvert L= 14.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $7.50' / 2.00'$ S= 0.3716 '/' Cc= 0.900 n= 0.012 Corrugated PP, smooth interior, Flow Area= 0.79 sf		


Primary OutFlow Max=0.28 cfs @ 12.00 hrs HW=7.76' TW=4.00' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.28 cfs @ 1.74 fps)

Summary for Pond E4035:

Inflow A Inflow Outflow Primary	=	14.18 cfs @ 12 14.18 cfs @ 12	72.93% Impervious, Inflow Depth = 3.16" for 10 yr event 2.13 hrs, Volume= 72,393 cf 2.13 hrs, Volume= 72,393 cf, Atten= 0%, Lag= 0.0 min 2.13 hrs, Volume= 72,393 cf		
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 3.53' @ 12.14 hrs Flood Elev= 11.70'					
Device	Routing	Invert	Outlet Devices		
#1	Primary	1.80'	42.0" Round Culvert L= 139.6' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $1.80' / 1.00'$ S= $0.0057 '/$ ' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 9.62 sf		

Primary OutFlow Max=14.15 cfs @ 12.13 hrs HW=3.52' TW=2.80' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 14.15 cfs @ 4.38 fps)

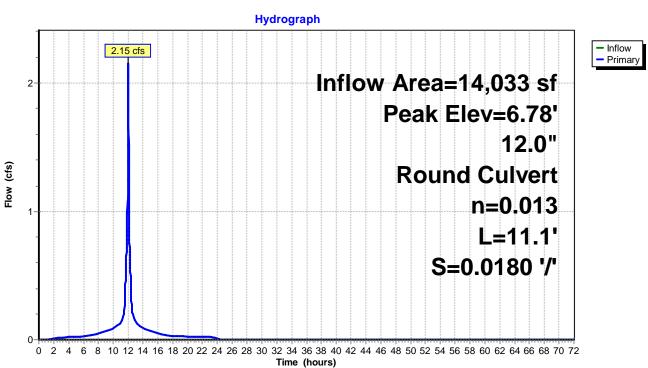


Pond E4035:

Summary for Pond E4081:

Inflow Area = 1		, ,	00.00% Impervious, Inflow Depth = 5.36" for 10 yr event		
Inflow	=	2.16 cfs @ 12	2.00 hrs, Volume= 6,271 cf		
Outflow	=	2.15 cfs @ 12	2.00 hrs, Volume= 6,271 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	2.15 cfs @ 12	2.00 hrs, Volume= 6,271 cf		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 7.09' @ 12.00 hrs Flood Elev= 8.70'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	5.80'	12.0" Round Culvert L= 13.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $5.80' / 5.70'$ S= $0.0077 '/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=2.06 cfs @ 12.00 hrs HW=7.08' TW=6.78' (Dynamic Tailwater) -1=Culvert (Inlet Controls 2.06 cfs @ 2.62 fps)

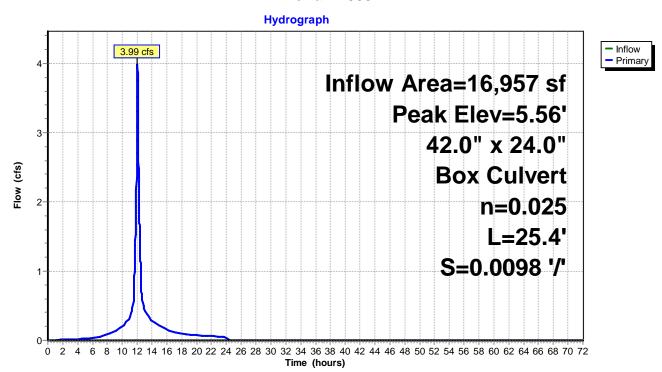


Pond E4081:

Summary for Pond E4082:

Inflow Area =			00.00% Impervious, Inflow Depth = 5.36" for 10 yr event	
Inflow	=	2.15 cfs @ 12	2.00 hrs, Volume= 6,271 cf	
Outflow	=	2.15 cfs @ 12	2.00 hrs, Volume= 6,271 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	2.15 cfs @ 12	2.00 hrs, Volume= 6,271 cf	
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 6.78' @ 12.00 hrs Flood Elev= 8.70'			
Device	Routing	Invert	Outlet Devices	
#1	Primary	5.90'	12.0" Round Culvert L= 11.1' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $5.90' / 5.70'$ S= $0.0180 '/'$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=2.15 cfs @ 12.00 hrs HW=6.78' TW=5.56' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 2.15 cfs @ 3.90 fps)

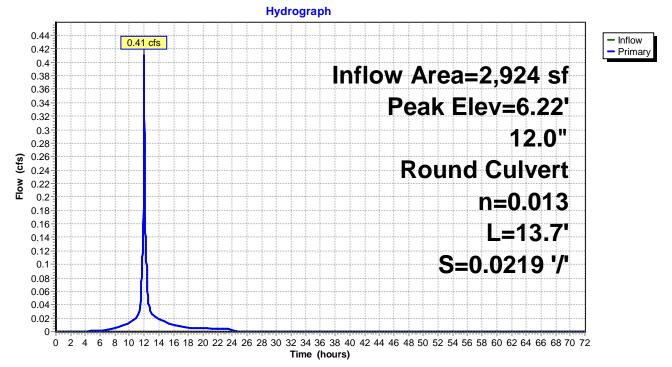


Pond E4082:

Summary for Pond E4083:

Inflow A Inflow Outflow Primary	=	3.99 cfs @ 12 3.99 cfs @ 12	4.44% Impervious, Inflow Depth = 11.58" for 10 yr event 2.00 hrs, Volume= 16,368 cf 2.00 hrs, Volume= 16,368 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 16,368 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 5.56' @ 12.00 hrs Flood Elev= 8.90'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	5.00'	42.0" W x 24.0" H Box Culvert L= 25.4' CMP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $5.00' / 4.75' S= 0.0098 '/' Cc= 0.900$ n= 0.025 Corrugated metal, Flow Area= 7.00 sf	

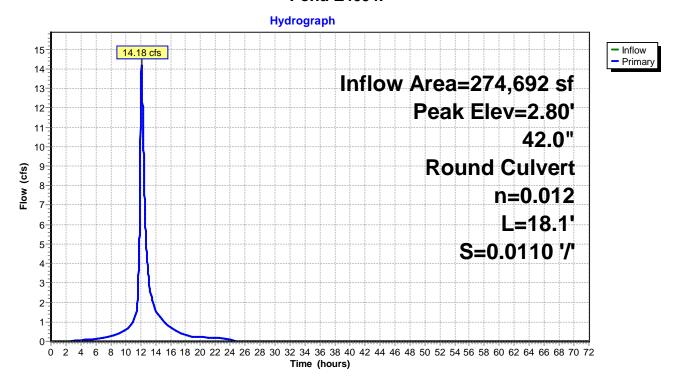
Primary OutFlow Max=3.96 cfs @ 12.00 hrs HW=5.56' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 3.96 cfs @ 2.69 fps)


Pond E4083:

Summary for Pond E4093:

Inflow A Inflow	rea = =		67.78% Impervious, Inflow Depth = 4.46" for 10 yr event 2.00 hrs, Volume= 1,086 cf
Outflow Primary			2.00 hrs, Volume= 1,086 cf, Atten= 0%, Lag= 0.0 min 2.00 hrs, Volume= 1,086 cf
Routing Peak Ele	by Dyn-St		Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	5.90'	12.0" Round Culvert L= 13.7' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $5.90' / 5.60'$ S= $0.0219 '/'$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.41 cfs @ 12.00 hrs HW=6.22' TW=5.56' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 0.41 cfs @ 1.92 fps)

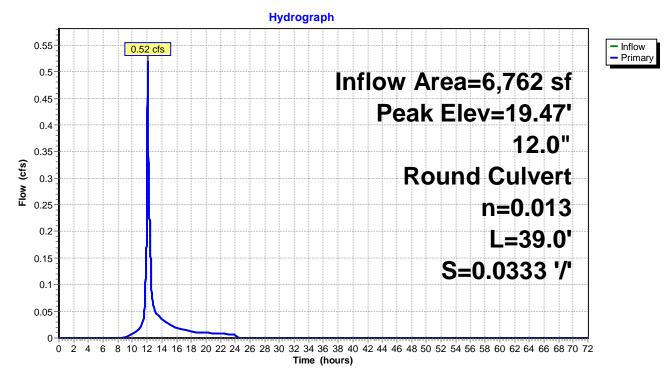

Pond E4093:

Summary for Pond E4604:

Inflow Area = 274,692 sf, 72.93% Impervious, Inflow Depth = 3.16" for 10 yr event Inflow 14.18 cfs @ 12.13 hrs. Volume= 72.393 cf = Outflow 14.18 cfs @ 12.13 hrs, Volume= 72,394 cf, Atten= 0%, Lag= 0.0 min = Primary = 14.18 cfs @ 12.13 hrs, Volume= 72.394 cf Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 2.80' @ 12.13 hrs Flood Elev= 10.30'Device Routing Invert Outlet Devices 42.0" Round Culvert #1 Primary 1.20' L= 18.1' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1.20' / 1.00' S= 0.0110 '/' Cc= 0.900 n= 0.012 Concrete pipe, finished, Flow Area= 9.62 sf

Primary OutFlow Max=14.17 cfs @ 12.13 hrs HW=2.80' TW=0.00' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 14.17 cfs @ 4.87 fps)

Pond E4604:


Summary for Pond HW5A: HEADWALL INLET

Inflow Area =	6,762 sf, 0.00% Impervious, Inflow Depth = 2.85" for	10 yr event
Inflow =	0.52 cfs @ 12.09 hrs, Volume= 1,607 cf	
Outflow =	0.52 cfs @ 12.09 hrs, Volume= 1,607 cf, Atten= 0%	5, Lag= 0.0 min
Primary =	0.52 cfs @ 12.09 hrs, Volume= 1,607 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.47' @ 12.10 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	19.00'	12.0" Round Culvert L= 39.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 19.00' / 17.70' S= 0.0333 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=0.49 cfs @ 12.09 hrs HW=19.47' TW=19.26' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 0.49 cfs @ 2.02 fps)

Pond HW5A: HEADWALL INLET

Summary for Pond IB1:

Inflow Area =	37,137 sf,100.00% Impervious,	Inflow Depth = 5.36" for 10 yr event
Inflow =	4.68 cfs @ 12.08 hrs, Volume=	16,595 cf
Outflow =	2.52 cfs @ 12.40 hrs, Volume=	16,596 cf, Atten= 46%, Lag= 19.0 min
Discarded =	0.13 cfs @ 12.23 hrs, Volume=	7,576 cf
Primary =	2.39 cfs @ 12.40 hrs, Volume=	9,020 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 22.20' @ 12.23 hrs Surf.Area= 3,889 sf Storage= 4,500 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 74.3 min (820.5 - 746.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	20.50'	3,515 cf	72.75'W x 53.46'L x 3.50'H Field A
			13,611 cf Overall - 4,824 cf Embedded = 8,788 cf x 40.0% Voids
#2A	21.00'	4,824 cf	ADS_StormTech SC-740 +Cap x 105 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			15 Rows of 7 Chambers
		8 339 cf	Total Available Storage

8,339 cf Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Primary	21.10'	12.0" Round Overflow
	-		L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 21.10' / 21.00' S= 0.0167 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf
#2	Discarded	20.50'	0.970 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 17.00'

Discarded OutFlow Max=0.13 cfs @ 12.23 hrs HW=22.20' (Free Discharge) **2=Exfiltration** (Controls 0.13 cfs)

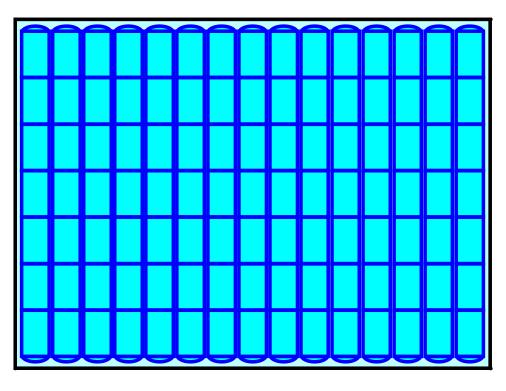
Primary OutFlow Max=1.51 cfs @ 12.40 hrs HW=22.12' TW=21.96' (Dynamic Tailwater) -1=Overflow (Inlet Controls 1.51 cfs @ 1.92 fps)

Pond IB1: - Chamber Wizard Field A

Chamber Model = ADS_StormTech SC-740 +Cap (ADS StormTech® SC-740 with cap length)

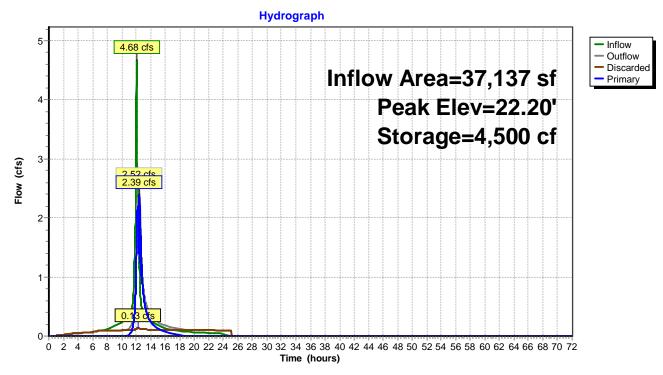
Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap

51.0" Wide + 6.0" Spacing = 57.0" C-C Row Spacing

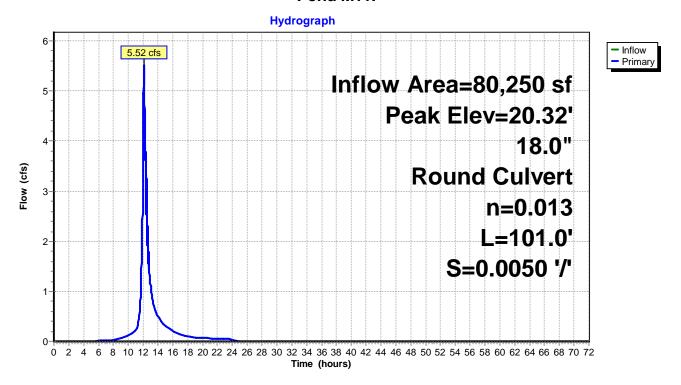

7 Chambers/Row x 7.12' Long +0.81' Cap Length x 2 = 51.46' Row Length +12.0" End Stone x 2 = 53.46' Base Length 15 Rows x 51.0" Wide + 6.0" Spacing x 14 + 12.0" Side Stone x 2 = 72.75' Base Width 6.0" Base + 30.0" Chamber Height + 6.0" Cover = 3.50' Field Height

105 Chambers x 45.9 cf = 4,823.7 cf Chamber Storage

13,611.4 cf Field - 4,823.7 cf Chambers = 8,787.7 cf Stone x 40.0% Voids = 3,515.1 cf Stone Storage


Chamber Storage + Stone Storage = 8,338.8 cf = 0.191 afOverall Storage Efficiency = 61.3%Overall System Size = $53.46' \times 72.75' \times 3.50'$

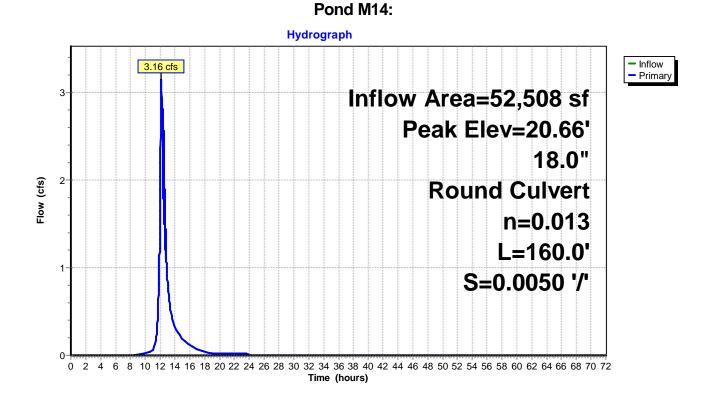
105 Chambers 504.1 cy Field 325.5 cy Stone


Pond IB1:

Summary for Pond M11:

Inflow A	rea =	80,250 sf, 6	6.19% Impervious, Inflow Depth = 3.34" for 10 yr event
Inflow	=	5.52 cfs @ 12	2.09 hrs, Volume= 22,307 cf
Outflow	=	5.52 cfs @ 12	2.09 hrs, Volume= 22,307 cf, Atten= 0%, Lag= 0.0 min
Primary	=	5.52 cfs @ 12	2.09 hrs, Volume= 22,307 cf
Peak Ele		@ 12.11 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	18.37'	18.0" Round Culvert L= 101.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 18.37' / 17.87' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

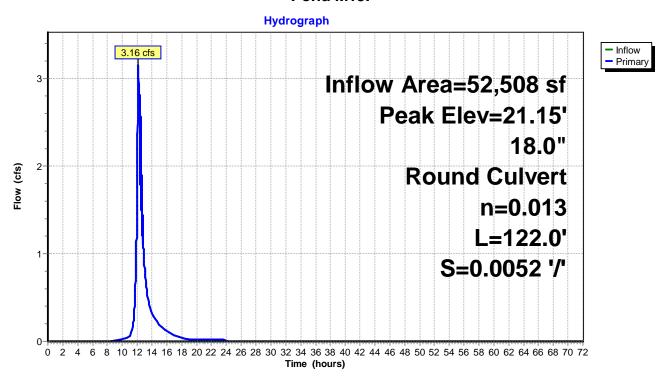
Primary OutFlow Max=5.21 cfs @ 12.09 hrs HW=20.26' TW=19.84' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 5.21 cfs @ 3.01 fps)



Pond M11:

Summary for Pond M14:

Inflow A Inflow Outflow Primary	=	3.16 cfs @ 12 3.16 cfs @ 12	73.66% Impervious, Inflow Depth = 2.95" for 10 yr event 2.12 hrs, Volume= 12,911 cf 2.12 hrs, Volume= 12,911 cf, Atten= 0%, Lag= 0.0 min 2.12 hrs, Volume= 12,911 cf
Peak Ele		@ 12.12 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	19.27'	18.0" Round Culvert L= 160.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.27' / 18.47'$ S= $0.0050 '/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

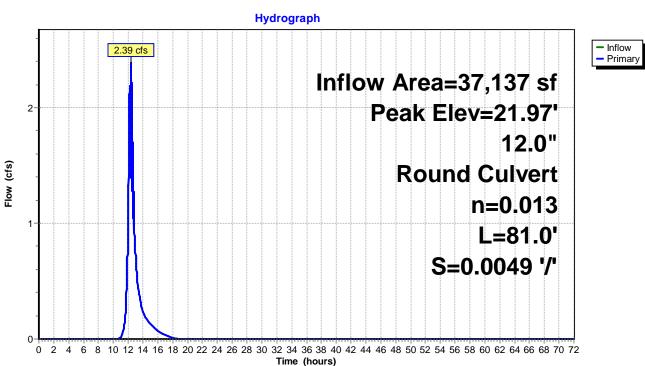

Primary OutFlow Max=3.27 cfs @ 12.12 hrs HW=20.66' TW=20.29' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 3.27 cfs @ 2.50 fps)

Summary for Pond M15:

Inflow Area = 52,508 sf, 73.66% Impervious, Inflow Depth = 2.95" for 10 yr event Inflow 3.16 cfs @ 12.12 hrs. Volume= 12.911 cf = Outflow 3.16 cfs @ 12.12 hrs, Volume= 12,911 cf, Atten= 0%, Lag= 0.0 min = Primary 3.16 cfs @ 12.12 hrs, Volume= 12,911 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 21.15' @ 12.12 hrs Flood Elev= 27.37' Device Routing Invert **Outlet Devices** 18.0" Round Culvert Primary 20.00' #1 L= 122.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 20.00' / 19.37' S= 0.0052 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=3.12 cfs @ 12.12 hrs HW=21.14' TW=20.66' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 3.12 cfs @ 2.99 fps)

Pond M15:


Summary for Pond M17:

Inflow Area	a =	37,137 sf,100.00% Impervious, Inflow Depth = 2.91" for 10 yr eve	nt
Inflow	=	2.39 cfs @ 12.40 hrs, Volume= 9,020 cf	
Outflow	=	2.39 cfs @ 12.40 hrs, Volume= 9,020 cf, Atten= 0%, Lag= 0	.0 min
Primary	=	2.39 cfs @ 12.40 hrs, Volume= 9,020 cf	

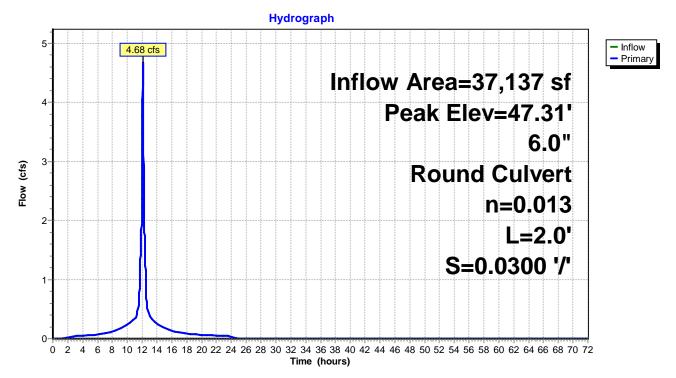
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 21.97' @ 12.40 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	20.90'	12.0" Round Culvert L= 81.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.90' / 20.50'$ S= $0.0049' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.35 cfs @ 12.40 hrs HW=21.96' TW=20.90' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 2.35 cfs @ 3.52 fps)

Pond M17:

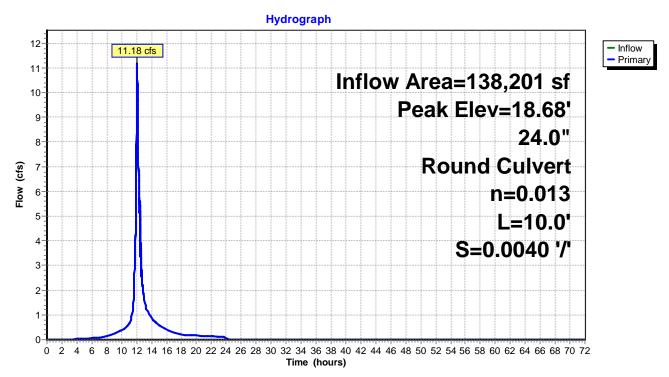
Summary for Pond M19:


Inflow Area	=	37,137 sf	,100.00% Impervious	, Inflow Depth = 5.36'	for 10 yr event
Inflow =	=	4.68 cfs @	12.08 hrs, Volume=	16,595 cf	
Outflow =	=	4.68 cfs @	12.08 hrs, Volume=	16,595 cf, Atte	en= 0%, Lag= 0.0 min
Primary =	=	4.68 cfs @	12.08 hrs, Volume=	16,595 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 47.31' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	22.60'	6.0" Round Roof Drain
			L= 2.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 22.60' / 22.54' S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

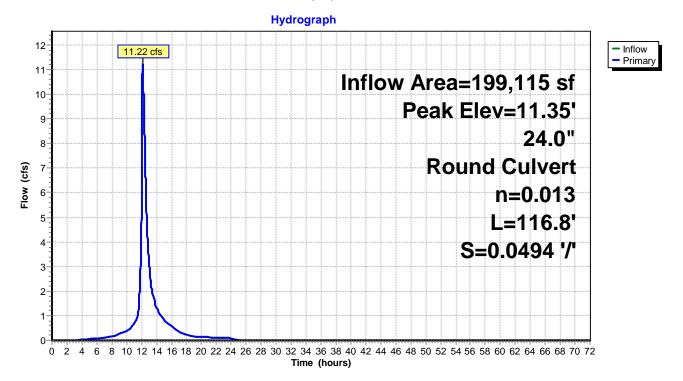
Primary OutFlow Max=4.67 cfs @ 12.08 hrs HW=47.23' TW=21.97' (Dynamic Tailwater) ←1=Roof Drain (Inlet Controls 4.67 cfs @ 23.78 fps)


Pond M19:

Summary for Pond M2:

Inflow A Inflow Outflow Primary	= =	11.16 cfs @ 12 11.18 cfs @ 12	36.19% Impervious, Inflow Depth = 3.82" for 10 yr event 2.07 hrs, Volume= 43,974 cf 2.07 hrs, Volume= 43,974 cf, Atten= 0%, Lag= 0.0 min 2.07 hrs, Volume= 43,974 cf
Peak El		3' @ 12.08 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	y 16.26'	24.0" Round Culvert L= 10.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $16.26' / 16.22'$ S= 0.0040 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.98 cfs @ 12.07 hrs HW=18.67' TW=18.14' (Dynamic Tailwater) ☐—1=Culvert (Inlet Controls 10.98 cfs @ 3.50 fps)

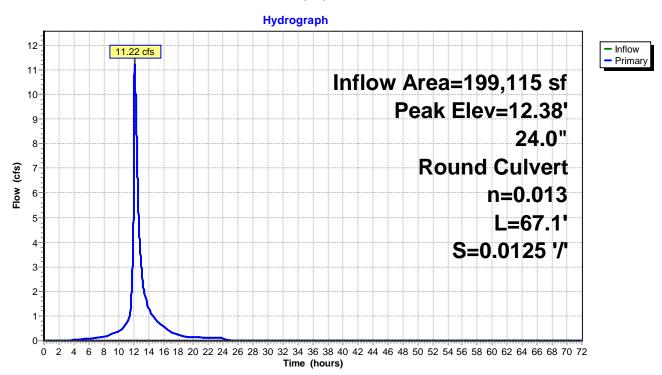


Pond M2:

Summary for Pond M21:

Inflow Area = 199,115 sf, 77.58% Impervious, Inflow Depth = 3.26" for 10 yr event Inflow 11.22 cfs @ 12.15 hrs. Volume= 54.124 cf = Outflow 11.22 cfs @ 12.15 hrs, Volume= 54,124 cf, Atten= 0%, Lag= 0.0 min = Primary 11.22 cfs @ 12.15 hrs, Volume= 54,124 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 11.35' @ 12.15 hrs Flood Elev= 15.22' Device Routing Invert Outlet Devices 24.0" Round Culvert #1 Primary 9.79' L= 116.8' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 9.79' / 4.02' S= 0.0494 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=11.22 cfs @ 12.15 hrs HW=11.35' TW=6.07' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 11.22 cfs @ 4.26 fps)

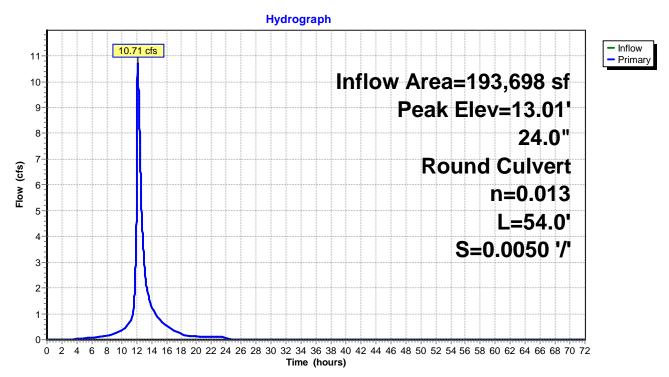


Pond M21:

Summary for Pond M22:

Inflow Area = 199,115 sf, 77.58% Impervious, Inflow Depth = 3.26" for 10 yr event Inflow 11.22 cfs @ 12.15 hrs. Volume= 54.124 cf = Outflow 11.22 cfs @ 12.15 hrs, Volume= 54,124 cf, Atten= 0%, Lag= 0.0 min = Primary 11.22 cfs @ 12.15 hrs, Volume= 54,124 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 12.38' @ 12.15 hrs Flood Elev= 16.85' Device Routing Invert Outlet Devices 24.0" Round Culvert L= 67.1' CPP, square edge headwall, Ke= 0.500 #1 Primary 10.73' Inlet / Outlet Invert= 10.73' / 9.89' S= 0.0125 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=11.20 cfs @ 12.15 hrs HW=12.38' TW=11.35' (Dynamic Tailwater) ☐—1=Culvert (Outlet Controls 11.20 cfs @ 5.47 fps)

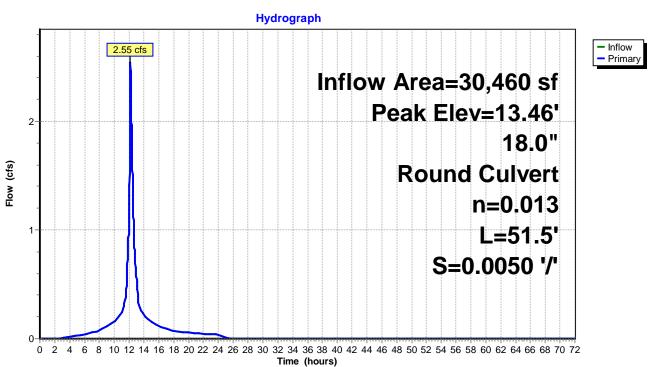


Pond M22:

Summary for Pond M25:

Inflow Area = 193,698 sf, 77.24% Impervious, Inflow Depth = 3.21" for 10 yr event Inflow 10.71 cfs @ 12.15 hrs. Volume= 51.826 cf = Outflow 10.71 cfs @ 12.15 hrs, Volume= 51,826 cf, Atten= 0%, Lag= 0.0 min = Primary 10.71 cfs @ 12.15 hrs, Volume= 51,826 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 13.01' @ 12.16 hrs Flood Elev= 18.56' Device Routing Invert Outlet Devices 24.0" Round Culvert L= 54.0' CPP, square edge headwall, Ke= 0.500 #1 Primary 11.10' Inlet / Outlet Invert= 11.10' / 10.83' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=10.69 cfs @ 12.15 hrs HW=13.01' TW=12.38' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 10.69 cfs @ 4.45 fps)



Pond M25:

Summary for Pond M28:

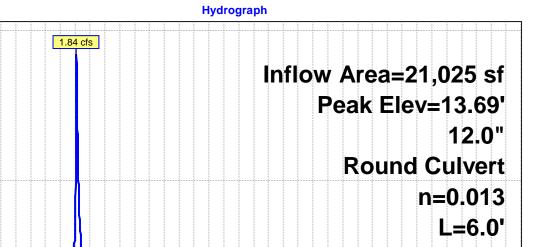
Inflow Area = 30,460 sf, 90.87% Impervious, Inflow Depth = 5.10° for 10 yr event Inflow 2.55 cfs @ 12.16 hrs. Volume= 12.950 cf = Outflow 2.55 cfs @ 12.16 hrs, Volume= 12,950 cf, Atten= 0%, Lag= 0.0 min = Primary 2.55 cfs @ 12.16 hrs, Volume= 12,950 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 13.46' @ 12.16 hrs Flood Elev= 18.58' Device Routing Invert Outlet Devices 12.57' **18.0" Round Culvert** L= 51.5' CPP, square edge headwall, Ke= 0.500 Primary #1 Inlet / Outlet Invert= 12.57' / 12.31' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

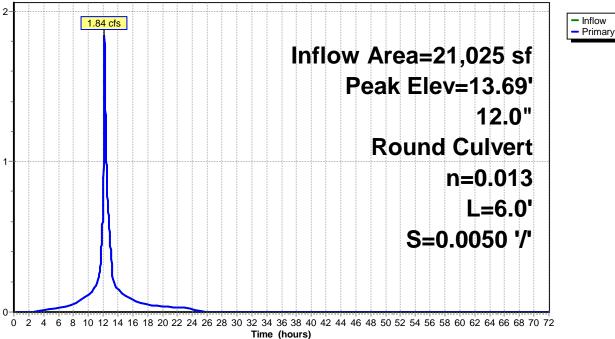
Primary OutFlow Max=2.54 cfs @ 12.16 hrs HW=13.46' TW=13.01' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 2.54 cfs @ 3.36 fps)

Pond M28:

Summary for Pond M29:

Inflow Area =	21,025 sf, 90.30% Impervious,	Inflow Depth = 5.09" for 10 yr event
Inflow =	1.84 cfs @ 12.16 hrs, Volume=	8,918 cf
Outflow =	1.84 cfs @ 12.16 hrs, Volume=	8,918 cf, Atten= 0%, Lag= 0.0 min
Primary =	1.84 cfs @ 12.16 hrs, Volume=	8,918 cf

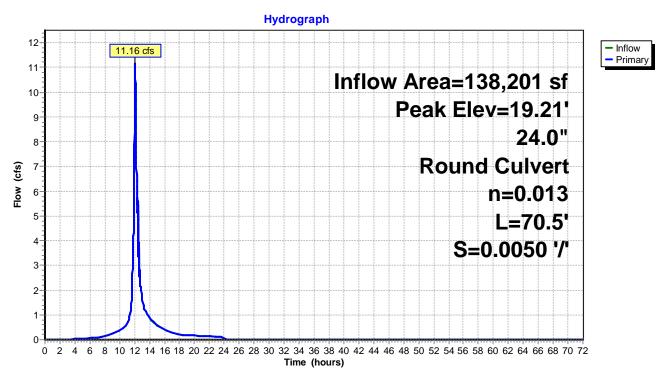

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 13.69' @ 12.17 hrs


Flow (cfs)

Device	Routing	Invert	Outlet Devices
#1	Primary	12.70'	12.0" Round Culvert L= 6.0' CPP, square edge headwall, Ke= 0.500
			Inlet / Outlet Invert= 12.70' / 12.67' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=1.81 cfs @ 12.16 hrs HW=13.68' TW=13.45' (Dynamic Tailwater) **1=Culvert** (Inlet Controls 1.81 cfs @ 2.31 fps)

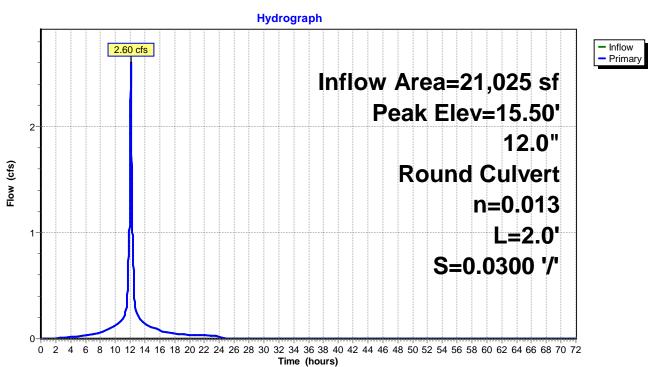
Pond M29:



Summary for Pond M3:

Inflow A Inflow Outflow Primary	= =	11.16 cfs @ 12 11.16 cfs @ 12	66.19% Impervious, Inflow Depth = 3.82" for 10 yr event 2.07 hrs, Volume= 43,974 cf 2.07 hrs, Volume= 43,974 cf, Atten= 0%, Lag= 0.0 min 2.07 hrs, Volume= 43,974 cf		
Peak El	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.21' @ 12.09 hrs Flood Elev= 23.27'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	y 16.71'	24.0" Round Culvert L= 70.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $16.71' / 16.36'$ S= $0.0050' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf		

Primary OutFlow Max=10.88 cfs @ 12.07 hrs HW=19.19' TW=18.67' (Dynamic Tailwater) ☐—1=Culvert (Inlet Controls 10.88 cfs @ 3.46 fps)



Pond M3:

Summary for Pond M31:

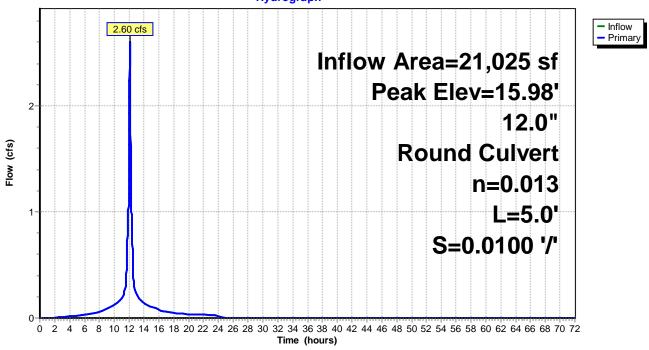
Inflow A Inflow Outflow Primary	= =	2.60 cfs @ 12 2.60 cfs @ 12	00.30% Impervious, Inflow Depth = 5.09" for 10 yr event 2.08 hrs, Volume= 8,920 cf 2.08 hrs, Volume= 8,920 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 8,920 cf
Peak El		@ 12.08 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	14.40'	12.0" Round Culvert L= 2.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $14.40' / 14.34'$ S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.60 cfs @ 12.08 hrs HW=15.50' TW=14.22' (Dynamic Tailwater) ☐ 1=Culvert (Barrel Controls 2.60 cfs @ 3.74 fps)

Pond M31:

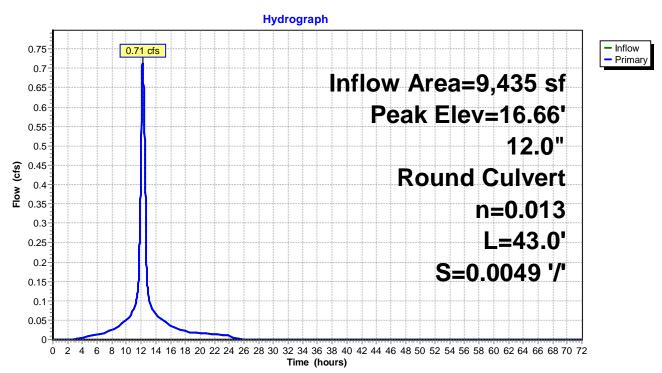
Summary for Pond M32:

Inflow Area	a =	21,025 sf, 90.30% Impervious, Inflow Depth = 5.09" for 10 yr event
Inflow	=	2.60 cfs @ 12.08 hrs, Volume= 8,920 cf
Outflow	=	2.60 cfs @ 12.08 hrs, Volume= 8,920 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.60 cfs @ 12.08 hrs, Volume= 8,920 cf


Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 15.98' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	14.55'	12.0" Round Culvert $L=5.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 14.55' / 14.50' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

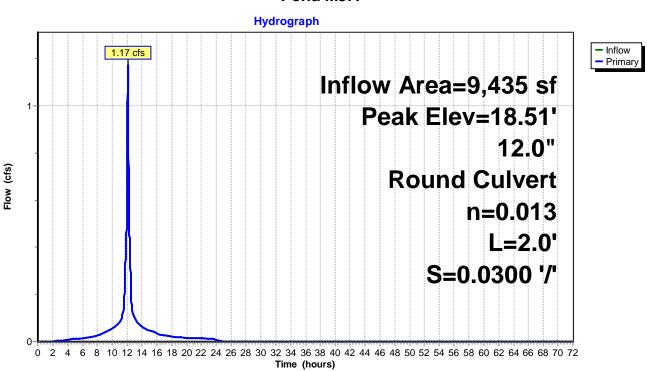
Primary OutFlow Max=2.58 cfs @ 12.08 hrs HW=15.97' TW=15.50' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 2.58 cfs @ 3.29 fps)



Summary for Pond M35:

Inflow A Inflow Outflow Primary	= =	0.71 cfs @ 12 0.71 cfs @ 12	02.15% Impervious, Inflow Depth = 5.13" for 10 yr event 2.18 hrs, Volume= 4,032 cf 2.18 hrs, Volume= 4,032 cf, Atten= 0%, Lag= 0.0 min 2.18 hrs, Volume= 4,032 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 16.66' @ 12.18 hrs Flood Elev= 19.93'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	16.15'	12.0" Round Culvert L= 43.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $16.15' / 15.94'$ S= $0.0049' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=0.71 cfs @ 12.18 hrs HW=16.66' TW=13.45' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 0.71 cfs @ 2.59 fps)

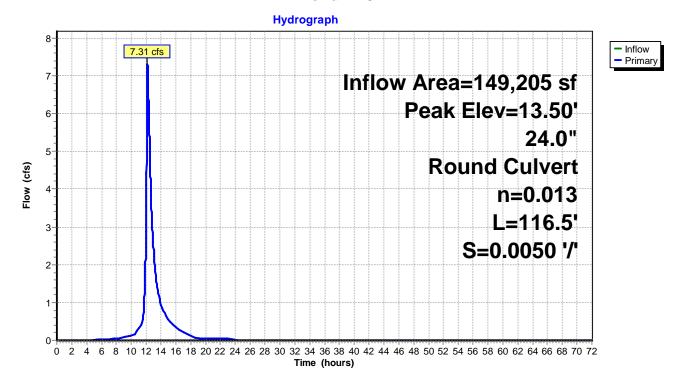


Pond M35:

Summary for Pond M37:

Inflow A Inflow	rea = =		2.15% Impervious, Inflow Depth = 5.13" for 10 yr event 2.08 hrs, Volume= 4,033 cf		
Outflow	=	1.17 cfs @ 12	2.08 hrs, Volume= 4,033 cf, Atten= 0%, Lag= 0.0 min		
Primary	=	1.17 cfs @ 12	2.08 hrs, Volume= 4,033 cf		
Peak Ele	Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 18.51' @ 12.08 hrs Flood Elev= 23.36'				
Device	Routing	Invert	Outlet Devices		
#1	Primary	17.85'	12.0" Round Culvert L= 2.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $17.85' / 17.79'$ S= 0.0300 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf		

Primary OutFlow Max=1.17 cfs @ 12.08 hrs HW=18.51' TW=17.06' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 1.17 cfs @ 3.04 fps)

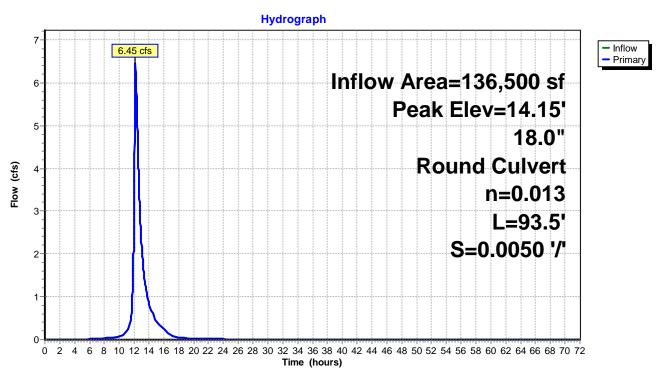


Pond M37:

Summary for Pond M40:

Inflow A Inflow Outflow Primary	=	7.31 cfs @ 12 7.31 cfs @ 12	75.19% Impervious, Inflow Depth = 2.70" for 10 yr event 2.16 hrs, Volume= 33,600 cf 2.16 hrs, Volume= 33,600 cf, Atten= 0%, Lag= 0.0 min 2.16 hrs, Volume= 33,600 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 13.50' @ 12.16 hrs Flood Elev= 21.69'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	11.78'	24.0" Round Culvert L= 116.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 11.78' / 11.20' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf	

Primary OutFlow Max=7.32 cfs @ 12.16 hrs HW=13.50' TW=13.00' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 7.32 cfs @ 3.42 fps)

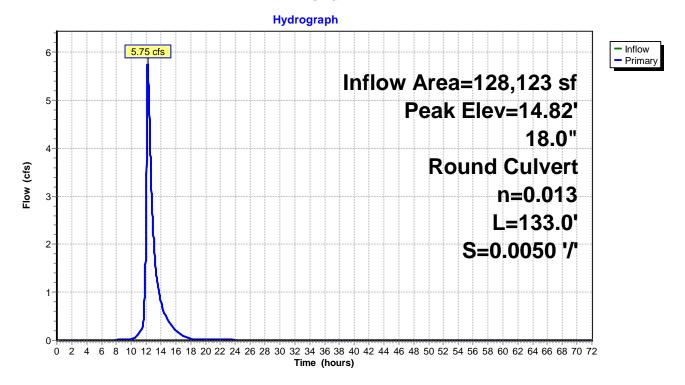


Pond M40:

Summary for Pond M42:

Inflow Area = 136,500 sf, 76.11% Impervious, Inflow Depth = 2.54" for 10 yr event Inflow 6.45 cfs @ 12.15 hrs. Volume= 28.881 cf = Outflow 6.45 cfs @ 12.15 hrs, Volume= 28,881 cf, Atten= 0%, Lag= 0.0 min = Primary 6.45 cfs @ 12.15 hrs, Volume= 28,881 cf = Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 14.15' @ 12.17 hrs Flood Elev= 22.86' Device Routing Invert Outlet Devices **18.0" Round Culvert** L= 93.5' CPP, square edge headwall, Ke= 0.500 Primary 12.35' #1 Inlet / Outlet Invert= 12.35' / 11.88' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=6.38 cfs @ 12.15 hrs HW=14.14' TW=13.49' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 6.38 cfs @ 3.82 fps)



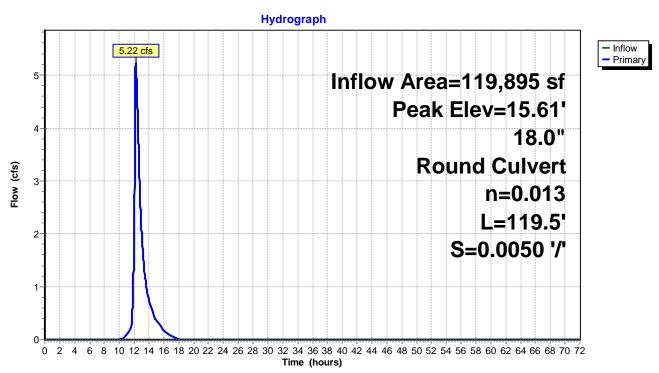
Pond M42:

Summary for Pond M44:

Inflow A Inflow Outflow Primary	=	5.75 cfs @ 12 5.75 cfs @ 12	75.92% Impervious, Inflow Depth = 2.39" for 10 yr event 2.18 hrs, Volume= 25,539 cf 2.18 hrs, Volume= 25,539 cf, Atten= 0%, Lag= 0.0 min 2.18 hrs, Volume= 25,539 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 14.82' @ 12.18 hrs Flood Elev= 24.89'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	13.11'	18.0" Round Culvert L= 133.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 13.11' / 12.45' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf	

Primary OutFlow Max=5.77 cfs @ 12.18 hrs HW=14.82' TW=14.14' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 5.77 cfs @ 3.59 fps)

Pond M44:


Summary for Pond M47:

Inflow Area	a =	119,895 sf, 7	77.56% Impervious,	Inflow Depth = 2.27"	for 10 yr event
Inflow	=	5.22 cfs @ 12	2.21 hrs, Volume=	22,717 cf	
Outflow	=	5.22 cfs @ 12	2.21 hrs, Volume=	22,717 cf, Atter	n= 0%, Lag= 0.0 min
Primary	=	5.22 cfs @ 12	2.21 hrs, Volume=	22,717 cf	

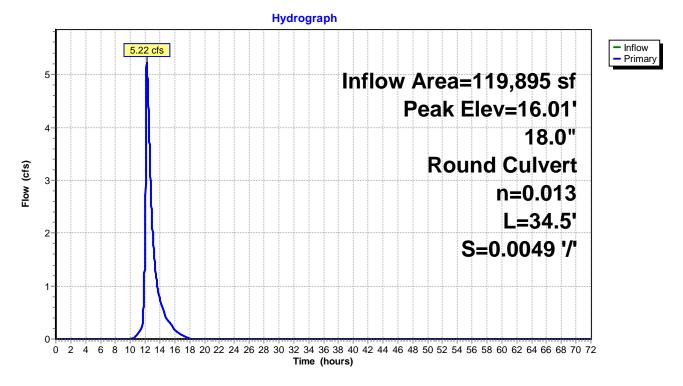
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 15.61' @ 12.19 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	14.21'	18.0" Round Culvert
			L= 119.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 14.21' / 13.61' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=5.26 cfs @ 12.21 hrs HW=15.60' TW=14.80' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 5.26 cfs @ 3.99 fps)

Pond M47:

Summary for Pond M48:


Inflow Area =	119,895 sf, 77.56% Impervious,	Inflow Depth = 2.27" for 10 yr event
Inflow =	5.22 cfs @ 12.21 hrs, Volume=	22,717 cf
Outflow =	5.22 cfs @ 12.21 hrs, Volume=	22,717 cf, Atten= 0%, Lag= 0.0 min
Primary =	5.22 cfs @ 12.21 hrs, Volume=	22,717 cf

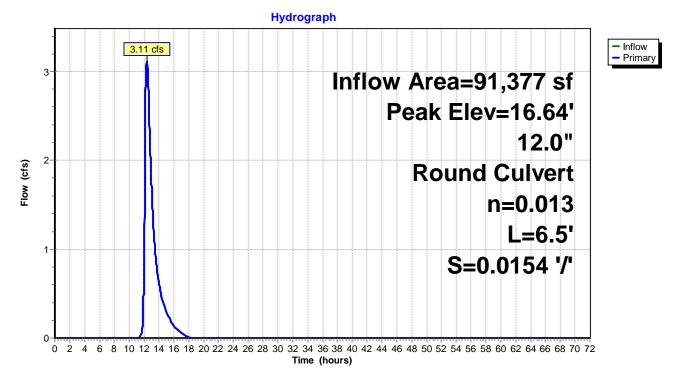
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 16.01' @ 12.20 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	14.48'	18.0" Round Culvert L= 34.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $14.48' / 14.31'$ S= 0.0049 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=5.24 cfs @ 12.21 hrs HW=16.01' TW=15.60' (Dynamic Tailwater) **1=Culvert** (Outlet Controls 5.24 cfs @ 3.61 fps)

Pond M48:

Summary for Pond M49:

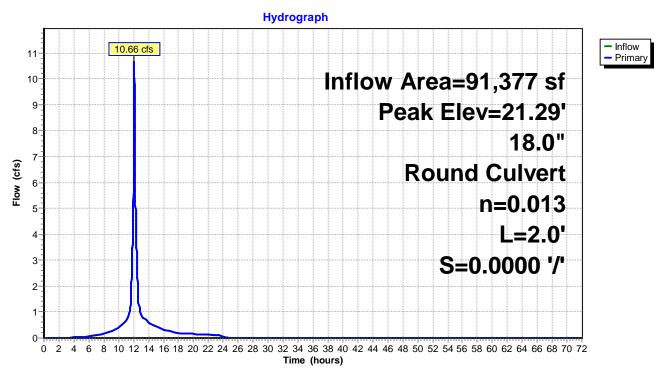

Inflow Area	a =	91,377 sf, 70.56% Impervious, Inflow Depth = 2.06" for 10 yr event
Inflow	=	3.11 cfs @ 12.35 hrs, Volume= 15,665 cf
Outflow	=	3.11 cfs @ 12.35 hrs, Volume= 15,665 cf, Atten= 0%, Lag= 0.0 min
Primary	=	3.11 cfs @ 12.35 hrs, Volume= 15,665 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 16.64' @ 12.25 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	15.10'	12.0" Round Culvert L= 6.5 ' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 15.10 ' / 15.00 ' S= 0.0154 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=3.13 cfs @ 12.35 hrs HW=16.57' TW=15.88' (Dynamic Tailwater) -1=Culvert (Inlet Controls 3.13 cfs @ 3.99 fps)

Pond M49:


Summary for Pond M51:

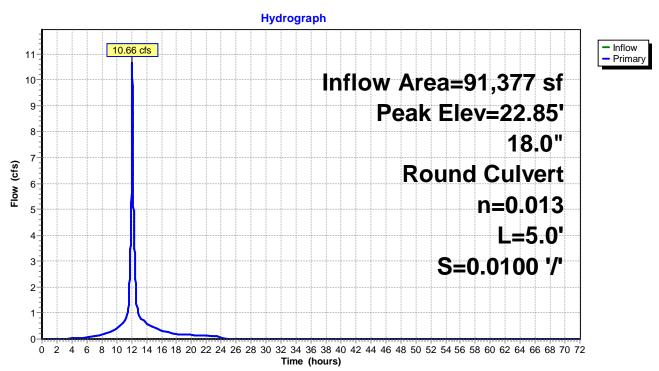
Inflow Area	a =	91,377 sf, 70.56% Impervious, Inflow Depth = 4.58" for 10 yr event
Inflow	=	10.66 cfs @ 12.08 hrs, Volume= 34,882 cf
Outflow	=	10.66 cfs @ 12.08 hrs, Volume= 34,882 cf, Atten= 0%, Lag= 0.0 min
Primary	=	10.66 cfs @ 12.08 hrs, Volume= 34,882 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 21.29' @ 12.08 hrs

Device R	Routing	Invert	Outlet Devices
#1 P	Primary	18.92'	18.0" Round Culvert L= 2.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 18.92' / 18.92' S= 0.0000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=10.64 cfs @ 12.08 hrs HW=21.28' TW=19.49' (Dynamic Tailwater) ←1=Culvert (Barrel Controls 10.64 cfs @ 6.02 fps)

Pond M51:

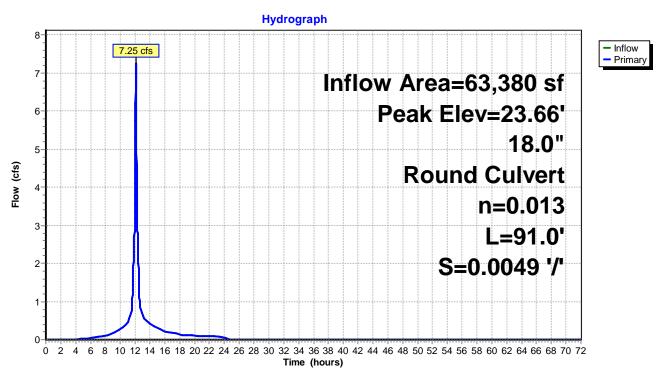

Summary for Pond M52:

Inflow Are	a =	91,377 sf, 70.56% Impervious, Inflow Depth = 4.58" for 10 yr event
Inflow	=	10.66 cfs @ 12.08 hrs, Volume= 34,882 cf
Outflow	=	10.66 cfs @ 12.08 hrs, Volume= 34,882 cf, Atten= 0%, Lag= 0.0 min
Primary	=	10.66 cfs @ 12.08 hrs, Volume= 34,882 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 22.85' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	18.97'	18.0" Round Culvert L= $5.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.97' / 18.92'$ S= $0.0100'/$ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=10.59 cfs @ 12.08 hrs HW=22.83' TW=21.28' (Dynamic Tailwater) ☐-1=Culvert (Inlet Controls 10.59 cfs @ 5.99 fps)



Pond M52:

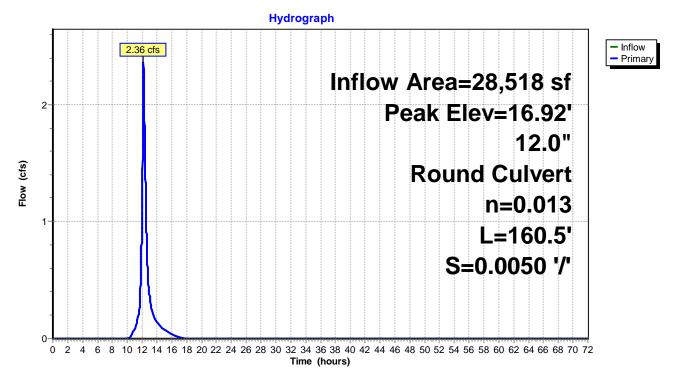
Summary for Pond M54:

Inflow A Inflow Outflow Primary	= =	7.25 cfs @ 12 7.25 cfs @ 12	55.40% Impervious, Inflow Depth = 4.44" for 10 yr event 2.08 hrs, Volume= 23,449 cf 2.08 hrs, Volume= 23,449 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 23,449 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 23.66' @ 12.09 hrs Flood Elev= 24.99'			
Device	Routing	Invert	Outlet Devices
#1	Primary	19.52'	18.0" Round Culvert L= 91.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.52' / 19.07'$ S= 0.0049 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 1.77 sf

Primary OutFlow Max=6.97 cfs @ 12.08 hrs HW=23.60' TW=22.83' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 6.97 cfs @ 3.94 fps)

Pond M54:

Summary for Pond M57:


Inflow Area	a =	28,518 sf,1	100.00% Impervious	, Inflow Depth = 2.9	97" for 10 yr event
Inflow	=	2.36 cfs @ 1	12.16 hrs, Volume=	7,053 cf	
Outflow	=	2.36 cfs @ 1	12.16 hrs, Volume=	7,053 cf, A	Atten= 0%, Lag= 0.0 min
Primary	=	2.36 cfs @ 1	12.16 hrs, Volume=	7,053 cf	

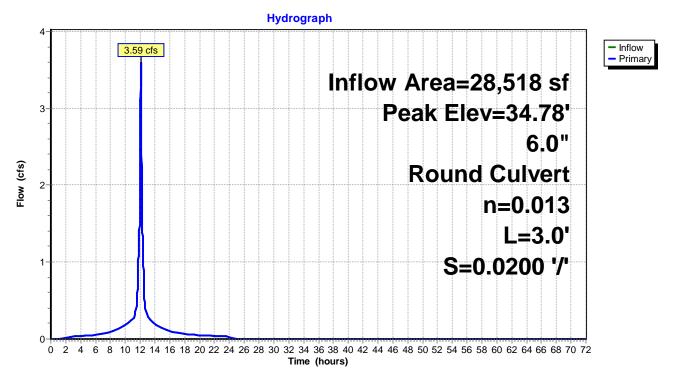
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 16.92' @ 12.18 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	15.80'	12.0" Round Culvert
			L= 160.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 15.80' / 15.00' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

Primary OutFlow Max=2.33 cfs @ 12.16 hrs HW=16.90' TW=15.97' (Dynamic Tailwater) ←1=Culvert (Outlet Controls 2.33 cfs @ 3.35 fps)

Pond M57:

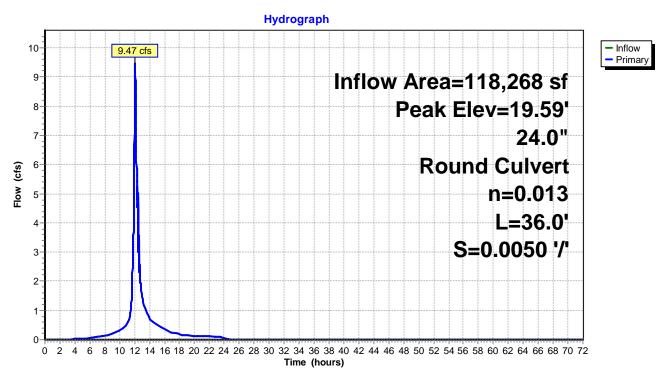
Summary for Pond M59:


Inflow Area	a =	28,518 sf,100.00% Impervious, Inflow Depth = 5.36" for 10 yr event	
Inflow	=	3.59 cfs @ 12.08 hrs, Volume= 12,744 cf	
Outflow	=	3.59 cfs @ 12.08 hrs, Volume= 12,744 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	3.59 cfs @ 12.08 hrs, Volume= 12,744 cf	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 34.78' @ 12.08 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	20.10'	6.0" Round Culvert L= $3.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.10' / 20.04'$ S= $0.0200' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

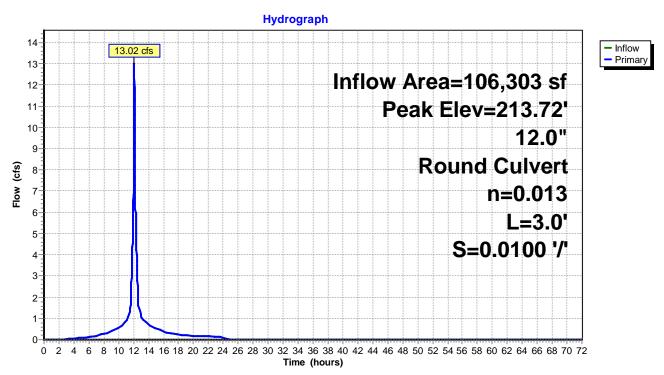
Primary OutFlow Max=3.58 cfs @ 12.08 hrs HW=34.73' TW=19.50' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 3.58 cfs @ 18.26 fps)


Pond M59:

Summary for Pond M6:

Inflow A Inflow Outflow Primary	= =	9.47 cfs @ 12 9.47 cfs @ 12	72.28% Impervious, Inflow Depth = 3.86" for 10 yr event 2.07 hrs, Volume= 38,045 cf 2.07 hrs, Volume= 38,045 cf, Atten= 0%, Lag= 0.0 min 2.07 hrs, Volume= 38,045 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 19.59' @ 12.09 hrs Flood Elev= 22.90'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	16.99'	24.0" Round Culvert L= 36.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 16.99' / 16.81' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf	

Primary OutFlow Max=8.95 cfs @ 12.07 hrs HW=19.54' TW=19.19' (Dynamic Tailwater) ←1=Culvert (Inlet Controls 8.95 cfs @ 2.85 fps)

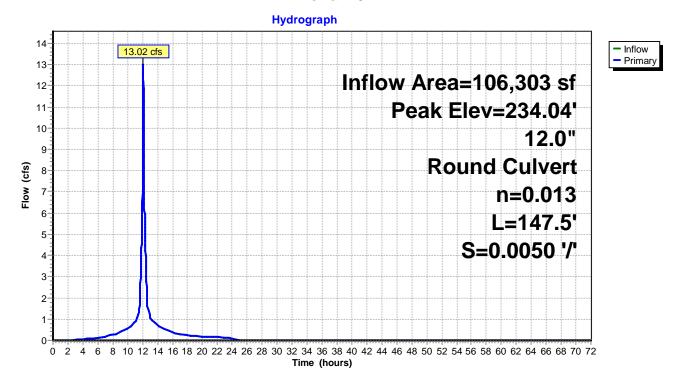


Pond M6:

Summary for Pond M63:

Inflow Area =		106,303 sf, 8	36.53% Impervious, Inflow Depth = 4.96" for 10 yr event	
Inflow	=	13.02 cfs @ 12	2.08 hrs, Volume= 43,956 cf	
Outflow	=	13.02 cfs @ 12	2.08 hrs, Volume= 43,956 cf, Atten= 0%, Lag= 0.0 min	
Primary	=	13.02 cfs @ 12	2.08 hrs, Volume= 43,956 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 213.72' @ 12.12 hrs Flood Elev= 25.16'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	18.18'	12.0" Round Culvert $L=3.0'$ CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 18.18' / 18.15' S= 0.0100 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=182.02' TW=184.88' (Dynamic Tailwater) ☐_1=Culvert (Controls 0.00 cfs)

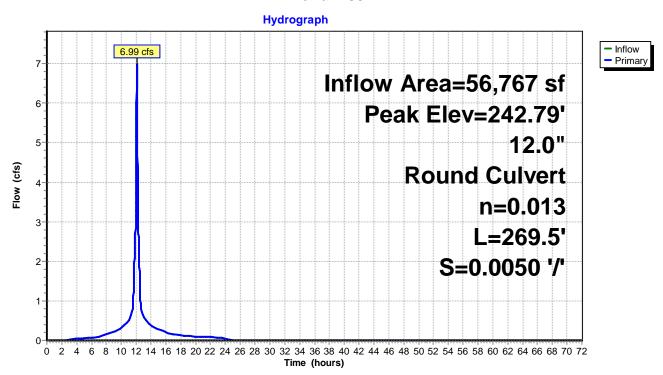


Pond M63:

Summary for Pond M64:

Inflow A Inflow Outflow Primary	= =	13.02 cfs @ 12 13.02 cfs @ 12	36.53% Impervious, Inflow Depth = 4.96" for 10 yr event 2.08 hrs, Volume= 43,956 cf 2.08 hrs, Volume= 43,956 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 43,956 cf	
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 234.04' @ 12.12 hrs Flood Elev= 24.53'				
Device	Routing	Invert	Outlet Devices	
#1	Primary	19.02'	12.0" Round Culvert L= 147.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $19.02' / 18.28'$ S= $0.0050 '/$ ' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

Primary OutFlow Max=7.67 cfs @ 12.08 hrs HW=191.10' TW=182.02' (Dynamic Tailwater) ↓ 1=Culvert (Outlet Controls 7.67 cfs @ 9.76 fps)

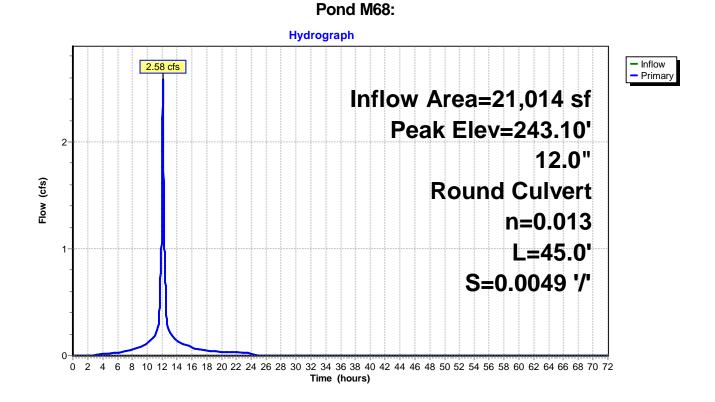


Pond M64:

Summary for Pond M66:

Inflow Area =		56,767 sf, 8	38.14% Impervious, Inflow Depth = 5.02" for 10 yr event
Inflow	=	6.99 cfs @ 12	2.08 hrs, Volume= 23,726 cf
Outflow	=	6.99 cfs @ 12	2.08 hrs, Volume= 23,726 cf, Atten= 0%, Lag= 0.0 min
Primary	=	6.99 cfs @ 12	2.08 hrs, Volume= 23,726 cf
Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 242.79' @ 12.13 hrs Flood Elev= 24.32'			
Device	Routing	Invert	Outlet Devices
#1	Primary	20.47'	12.0" Round Culvert L= 269.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 20.47' / 19.12' S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf

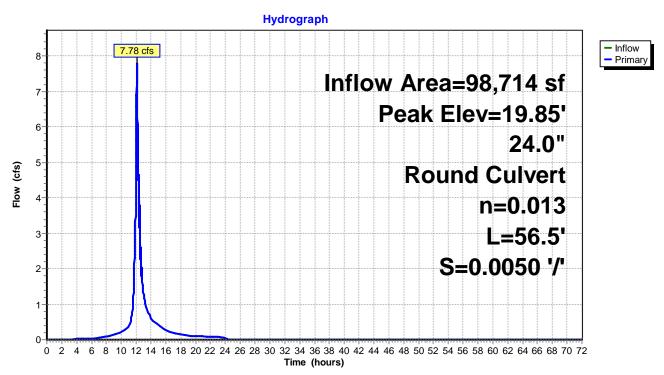
Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=184.76' TW=190.95' (Dynamic Tailwater) ↓ 1=Culvert (Controls 0.00 cfs)



Pond M66:

Summary for Pond M68:

Inflow A Inflow Outflow Primary	= =	2.58 cfs @ 12 2.58 cfs @ 12	37.41% Impervious, Inflow Depth = 5.02" for 10 yr event 2.08 hrs, Volume= 8,786 cf 2.08 hrs, Volume= 8,786 cf, Atten= 0%, Lag= 0.0 min 2.08 hrs, Volume= 8,786 cf	
Peak Ele		0' @ 12.14 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs	
Device	Routing	Invert	Outlet Devices	
#1	Primary	20.79'	12.0" Round Culvert L= 45.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $20.79' / 20.57'$ S= $0.0049' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf	

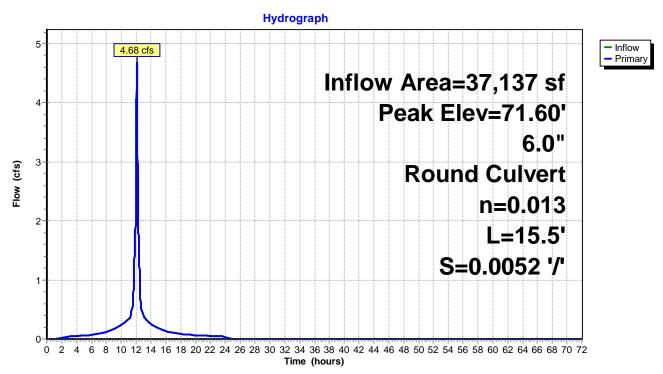

Primary OutFlow Max=0.00 cfs @ 12.08 hrs HW=166.23' TW=184.77' (Dynamic Tailwater) ←1=Culvert (Controls 0.00 cfs)

Summary for Pond M9:

Inflow A Inflow Outflow Primary	=	7.78 cfs @ 12 7.78 cfs @ 12	70.02% Impervious, Inflow Depth = 3.65" for 10 yr event 2.09 hrs, Volume= 30,023 cf 2.09 hrs, Volume= 30,023 cf, Atten= 0%, Lag= 0.0 min 2.09 hrs, Volume= 30,023 cf
Peak Ele	• •	@ 12.10 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	17.37'	24.0" Round Culvert L= 56.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $17.37' / 17.09'$ S= 0.0050 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

Primary OutFlow Max=7.38 cfs @ 12.09 hrs HW=19.82' TW=19.58' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 7.38 cfs @ 2.35 fps)

Pond M9:

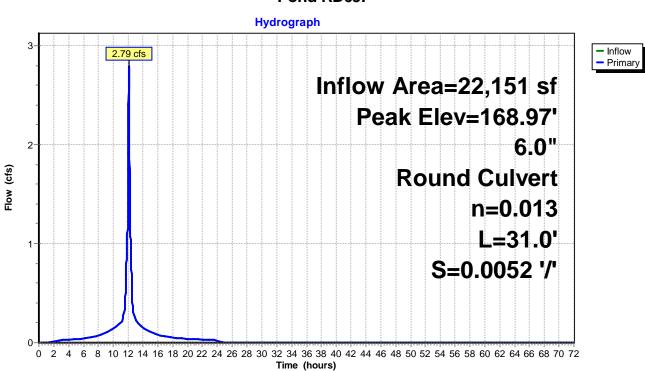

Summary for Pond RD 20:

Inflow Area	a =	37,137 sf,100.00% Impervious, Inflow Depth = 5.36" for 10 yr event
Inflow	=	4.68 cfs @ 12.08 hrs, Volume= 16,595 cf
Outflow	=	4.68 cfs @ 12.08 hrs, Volume= 16,595 cf, Atten= 0%, Lag= 0.0 min
Primary	=	4.68 cfs @ 12.08 hrs, Volume= 16,595 cf

Routing by Dyn-Stor-Ind method, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs Peak Elev= 71.60' @ 12.09 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	22.78'	6.0" Round Culvert L= 15.5' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $22.78' / 22.70'$ S= 0.0052 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=4.63 cfs @ 12.08 hrs HW=71.26' TW=47.23' (Dynamic Tailwater) -1=Culvert (Inlet Controls 4.63 cfs @ 23.60 fps)

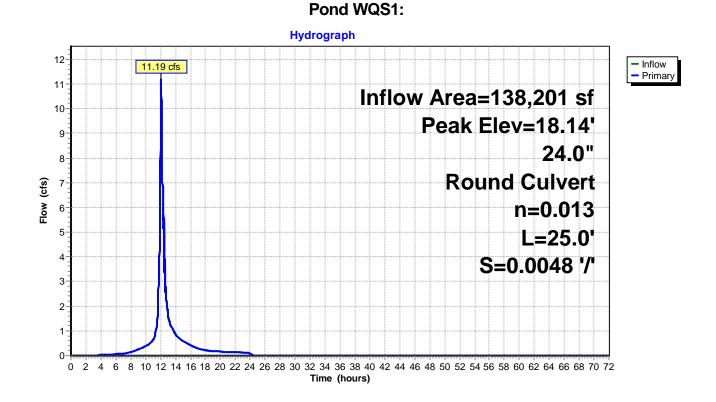


Pond RD 20:

Summary for Pond RD69:

Inflow A	rea =	22,151 sf,10	0.00% Impervious, Inflow Depth = 5.36" for 10 yr event
Inflow	=	2.79 cfs @ 12	2.08 hrs, Volume= 9,898 cf
Outflow	=	2.79 cfs @ 12	2.08 hrs, Volume= 9,898 cf, Atten= 0%, Lag= 0.0 min
Primary	=	2.79 cfs @ 12	2.08 hrs, Volume= 9,898 cf
Peak Ele		7' @ 12.10 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	18.16'	6.0" Round Culvert L= 31.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $18.16' / 18.00'$ S= 0.0052 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.20 sf

Primary OutFlow Max=1.72 cfs @ 12.08 hrs HW=157.98' TW=153.24' (Dynamic Tailwater) ☐ 1=Culvert (Outlet Controls 1.72 cfs @ 8.78 fps)

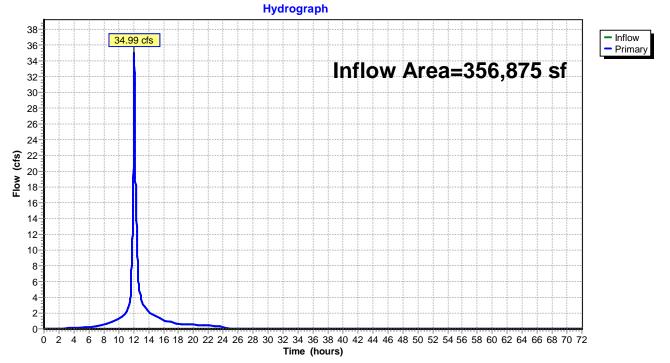


Pond RD69:

Summary for Pond WQS1:

Inflow A Inflow Outflow Primary	= =	11.18 cfs @ 12 11.19 cfs @ 12	36.19% Impervious, Inflow Depth = 3.82" for 10 yr event 2.07 hrs, Volume= 43,974 cf 2.07 hrs, Volume= 43,974 cf, Atten= 0%, Lag= 0.0 min 2.07 hrs, Volume= 43,974 cf
Peak Ele	•••	4' @ 12.07 hrs	Time Span= 0.00-72.00 hrs, dt= 0.01 hrs
Device	Routing	Invert	Outlet Devices
#1	Primary	y 16.12'	24.0" Round Culvert L= 25.0' CPP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= $16.12' / 16.00'$ S= $0.0048' / Cc= 0.900$ n= 0.013 Corrugated PE, smooth interior, Flow Area= 3.14 sf

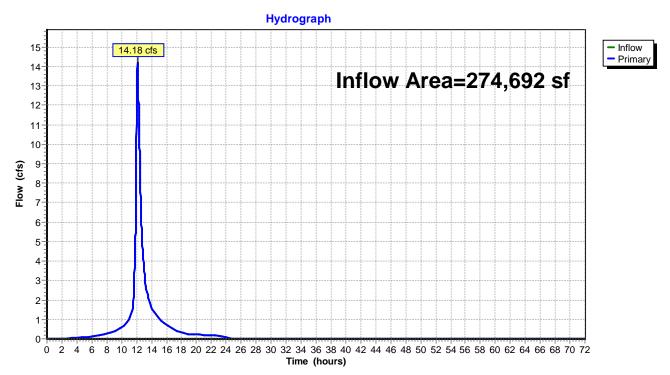
Primary OutFlow Max=11.13 cfs @ 12.07 hrs HW=18.14' TW=17.60' (Dynamic Tailwater) ☐ 1=Culvert (Inlet Controls 11.13 cfs @ 3.54 fps)



Summary for Link AP1: Hodgson Brook

Inflow Are	a =	356,875 sf	, 63.58% Impervious,	Inflow Depth = 4.15"	for 10 yr event
Inflow	=	34.99 cfs @	12.08 hrs, Volume=	123,435 cf	
Primary	=	34.99 cfs @	12.08 hrs, Volume=	123,435 cf, Atten	= 0%, Lag= 0.0 min

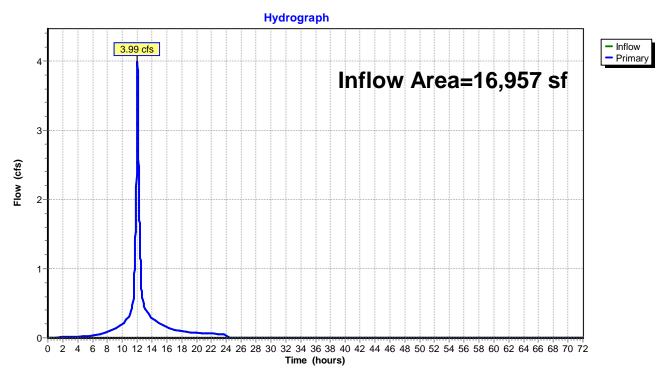
Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs


Link AP1: Hodgson Brook

Summary for Link AP2:

Inflow Are	ea =	274,692 sf, 72.93% Impervious	, Inflow Depth = 3.16 "	for 10 yr event
Inflow	=	14.18 cfs @ 12.13 hrs, Volume=	72,394 cf	
Primary	=	14.18 cfs @ 12.13 hrs, Volume=	72,394 cf, Atter	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs



Link AP2:

Summary for Link AP3:

Inflow Are	a =	16,957 sf	, 94.44% Impervious,	Inflow Depth = 11.58"	for 10 yr event
Inflow	=	3.99 cfs @	12.00 hrs, Volume=	16,368 cf	
Primary	=	3.99 cfs @	12.00 hrs, Volume=	16,368 cf, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-72.00 hrs, dt= 0.01 hrs

Link AP3:

Appendix G

Rip-Rap Apron / Energy Dissipation Calculations

Project Name: WEST END YARDS Project No.: 20180317 Date: Design Storm: 25 Year	24-Ju	•		Portsmou Chk'd By	
Apron Location: Outlet to Hodgson	Brook	from WQU	1		
DOWNSTREAM CHANNEL (OR SPR	EADER) HYDRAUI	LICS:		
Q (required) =	14.65	, cfs 🔶		From Hyd	IroCAD
Channel Bottom Width =	4	````	3 x Do)		
Slope (along channel) =	0.02	ft/ft			
Left Side Slope =	3	h:v ang. =	18.43	deg.	
Right Side Slope =	3	h:v ang. =	18.43	deg.	
Depth of Flow = Manning's 'n' =	0.7076 0.0397	ft. 🔸		Iterative I	nput
Area =	4.33	sq.ft.			
Wetted Perimeter =	4.33 8.48	ft.			
Hydraulic Radius =	0.51	ft.			
Top Width =	8.25	ft.			
Velocity =	3.38	ft/sec			
Q (determined) =	14.65	cfs F		PTH ACHI	EVED
ROCK RIP-RAP SIZE: (Equ. Taken f	from Figur	e 7-43, 7-44, NI	H Erosion c	ontrol Hand	book)
Trapazoidal Channel:					
d50 = 12((118C	QS^(13/6))	(R/P))^(2/5)	d50 =	3.0	inches*
n(based on d50 and DF) = (DF^(1/6)/(21	1.6 x log([DF/d50)+14)	n =	0.0397	**
Triangular Channel: (likely not us	sed; if it is	change cell E	14 to refe	rnce cell H	32)
d50 = 12((64.4QS^(13/	′6))(Z/((Z⁄	^2)+1))^(2/5)	d50 =	4.0	inches*
n(based on d50 and DF) = (DF^(1/6)/(21	1.6 x log([DF/d50)+14)	n =	0.0448	**

*Please note d50 has been rounded to the nearest whole number in inches for easier gradation **'n' is base on the rounded d50 in order to give the proper coefficent for rip-rap as specified

La AND W CALCULATIONS:

Culvert Diameter (Do) =	24	Inches 🗲	From HydroCAD
Tail Water Depth (TW) =	0.71	ft.	(greater of depth of flow above
Length of Apron (La) =	23.32	ft.	or TW below)
Width of Apron @ Do (Wo) =	6	ft.	
Width of Apron @ D.S. End (W) =	29.32	ft.	
Width of Apron if Channel (W) =	4	ft.	
			Tailwater TW to be hand calc'd
*If outleting to flat area use Tailwater (TW) =	0.2 x Do	0.40	if not outleting to flat area w/
			invert out at grade

ROCK RIP-RAP SIZE:

 $d50 = (0.02 \times Q^{(4/3)})/(TW \times Do)$ *Use a minimum of 3 Inch d50 if Rip Rap to be installed

	Class B					
d50 =	6.08	inches				
USE:	7	Inches*				

ROCK RIP-RAP GRADATION:

(Taken from Table 7-24 of NHDE	S Erosion (Control Hand	dbook)	-	
% of Weight Smaller	S	Size of Ston	е		
Than the Given Size	(inches)				
100	11	to	14		
85	9	to	13		
50	7	to	11		
15	2	to	4		
	-			_	

Minimum Rock RipRap Blanket Thickness = 16 **in. use** 16 in. Minimum 6 inch sand/gravel bedding or geotextile fabric required under all rock riprap

FORMULAE USED:

References:

NHDES Erosion Control Handbook, Pages 7-114, 7-115 NH Stromwater Manual: Volume 2, section 4-6.6, pages 172-174

Note: This spreadsheet was generated using the print-out "Pipe Outlet Protection Apron Design and d50 Riprap Sizing" prepared by Ed Minick of the Rockingham County Conservation District as a guide.

Project Name: WEST END YARDS Project No.: 20180317 Date: Design Storm: 25 Year	24-Ju	•	Location.: JVA	Portsmout Chk'd By:	
Apron Location: Outlet into Biorete	ntion B	asin 1			
DOWNSTREAM CHANNEL (OR SPRI	EADER	HYDRAU	LICS:		
Q (required) =	0.73	cfs ┥		From Hyd	IroCAD
Channel Bottom Width =	4	ft. (3 x Do)		
Slope (along channel) =	0.01	ft/ft			
Left Side Slope =	2	h:v ang. =	26.57	deg.	
Right Side Slope =	2	h:v ang. =	26.57	deg.	
Depth of Flow =	0.155	ft. 🔶		Iterative I	nput
Manning's 'n' =	0.0370				
Area =	0.67	sq.ft.			
Wetted Perimeter =	4.69	ft.			
Hydraulic Radius =	0.14	ft.			
Top Width =	4.62	ft.			
Velocity =	1.10	ft/sec			
Q (determined) =	0.73	cfs F	LOW DEP	TH ACHIE	EVED
ROCK RIP-RAP SIZE: (Equ. Taken fi	rom Figure	e 7-43, 7-44, NI	H Erosion co	ontrol Hand	book)
Trapazoidal Channel:					
d50 = 12((118Q	S^(13/6))	(R/P))^(2/5)	d50 =	1.0	inches*
n(based on d50 and DF) = (DF^(1/6)/(21	.6 x log([0F/d50)+14)	n =	0.0370	**
Triangular Channel: (likely not us	ed; if it is	change cell E	14 to refer	nce cell H	32)
d50 = 12((64.4QS^(13/	6))(Z/((Z^	2)+1))^(2/5)	d50 =	1.0	inches*
		-			
n(based on d50 and DF) = (DF^(1/6)/(21	.6 x log([0F/d50)+14)	n =	0.0370	**

*Please note d50 has been rounded to the nearest whole number in inches for easier gradation **'n' is base on the rounded d50 in order to give the proper coefficent for rip-rap as specified

La AND W CALCULATIONS:

Culvert Diameter (Do) =	12	Inches 🗲	From HydroCAD
Tail Water Depth (TW) =	0.20	ft.	(greater of depth of flow above
Length of Apron (La) =	8.31	ft.	or TW below)
Width of Apron @ Do (Wo) =	3	ft.	
Width of Apron @ D.S. End (W) =	11.31	ft.	
Width of Apron if Channel (W) =	4	ft.	
			Tailwater TW to be hand calc'd
*If outleting to flat area use Tailwater (TW) =	0.2 x Do	0.20	if not outleting to flat area w/
			invert out at grade

ROCK RIP-RAP SIZE:

 $d50 = (0.02 \times Q^{(4/3)})/(TW \times Do)$ *Use a minimum of 3 Inch d50 if Rip Rap to be installed

(Taken from Table 7-24 of NHDES Erosion Control Handbook)						
% of Weight Smaller Than the Given Size	85	Size of Ston (inches)	e			
100	5	to	6	1		
85	4	to	5			
50	3	to	5			
15	1	to	2			

Minimum Rock RipRap Blanket Thickness = 7

~				
7	in. use	16	in.	

Class B

1.00

3

inches

Inches*

d50 =

USE:

Minimum 6 inch sand/gravel bedding or geotextile fabric required under all rock riprap

FORMULAE USED:

References:

NHDES Erosion Control Handbook, Pages 7-114, 7-115 NH Stromwater Manual: Volume 2, section 4-6.6, pages 172-174

Note: This spreadsheet was generated using the print-out "Pipe Outlet Protection Apron Design and d50 Riprap Sizing" prepared by Ed Minick of the Rockingham County Conservation District as a guide.

Project Name: WEST END YARDS Project No.: 20180317 Date: Design Storm: 25 Year	24-Ju	•	: Location.: JVA	Portsmout Chk'd By	
Apron Location: Outlet into Biorete	ention B	asin 2			
DOWNSTREAM CHANNEL (OR SPR	EADER) HYDRAU	LICS:		
Q (required) =	1.91	cfs ┥		From Hyc	IroCAD
Channel Bottom Width =	4	ft.	(3 x Do)		
Slope (along channel) =	0.01	ft/ft	· · · ·		
Left Side Slope =	2	h:v ang. =	26.57	deg.	
Right Side Slope =	2	h:v ang. =	26.57	deg.	
Depth of Flow =	0.2532	ft. 🔶		Iterative I	nput
Manning's 'n' =	0.0326				
Area =	1.14	sq.ft.			
Wetted Perimeter =	5.13	ft.			
Hydraulic Radius =	0.22	ft.			
Top Width =	5.01	ft.			
Velocity =	1.67	ft/sec			
Q (determined) =	1.91	cfs	FLOW DE	PTH ACHII	EVED
ROCK RIP-RAP SIZE: (Equ. Taken f Trapazoidal Channel:	from Figure	e 7-43, 7-44, N	IH Erosion o	control Hand	book)
d50 = 12((118C	QS^(13/6))	(R/P))^(2/5)	d50 =	1.0	inches*
n(based on d50 and DF) = (DF^(1/6)/(2*	1.6 x log([DF/d50)+14)	n =	0.0326	**
Triangular Channel: (likely not us	sed; if it is	change cell	E14 to refe	rnce cell H	32)
d50 = 12((64.4QS^(13/	/6))(Z/((Z^	^2)+1))^(2/5)	d50 =	2.0	inches*
n(based on d50 and DF) = (DF^(1/6)/(2 ⁻	1.6 x log([DF/d50)+14)	n =	0.0444	**

*Please note d50 has been rounded to the nearest whole number in inches for easier gradation **'n' is base on the rounded d50 in order to give the proper coefficent for rip-rap as specified

La AND W CALCULATIONS:

Culvert Diameter (Do) =	12	Inches 🗲	From HydroCAD
Tail Water Depth (TW) =	0.25	ft.	(greater of depth of flow above
Length of Apron (La) =	10.44	ft.	or TW below)
Width of Apron @ Do (Wo) =	3	ft.	
Width of Apron @ D.S. End (W) =	13.44	ft.	
Width of Apron if Channel (W) =	4	ft.	
			Tailwater TW to be hand calc'd
*If outleting to flat area use Tailwater (TW) =	0.2 x Do	0.20	if not outleting to flat area w/
			invert out at grade

ROCK RIP-RAP SIZE:

 $d50 = (0.02 \times Q^{(4/3)})/(TW \times Do)$ *Use a minimum of 3 Inch d50 if Rip Rap to be installed

Class B					
d50 =	2.25	inches			
USE:	3	Inches*			

in.

ROCK RIP-RAP GRADATION:

(Taken from Table 7-24 of NHDE	S Erosion (Control Handb	ook)		
% of Weight Smaller Than the Given Size	5	Size of Stone (inches)			
100	5	to	6		
85	4	to	5		
50	3	to	5		
15	1	to	2	_	
Minimum Rock RipRa	ip Blanket T	hickness =	7	in. use	16

Minimum Rock RipRap Blanket Thickness = 7 in. use

Minimum 6 inch sand/gravel bedding or geotextile fabric required under all rock riprap

FORMULAE USED:

References:

NHDES Erosion Control Handbook, Pages 7-114, 7-115 NH Stromwater Manual: Volume 2, section 4-6.6, pages 172-174

Note: This spreadsheet was generated using the print-out "Pipe Outlet Protection Apron Design and d50 Riprap Sizing" prepared by Ed Minick of the Rockingham County Conservation District as a guide.

Manning's Uniform Channel Flow: $Q = 1.486*(A \times r^{2/3}) \times s^{1/2}) / n$ Length of Apron (La) TW < Do/2: La = $(1.8 \times Q/(Do^{(1.5)}) + 7Do)$ Length of Apron (La) TW > Do/2: La = $(3.0 \times Q/(Do^{(1.5)}) + 7Do)$ Width of Apron @ D.S. End TW < Do/2: W = 3Do + La Width of Apron @ D.S. End TW >= Do/2: W = 3Do + 0.4La Width of D.S. End if Channel: W = Channel Bottom Width Width of Apron at Culvert: Wo = 3 xDo

Appendix H

Site Specific Soils Survey

Richard Lundborn

From:	Luke Hurley <lhurley@gesinc.biz></lhurley@gesinc.biz>
Sent:	Wednesday, September 12, 2018 9:32 AM
То:	Richard Lundborn
Subject:	Cate street soil Map

Hi Rick,

Here is the soil map. Pretty straight forward:

400A Udorthents, sandy or gravelly

This map unit typically includes the following concepts: 1) very gravelly (> 35%) sand or very gravelly loamy sand; Or 2) sand or loamy sand textures that may have lenses of loamy very fine sand or finer somewhere in the particle-size class control section (25 - 100 cm or 10 - 40"). Saturated hydraulic conductivity (K_{sat}) is high or very high. Drainage class ranges from excessively drained to somewhat poorly drained. Typical gravel pit.

This would equaste to an Eldridge NRCS, 89 HSG C.

I see no need to mark up the plan. Luke

Appendix I

Infiltration Feasibility Report

March 18, 2019

Torrington Properties, Inc. 60 K Street Boston, MA 02127

Attention: Mr. Jay Bisognano

Reference: West End Yards Development Site; Portsmouth, New Hampshire Subsurface Exploration Program

Ladies and Gentlemen:

This letter documents the results of our subsurface exploration program, including the results of soil permeability analyses associated the proposed subsurface infiltration systems to be constructed for the West End Yards Development project to be located in Portsmouth, New Hampshire.

On March 1 and 5, 2019, nineteen (19) test pits TP-101 through TP-119 were performed at the site by P. K. Brown Construction of Portsmouth, New Hampshire under contract to McPhail Associates, LLC (McPhail). Approximate test pit locations are as indicated on the enclosed Subsurface Exploration Plan, **Figure 1**. A detailed description of the subsurface conditions encountered within the explorations is documented on the attached test pit logs.

The test pits were performed within the footprint of the proposed subsurface infiltration systems. A fill deposit encountered within the test pits was observed to extend to depths ranging from 1 to 5.5 feet below the existing ground surface. In general, the fill deposit consists of loose to compact, light brown to gray black silty sand and gravel to sandy silt with trace to some gravel containing cobbles, brick and wood. Below the fill material, an organic deposit was encountered within three (3) test pits TP-101, TP-112, and TP-117 at depths ranging from 3.5 to 5.5 feet below ground surface. The organic deposit was observed to consist of a soft, black, organic silt with trace sand. A natural marine clay deposit was present below the fill and/or organic deposits within seven (7) test pits TP-101, TP-103, TP-112, TP-116, TP-117, TP-118, and TP-119 at depths ranging from 3 to 5.5 feet below ground surface corresponding to Elevation +15.4 to Elevation +17.6. The marine clay deposit was observed to consist of a soft to stiff, blue to gray, silty clay. A natural glacial outwash deposit was present below the fill deposit within twelve (12) test pits at depths ranging from 0.3 to 5.5 feet below ground surface corresponding to Elevation +26.2 to Elevation +20.8. The glacial outwash deposit was observed to consist of a compact to very dense, light gray/brown, silty fine sand with trace to some gravel. Grain-size distributions of typical samples of glacial outwash are presented on the enclosed Figures 2 and **3**. Within the exception of test pits TP-108 and TP-113 that were terminated on refusal on possible bedrock, the remaining test pits were terminated within glacial outwash or marine clay deposits.

Groundwater was observed during excavation in test pits TP-102, TP-105, TP-106, TP-108, TP-112, TP-116, TP-117, TP-118 and TP-119 at respective depths of 6, 6.5, 7, 7, 5, 6, 5.5, 5, and 5.5 feet below ground surface. Groundwater was not observed in other completed

Torrington Properties, Inc. March 18, 2019 Page 2

test pits. Due to the relatively impervious nature of the marine clay deposit and underlying bedrock, groundwater at the site is considered to be "perched" on the surface of the marine clay deposit and/or bedrock during and after precipitation events. It is anticipated that future groundwater levels across the project site may vary from those reported herein based on such factors such as normal seasonal changes, runoff during or following periods of heavy precipitation, and alterations to existing drainage patterns.

Soil Permeability

McPhail estimated the coefficient of permeability of the glacial outwash deposit based on laboratory grain-size distribution using the Kozeny-Carmen formula. This method involves the use of additional parameters such as void ratio and particle shape, which are estimated from the exploration data and the representative soil samples. The results of the Kozeny-Carmen formula indicate values of the coefficient of permeability within published ranges for similar soils.

			k at 20°C	k at 10°C
Exploration	Depth [feet]	Strata	[cm/s)	[cm/s]
TP-102	3.5 to 7.5	Glacial Outwash	3.41E-04	2.62E-04
TP-105	0 to 7.5	Glacial Outwash	8.17E-04	6.28E-04
TP-107	4 to 6.5	Glacial Outwash	6.07E-04	4.67E-04
TP-108	0 to 7.5	Glacial Outwash	2.45E-03	1.88E-03
TP-109	3 to 6	Glacial Outwash	3.67E-04	2.82E-04
TP-110	4.5 to 6	Glacial Outwash	1.29E-03	9.93E-04
TP-111	3.5 to 6	Glacial Outwash	6.90E-04	5.31E-04
TP-113	1.25 to 3.75	Glacial Outwash	4.57E-04	3.51E-04
TP-115	1 to 5	Glacial Outwash	3.01E-04	2.31E-04

Specifically, below are the tabulated results of the coefficient of permeability based on laboratory grain-size distribution using the Kozeny-Carmen formula within ten (10) test pits.

In consideration of the above, a coefficient of permeability in the range of 1.9×10^{-3} to 3×10^{-4} cm/s and is recommended for the glacial outwash deposit.

It should be noted that the existing glacial outwash deposit is heterogeneous in composition and variable in density, thus, it is anticipated that the coefficient of permeability in the glacial outwash deposit will be highly variable and the results of our permeability testing may not be representative of the entire glacial outwash deposit at the site. The analyses and recommendations presented in this letter are based upon the data obtained from the subsurface explorations performed at the approximate locations indicated on the enclosed plan. If variations in the nature and extent of subsurface conditions between the widely spaced explorations become evident during the course of construction, it will be necessary for a re-evaluation of the recommendations of this letter to be made after performing onsite observations during the construction period and noting the characteristics of any variations.

Torrington Properties, Inc. March 18, 2019 Page 3

Additionally, given that the marine clay deposit is consider impermeable, sieve and permeability analyses of this deposit were not performed. Generally, the marine clay deposit was encountered within the test pits performed at the northern and southern areas of the site. The approximate locations of these areas are indicated on the attached plan.

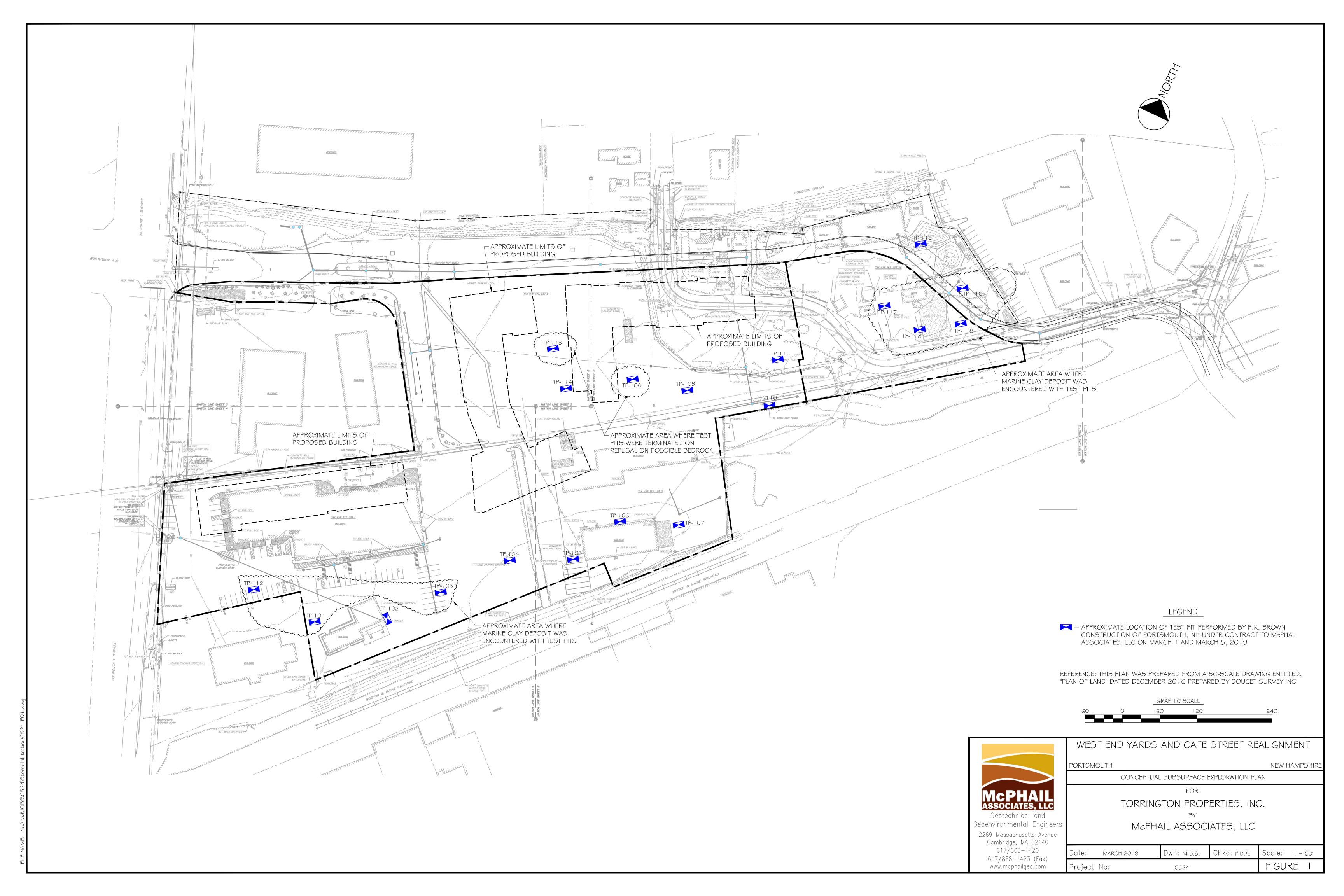
Furthermore, the approximate areas of the test pits that were terminated on refusal on possible bedrock are indicated on the attached plan.

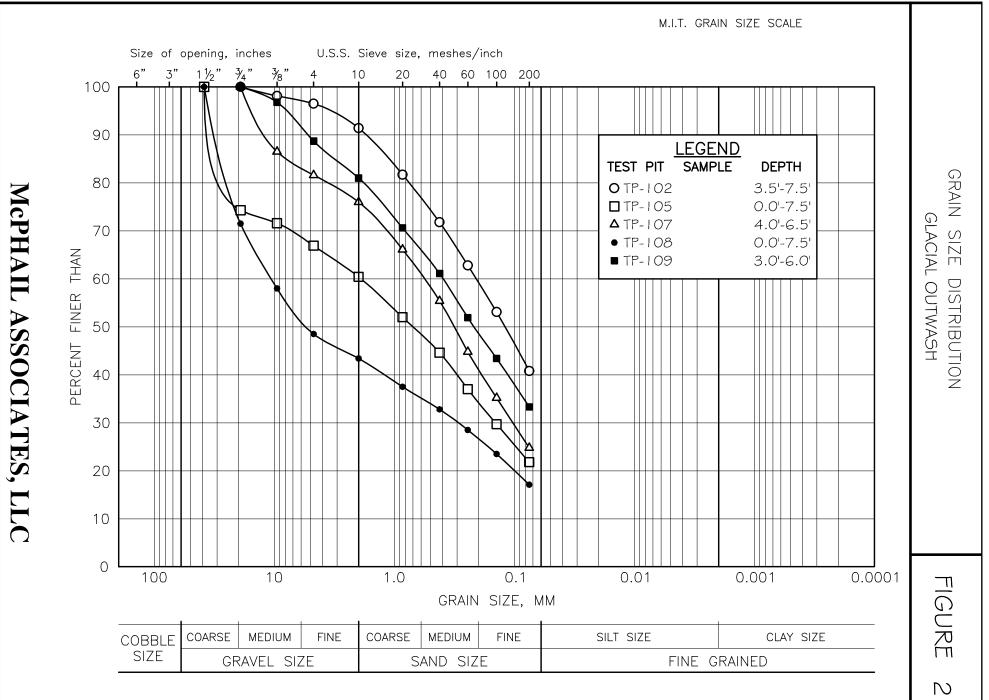
Final Comments

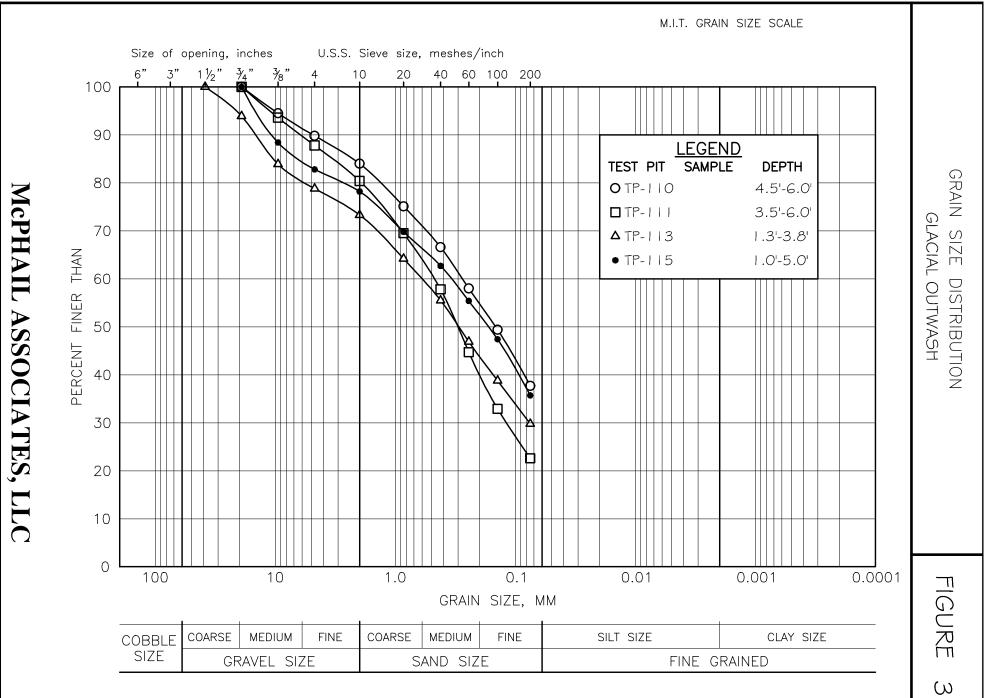
We trust that the above is sufficient for your present requirements. Should you have any questions concerning the recommendations presented herein, please do not hesitate to call us.

Very truly yours,

McPHAIL ASSOCIATES, LLC

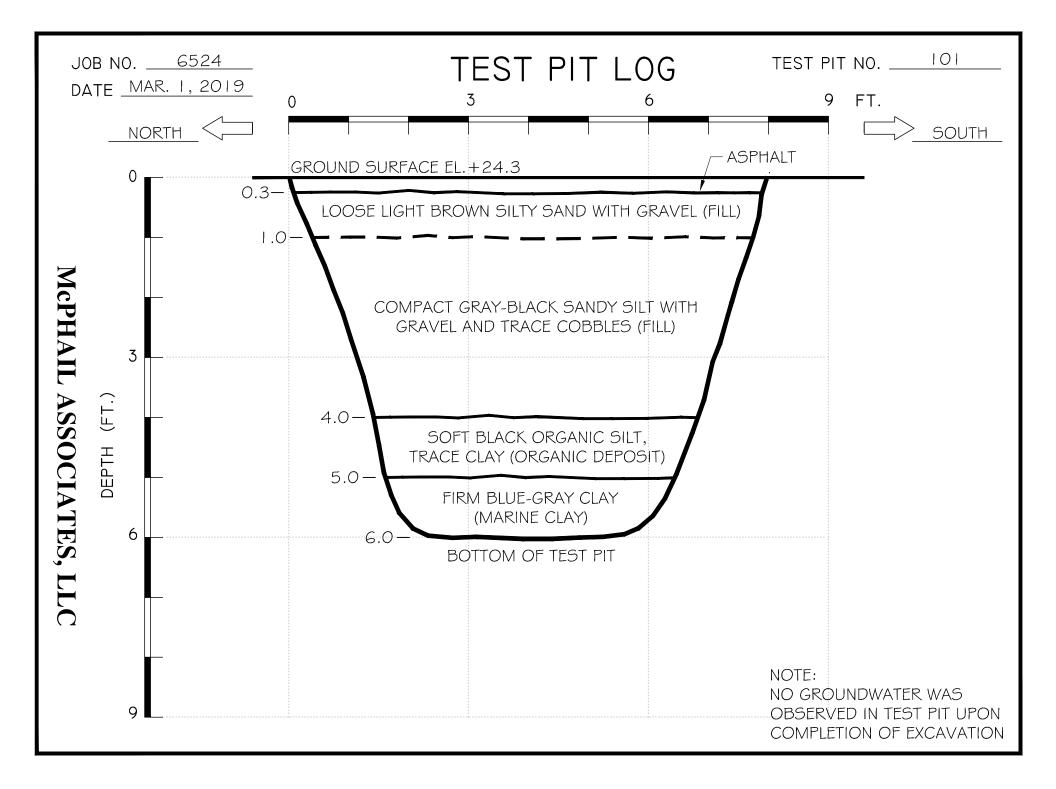

Jutines Balve-Konfic

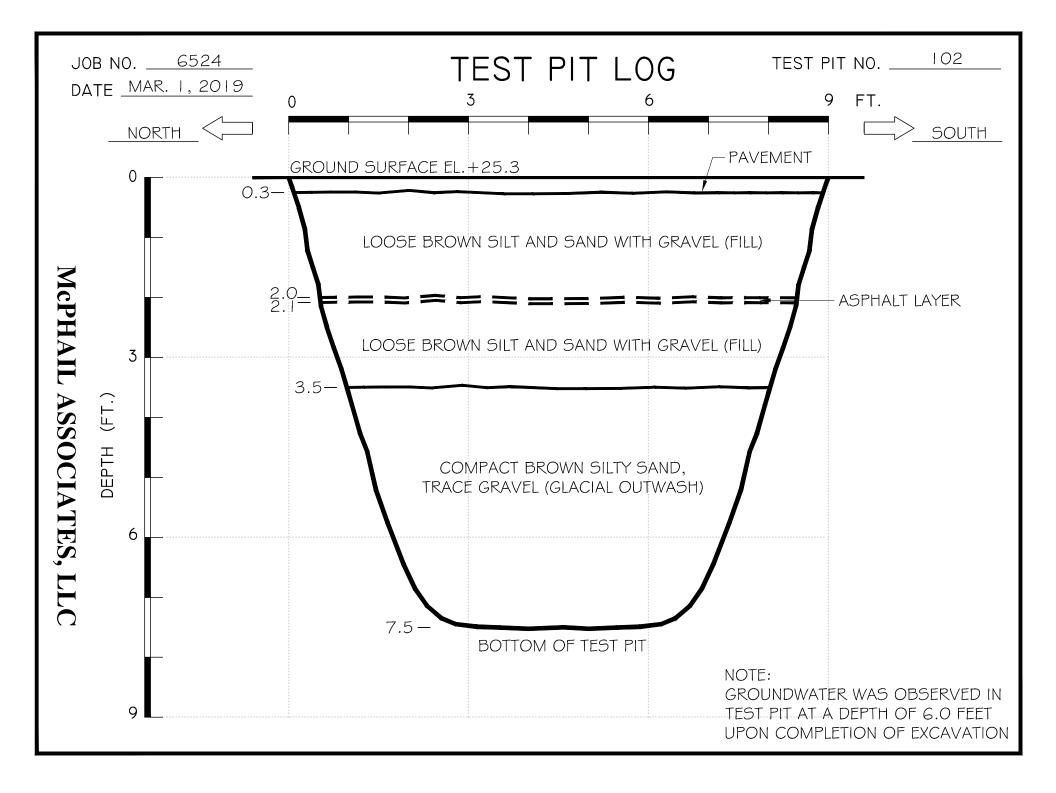

Fatima Babic-Konjic, P.E.

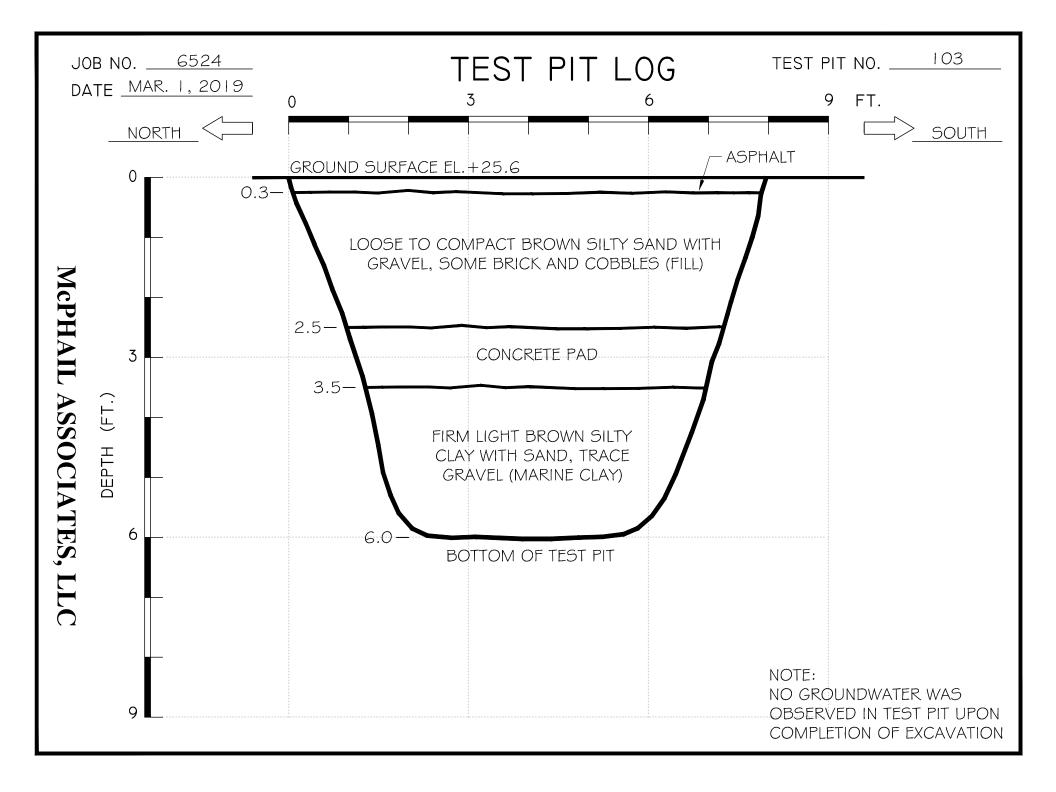

Ambrose J. Donovan, P.E., L.S.P.

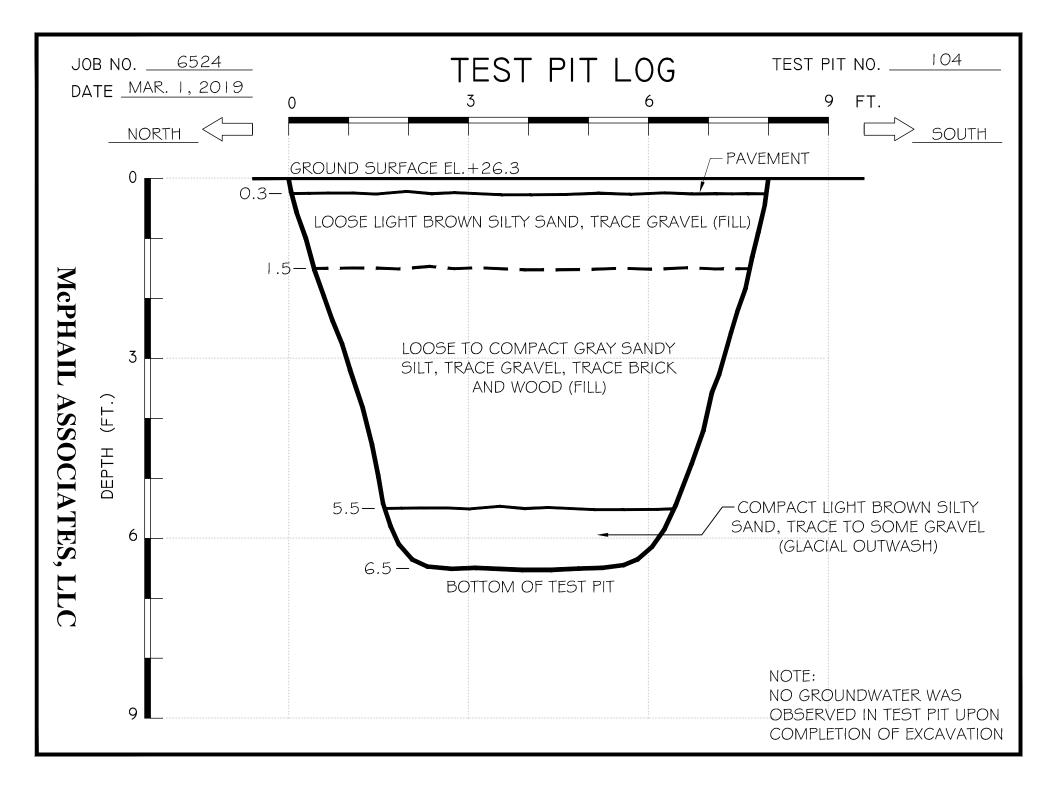
N:\Working Documents\Reports\6524_SEP_031819.docx

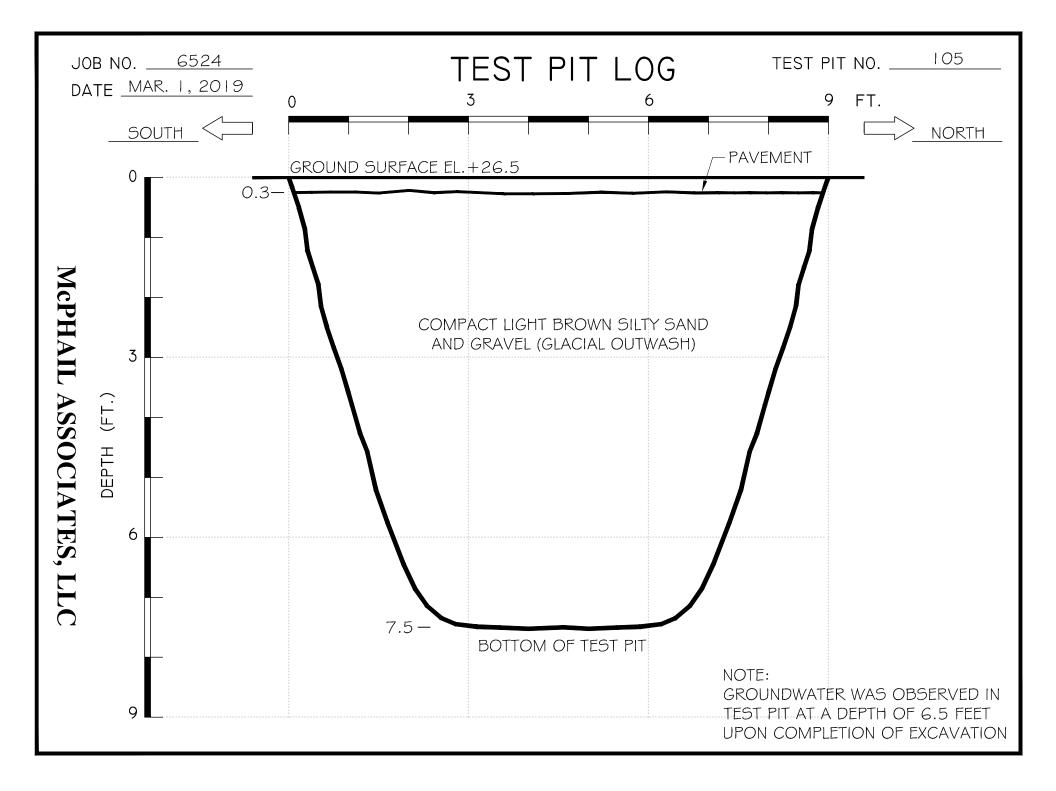
FBK/ajd

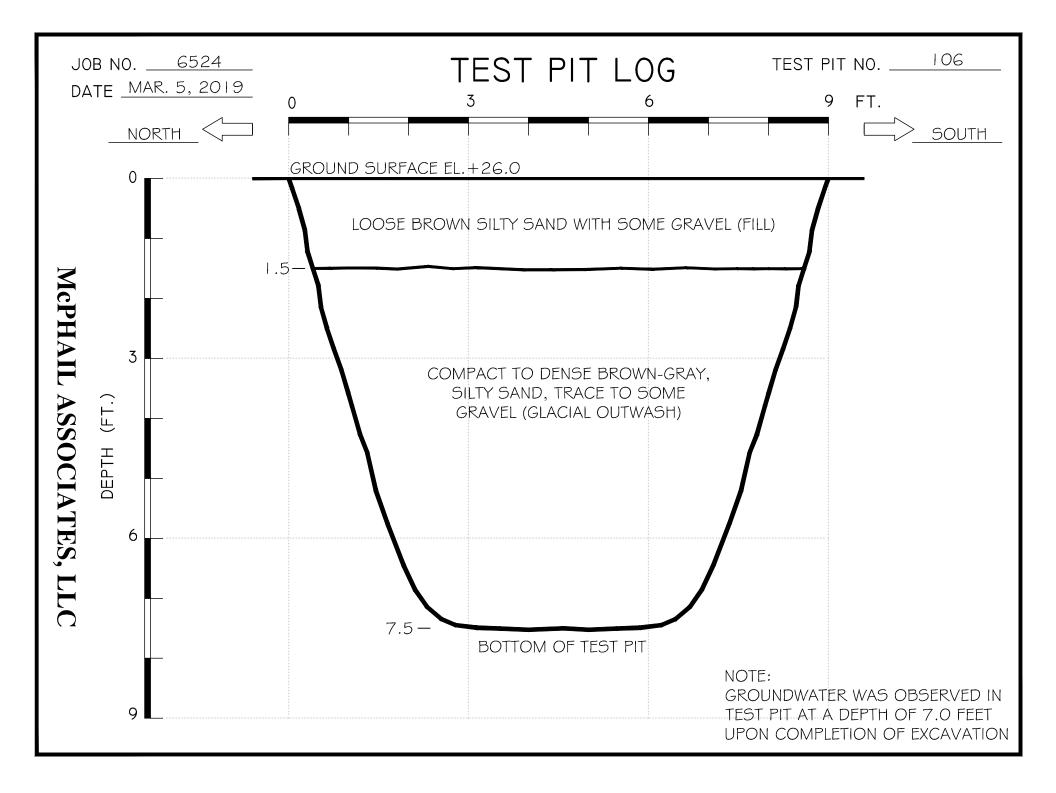


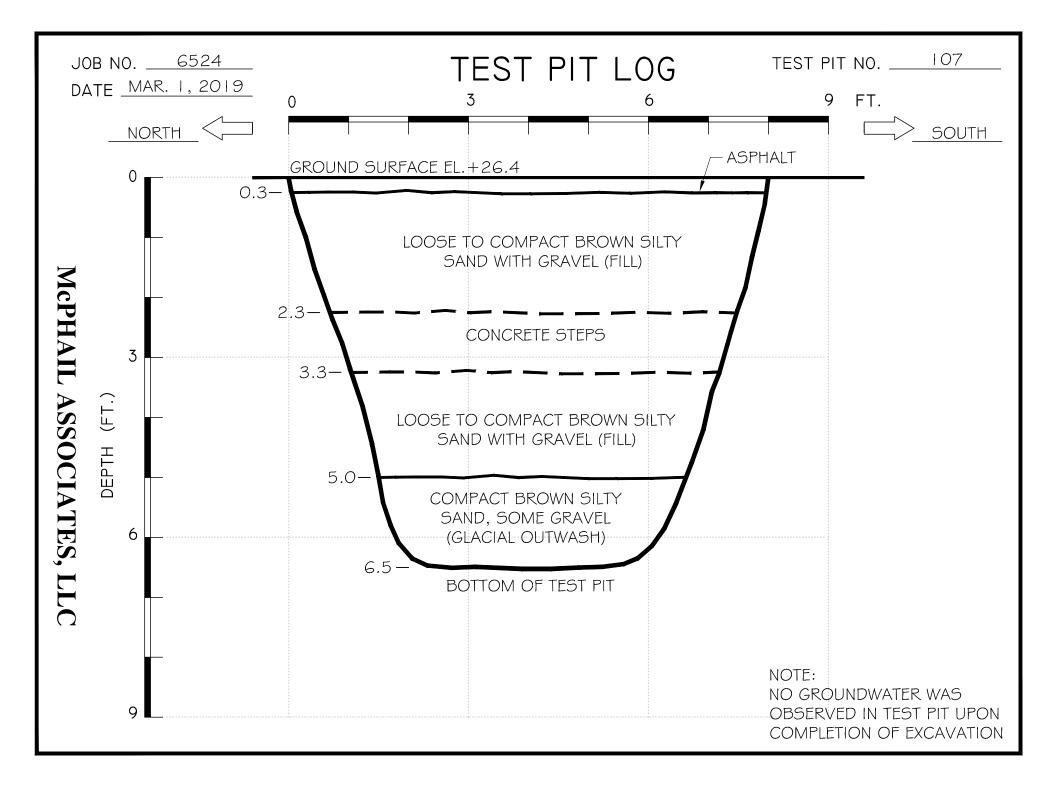


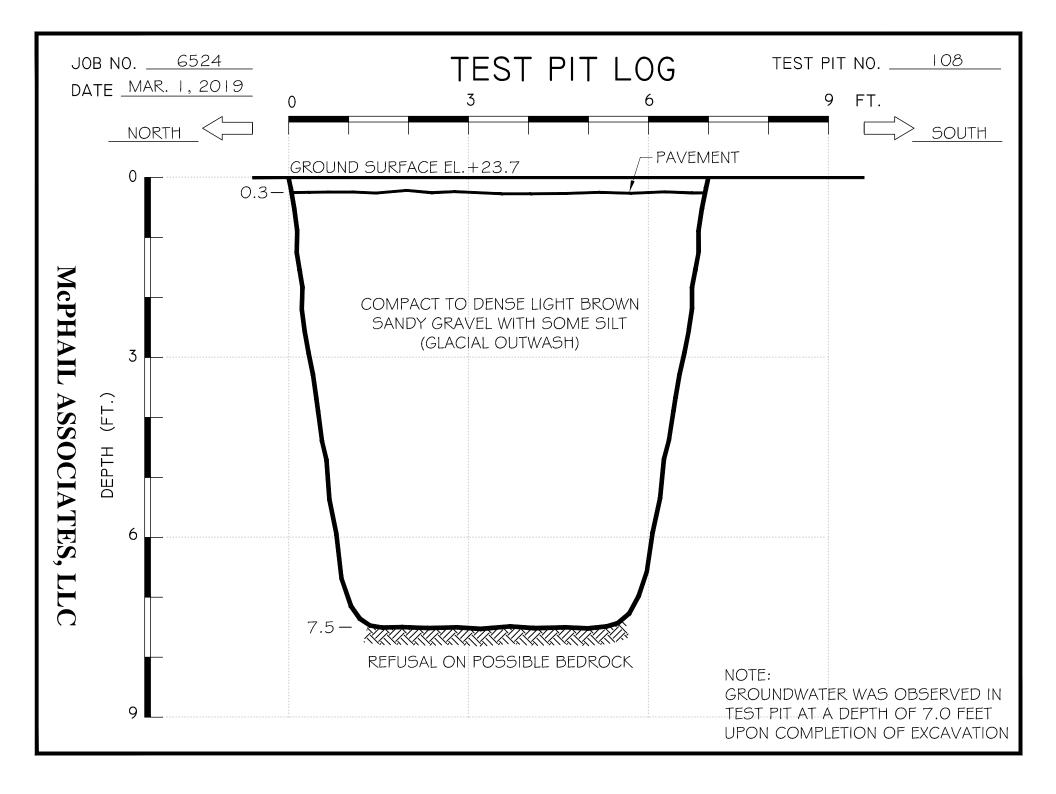


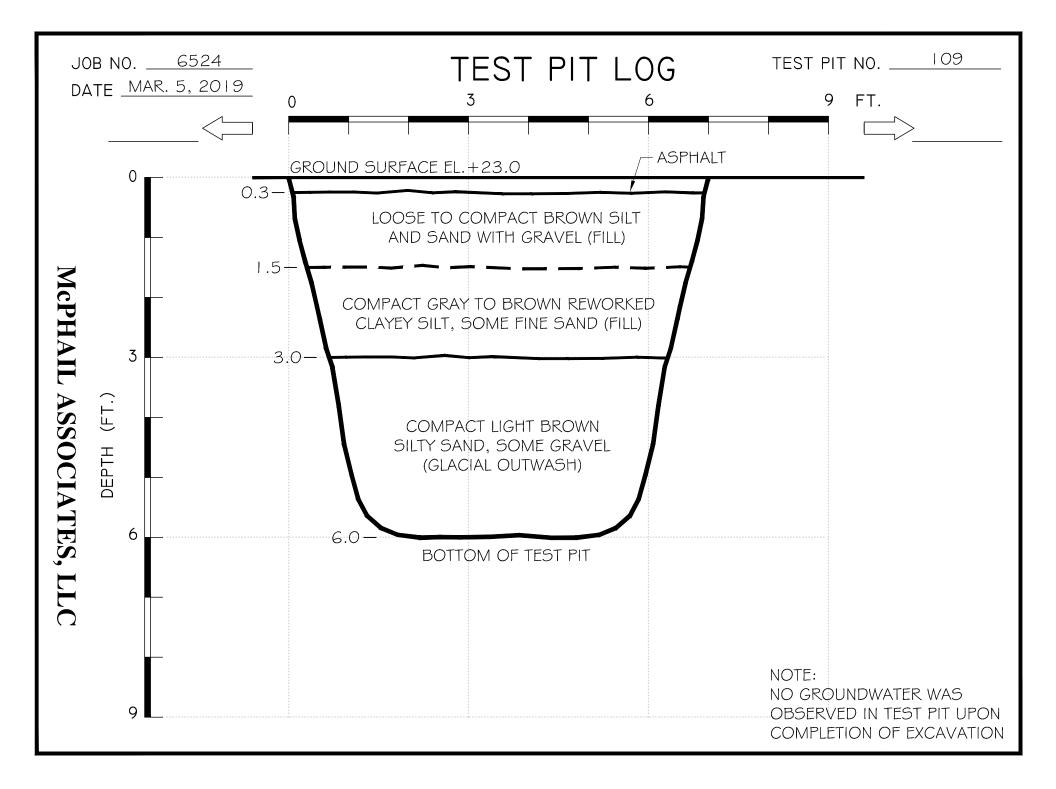

FILE NAME: N:\Acad\JOBS\6524\Storm Infiltration\6524-F03 Sieve.dwg

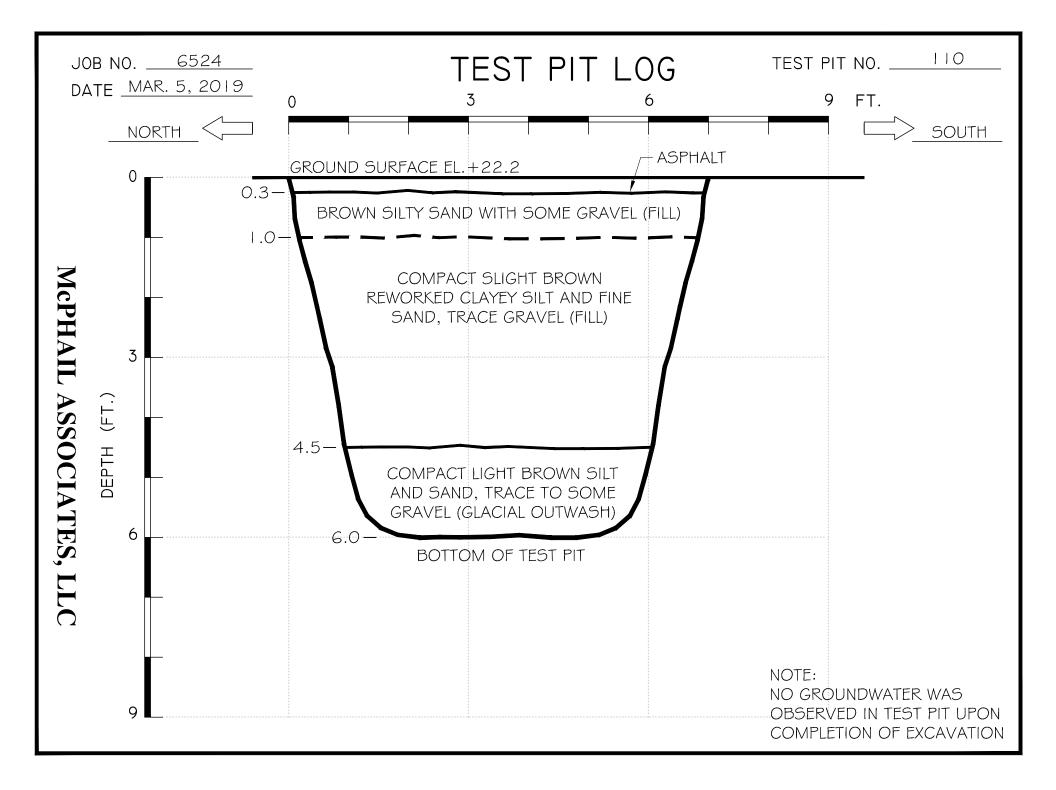

PROJECT No. 6524

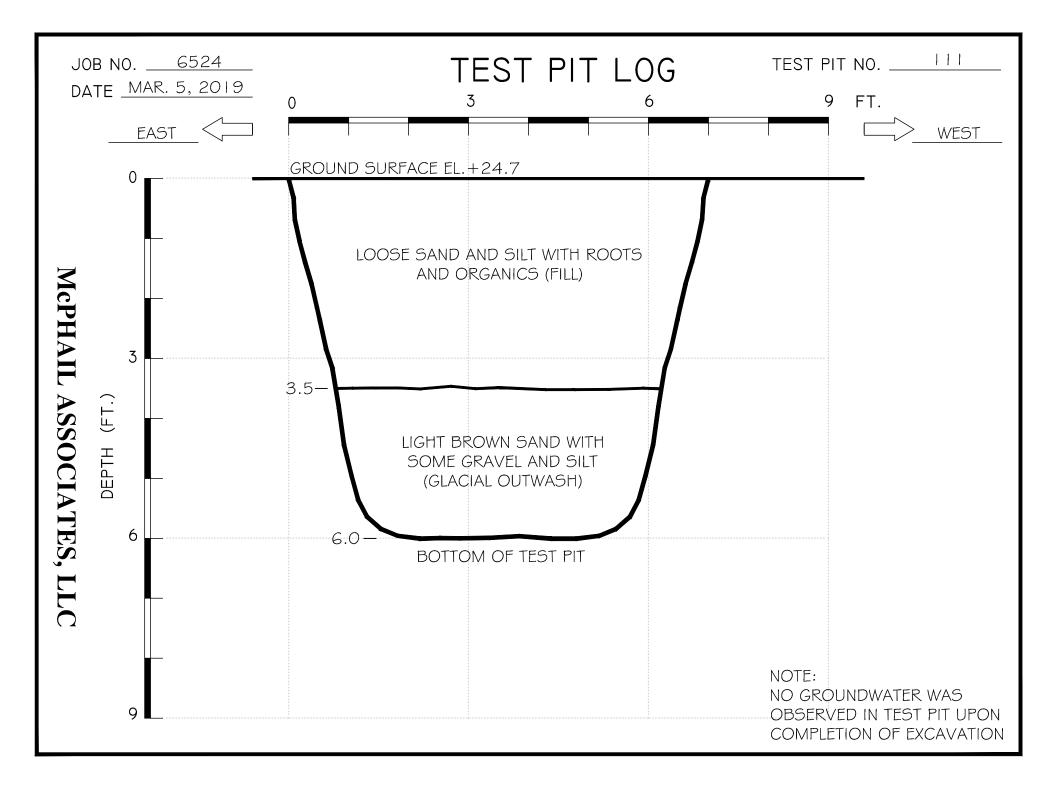


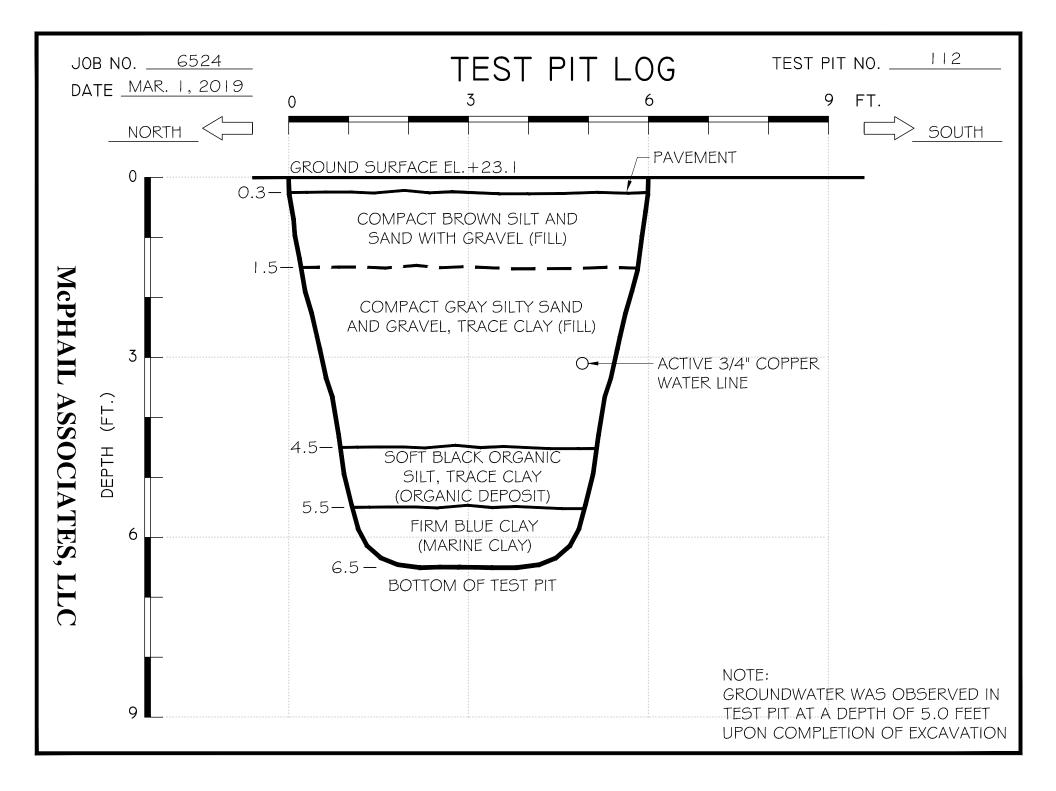


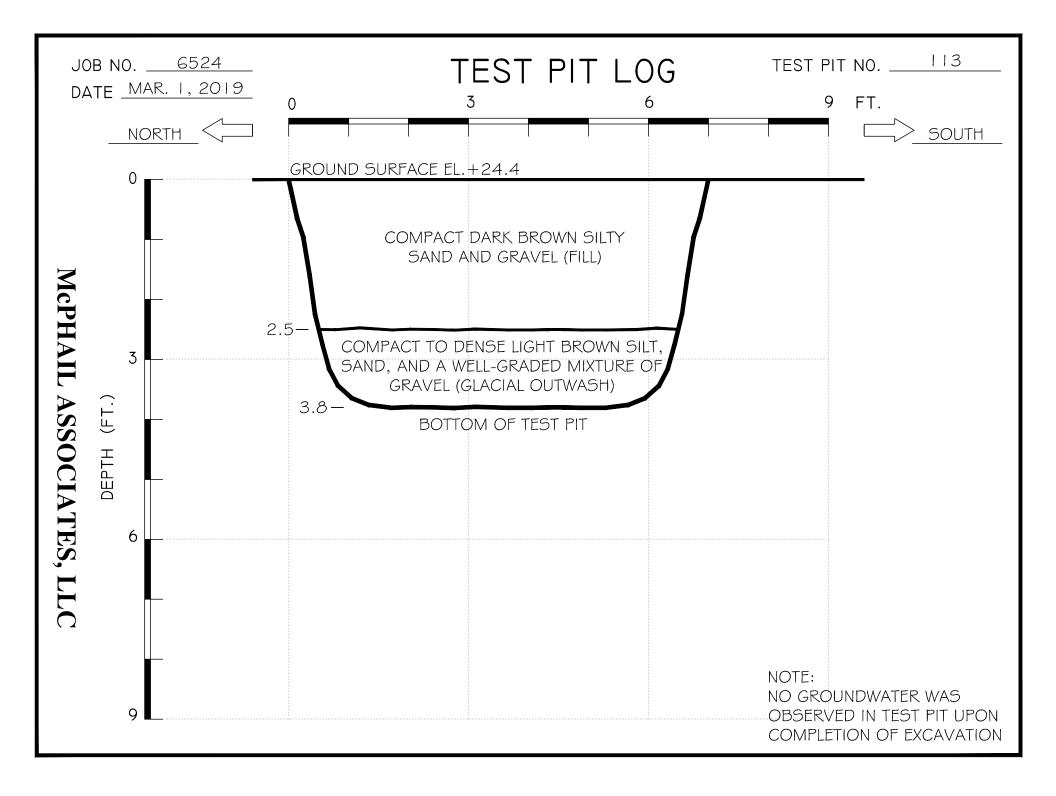


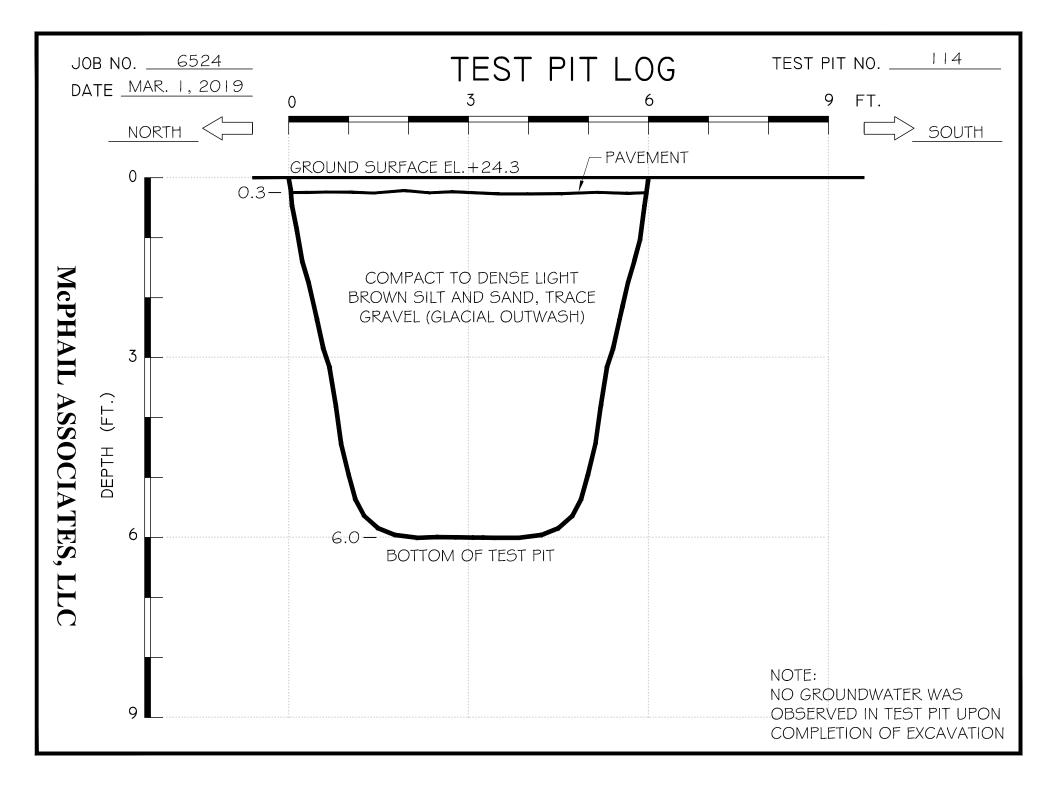


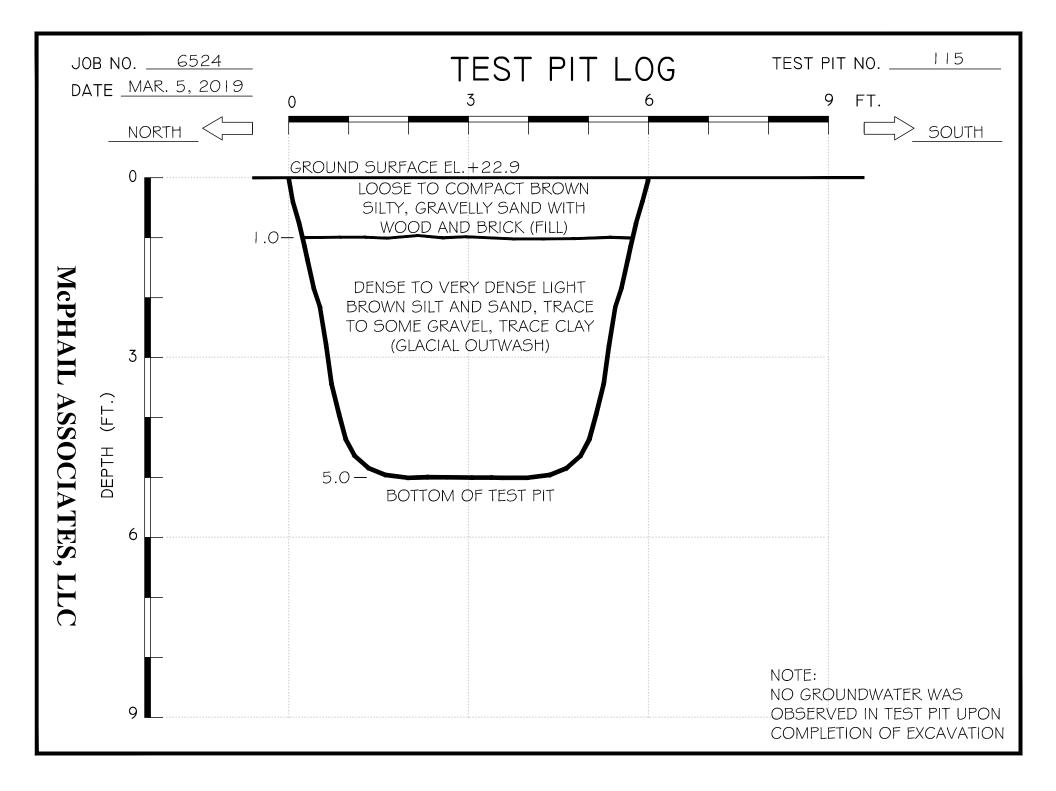


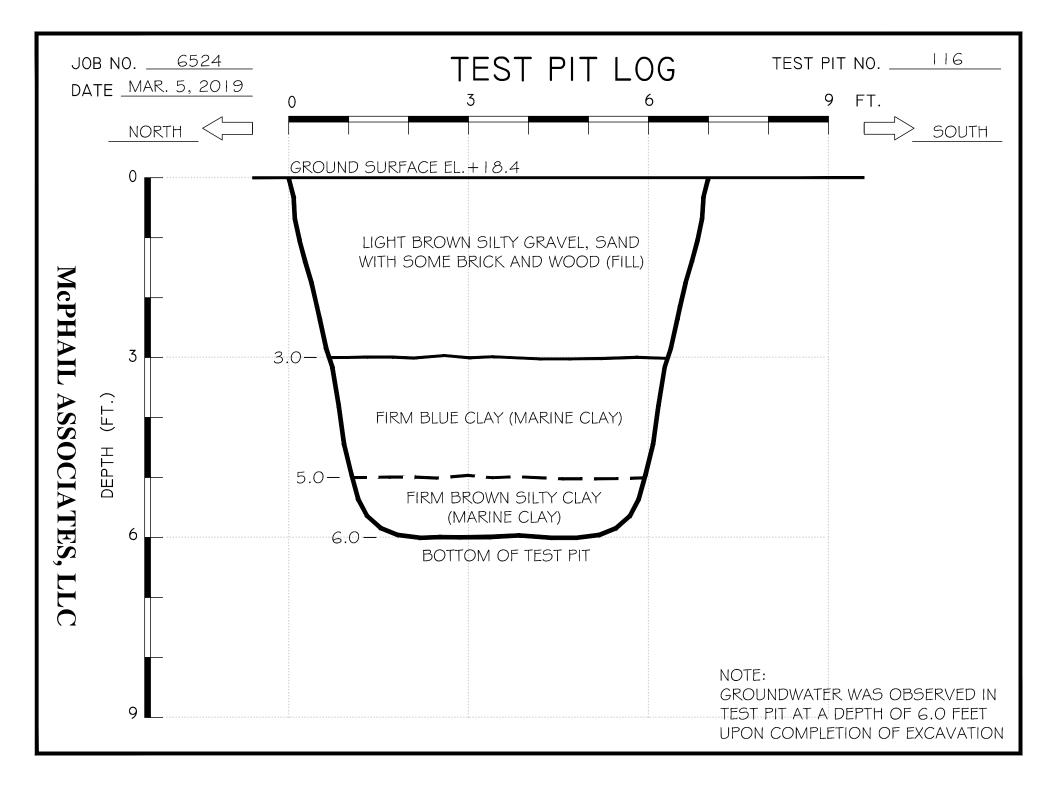


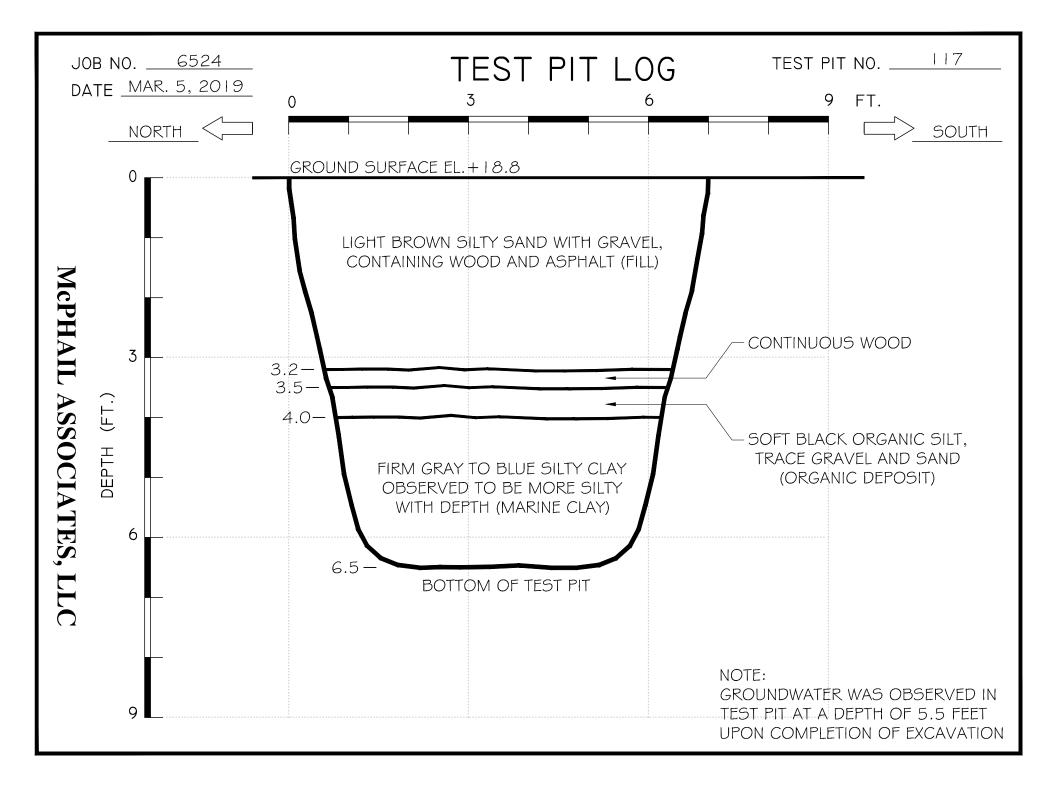


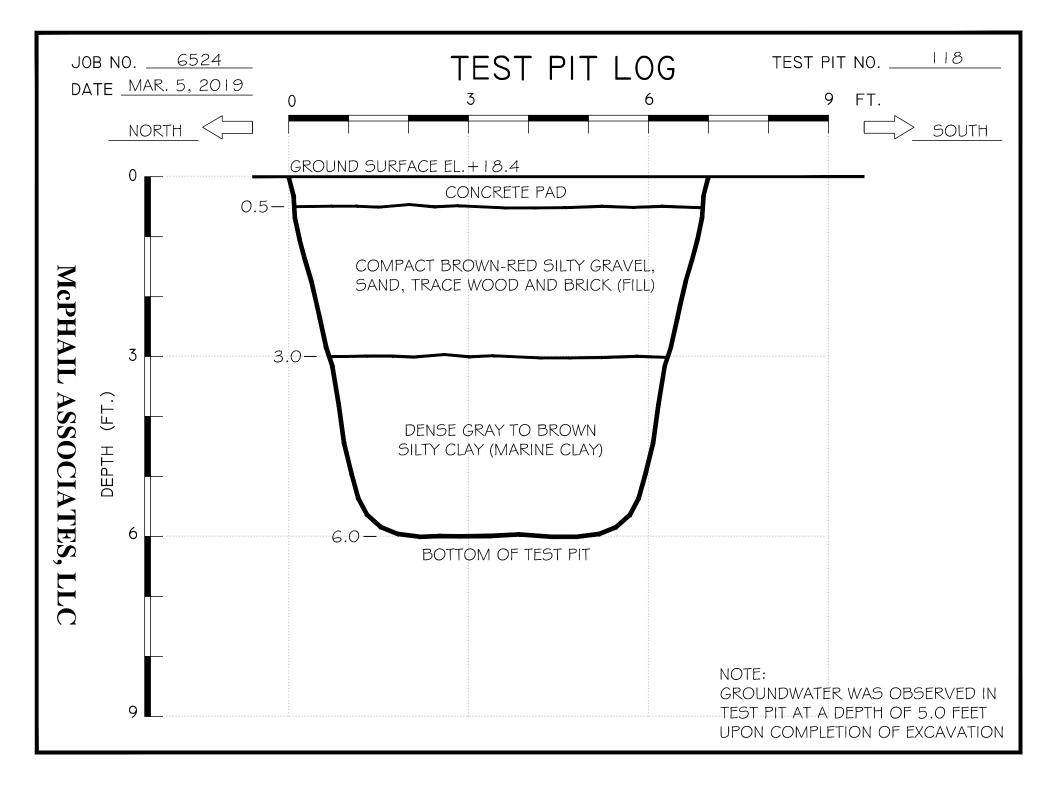


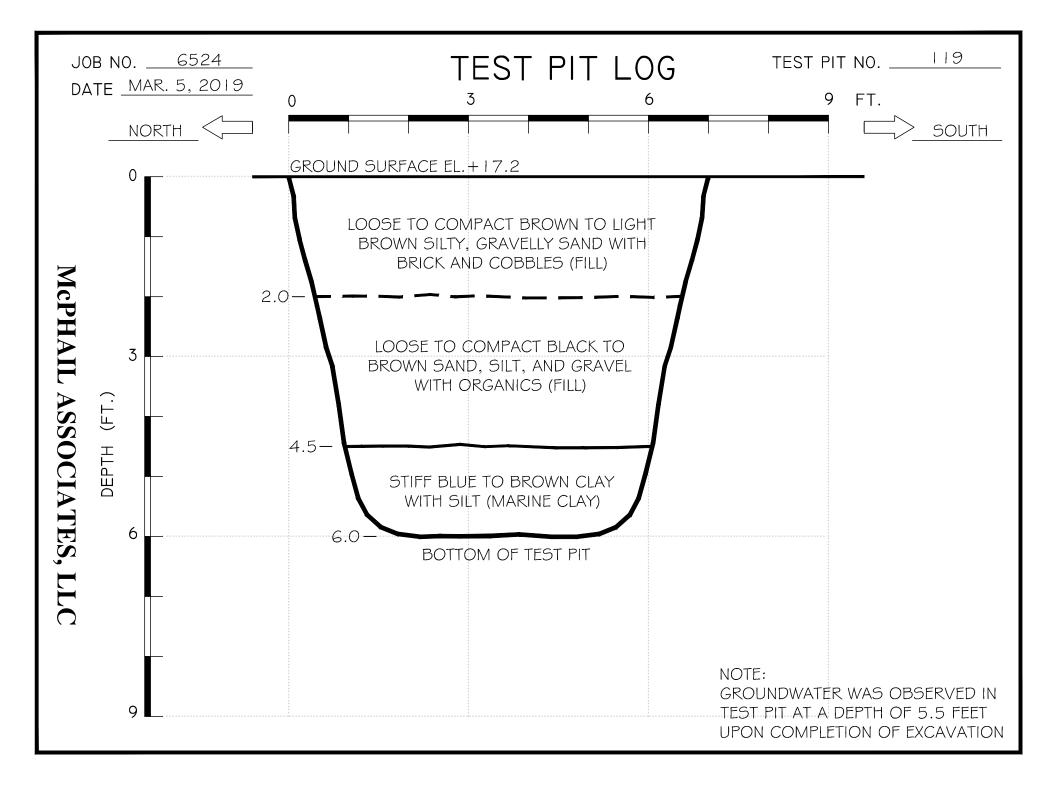












			K at 20∘ C	K at 20° C	K at 10∘ C	K at 10∘ C
Exploration	Depth (feet)	Strata	[cm/s]	[in/hr]	[cm/s]	[in/hr]
TP-102	3.5 to 7.5	Glacial Outwash	0.00034	0.48331	0.00026	0.37134
TP-105	0 to 7.5	Glacial Outwash	0.00082	1.15795	0.00063	0.89008
TP-107	4 to 6.5	Glacial Outwash	0.00061	0.86031	0.00047	0.66189
TP-108	0 to 7.5	Glacial Outwash	0.00245	3.47243	0.00188	2.66456
TP-109	3 to 6	Glacial Outwash	0.00037	0.52016	0.00028	0.39968
TP-110	4.5 to 6	Glacial Outwash	0.00129	1.82834	0.00099	1.40740
TP-111	3.5 to 6	Glacial Outwash	0.00069	0.97795	0.00053	0.75260
TP-113	1.25 to 3.75	Glacial Outwash	0.00046	0.64772	0.00035	0.49748
TP-115	1 to 5	Glacial Outwash	0.00030	0.42661	0.00023	0.32740

GOVE ENVIRONMENTAL SERVICES, INC.

TEST PIT DATA

Project : Cate Street Client: Torrington Properties GES Project No. 2018141 03/01/2019– Luke Hurley

ES Term Re	t Pit No. HWT: ination @ efusal: . Water:	101 36" 68" None 62"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:		IA IA
Depth 0–24"	Color FILL	Texture	Structure	Consistence	Redox % NON	Horizon IE
24-36"	10YR 2/1	S	SG	FR	NON	
36-68"	2.5Y 3/1	FS	BLK	FI	15% 10Y	YR 5/6
ES Term Re	t Pit No. HWT: ination @ efusal: . Water:	102 32" 90" None 70"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:		IA IA
Depth	Color	Texture	Structure	Consistence	Redox %	Horizon
0-20"	FILL	EGI	CD	ED	NON	
20-32" 32-90"	2.5Y 4/4 2.5Y 4/3	FSL FS	GR BLK	FR FI	NON 15% 10Y	
32-90	2.51 4/5	15	DLK	1.1	1370 101	K 3/0
ES Term Re	t Pit No. HWT: ination @ efusal: . Water:	103 30" 70" None 60"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:		IA IA
Depth 0–30"	Color FILL	Texture	Structure	Consistence	Redox % NON	Horizon
30-48"	G2.5/10Y	SLCL	BLK	FR	10% 10¥	
48-70"	2.5Y 4/4	FS	GR	FR	10% 10Y	
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	104 36" 72" None 67"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:		IA IA
Depth 0–36"	Color EU I	Texture	Structure	Consistence	Redox % NON	Horizon
0–36 36-60"	FILL 10YR 3/2	FSL	GR	FR	10% 10Y	
60-72"	2.5Y 4/4	FS	GR	FR	15% 10Y	
		-~	510	8 Continental Dr Bl		
					•	/ Fax (603) 778 0654

info@gesinc.biz

www.gesinc.biz

ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	105 24" 80" None 74"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	NA NA	
Depth 0–24" 24-80"	Color FILL 2.5Y 4/4	Texture FS	Structure BLK	Consistence FI	Redox % H NONE 20% CON. & DEPI 5/6	Horizon L. 10YR
ES Termi Re	E Pit No. HWT: ination @ efusal: . Water:	106 18" 86" None 86"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	NA NA	
Depth 0–18" 18-48" 48-86"	Color FILL 2.5Y 4/3 2.5Y 4/4	Texture FSL FS	Structure BLK BLK	Consistence FI FI	Redox % H NONE 25% 10YR 5, 20% 10YR 5,	
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	107 36" 80" None NA		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	NA NA	
Depth 0–36" 36-46" 46-80"	Color FILL 2.5Y 5/2 2.5Y 4/4	Texture SL FS	Structure BLK BLK	Consistence FI FI	Redox % H NONE 30% 10YR 5, 10% 10YR 5,	
ES Termi Re	t Pit No. HWT: ination @ efusal: . Water:	108 80" 90" None 90"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	NA NA	
Depth 0–24" 24-55" 55-80" 80-90"	Color FILL 10YR 4/6 10YR ³ ⁄4 2.5Y 4/4	Texture FSL FS FS	Structure GR GR BLK	Consistence FR FR FI	Redox % H NONE 15% 10YR 5	Horizon /6
Test Pit No. ESHWT: Termination @ Refusal: Obs. Water:		109 12" 75" None NA		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	NA NA	
Depth	Color	Texture	Structure	Consistence	Redox %	Iorizon

0–12" 12-42" 42-75"	FILL G2.5/10Y 10YR 4/4	SLCL FS	OM GR	FI FR	NONI 15% 10YI 15% 10YI	R 5/6
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	110 10" 70" None NA		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	N/ N/	
Depth 0–10" 10-48" 48-70"	Color FILL 2.5Y 4/2 2.5Y 4/4	Texture SLCL SLCL	Structure OM OM	Consistence FI FR	Redox % NONI 35% 10YI 25% 10YI	R 5/6
ES Termi Re	E Pit No. HWT: ination @ efusal: . Water:	111 40" 74" None NA		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	NZ NZ	
Depth 0–12" 12-24" 24-40" 40-74"	Color 10YR 3/2 2.5Y 4/2 2.5Y 4/3 2.5Y 4/3	Texture FSL SIL FSL FS	Structure GR BLK GR SG	Consistence FR FI FR FR FR	Redox % NONI NONI NONI 25% 10YI	E E
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	112 17" 68" None 62"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	NZ NZ	
Depth 0–17" 17-22" 22-55" 55-63" 63-68"	Color FILL G2.5/10Y 2.5Y 2.5/1 10YR 2/1 G4/N P @ 42"	Texture SLCL SLCL M CL	Structure BLK BLK GR BLK	Consistence FI FI FR FI FI	Redox % NONI 15% 10YI 15% 10YI 15% 10YI 15% 10YI	Horizon E R 5/6 R 5/6 R 5/6
ES Termi Refus Obs	E Pit No. HWT: ination @ isal: Ledge . Water:	113 NA 42" 42" NA	Structure	Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type: Consistence	NA NA Redox %	
	Color FILL 2.5Y 4/4 Pit No. HWT:	Texture FSL 114 NA	Structure GR	FR Lot No.: WSPCD Group:	NONI NONI NONI	Ξ

Re	ination @ efusal: . Water:	76" None NA		Roots to: SCS Soil: HIS Type:	N. N.	A
Depth 0–16" 16-42" 42-76"	Color FILL 2.5Y 4/4 2.5Y 3/3	Texture FS FS	Structure GR GR	Consistence FR FR	Redox % NON NON NON	E
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	115 30" 62" None NA		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	N. N. N.	A
Depth 0–30" 30-62"	Color FILL 2.5Y 4/4	Texture FSL	Structure GR	Consistence FR	Redox % NON 10% 10Y	
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	116 23" 75" None 75"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	N. N. N.	A
Depth 0–23" 23-75"	Color FILL 2.5Y 4/2	Texture SLCL	Structure OM	Consistence FI	Redox % NON 25% 10Y	
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	117 24" 75" None 65"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	N. N. N.	A
Depth 0–24" 24-40" 40-75"	Color FILL FILL 2.5Y 4/2	Texture SLCL	Structure	Consistence	Redox % NON 15% 10Y 15% 10Y	R 5/6
ES Termi Re	Pit No. HWT: ination @ efusal: . Water:	118 20" 76" None 68"		Lot No.: WSPCD Group: Roots to: SCS Soil: HIS Type:	N. N.	A
Depth 0–20" 20-76"	Color FILL 2.5Y 4/2	Texture SLCL	Structure OM	Consistence FI	Redox % NON 20% 10Y	
ES	Pit No. HWT: ination @	119 30" 70"		Lot No.: WSPCD Group: Roots to:	N	A

Cate Street- Portsmouth 03-01-19—Page 5 of 5

Refusal: Obs. Water:		None 60"		SCS Soil: HIS Type:	-	NA NA
Depth	Color	Texture	Structure	Consistence	Redox %	Horizon
0–30" 30-70"	FILL 2.5Y 4/2	SLCL	OM	FI	NO 20% 10	

FOUNDATION ENGINEERING REPORT WEST END YARDS

PORTSMOUTH, NEW HAMPSHIRE

APRIL 16, 2019

Prepared For:

Torrington Properties, Inc. 60 K Street Boston, MA 02127

2269 Massachusetts Avenue Cambridge, MA 02140 www.mcphailgeo.com (617) 868-1420

PROJECT NO. 6524.2.00

April 16, 2019

Torrington Properties, Inc. 60 K Street Boston, MA 02127

Attention: Mr. Jay Bisognano

Reference: West End Yards; Portsmouth, New Hampshire Foundation Engineering Report

Ladies and Gentlemen:

This report documents the results of our subsurface exploration programs and foundation design study for the proposed West End Yards development project to be located in Portsmouth, New Hampshire. Refer to the Project Location Plan (**Figure 1**) for the general site location.

This report was prepared in accordance with our proposal dated November 26, 2018 and the subsequent authorization of Torrington Properties, Inc (TPI). These services are subject to the limitations contained in **Appendix A**.

Purpose and Scope

The purposes of the subsurface exploration programs and foundation design study are to define the subsurface soil, rock, and groundwater conditions as they relate to foundation design and, based on these conditions, to provide engineering recommendations for safe and economical foundation design of the proposed development.

Foundation design includes foundation support of the proposed structures and their lowest level slabs, treatment of the lowest level slabs in consideration of groundwater, lateral earth pressures on foundation walls, and seismic design considerations in accordance with the provisions of the New Hampshire State Building Code, which is understood to be the 2009 International Building Code (IBC) with the City of Portsmouth amendments. Foundation construction considerations relating to geotechnical aspects of the proposed construction and pavement design criteria are also presented herein.

Available Information

McPhail Associates, LLC (McPhail) prior involvement with this site included the preparation of the following documents:

• A report entitled "Phase II Environmental Site Assessment Report – Portsmouth Parcels" dated February 5, 2018;

- A memorandum entitled "Results of Test Pits Exploration Cate Street Development" dated July 18, 2018;
- A report entitled "Phase I/II Environmental Site Assessment Report West End Yards" dated February 18, 2019;
- A letter entitled "West End Yards Development Site Subsurface Exploration Program" dated March 18, 2019;
- A report entitled "Initial Site Characterization Report 55 Cate Street" dated March 20, 2019; and
- A memorandum entitled "Foundation Design Considerations" dated April 8, 2019.

Available information provided to McPhail included the following:

- A civil drawing set entitled "West End Yards Cate Street" dated March 2019 and prepared by Fuss & O'Neill; and
- A 50-scale drawing entitled "Plan of Land" dated December 2016 prepared by Doucet Survey, Inc. (DSI).

Elevations cited herein are in feet and are referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

Existing Conditions

The subject site occupies an approximate 12-acre plan area fronting onto US Route 1 Bypass to the west and generally bounded by railroad tracks and an active construction site to the south-southeast and Hodgson Brook to the north-northeast. In addition, the site consists of five (5) contiguous parcels identified as 428 US Route 1 Bypass, 55 Cate Street, 161 Cate Street and Cate Street, and is divided by Cate Street.

In general, the site is occupied by several existing buildings consisting of a convention center, a storage/warehouse building and industrial/commercial buildings, a vacant residential house, an unattached garage, sheds, elevated loading ramp within central portion of the site, asphalt paved parking lots and landscape areas. Furthermore, it is understood that an existing sewer line with an invert at about Elevation +11 is crossing the central portion of the subject site.

Ground surface across the site generally slopes downward from southeast to northwest from approximately Elevation +26.6 to Elevation +21.6. In addition, within the Cate Street roadway located at the northern corner of the western portion of the site, ground surface varies from about Elevation +28 to Elevation +24.

Proposed Development

It is understood that the proposed development includes the demolition of the existing buildings, relocation of Cate Street and the construction of three (3) multi-story buildings identified as the Commercial Building, Building A, and Building B. The approximate footprints of the proposed buildings are indicated on the enclosed **Figure 2**. Also, it is understood that several stormwater infiltration systems will be constructed as part of the site development. The remainder of the site is planned to consist of landscaped regions and paved parking areas and roadways.

The proposed new structures are understood to include the following:

<u>Building B</u> is planned to consist of a 4-story wood-framed building with an approximate 28,600 square-foot plan area. The building will be constructed at the northern portion of the site, in the area of the existing Cate Street that will be relocated during the construction. The lowest-level slab is proposed to be located at Elevation +27.8. The existing grade within the western portion of the proposed building ranges between Elevation +23.4 to Elevation +24.5, and within the eastern portion of the proposed building the existing grade is at Elevation +27.9. Therefore, up to about 4.4 feet of fill will need to be placed within the western portion of the building to raise the grade for construction of the proposed lowest level slab.

<u>Building A</u> is planned to consist of a 4-story wood-framed building with an approximate 36,600 square-foot plan area and it will be located within the central portion of the site. The lowest-level slab is proposed to be located at Elevation +26.8. Approximately 1.5 to 5.5 feet of fill will typically need to be placed to raise the grade for construction of the lowest level slab. Based on the available information provided to us, it is understood that the exiting sewer line traversing the southern portion of the building will not be utilized for the new development and will be removed.

<u>Commercial Building</u> is planned to consist of a 2-story steel-framed structure occupying an approximate 22,630 square-foot plan area and it will be constructed within the western area of the site, partially within the footprint of an existing building that will be demolished. The lowest level slab is proposed to be constructed at about Elevation +26 which is about 1 to 3 feet above the existing grade. Based on our conversation with the project structural engineer, the maximum column load is estimated to be about 200 kips. In addition, it is understood that the existing sewer line located north of the proposed building will remain in service. It is understood that the location of the Commercial Building has not been finalized and it may be located south of the location described herein.

Recent Subsurface Exploration Program

During the period of March 1 through 5 and 11 through 18, 2019, a subsurface exploration program consisting of twenty-six (26) borings (B-101 to B-104, B-106 to B-119, B-122 and B-123) and nineteen (19) test pits (TP-101 to TP-119) was completed at the project site by

McPhail. Approximate plan locations of the explorations are indicated on the enclosed Subsurface Exploration Plan, **Figure 2**. Generalized subsurface sections are present on **Figure 3**.

The borings were performed by Carr-Dee Corp. (Carr-Dee) of Medford, Massachusetts under contract to McPhail. The borings were drilled to depths ranging from 3 to 18.5 feet below existing grade and were typically terminated within the natural glacial deposits or possible bedrock. The borings were performed using a truck-mounted drill-rig and advanced utilizing 2-1/4-inch hollow stem augers. Standard 2-inch O.D. split-spoon samples and standard penetration tests were obtained at minimum 5-foot intervals of depth in accordance with the standard procedures described in ASTM D1586. Recent boring logs prepared by Carr-Dee are contained in **Appendix B** following the text of this report.

The test pits were performed by P.K. Brown Construction of Portsmouth, New Hampshire under contract to McPhail. The test pits extended to depths ranging from 3.8 to 7.5 feet below ground surface. The test pits were performed with a 314 CAT excavator. Test pit logs prepared by McPhail are contained in **Appendix C** following the text of this report.

The explorations were monitored by a McPhail field representative who performed field layout, prepared field logs, obtained and visually classified soil samples, monitored groundwater conditions in the open explorations, and determined the required exploration depths based upon the actual subsurface conditions encountered.

Field locations of the borings and test pits were determined by taping from existing site features included on the above-referenced existing conditions plan prepared by DSI. The existing ground surface elevation at each exploration location was determined by a level survey performed by our field staff utilizing vertical control information on the above-referenced existing conditions plan by DSI.

Previous Subsurface Exploration Programs

In addition to the subsurface exploration program described above, the following previous subsurface exploration programs as indicated on the enclosed Subsurface Exploration Plan, **Figure 2**, were performed at the site:

- Three (3) borings (B-1 through B-3) performed at the site on December 10, 2018 by Carr-Dee under contract to McPhail. The boring logs prepared by McPhail are enclosed in **Appendix D**.
- Four (4) test pits (TP-1 through TP-4) were conducted at the site on June 21, 2018 by Severino Trucking, Co. Inc. (STC) under contract to others. The test pit logs prepared by McPhail are enclosed in **Appendix E**.

• Fifteen (15) geoprobes (GP-1 through GP-15) were conducted at the site on January 19 and 22 2018 by Technical Drilling Services, Inc. (TDS) under contract to McPhail. The geoprobe logs prepared by McPhail are contained in **Appendix F**.

Laboratory Testing

At the completion of the subsurface exploration programs, soil samples were returned to our laboratory for more detailed classification, analysis, and testing. The laboratory testing consisted of sieve analyses to determine the grain size distribution and confirm the visual classifications of the fill and glacial outwash deposits. Laboratory test procedures were in general accordance with applicable ASTM Standards. Results of the sieve analyses for the fill material appear on **Figure 4**, **Figure 5** and **Figure 6**. Results of the sieve analyses for the glacial outwash deposit appear on **Figure 7**, **Figure 8**, **Figure 9** and **Figure 10**.

Subsurface Conditions

A detailed description of the subsurface conditions encountered in the borings, geoprobes and test pits is documented on the logs contained in **Appendix B** through **Appendix F**. It should be noted that not all strata, as described below, were encountered at all exploration locations. Note that the descriptions of the soil strata are primarily based on the visual observations of soil samples obtained from the test pits, geoprobes and borings.

- Fill: Loose to very dense, brown to dark brown, sand and gravel, with trace to some silt, varying to a well-graded mixture of silt, sand and gravel, also containing varying amounts of brick. Grain size distributions of samples of the fill deposit are presented on the enclosed **Figure 4**, **Figure 5** and **Figure 6**.
- Organic Deposit: Soft to stiff, brown to black, organic silt with some sand and clay and trace peat fibers.
- Marine Clay Deposit: Yellow to blue, silty clay transitioning with depth from very stiff to very soft. Based on our experience on nearby projects and from our review of published information about the Portsmouth clay deposit, the undrained shear strength of the marine clay is anticipated to vary from about 250 to 400 pounds per square-foot (psf). Furthermore, the marine clay deposit is anticipated to be slightly over-consolidated.
- Glacial Deposits:
 - Glaciomarine Deposit: Compact, gray, silty sand, some gravel varying to silty sand and gravel with pieces of weathered bedrock.
 - Glacial Outwash: Compact to very dense, gray, sand and gravel, with trace to some silt, varying to a well-graded mixture of sand, gravel and silt. Grain size distributions of samples of the glacial outwash deposit are contained on the enclosed Figure 7, Figure 8 and Figure 9.

- Possible Bedrock: Based on the published United States Geological Survey (USGS) bedrock maps for the general area of the site, bedrock is anticipated to be associated with the Kittery Formation and consist of metasandstone and phyllite.
- Groundwater: Where groundwater was encountered within the recent explorations, it was observed to range from 4 to 11 feet below ground surface corresponding to Elevation +19.9 to Elevation +14.1 with a general downward gradient from south to north. Groundwater was observed within five (5) accessible installed wells (GP-5, GP-6, GP-10, GP-13, and GP-15) to range from 2.8 to 8.3 feet below the existing ground surface corresponding to Elevation +21.8 to Elevation +15. Other installed wells at the site were not accessible due to snow or ice or they were demolished. Groundwater Monitoring Reports are enclosed in **Appendix G**. It is anticipated that future groundwater levels across the project site may vary from those reported herein based on such factors such as normal seasonal changes, runoff during or following periods of heavy precipitation and alterations to existing drainage patterns.

The following is a description of the subsurface conditions encountered from ground surface downward within the vicinity of each proposed new structure. Elevations corresponding to the surface of the natural marine or glacial outwash deposit noted below are also presented on **Figure 2**. In addition, a generalized subsurface section through each structure is indicated on the enclosed Generalized Subsurface Sections A-A, B-B and C-C, **Figure 3**.

Building B: Underneath the surface treatments, generally the explorations encountered a layer of fill material which ranged from 0.7 to 3.5 feet in thickness. The explorations performed within the western portion of the building encountered a glacial outwash deposit below the subsurface improvements or fill material at depths ranging from about 0.5 to 4 feet below ground surface corresponding to Elevation +23.4 to Elevation +21.6. Boring B-108 performed within the east end of the proposed building encountered a 3-foot thickness of firm marine clay at a depth of 4 feet below ground surface which corresponds to Elevation +23.9. Each boring conducted within the footprint of this building encountered refusal on possible boulders or bedrock at depths ranging between 3 to 10.7 feet below ground surface corresponding to Elevation +13.8. Groundwater was observed to vary from 7 to 9.5 feet below ground surface corresponding to Elevation +15.

Building A: Underlying the asphalt surface treatment, the explorations encountered a layer of fill material which ranged from 3.7 to 14.2 feet in thickness. The fill was typically thinner within the eastern portion of the proposed building footprint. Below the fill material, the explorations encountered a compact to very dense glacial outwash deposit below an uncontrolled fill material at depths ranging from about 4 to 14.5 feet below ground surface. In general, the surface of the natural glacial deposit in the explorations was observed to vary from about Elevation +15.1 to Elevation +23.2 with the exception of at boring B-110 where it was observed to be at Elevation +9. Groundwater was observed to range from 7 to 9.5 feet below ground surface corresponding to Elevation +18.3 to Elevation +14.2.

Commercial Building: Borings B-101 through B-104 were performed in the direct vicinity of the proposed Commercial Building. Within these borings, an uncontrolled fill material extends to depths from 5 to 7 feet below ground surface corresponding to Elevation +19.7to Elevation +17.8. Below the fill material, a 0.5 to 1-foot thickness of an organic deposit was encountered within the northwest corner of the proposed building footprint in borings B-101 and B-102. A natural inorganic marine clay deposit was encountered below the fill and/or organics within the western portion of the building in borings B-101, B-102 and B-104 at elevations ranging from +17.9 to +19.2. The upper portion of the marine clay deposit was generally observed to consist of a very stiff silty clay. Within borings B-101 and B-104, which were performed on the north side of the building, the consistency of the clay transitioned with depth to very soft. The total thickness of the marine clay deposit, where penetrated, ranges from 4 to 13 feet. Directly below the fill within the eastern portion of the building and below the marine clay in the western portion of the building, the explorations encountered a compact to very dense glacial deposit at depths ranging between 5 to 18.5 feet below ground surface corresponding to Elevation +17.8 and Elevation +6.2. Groundwater was observed to vary from 4 to 11 below ground surface corresponding to Elevation +19.9 to Elevation +14.1.

Foundation Design Recommendations

Based on our current understanding of the proposed development and the anticipated subsurface conditions, foundation support for the proposed development is recommended to consist of conventional spread footing foundations in conjunction with soil-supported slabs-on-grade. In consideration of the various footing support conditions as described below, it is recommended for continuity that the footings be proportioned utilizing a maximum design bearing pressure of two (2) tons per square-foot (tsf). The use of higher allowable bearing pressures may be feasible subject to further understanding of the proposed structural loads and the selection of the footing support method. Detailed recommendations for each building are presented below as well as recommendations in consideration for the lowest-level slabs and general foundation recommendations.

Building B

The surface of the natural glacial or marine clay deposit within Building B varies from Elevation +23.4 to Elevation +23.9. In consideration that the proposed lowest level slab will be at Elevation +27.8, it is anticipated that the surface of the natural inorganic deposits will either be slightly above or below the design bottom of footing elevation. As such, for Building B it is recommended the spread footings bear directly on the natural marine clay, glacial deposit or bedrock, or on compacted structural fill placed over the natural marine clay, glacial deposit or bedrock.

The lowest level slab should be designed as a conventional slab-on-grade bearing on the existing fill subject to proof-compaction as described below.

The lateral limits of the excavation for footings supported on structural fill should extend beyond the outside edges of the footing a horizontal distance equal to the distance between the bottom of the proposed footing and the surface of the underlying natural glacial or marine clay deposit, plus two feet in every plan direction. Depending on the final configuration of the proposed footings, it may be more efficient for the earthwork contractor to remove all the existing fill material from the proposed building footprint and the lateral limits for structural fill discussed above and replace it with compacted structural fill.

Structural fill placed for support of the spread footings and slab-on-grade should consist of suitable on-site fill or glacial outwash or an off-site gravel borrow consisting of well-graded, natural sand and gravel containing less than 8 percent passing the No. 200 sieve. All structural fill placed within the footprint of the proposed buildings should be placed in lifts having a compacted thickness of 6 inches and be compacted to a minimum of 95 percent of its maximum modified Proctor dry density. The placement and compaction of structural fill should be monitored by a registered design professional or his designated representative in accordance with the provisions of the Code. Reuse of the on-site soil is discussed in more detail in the "Foundation Construction Considerations" section of this report.

Building A

As indicated above, the surface of the natural glacial deposit in Building A was observed to vary from about Elevation +15.1 to Elevation +23.2 with the exception of at boring B-110 where it was observed to be at Elevation +9. Therefore, in consideration that the proposed lowest level slab will be at Elevation +26.8, it is anticipated that the surface of the natural glacial deposits will be slightly above or up to about 14 feet below the design bottom of footing elevation.

As such for Building A it is recommended that the spread footings bear directly on the glacial outwash, on compacted structural fill or lean concrete placed over the glacial deposit, or on fill that is improved by aggregate piers (APs) ground improvement method. We recommend that the specific building pad preparation method be based on economic conditions at the time the project is bid for construction.

The use of APs would allow for the utilization of conventional spread footing construction without requiring overexcavation of the existing uncontrolled fill or significant dewatering. The structural design of footings support on soil improved by ground improvement methods would be the same if structural fill or lean concrete were used to replace unsuitable soils. If utilized, the APs for Building A can be ungrouted and would extend to the top of the glacial outwash deposit and would likely range up to about 18 feet in length. Recommendations for APs are contained below and recommendations for Structural Fill are contained above.

The lowest level slab of the proposed building should be designed as a conventional slab-ongrade bearing on the existing fill subject to proof-compaction described below and/or on AP improved site soils.

As an alternative to placement of structural fill or ground improvement in areas where the fill deposit is thicker, proposed footings may be supported on lean concrete placed on the surface of the natural glacial deposit. Lean concrete placed for support of the spread footings should have a minimum design compressive strength of 1,000 pounds per square-inch. The limits of the excavation for lean concrete placement should extend beyond the outside edge of the footing for a minimum horizontal distance of 6 inches. The excavation required for the placement of lean concrete is anticipated to be performed within a trench box which should minimize the size of the over-excavation and, hence, will generate less excess soil in comparison with the excavation required for the placement of structural fill.

Commercial Building

As described above, a natural inorganic marine clay deposit building was encountered below the fill and/or organics within the western portion of the building. Directly below the fill within the eastern portion of the building and below the marine clay in the western portion of the building, the explorations encountered a compact to very dense glacial deposit at depths ranging between 5 to 18.5 feet below ground surface corresponding to Elevation +17.8 and Elevation +6.2.

In consideration of the anticipated low shear strength of the marine clay deposit, utilization of footings bearing on the marine clay deposit without ground improvement would require the use of a low bearing pressure and may lead to unacceptable differential settlement. Therefore, ground improvement is recommended to be installed in order to construct conventional footings. Also, due to the close proximity of the existing sewer line along the north side of the proposed building, ground improvement consisting of rigid inclusions (RIs) would need to be installed in the vicinity of the sewer pipe to avoid transfer of the proposed footing load to the existing sewer. Elsewhere, grouted aggregate piers should be installed below the proposed footings.

It is noted that moving the proposed building footprint to the south may result in the elimination of the RIs. Furthermore, if the organic and soft clay deposit are not present below the building, then utilization of ungrouted APs or the elimination of ground improvement may be feasible.

Typically, APs installed through organic and soft clay soils for footing support are grouted from the bottom of the pier to the top of the compressible deposit in order to minimize the anticipated amount of settlement of the footing to an acceptable amount. This would also allow the construction of footings supported on grouted APs shortly after installation of the APs (before consolidation settlement of the organic and marine clay deposit is complete).

In order to raise the grade to slab subgrade, approximately 1 to 3 feet of fill will need to be placed across the building footprint which will induce settlement of the underlying compressible organic and marine clay soils that are typically present in the western portion of the building. It is recommended that ungrouted APs be utilized in a grid layout beneath the proposed slab to facilitate conventional, slab-on-grade construction. The installation of

the ungrouted APs beneath the slab-on-grade is anticipated to provide drainage paths shortening the time required for consolidation settlement of the building pad to occur.

APs and RIs should be installed through the exiting fill, organic and marine clay deposit into the underlying glacial deposit to provide continuity of bearing across the building footprint. Based on the results of the explorations, the APs and RIs would likely range up to about 8 to 20 feet in length. Recommendations for ground improvement are contained below.

Also, with the use of APs, ordinary fill can be used in lieu of structural fill to raise the grade within the building footprint. Ordinary fill generally costs less than structural fill to import and since the compaction requirements for ordinary fill are less, it can generally be placed more quickly. Ordinary fill should be placed in maximum 12-inch thick loose lifts and compacted to a minimum of 92 percent of its maximum modified Proctor dry density.

Rigid Inclusions (RIs) and Aggregate Piers (APs)

RIs and APs are two (2) common ground improvement methods installed to improve the density and stiffness of existing soils. Ground improvement methods would densify the existing fill and increase the lateral stress in the soil matrix beneath the proposed building foundations. Thus, the uncontrolled existing fill soils, organics, and/or marine clay would be improved to a stiffer composite soil matrix allowing the use of footing foundations by minimizing settlement to within acceptable limits.

RIs are constructed by advancing a hollow mandrel to the design depth, densifying the surrounding soils by displacement. Once reaching the design depth, concrete is pumped through the mandrel, which opens as it is raised. If required, the mandrel can be raised and lowered several times, vertically ramming lifts of concrete to create an expanded base. The RI elements are typically installed in a grid pattern and are used in conjunction with an engineered granular pad to produce an intermediate foundation system for support of foundation loads. The type and thickness of the engineered pad is dependent on the design bearing pressure and is designed by the RI design-build consultant.

In general, for APs an aggregate pier cavity is created by driving a specially designed 12- to 16-inch diameter mandrel and tamper foot using a large static force augmented by dynamic vertical impact energy. A sacrificial plate is placed at the bottom of the tamper foot to prevent soil from entering the mandrel during installation. This method of advancement minimizes drill spoils as penetrated soils are displaced laterally. After installation to the design depth, coarse aggregate is placed inside the mandrel and the mandrel is lifted, leaving the sacrificial plate at the bottom of the cavity. Typically, the tamper foot is lifted approximately four feet and then driven and vibrated back down three feet, forming a one-foot thick compacted lift of approximately 20 inches in diameter. This process is repeated to the top of the cavity, forming the completed aggregate pier.

Since ground improvement techniques are provided by a design-build consultant, detailed design calculations should be submitted to the Architect and design team for review prior to the beginning of construction. A detailed explanation of the design parameters for capacity

and settlement calculations should be included in the design submittal. The design submittal should also include a testing program to demonstrate the capacity of the elements. In addition, the submittal should illustrate that loads from the proposed Commercial Building are not shed onto the existing sewer. All calculations and drawings should be prepared and sealed by a Professional Engineer who is licensed in the State of New Hampshire, and is retained by the Contractor who is to perform the work.

The following general criteria should be utilized in the design of the rigid inclusions and aggregate piers:

- 1. Rigid inclusions and aggregate piers should extend at least to the surface of the natural glacial deposit;
- 2. Estimated long-term settlement for footings and slabs should be less than 1-inch;
- 3. Estimated long-term differential settlement of adjacent footings should be less than 1/2-inch; and
- 4. Modulus load tests should be performed on a selective RI and AP to a minimum of 150 percent of the maximum design stress.

Slab Recommendations

The lowest level slab of the proposed buildings should be designed as a conventional slabon-grade bearing on the existing fill subject to proof compaction or on AP improved site soils. As indicated above, APs are recommended, at a minimum, to support the slab-ongrade of the Commercial Building, and are also recommended to be considered for slab support of Building A due to the presence of a loose fill layer.

Frequent control joints should be employed in the lowest level slabs to reduce the potential for cracking. Some future cosmetic settlement of the slab should be anticipated due to the heterogenous fill deposit. The future settlements may cause some minor dishing and cracking of the slabs possibly requiring future repair. Slabs-on-grade bearing on AP-improved soils would minimize potential future settlement of the slab.

The lowest level slab of the occupied building area should be underlain by a polyethylene vapor barrier spread across the surface of a 9-inch minimum thickness of off-site gravel borrow. See below **Radon Ventilation System** section of the report for additional recommendations.

It is understood that the lowest level slabs will be constructed roughly coincident with, or slightly above, proposed finished grades. Therefore, the lowest level slabs and foundation walls are not considered to require underslab and perimeter foundation drainage, respectively.

All localized depressions in the lowest level slabs extending below grade (such as elevator pits, etc.) should be provided with properly tied continuous waterstops in all construction joints and cementitious waterproofing to protect against groundwater intrusion. Depressions in the lowest level slabs should be designed to resist a hydrostatic uplift pressure resulting from the groundwater being present at the 100-year design flood elevation.

In the event that APs are not installed below the proposed slabs, the existing uncontrolled fill exposed at the slab subgrades should be proof compacted with a minimum of six passes of a 10-ton vibratory drum roller prior to the placement of structural fill. After the proof compaction, all soft and/or weaving subgrade areas should be removed and replaced with compacted structural fill. Additionally, structural fill should be used to raise the proposed grade below the proposed slabs unless APs are used.

Where construction of the proposed lowest level slab for the Commercial Building requires the placement of fill above existing site grades, the fill will induce settlement of the underlying compressible organic and marine clay soils. The magnitude of settlement and time required for settlement to occur is dependent upon the soil conditions and soil properties, including such factors as the thickness of the organics and marine clay, the stress history of the deposits, the in-situ vertical effective stress, and the compressibility parameters of the deposits. Our preliminary analysis indicates that the placement of 1 to 3 feet of fill could result in approximately 1 to 3 inches of settlement.

As the APs installed for support of the slab-on-grade are anticipated to be ungrouted, these APs would provide drainage paths shortening the time required for consolidation settlement of the building pads to occur. Alternatively, wick drains could be used to expedite the consolidation process. In addition, the magnitude of post-construction settlement could be reduced by preloading. Preloading generally involves placing a height of fill above the proposed finished grade for a period of time prior to construction. The height of the preload should, at a minimum, be about 1-foot above the proposed finished grade. The preload stresses in the soil would be greater than those which would exist after construction is completed, thereby reducing post-construction settlements.

Prior to construction of the slab-on-grade for the Commercial Building, the observed rate of settlement with time will need to have decreased sufficiently to minimize the future settlement of the slab. Settlement of the building pad should be monitored and slab-on-grade should not be constructed until an acceptable magnitude of settlement has occurred. Specifically, this occurs when settlement has either stopped or when the time rate of settlement is very small.

A detailed settlement analysis should be performed once the proposed building details are finalized (i.e. footing layout, structural loads, floor finishes, etc.). This information in conjunction with additional site-specific subsurface information (i.e. further delineation of where the organics and soft clay are present, consolidation testing to determine soil parameters for settlement analysis) would allow the total amount of settlement and time for

the settlement to occur to be further estimated. Further, the settlement analysis could be used to evaluate the effectiveness of various preloading scenarios.

General Foundation Recommendations

All foundations should be designed in accordance with the requirements of the Code.

Recommended minimum footing widths for continuous and isolated spread footings are 24 and 36 inches, respectively. All perimeter foundations and interior foundations located adjacent to unheated areas should be provided with a minimum 4-foot thickness of soil cover as frost protection. Interior footings below heated areas should be located such that the top of the foundation concrete is at least 6 inches below the underside of the lowest level slab. Additionally, all foundations should be located such that they are below a theoretical line drawn upward and outward at 2 to 1 (horizontal to vertical) from the bottom exterior edge of all adjacent footings, structures and utilities.

Below-grade foundation walls receiving lateral support at the top and bottom (i.e. restrained walls) should be designed for a lateral earth pressure corresponding to an equivalent fluid density of 60 pounds per cubic foot (pcf). Similarly, drained cantilevered retaining walls, (i.e. receiving no lateral support at the top) should be designed for a lateral earth pressure corresponding to an equivalent fluid density of 40 pcf. To these values must be added the pressures attributable to earthquake forces per the Code.

Lateral forces can be considered to be transmitted from the structure to the soil by passive Pressure against the perimeter foundation walls utilizing an equivalent fluid density of 120 pounds per cubic-foot providing that the foundation walls are designed to resist these pressures. Lateral force can also be considered to be transmitted from the structure to the soil by friction on the base of footings using a coefficient of 0.4, to which a safety factor of 1.5 should be applied.

Radon Ventilation System

We recommend the installation of a sub slab radon ventilation system within each of the proposed structures. The radon ventilation system should consist of 4-inch diameter perforated PVC pipe laid flat with its invert located 12 inches below the bottom of the lowest level slabs surrounded by 6 inches of ³/₄-inch crushed stone and filter fabric. The radon systems should include vertical riser pipe, consisting of solid PVC pipe within the interior of the building. It is anticipated that this system could be designed as a passive radon mitigation system which could be converted to an active mitigation system in the future, if required.

Seismic Design Considerations

For the purposes of determining parameters for structural seismic design, the following are the recommended Site Classes for the various buildings as defined in Section 1613.0 of the Code:

- Building B: Site Class C
- Building A: Site Class D
- Commercial Building: Site Class E

Further, the bearing strata on the site is not considered to be subject to liquefaction during an earthquake based on the criterion of Section 1806.4 of the Code.

Pavement Design Criteria

Preparation of the subgrade for all paved areas should first consist of stripping all existing asphalt and surficial topsoil, if encountered. The existing granular fill, where encountered, may remain in place below the base course materials provided it is proof-compacted with a minimum of six passes of a 10-ton vibratory drum roller prior to placement of gravel borrow to raise grades. All soft, spongy or "weaving" areas observed during the proof compaction should be cut-out and replaced with compacted gravel borrow.

Portions of the site contain compressible organic and/or marine clay soils which could consolidate causing surface settlement depending on the height of fill to be placed. The proposed grading plan will need to be reviewed in conjunction with the available subsurface information to determine what the potential settlement-related impacts area and what, if any, remediation measures should be taken. If remediation is required, preloading could be considered to reduce the amount of post-construction settlement and/or a woven geotextile fabric, such as Mirafi 270HP or equal, could be placed to potentially lessen the impacts of settlement on the paved surfaces.

The base and subbase layers should be placed in lifts having a compacted thickness of 6 inches and be compacted to a minimum of 95 percent of its maximum modified Proctor dry density.

The following are the recommended minimum flexible pavement sections:

Flexible Pavement Sections					
Layer	NHDOT Material Specification	<i>Standard-Duty [Passenger Car Parking] Thickness (Inches)</i>	<i>City Right-of-Way and High Traffic or Truck Areas Thickness (Inches)</i>		
Bituminous Concrete Wearing Course	Section 401 Wearing Course	1.5 [Type E]	1.5 [3/8" Superpave]		
Bituminous Concrete Binder Course	Section 401 Binder Course	1.5 [Type B]	2.5 [3/4″ Superpave]		
Base Course	Item No. 304.3 "Crushed Gravel"	6	12		
Subbase	Item No. 304.2 "Gravel"	12	12		

The heavy-duty pavement section is recommended to be used in the main drive/access lanes and the standard-duty pavement should be used in vehicle parking areas. Furthermore, a rigid concrete pavement section could alternatively be used to provide suitable support at areas of high traffic or severe turns, such as at trash enclosures.

The pavement design recommendations contained herein are contingent upon proper drainage and surface water control being provided.

Foundation Construction Considerations

The primary foundation construction considerations include the removal of existing site structures and utilities, removal of obstructions to AP/RI installations, vibration monitoring during AP/RI installation, foundation bearing surface preparation, reuse of on-site soils, construction dewatering, and off-site removal of excess excavated soil.

Prior to construction of the proposed buildings, it is recommended that all existing structures, foundation remains and utilities within the footprint of the proposed buildings be removed in their entirety. A minimum of ten (10) feet outside the footprint of the proposed buildings, abandoned structures and utilities may be cut off and removed to a depth of at least 2 feet below finished grades or proposed utilities and backfilled with compacted ordinary fill.

Obstructions to AP/RI installation encountered in the fill material should be removed by the earthwork contractor. Obstructions that prevent continued installation at a particular AP or RI location should be evaluated on a case-by-case basis to determine the necessity to remove the obstruction or to design the footing to span over the obstruction.

Ground vibrations are produced as a result of the ground improvement installation procedures. Based on our experience, impacts from these vibrations are not anticipated to result in structural damage to existing, adjacent structures, however, the magnitude of vibrations may be of sufficient magnitude to cause cosmetic cracking of adjacent structures and annoyance of occupants. It is not anticipated that ground vibrations caused by construction will cause damage to nearby structures. However, due to the proximity of the adjacent buildings to the site, it is recommended that preconstruction surveys of adjacent buildings and below-grade utilities be completed before the start of construction and that vibration monitoring be performed during the ground improvement installation activities.

The final excavation of the footing subgrades should be accomplished using an excavator that is equipped with smooth-edged bucket to avoid disturbance of the bearing surface. Further, it is recommended that foundation bearing surfaces be immediately covered with a minimum 3-inch thickness of compacted 3/4-inch crushed stone to prevent disturbance of the subgrade during subsequent forming operations and construction traffic.

It is anticipated that portions of the excavated soils may be re-used on-site as ordinary fill and structural fill, provided they are maintained in a dry condition and can be properly compacted. Excavated fill and glacial outwash soil to be reused on-site as structural fill should typically contain less than 30% by weight passing the No. 200 sieve. Excavated soil with greater than 30% by weight passing the No. 200 sieve should be segregated and can be reused on-site as ordinary fill subject to the provisions contained herein.

Grain size distributions of representative samples of the fill material indicate that the fines content ranges from about 1.5 to 32 percent. In addition, grain size distributions of representative samples of the glacial outwash deposit indicate that the fines content ranges from about 18 to 36 percent. It is emphasized that excavated material will become unsuitable for re-use if it becomes too wet. Therefore, it is recommended that stockpiles of excavated material intended for reuse be protected against increases in moisture content by securely covering the stockpiles at all times with 6-mil polyethylene for protection from precipitation and also as a dust mitigation measure. The placement and compaction of onsite material should be completed during relatively dry and non-freezing conditions. If, due to any of the above conditions, the excavated material is unsuitable for reuse, an off-site gravel borrow should be used.

Proper control of groundwater and surface water will be necessary to maintain a firm subgrade to support construction traffic and to complete the construction in-the-dry. Even with proper control of both surface water and groundwater, it is probable that during periods of wet weather off-site gravel fill and/or crushed stone may be required to maintain trafficability for construction equipment.

Based on the soil and groundwater conditions encountered in the subsurface explorations, it is anticipated that groundwater and surface water can generally be controlled using conventional sumping in combination with strategic use of trenches and berms. However, if excavation below the groundwater level occurs within the building areas, it will be necessary to temporarily depress the groundwater level across the site to complete the proposed below-grade construction in-the-dry. The construction dewatering design should be prepared by a professional engineer registered in the State of New Hampshire who is employed by the Contractor. The design should also be submitted for review by McPhail.

In consideration of the observed depth of the groundwater below the existing ground surface and the anticipated scope of the proposed development, on-site recharge of groundwater may not be considered practical. Therefore, off-site discharge of groundwater during foundation excavation and construction may be required. All dewatering operations should be performed in accordance with the rules and regulations of the City of Portsmouth.

Should off-site removal of excess excavated soil from the site be necessary, it is anticipated that chemical analysis of the excess soil will be required in order to conform to applicable regulations and policies. Chemical analysis of existing soil is not anticipated to be required if it is reused on-site.

Final Comments

The subsurface information obtained from the explorations performed to date is considered sufficient for foundation design purposes. However, an additional subsurface exploration program consisting of borings and/or test pits is recommended to be performed to obtain further subsurface information in the following areas:

- Eastern portion of Building B
- Central portion of Building A
- Within the portion of the Commercial Building occupied by the existing building

It is recommended that McPhail be retained to provide design assistance to the design team during the final design phase of this project. The purpose of this involvement is to review the structural foundation drawings and foundation notes for conformance with the recommendations presented herein and to prepare the earthwork and ground improvement specification sections for inclusion into the Contract Documents for construction.

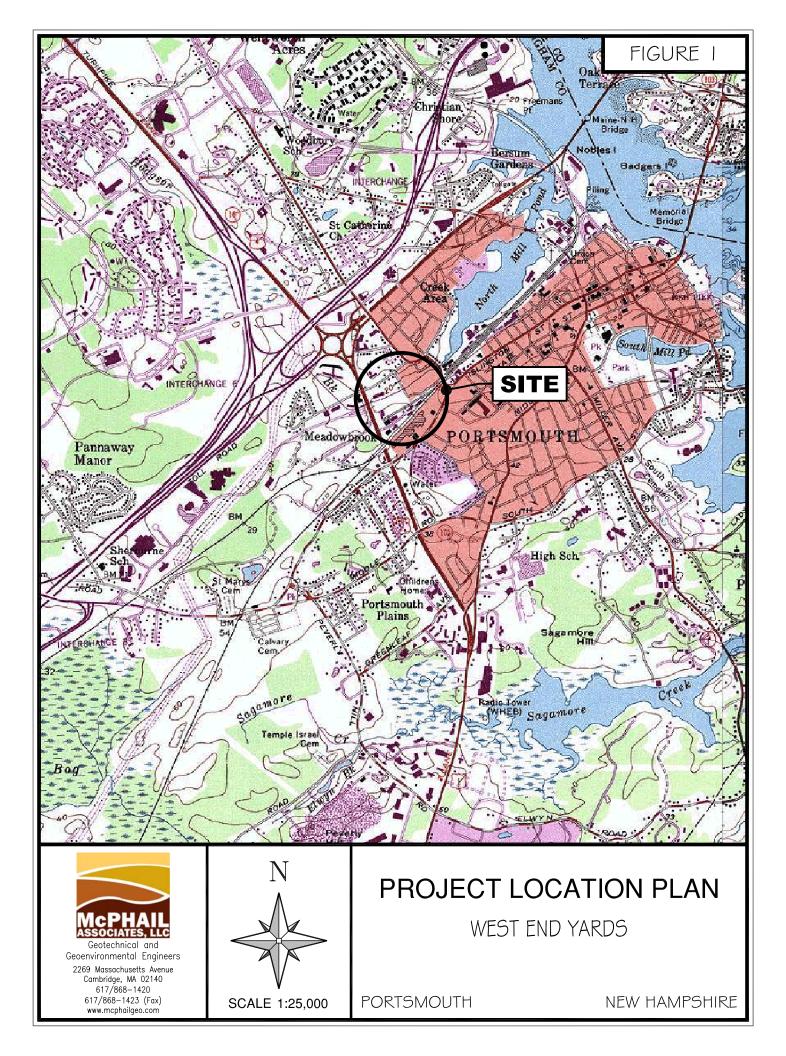
It is recommended that a representative of McPhail be present during the earthwork phase of the project to monitor the installation of ground improvement, to monitor overexcavation of unsuitable soil at footing locations, preparation of foundation bearing surfaces, preparation of slab and pavement subgrades, placement and compaction of fill materials, and segregation of on-site soils in accordance with the provisions of the Code and the provisions of the Contract Documents. Our involvement during the construction phase of the work should minimize costly delays due to unanticipated field problems since our field engineer would be under the direct supervision of our project manager who was responsible

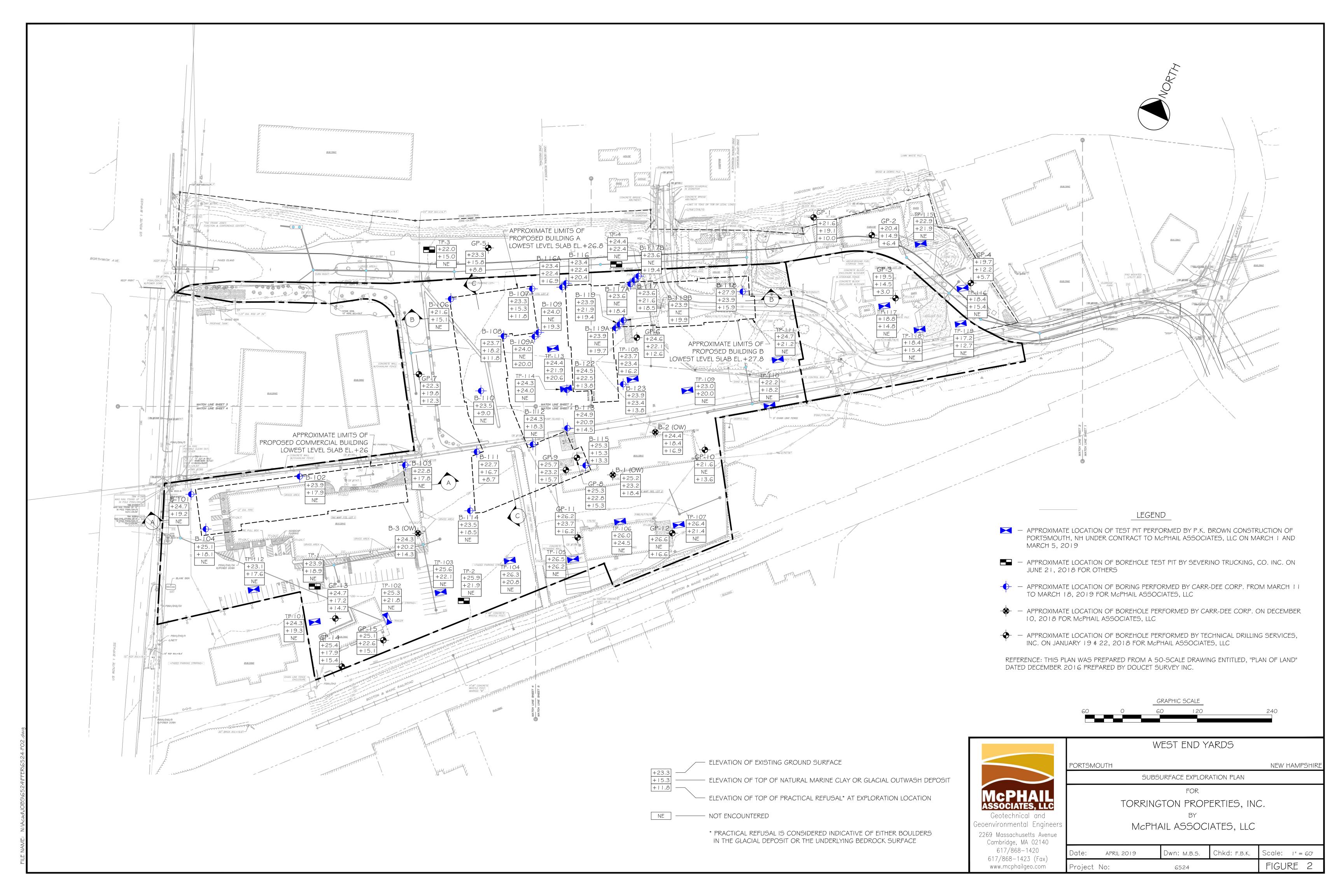
Torrington Properties, Inc. April 16, 2019 Page 18

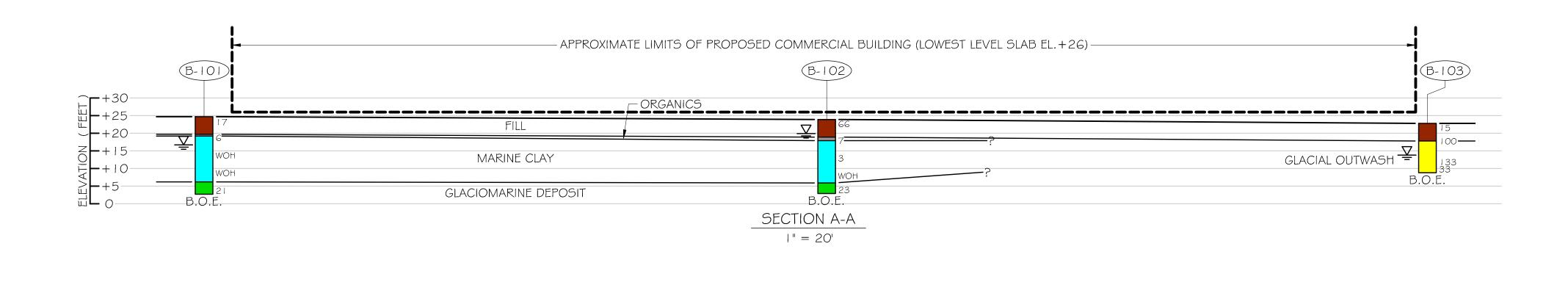
for the subsurface exploration program and foundation design recommendations documented herein.

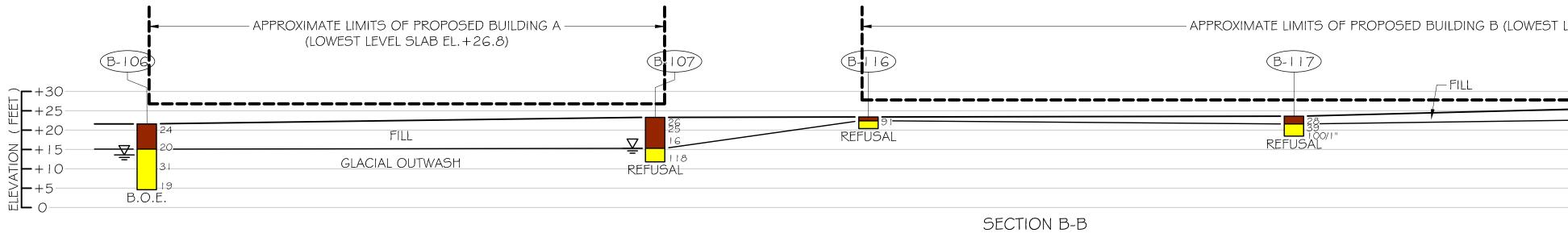
We trust that the above is sufficient for your present requirements. Should you have any questions concerning the recommendations presented herein, please do not hesitate to contact us.

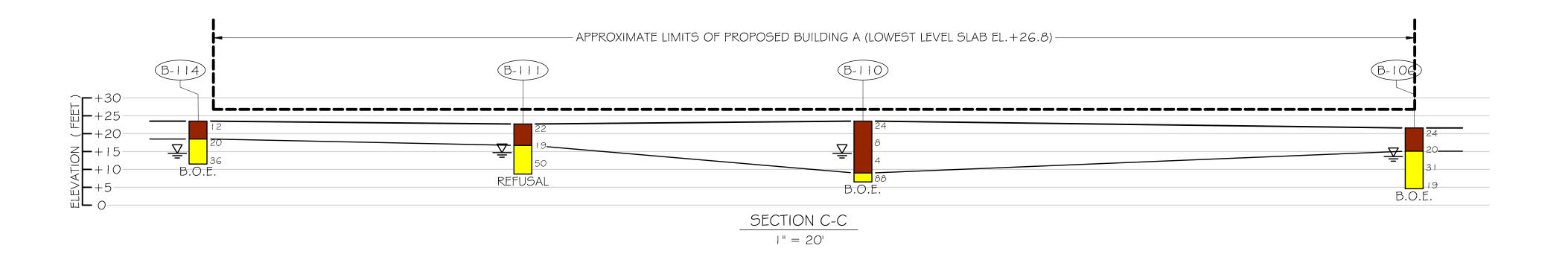
Sincerely,


McPHAIL ASSOCIATES, LLC


Jutures Balve-Konfic


Fatima Babic-Konjic, P.E.


Jonathan W. Patch, P.E.


N:\Working Documents\Reports\6524_FER_041619.docx FBK/JWP

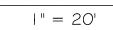
(

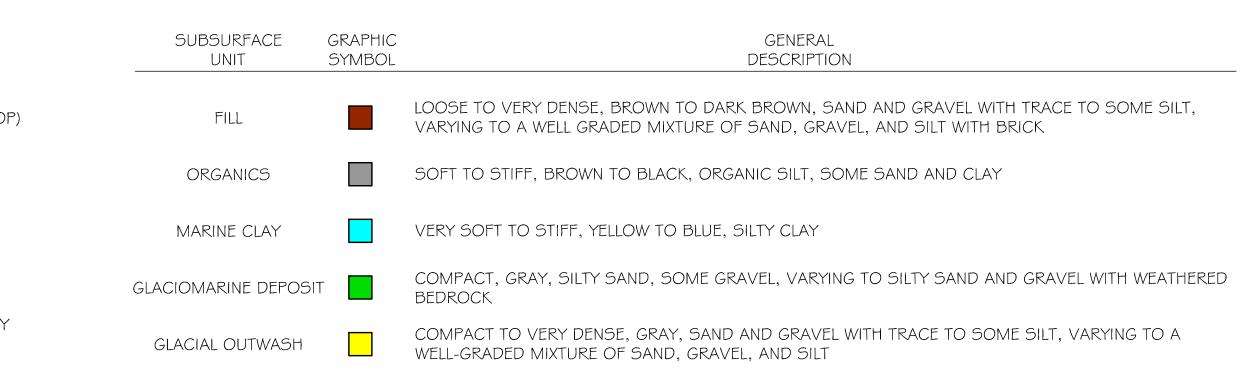
(B-101) – BOREHOLE NUMBER

LEGEND

- INDICATES GROUNDWATER LEVEL OBSERVED IN COMPLETED BOREHOLE

- STANDARD PENETRATION RESISTANCE OR N-VALUE, BLOWS PER FOOT. (1-3/8" I.D. SPLIT SPOON, 140LB. HAMMER, 30" DROP)

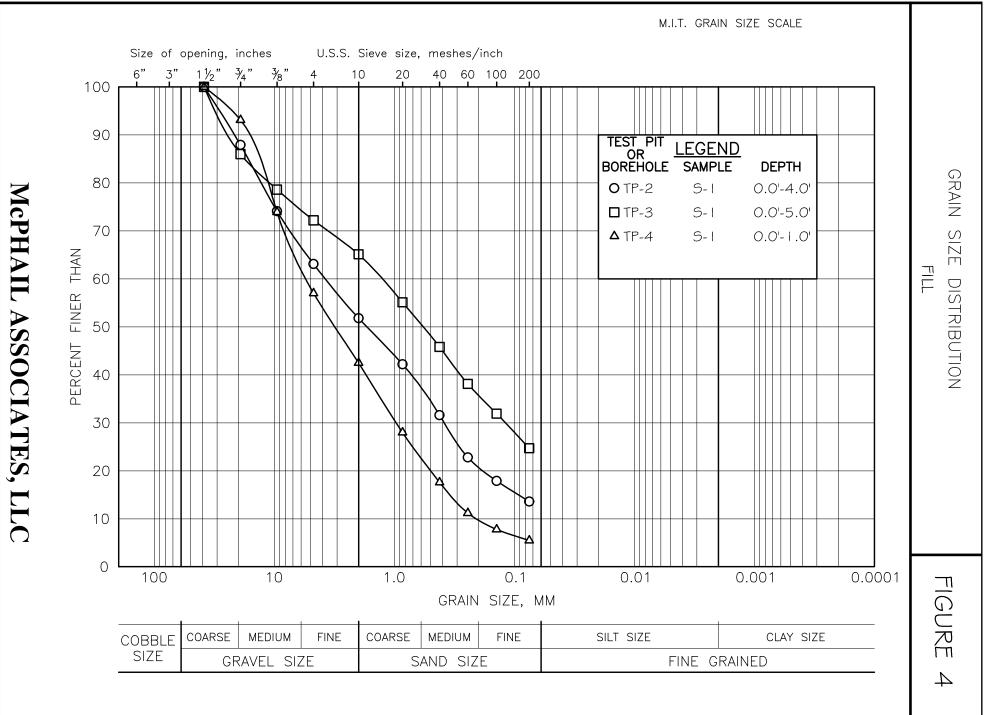

B.O.E. - BOTTOM OF EXPLORATION

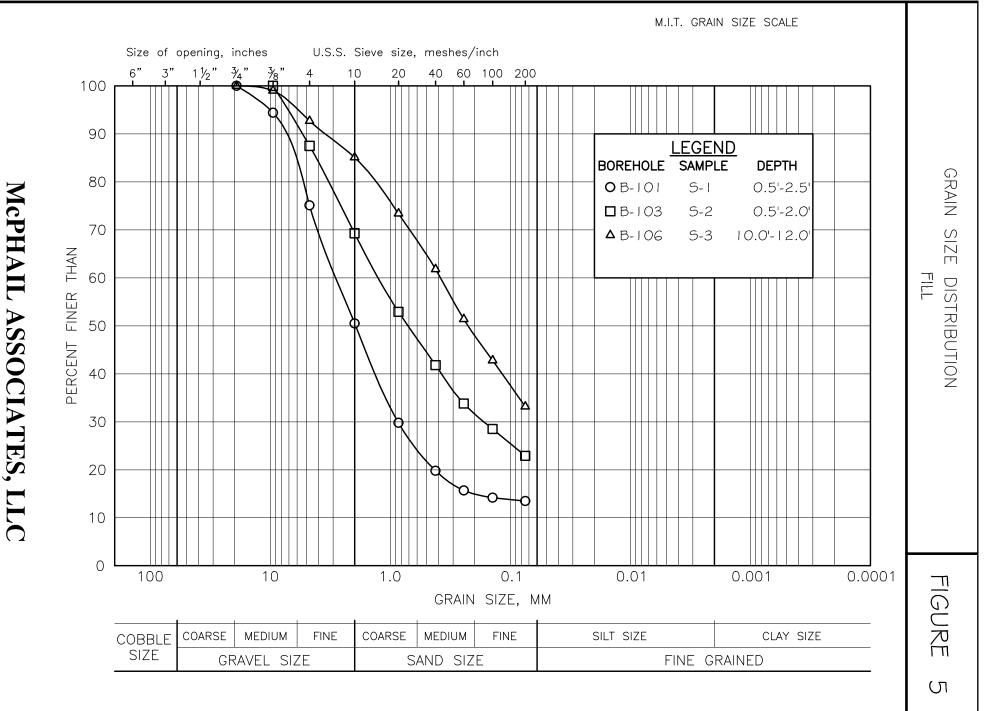

REFUSAL – INDICATES SPLIT SPOOL AND ROLLER BIT REFUSAL ENCOUNTERED WITHIN COMPLETED BOREHOLE

NOTES:

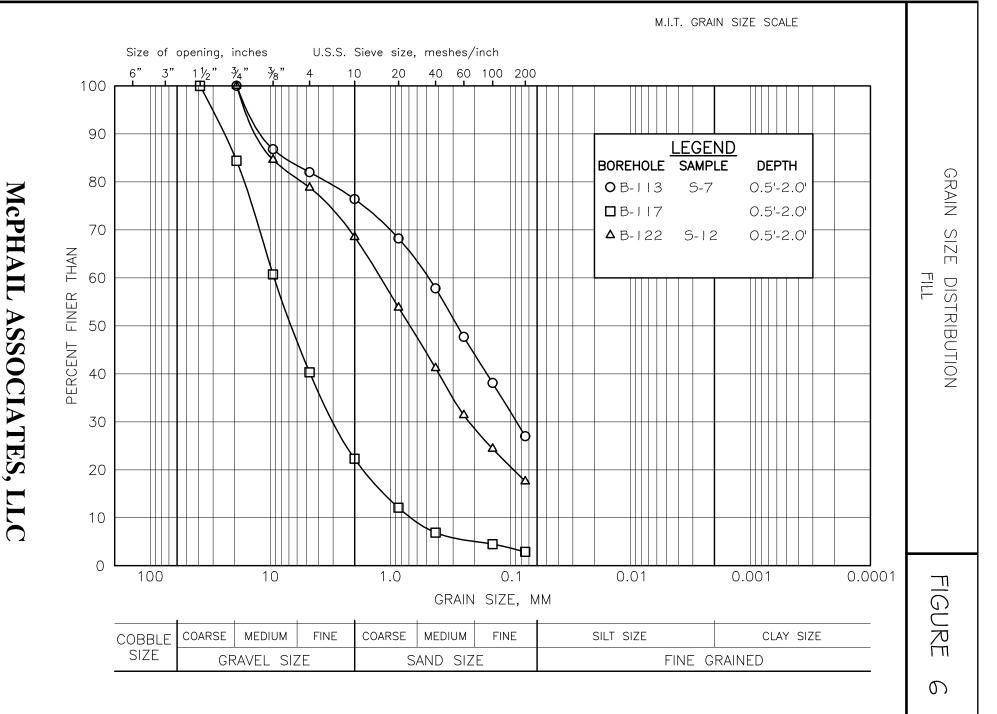
I. REFER TO FIGURE 2 FOR LOCATION AND ORIENTATION OF SUBSURFACE SECTIONS.

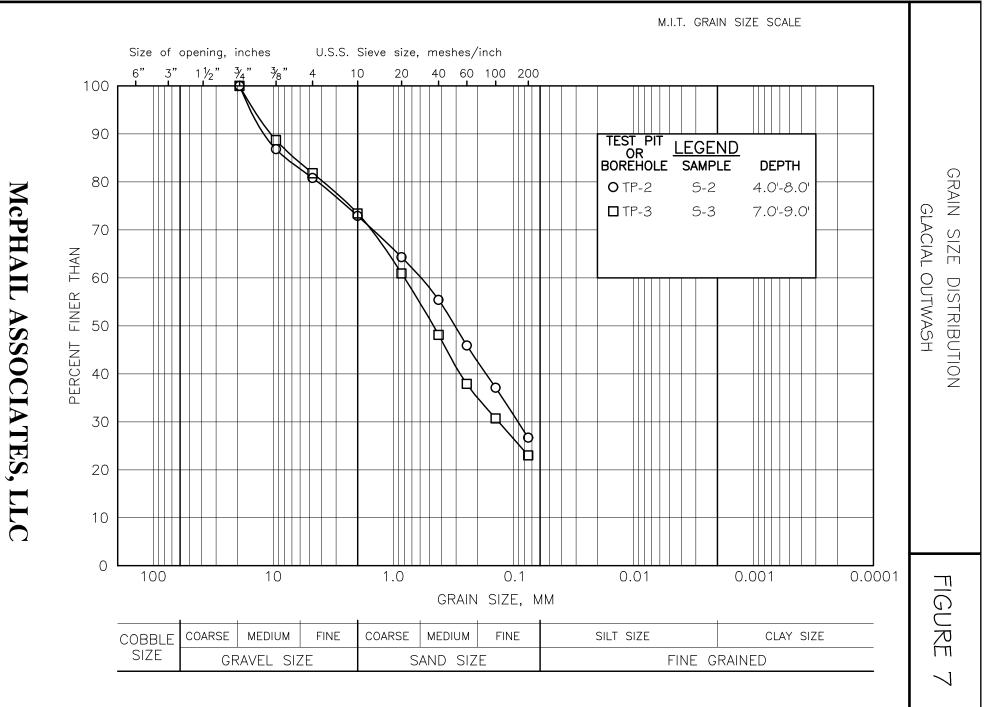
2. STRATIFICATION LINES BETWEEN EXPLORATIONS ARE BASED ON LINEAR INTERPOLATION OF DATA FROM THE EXPLORATIONS AND MAY NOT NECESSARILY REPRESENT ACTUAL SUBSURFACE CONDITIONS.

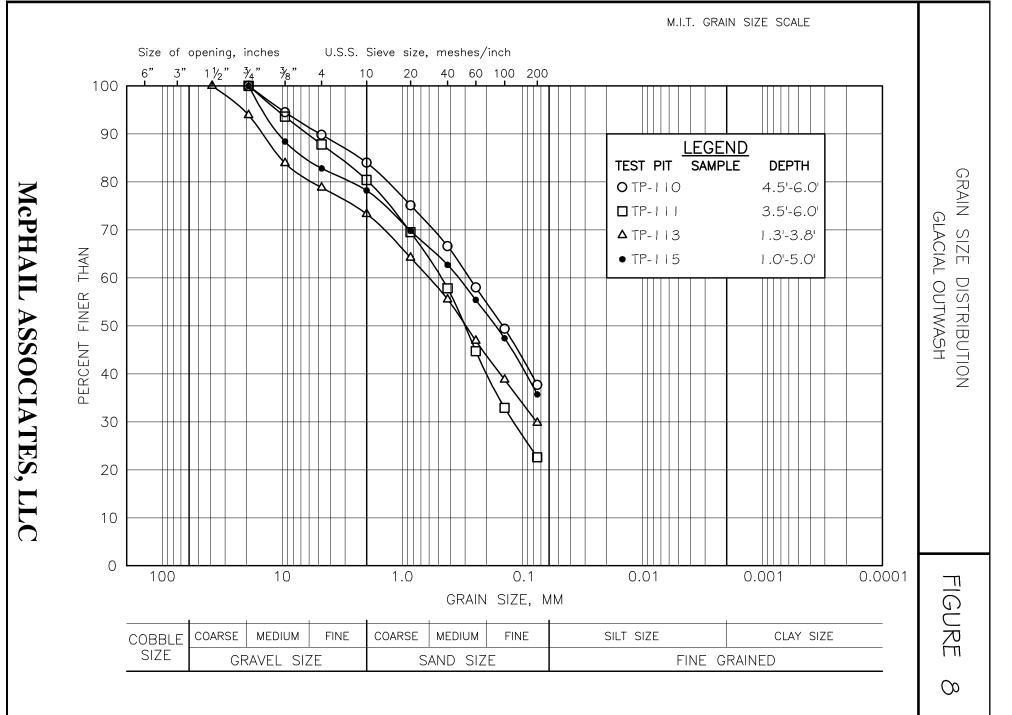


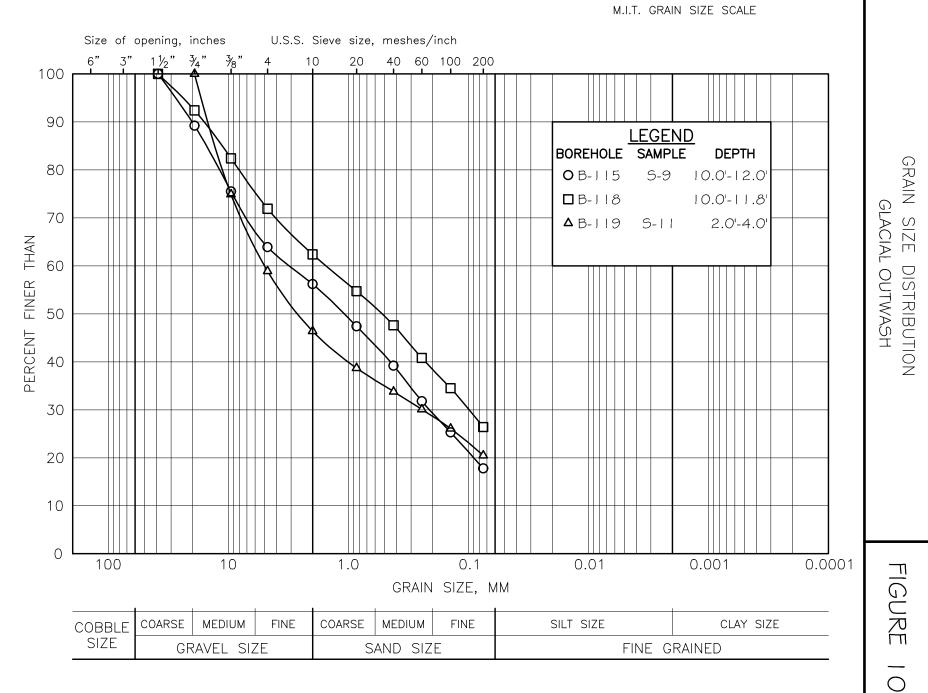

		I
EVEL SLAB EL.+27.8)		
		(B-118)
	MARINE CLAY –	
	GLACIAL OUTWAS	
	GLACIAL OUTWAD	REFUSAL

	WEST END YARDS				
	PORTSMO	UTH			NEW HAMPSHIRE
	GENERALIZED SUBSURFACE SECTIONS A-A, B-B, AND C-C				
MCPHAIL Seotechnical and Geoenvironmental Engineers 2269 Massachusetts Avenue	FOR TORRINGTON PROPERTIES, INC. BY MCPHAIL ASSOCIATES, LLC				
Cambridge, MA 02140	2140				
617/868-1420 617/868-1423 (Fax)	Date:	APRIL 2019	Dwn: м.в.s.	Chkd: ғ.в.к.	Scale: I" = 20'
www.mcphailgeo.com	Project N	No:	6524		FIGURE 3









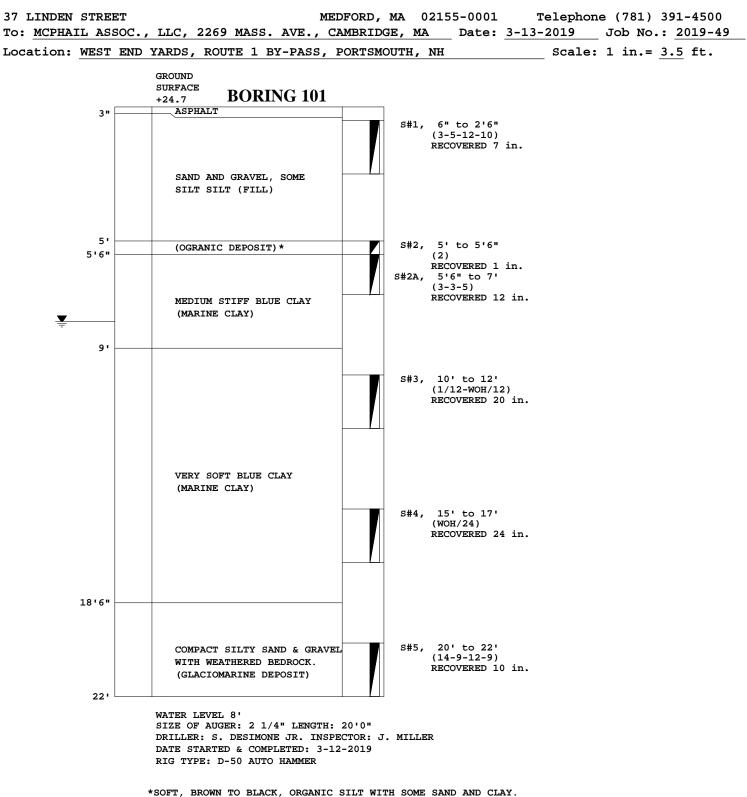
FILE NAME: N:\Acad\JOBS\6524\FFER\6524-FIO_Sieve.dwg

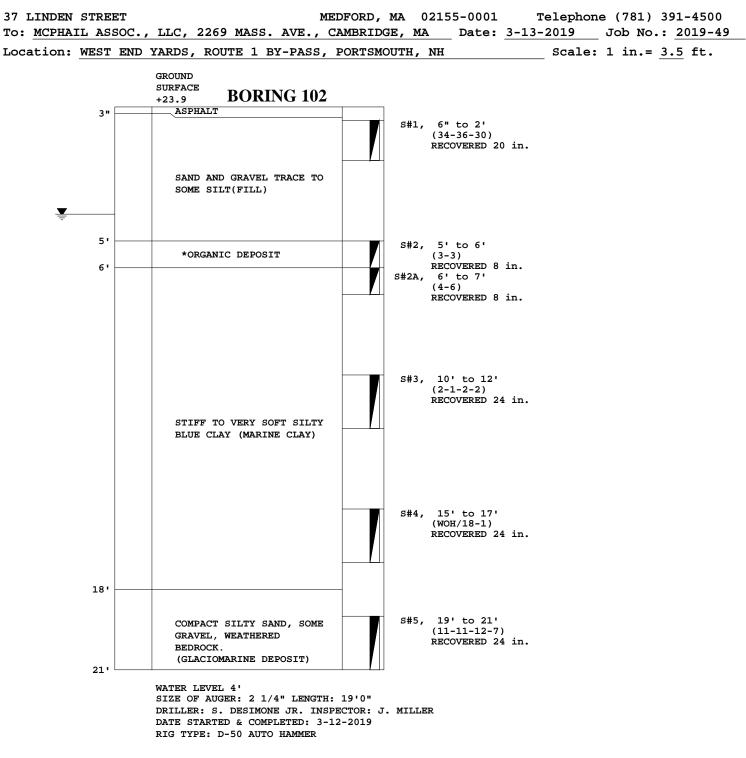
APPENDIX A:

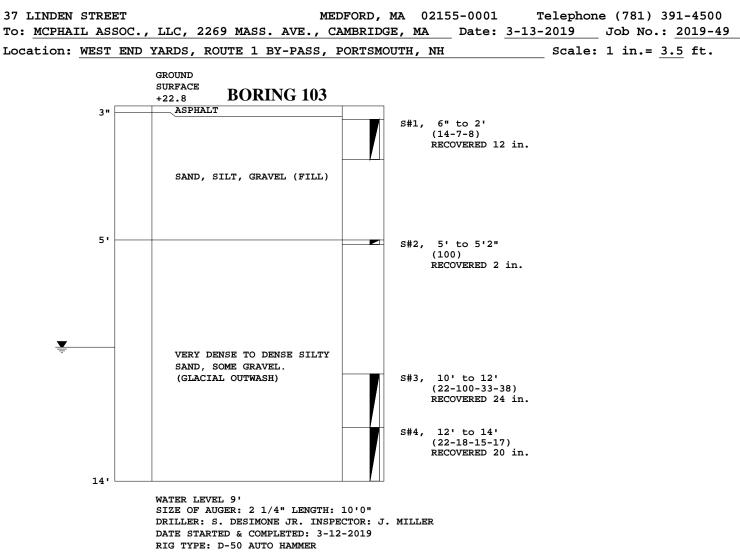
LIMITATIONS

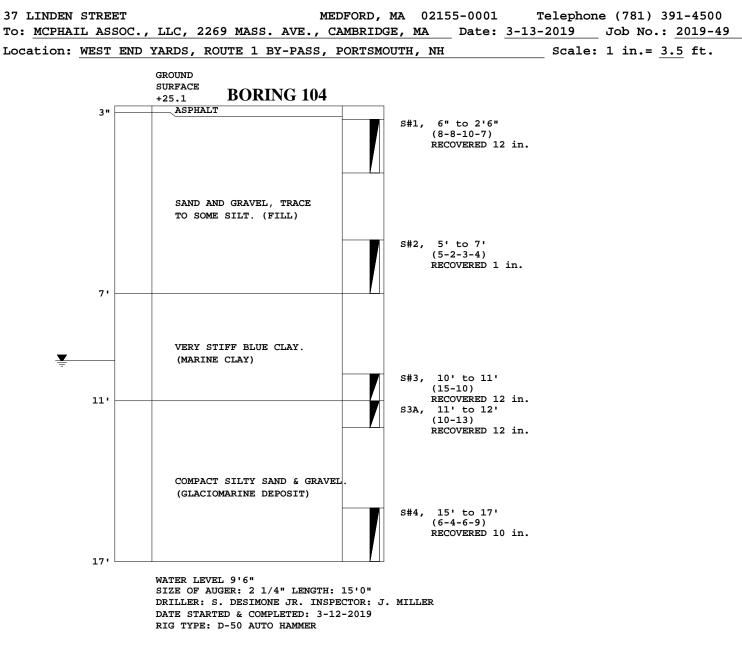
LIMITATIONS

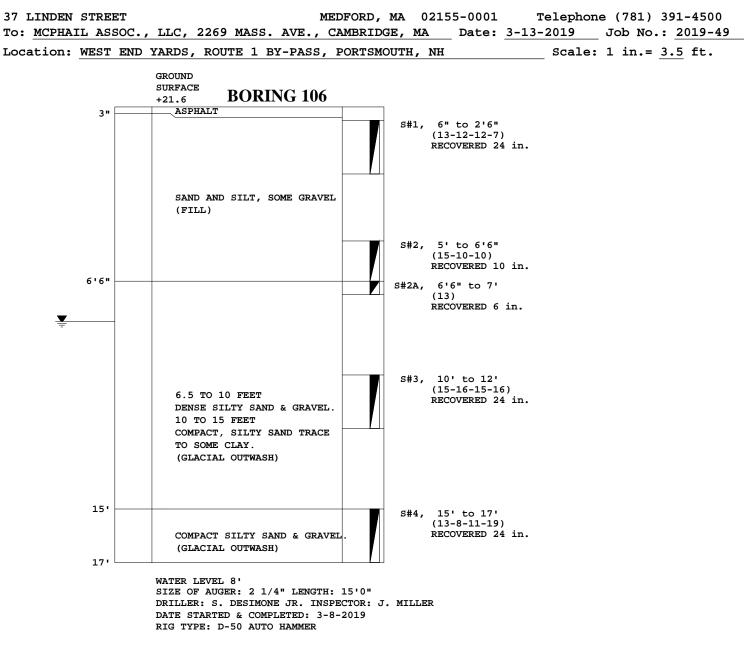
This report has been prepared on behalf of and for the exclusive use of Torrington Properties, Inc. for specific application to the proposed West End Yards development to be located in Portsmouth, New Hampshire in accordance with generally accepted soil and geotechnical engineering practices. No other warranty, expressed or implied, is made.

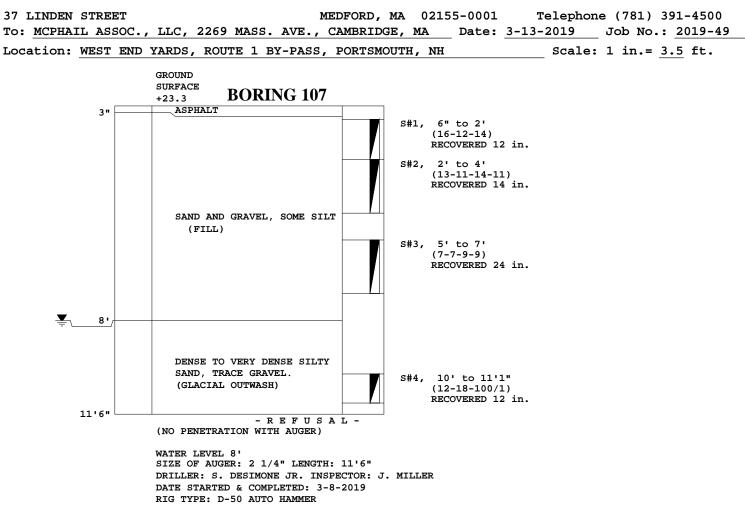

In the event that any changes in nature or design of the proposed construction are planned, the conclusions and recommendations contained in this report should not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by McPhail Associates, LLC.

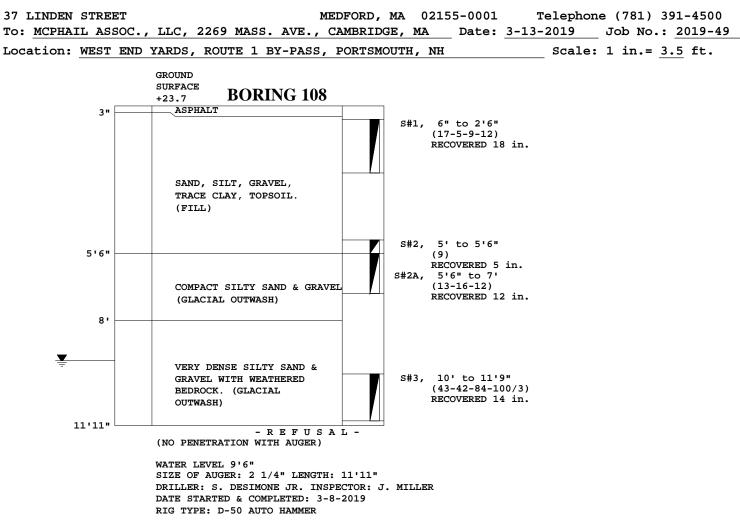

The analyses and recommendations presented in this report are based upon the data obtained from the subsurface explorations performed at the approximate locations indicated on the enclosed plan. If variations in the nature and extent of subsurface conditions between the explorations become evident during the course of construction, it will be necessary for a re-evaluation of the recommendations of this report to be made after performing on-site observations during the construction period and noting the characteristics of any variations.

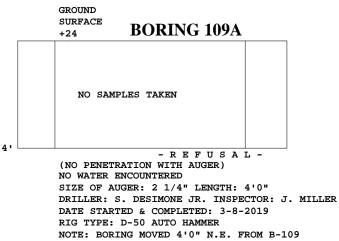

APPENDIX B:

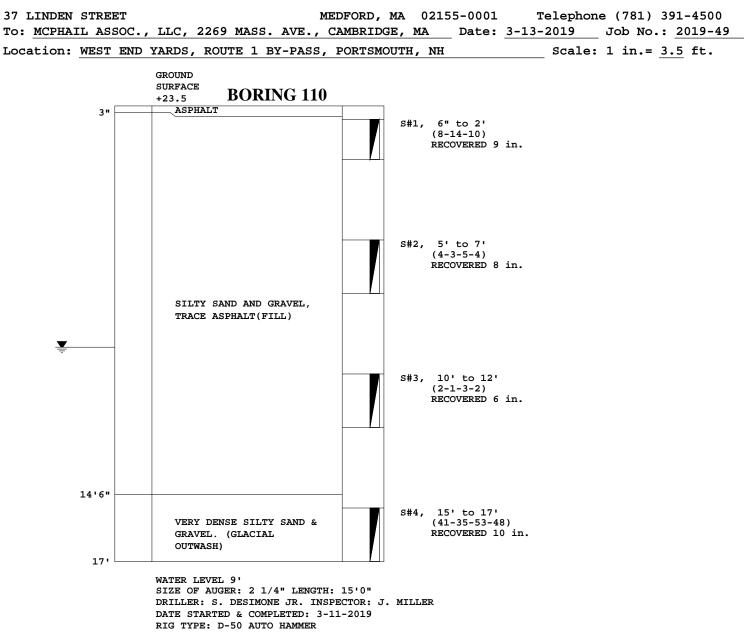

BORING LOGS PREPARED BY CARR-DEE CORP. B-101 TO B-104, B-106 TO B-119, B-122 AND B-123

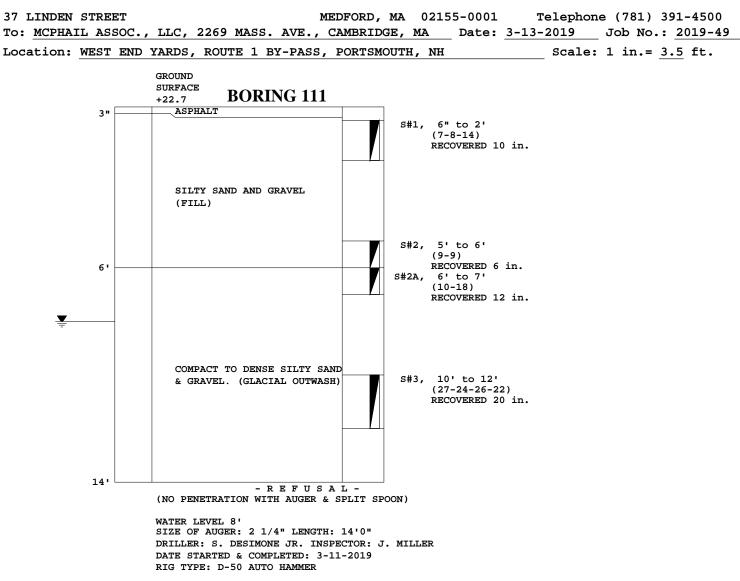


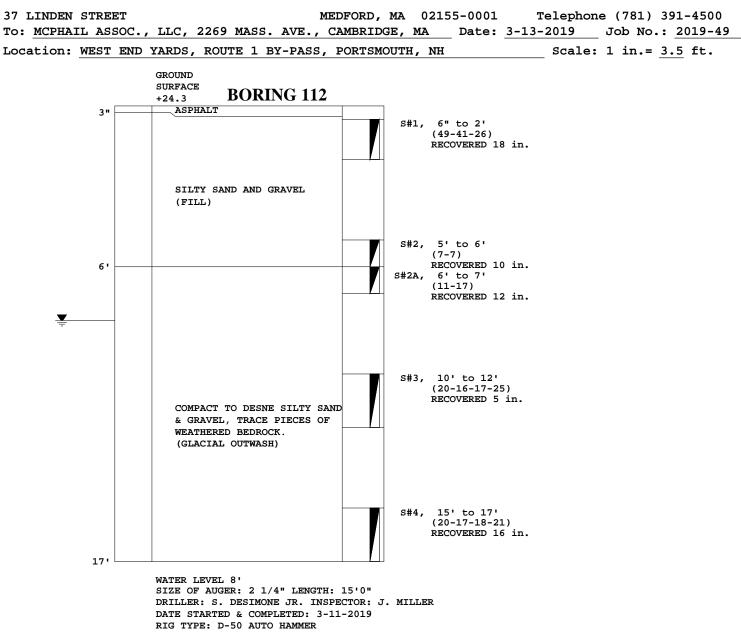


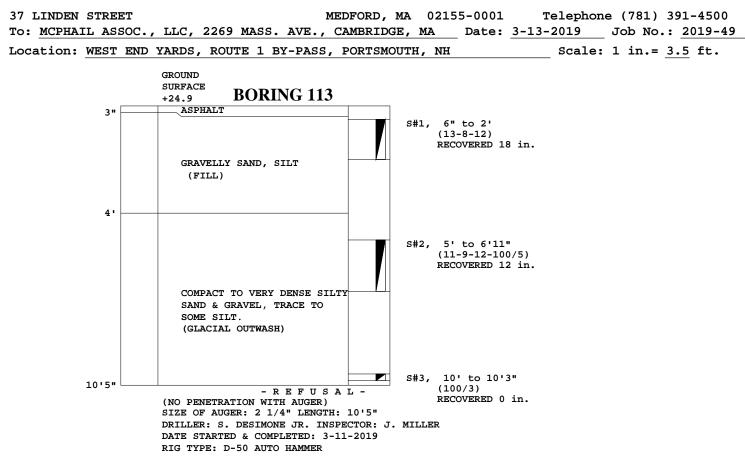

*FIRM, BROWN TO BLACK, ORGANIC SILT WITH SOME SAND AND CLAY.

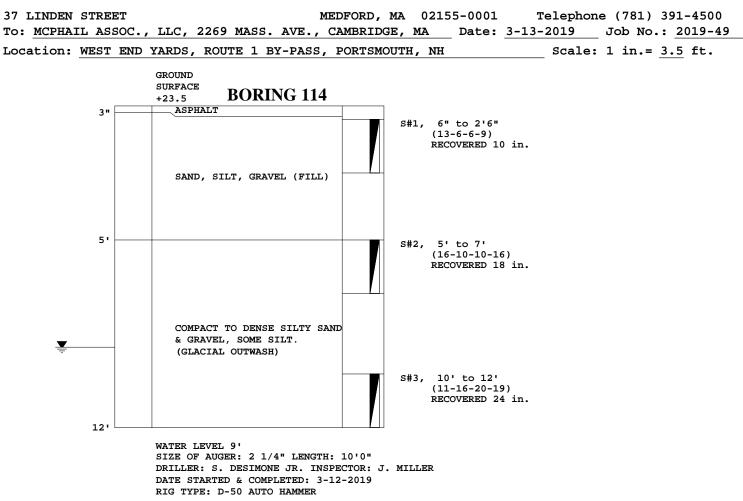


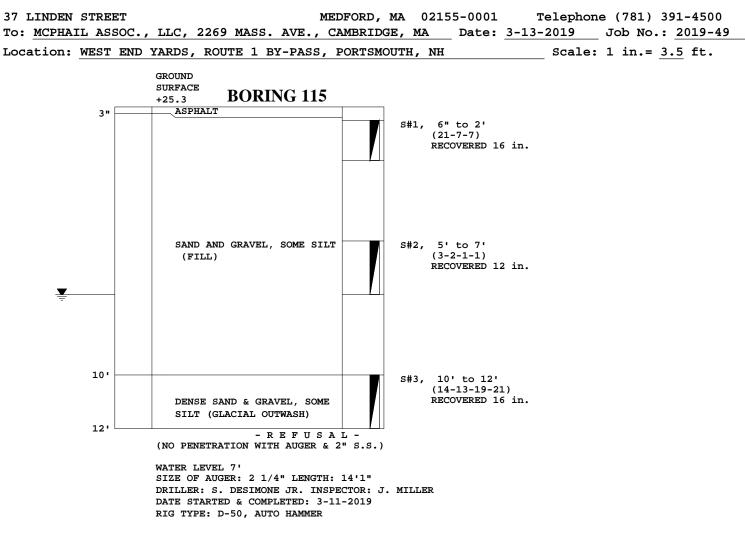


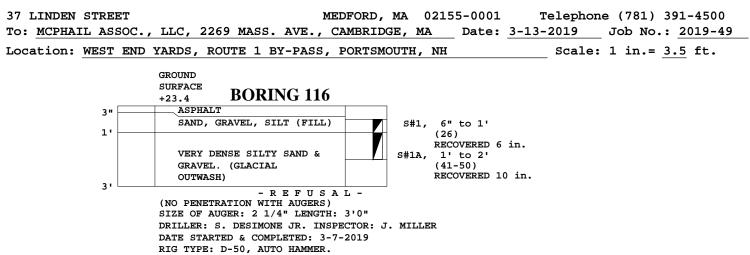


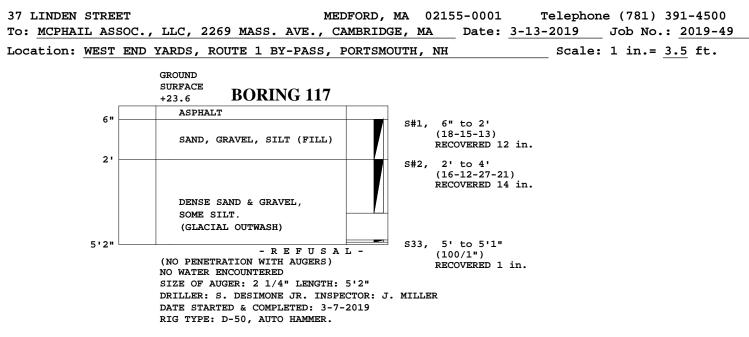

37 LINDEN STREET To: <u>MCPHAIL ASSOC.</u> ,	MEDFORD, MA 02155-0001 Telephone (781) 391-4500 LLC, 2269 MASS. AVE., CAMBRIDGE, MA Date: <u>3-13-2019</u> Job No.: <u>2019-49</u>
Location: WEST END	YARDS, ROUTE 1 BY-PASS, PORTSMOUTH, NH Scale: 1 in.= 3.5 ft.
	GROUND SURFACE +24 BORING 109
4 ' 8"	SAND, SILT, GRAVEL (FILL)
	- R E F U S A L - (NO PENETRATION WITH AUGER) NO WATER ENCOUNTERED SIZE OF AUGER: 2 1/4" LENGTH: 4'8" DRILLER: S. DESIMONE JR. INSPECTOR: J. MILLER DATE STARTED & COMPLETED: 3-8-2019 RIG TYPE: D-50 AUTO HAMMER


37 LINDEN STREET	MEDFORD, MA 0215	5-0001 Telephone	e (781) 391-4500
To: MCPHAIL ASSOC., LLC, 2269 MASS. AV	E., CAMBRIDGE, MA	Date: 3-13-2019	Job No.: 2019-49
Location: WEST END YARDS, ROUTE 1 BY-P	ASS, PORTSMOUTH, NH	Scale:	1 in.= <u>3.5</u> ft.









37 LINDEN STREET To: <u>MCPHAIL ASSOC.</u>	ME , LLC, 2269 MASS. AVE., C	-		-	e (781) 391-4500 Job No.: <u>2019-49</u>
Location: <u>WEST END</u>	YARDS, ROUTE 1 BY-PASS,	PORTSMO	OUTH, NH	Scale:	1 in.= <u>3.5</u> ft.
	GROUND SURFACE +23.4 BORING 116A	\			
	AUGERED				
1'					
	VERY DENSE SAND & GRAVEL, SOME SILT. (GLACIAL OUTWASH)				
			s#1, 5' to 6'1" (20-86-100/ RECOVERED 1	(1")	
6'5"	- R E F U S A (NO PENETRATION WITH AUGERS) SIZE OF AUGER: 2 1/4" LENGTH: DRILLER: S. DESIMONE JR. INSP DATE STARTED & COMPLETED: 3-7 RIG TYPE: D-50, AUTO HAMMER.	6'5" PECTOR: J.	. MILLER		

37 LINDEN STREET		MEDFORD, MA 0215	5-0001 Telephon	e (781) 391-4500
To: MCPHAIL ASSOC.,	LLC, 2269 MASS. AV	/E., CAMBRIDGE, MA	Date: <u>3-13-2019</u>	Job No.: 2019-49
Location: WEST END	YARDS, ROUTE 1 BY-1	PASS, PORTSMOUTH, NH	Scale:	1 in.= <u>3.5</u> ft.
	GROUND SURFACE +23.6 BORING	5 117A		

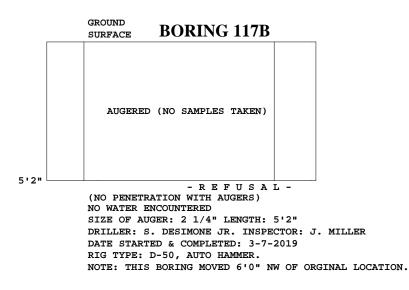
AUGERED (NO SAMPLES TAKEN)

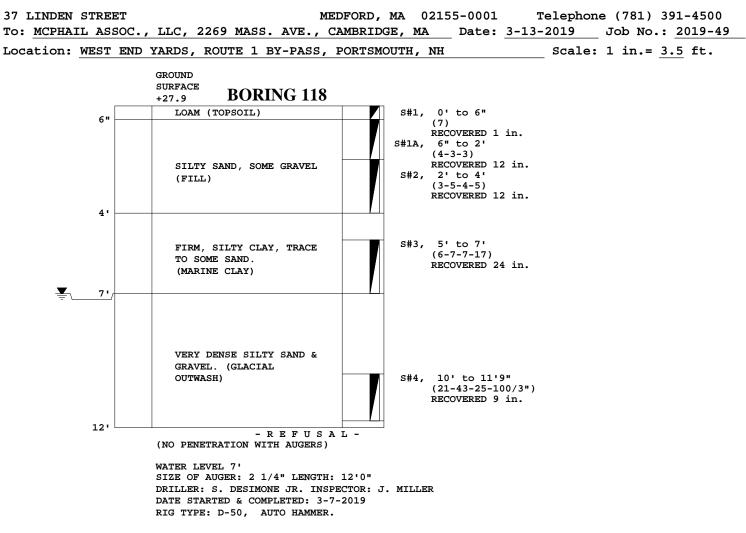
(NO PENETRATION WITH AUGERS)

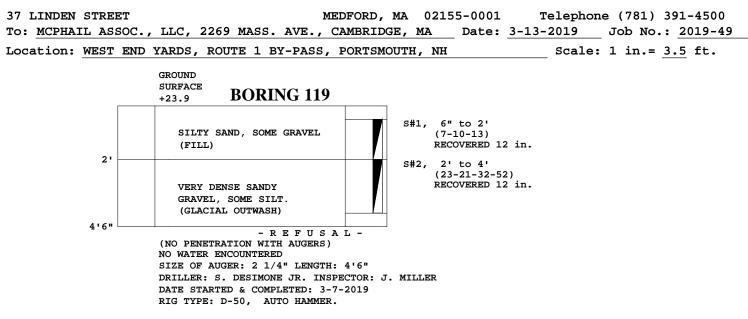
SIZE OF AUGER: 2 1/4" LENGTH: 4'2"

DATE STARTED & COMPLETED: 3-7-2019 RIG TYPE: D-50, AUTO HAMMER.

NO WATER ENCOUNTERED


- R E F U S A L -


NOTE: THIS BORING MOVED 5'0" SW OF ORGINAL LOCATION.


DRILLER: S. DESIMONE JR. INSPECTOR: J. MILLER

4'2"

37 LINDEN STREET	MEDFORD, MA 02155	-0001 Telephon	e (781) 391-4500
To: MCPHAIL ASSOC., LLC, 2269 MASS. AVE	., CAMBRIDGE, MA	Date: <u>3-13-2019</u>	Job No.: 2019-49
Location: WEST END YARDS, ROUTE 1 BY-PA	SS, PORTSMOUTH, NH	Scale:	1 in.= <u>3.5</u> ft.

37 LINDEN STREET	MEDFORD, MA 02155-0003	. Telephone (781) 391-4500
To: MCPHAIL ASSOC., LLC, 2269 MASS. AVE.	, CAMBRIDGE, MA Date:	<u>3-13-2019</u> Job No.: <u>2019-49</u>
Location: WEST END YARDS, ROUTE 1 BY-PAS	S, PORTSMOUTH, NH	Scale: 1 in.= <u>3.5</u> ft.
GROUND		
SUPFACE	104	
+23.9 BORING 1	19A	

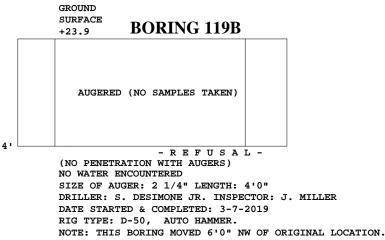
AUGERED (NO SAMPLES TAKEN)

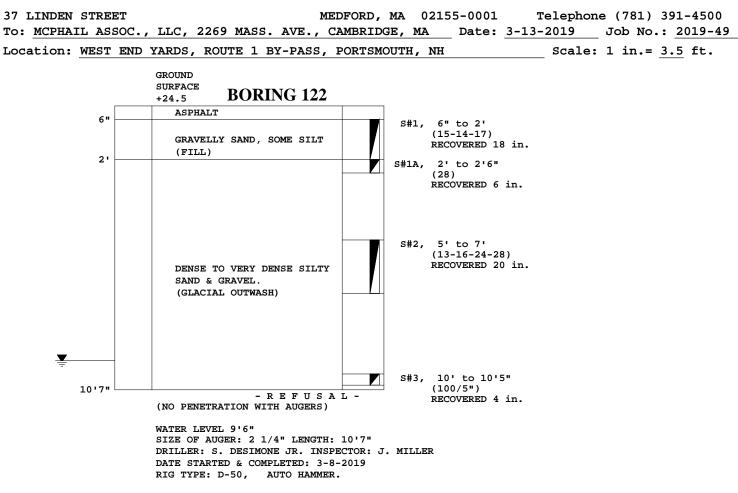
(NO PENETRATION WITH AUGERS)

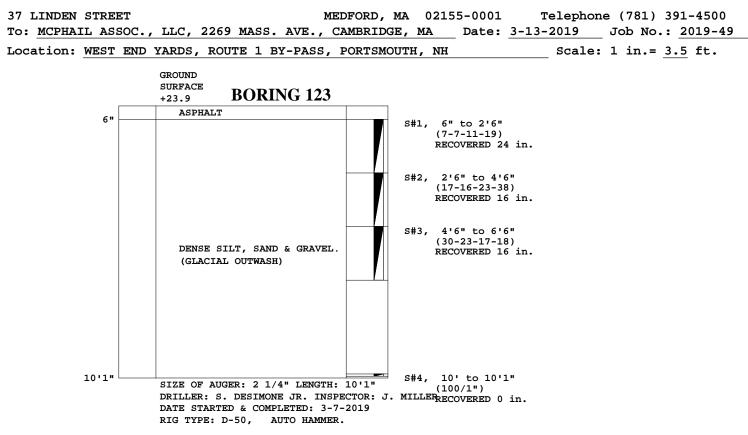
SIZE OF AUGER: 2 1/4" LENGTH: 4'2"

DATE STARTED & COMPLETED: 3-7-2019 RIG TYPE: D-50, AUTO HAMMER.

NO WATER ENCOUNTERED

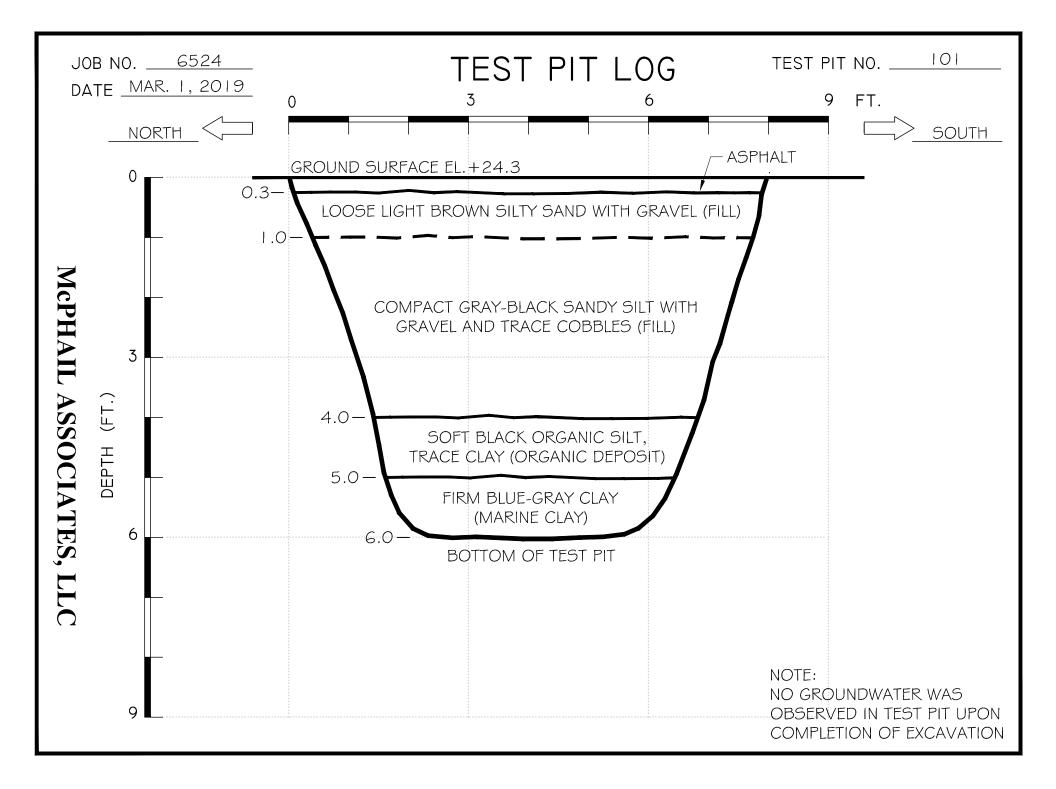

- R E F U S A L -

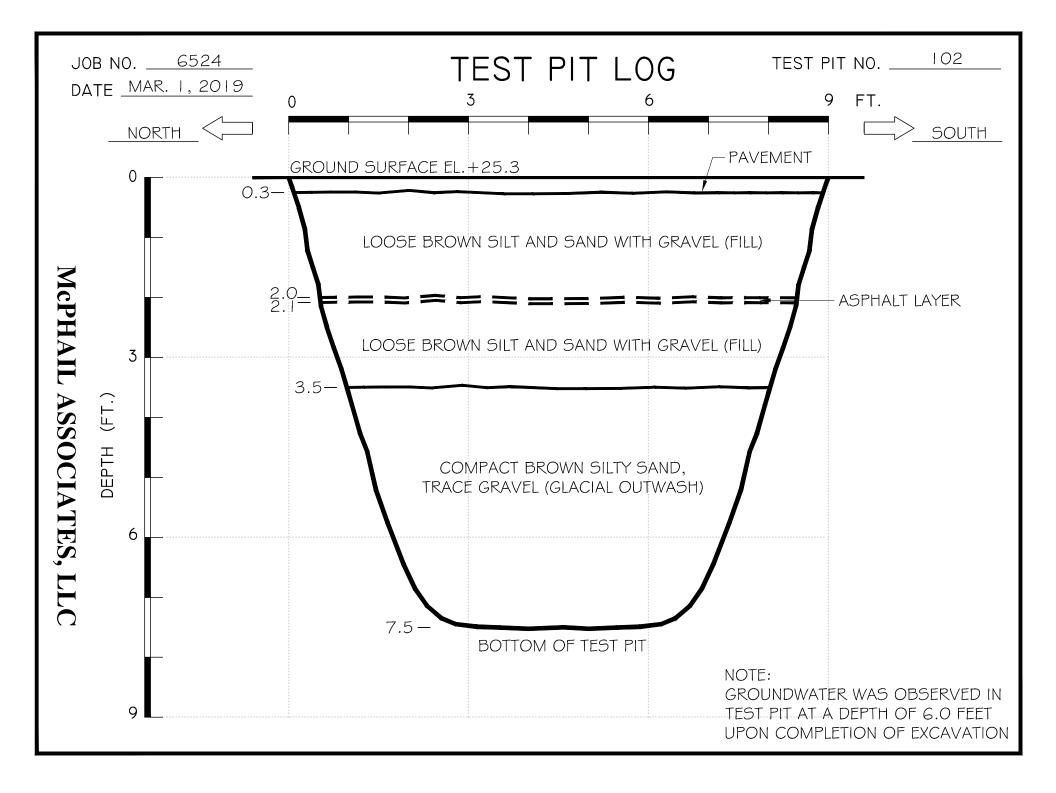

NOTE: THIS BORING MOVED 6'0" WEST OF ORIGINAL LOCATION.

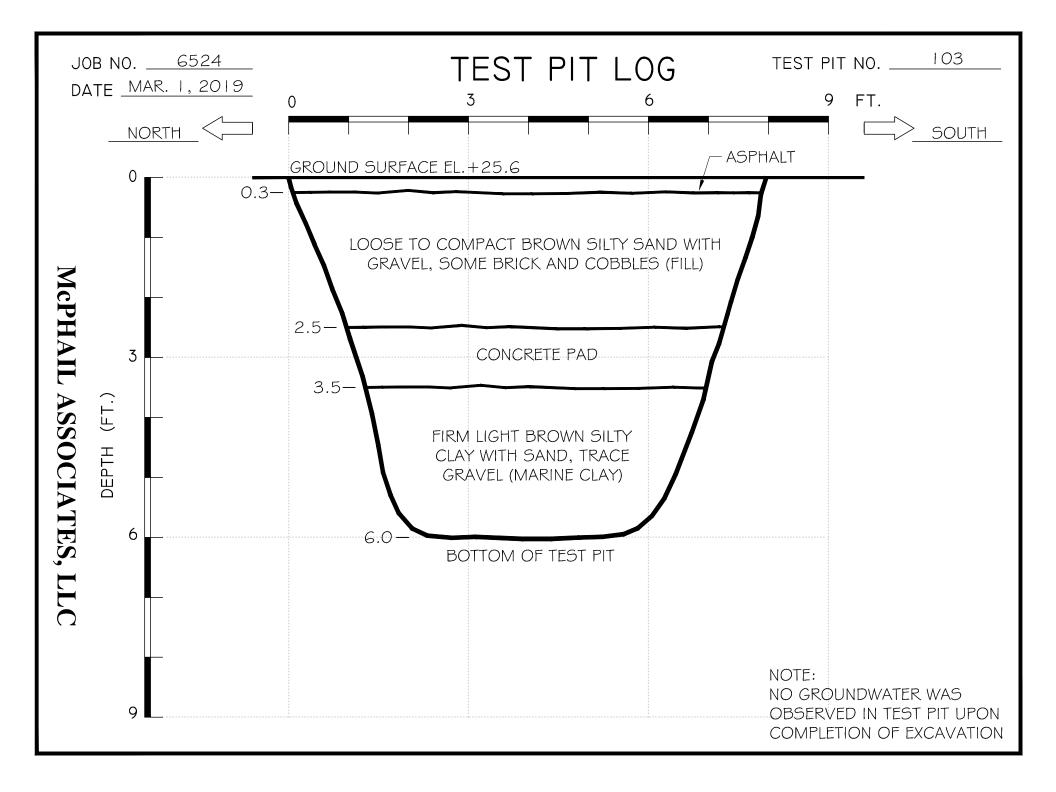

DRILLER: S. DESIMONE JR. INSPECTOR: J. MILLER

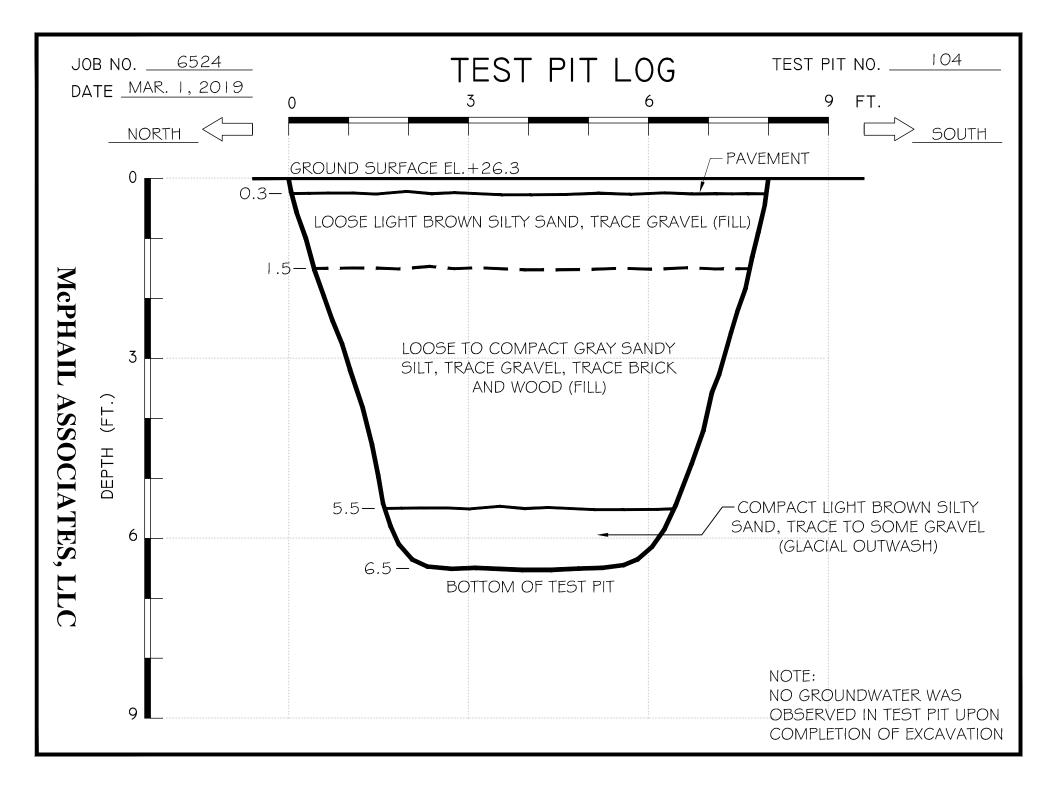
4'2"

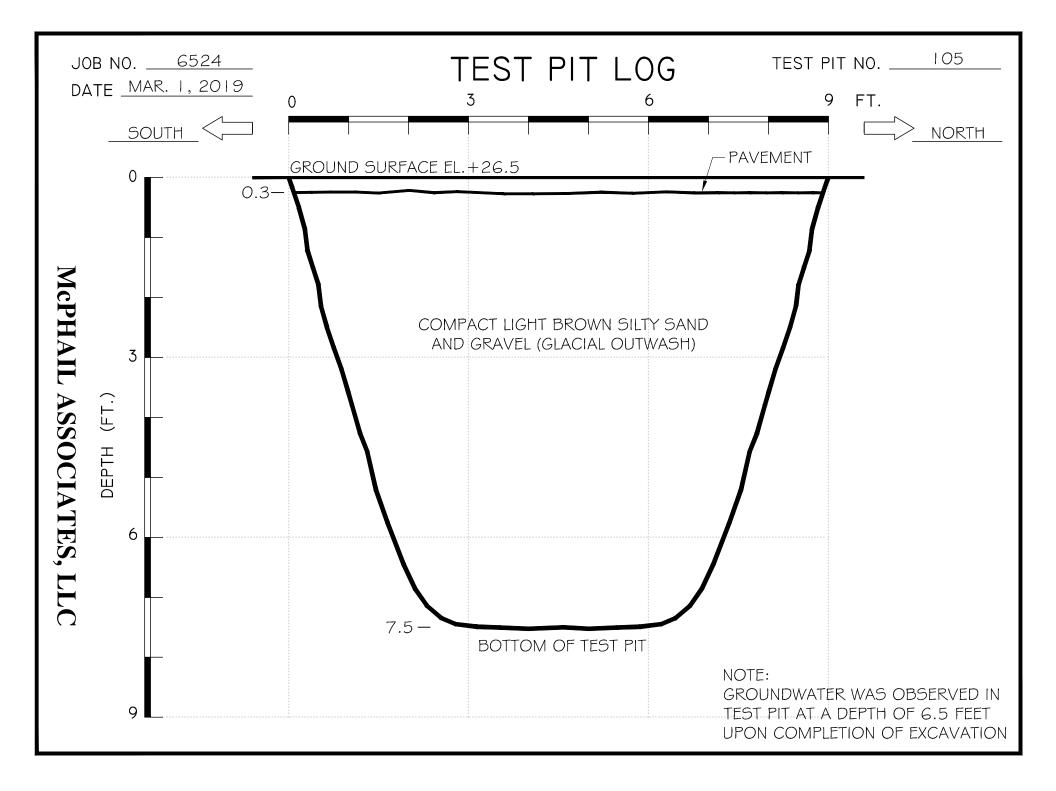
37 LINDEN STREET	MEDFORD, MA 0215	5-0001 Telephone (781) 391-4500
To: MCPHAIL ASSOC., LLC, 2269 MASS. A	VE., CAMBRIDGE, MA	Date: <u>3-13-2019</u> Job No.: <u>2019-49</u>
Location: WEST END YARDS, ROUTE 1 BY-	PASS, PORTSMOUTH, NH	Scale: 1 in.= <u>3.5</u> ft.

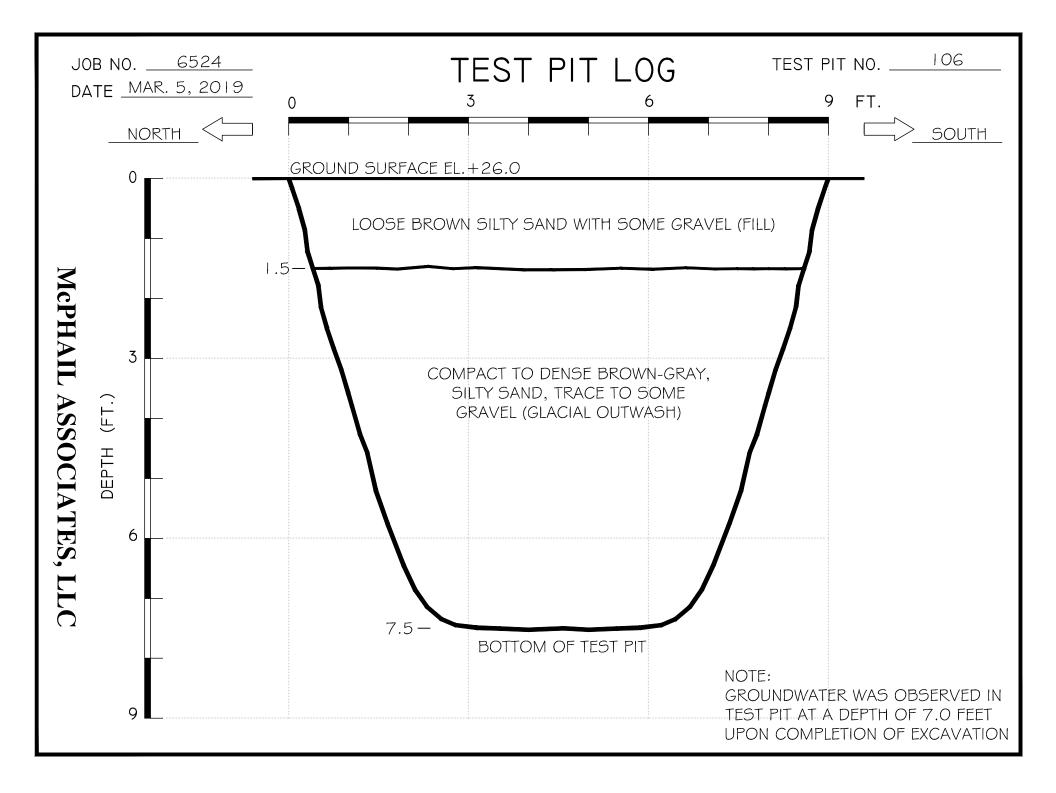


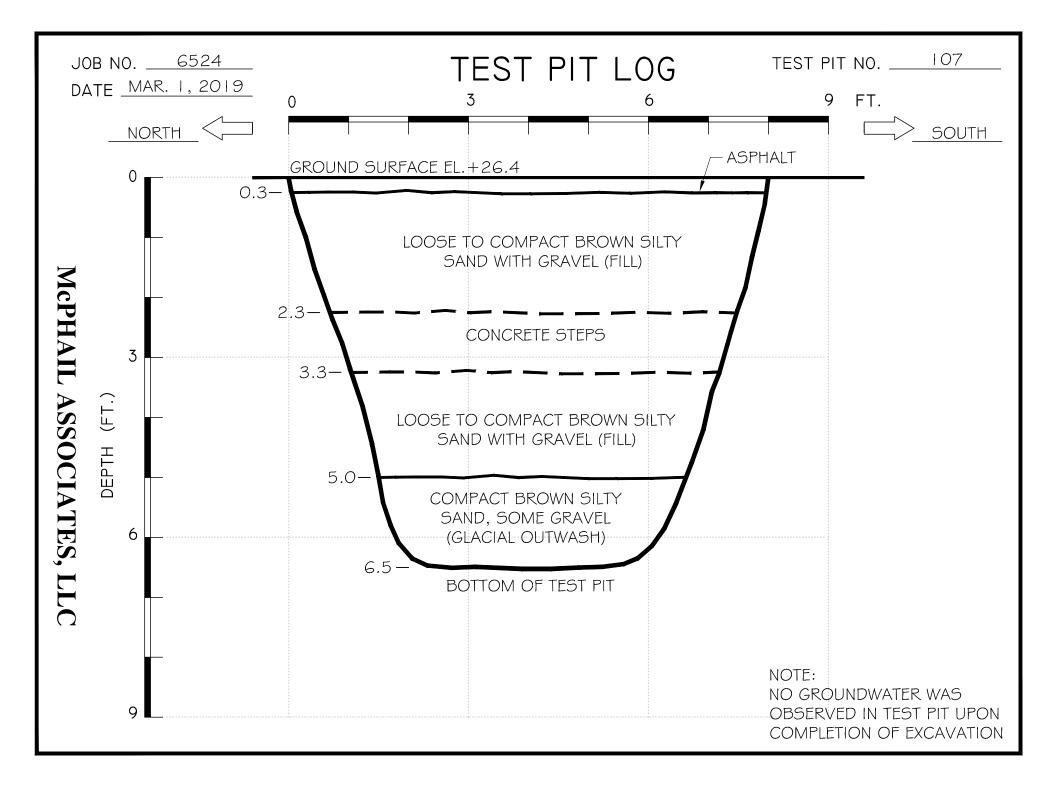


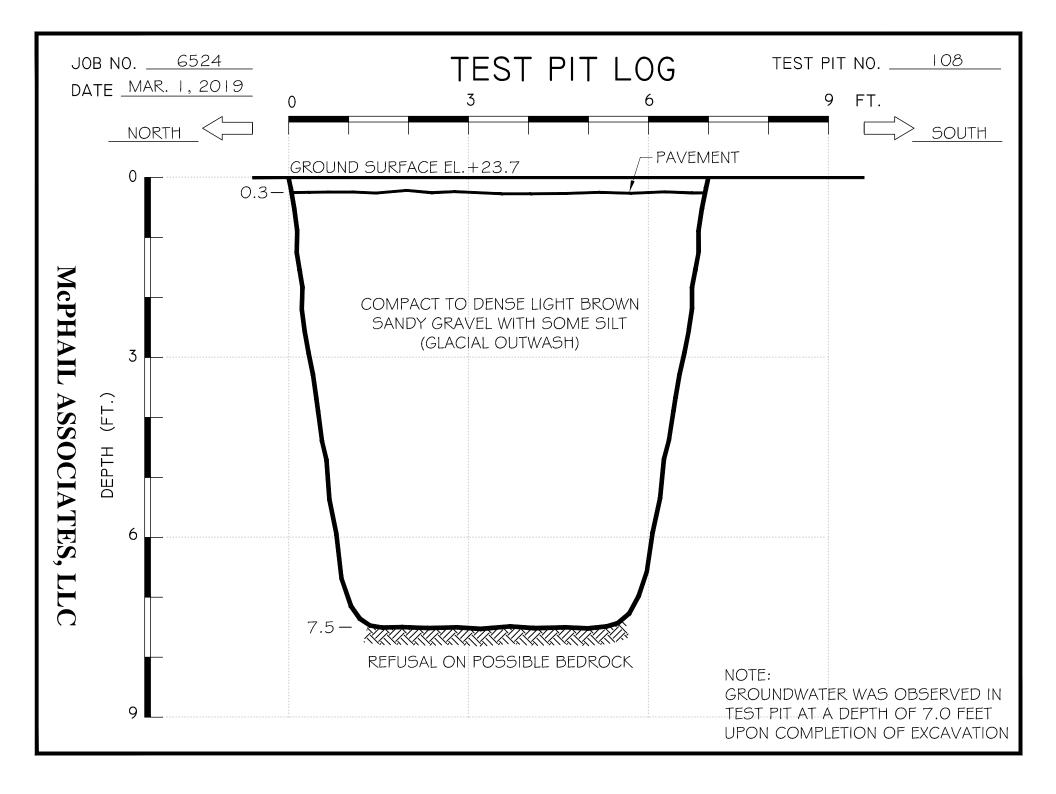


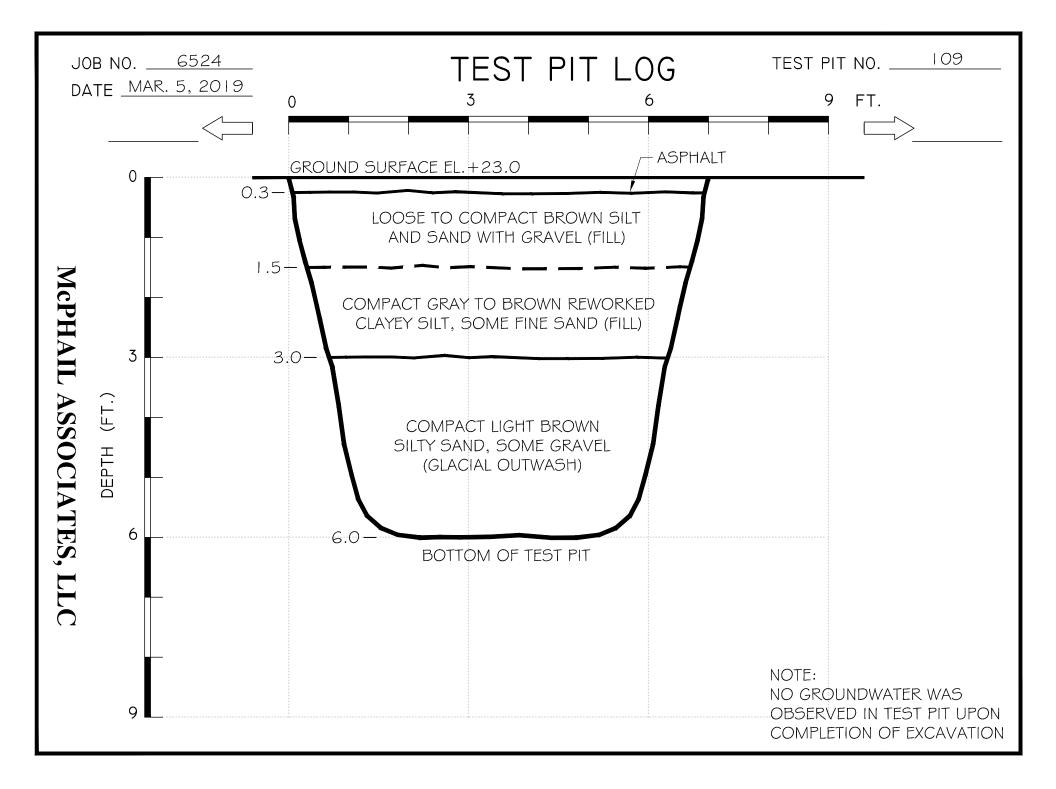

APPENDIX C:

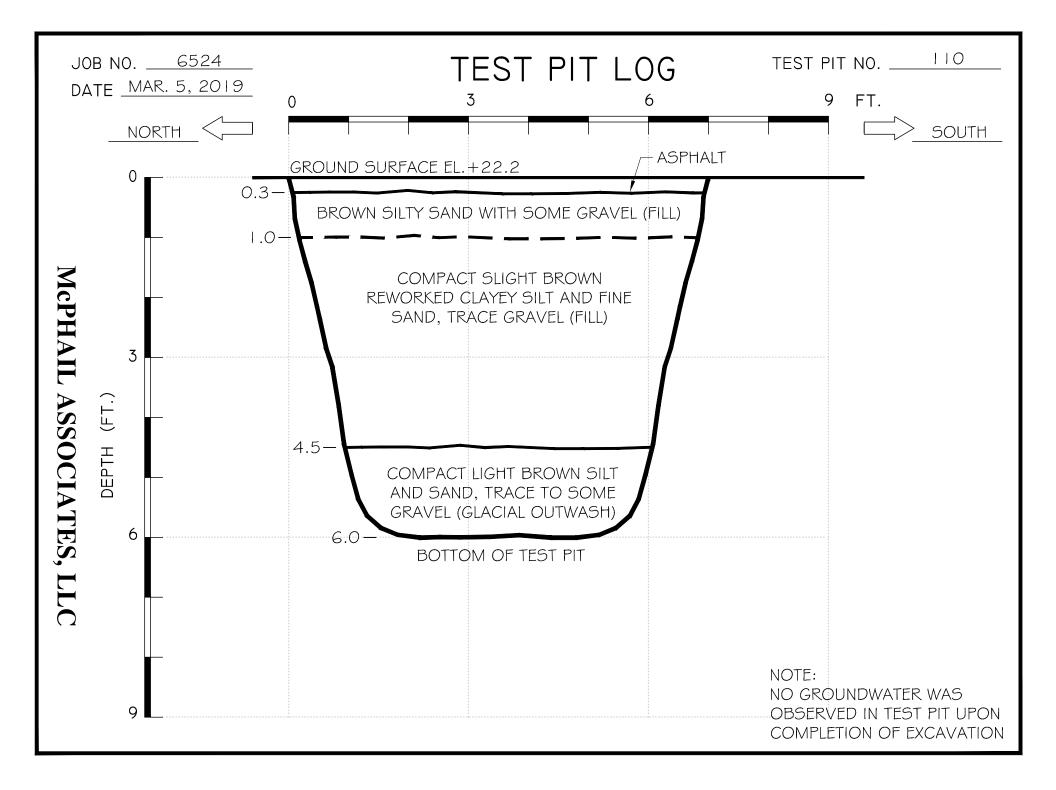

TEST PIT LOGS TP-101 THROUGH TP-119

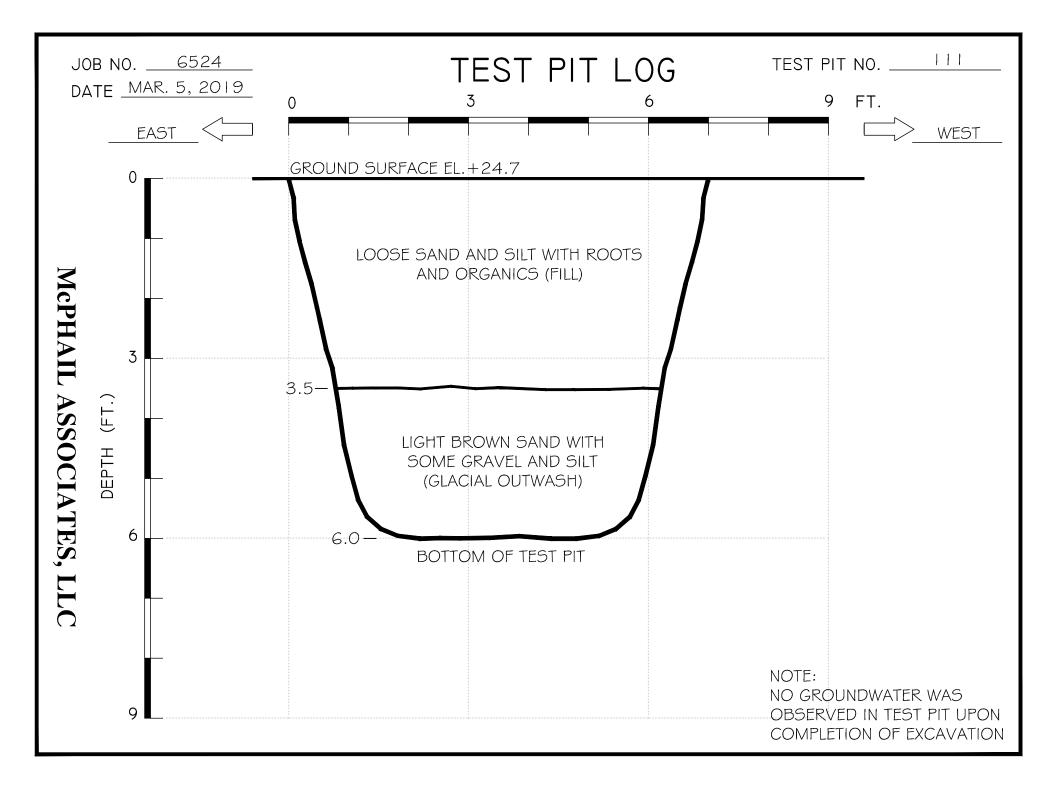


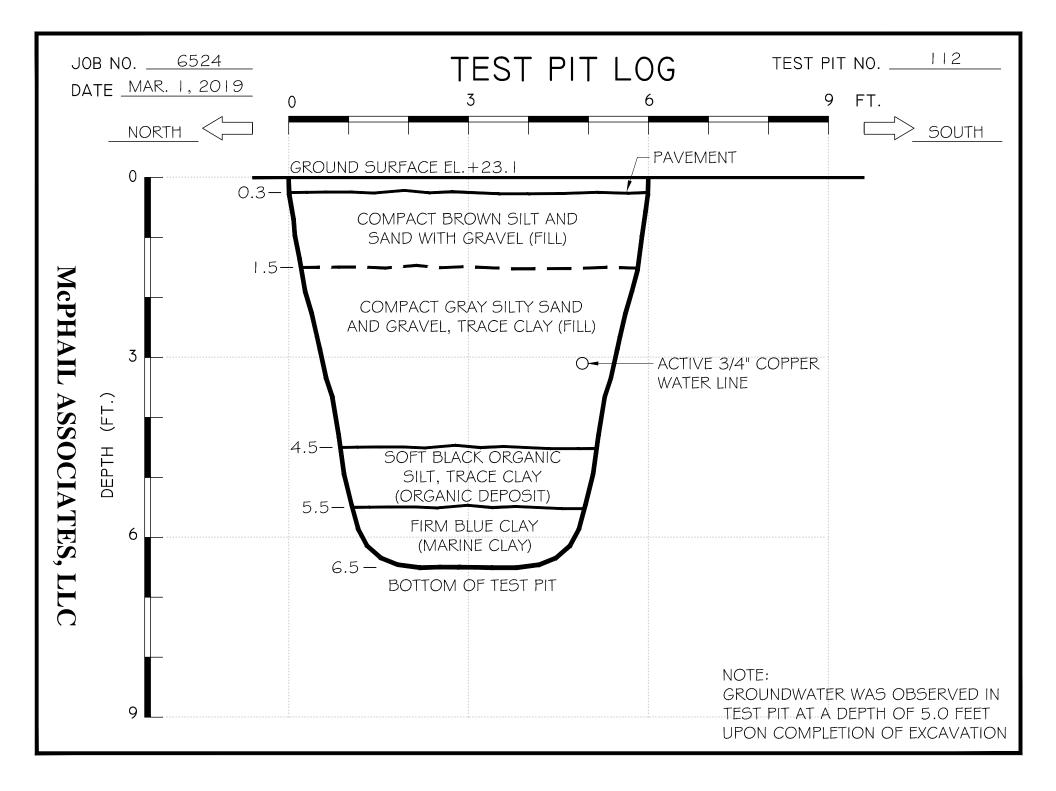


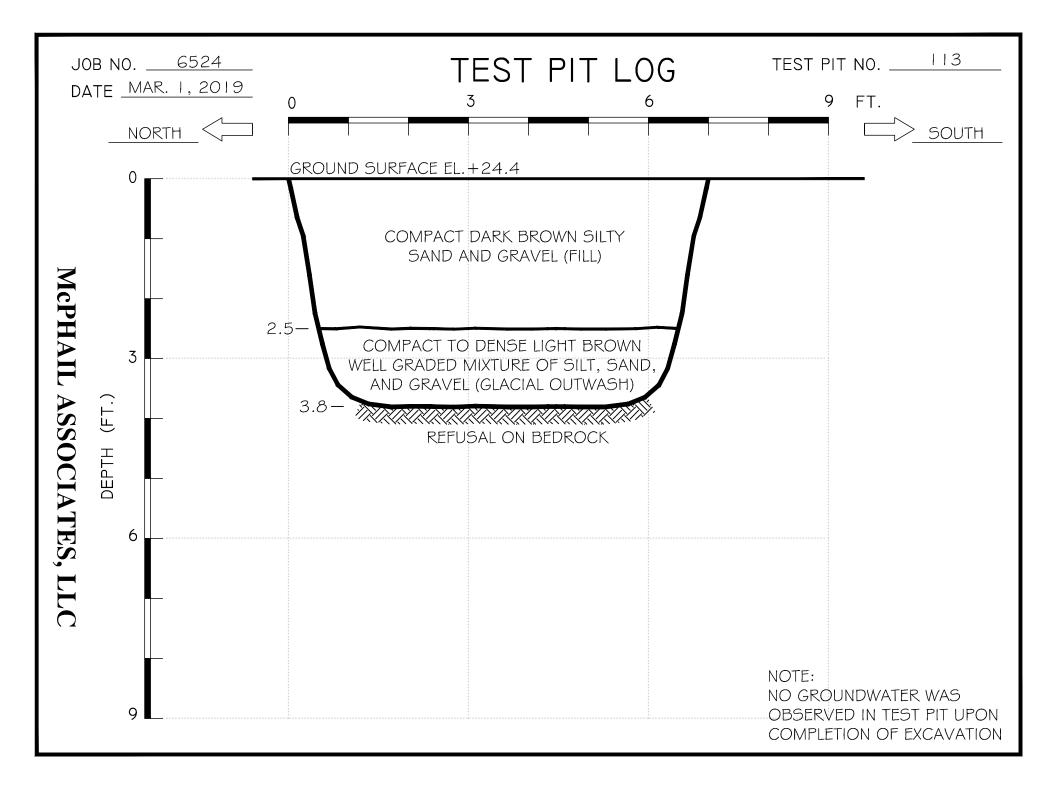


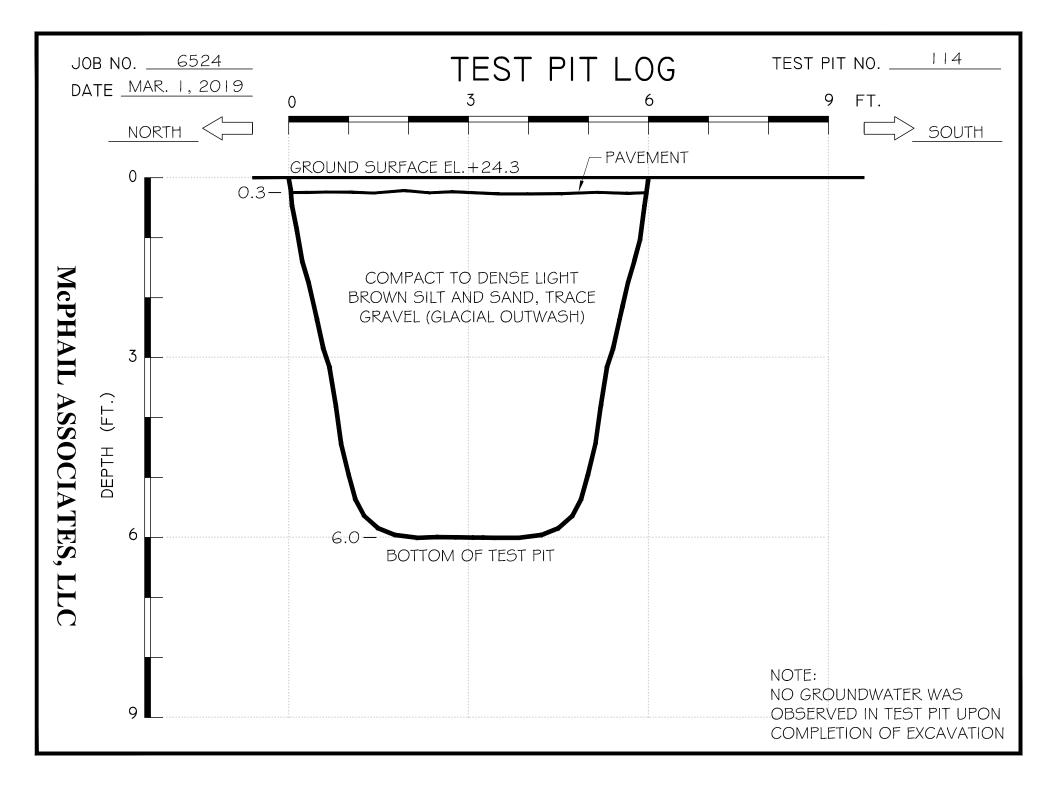


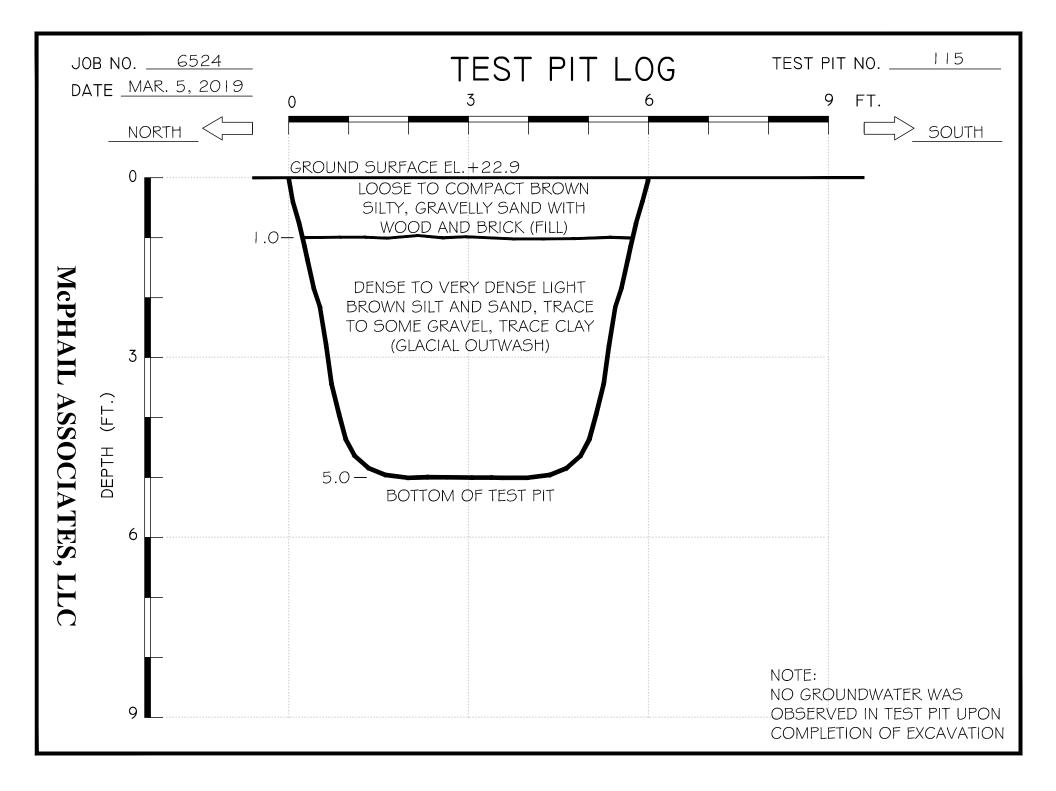


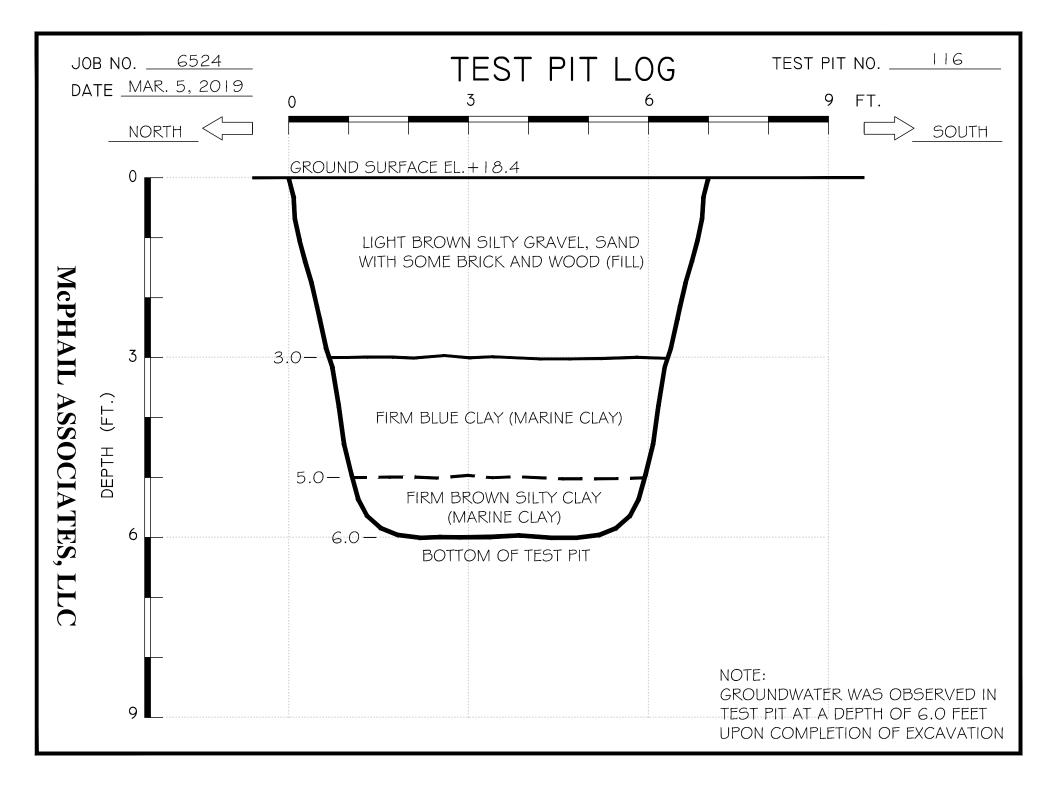


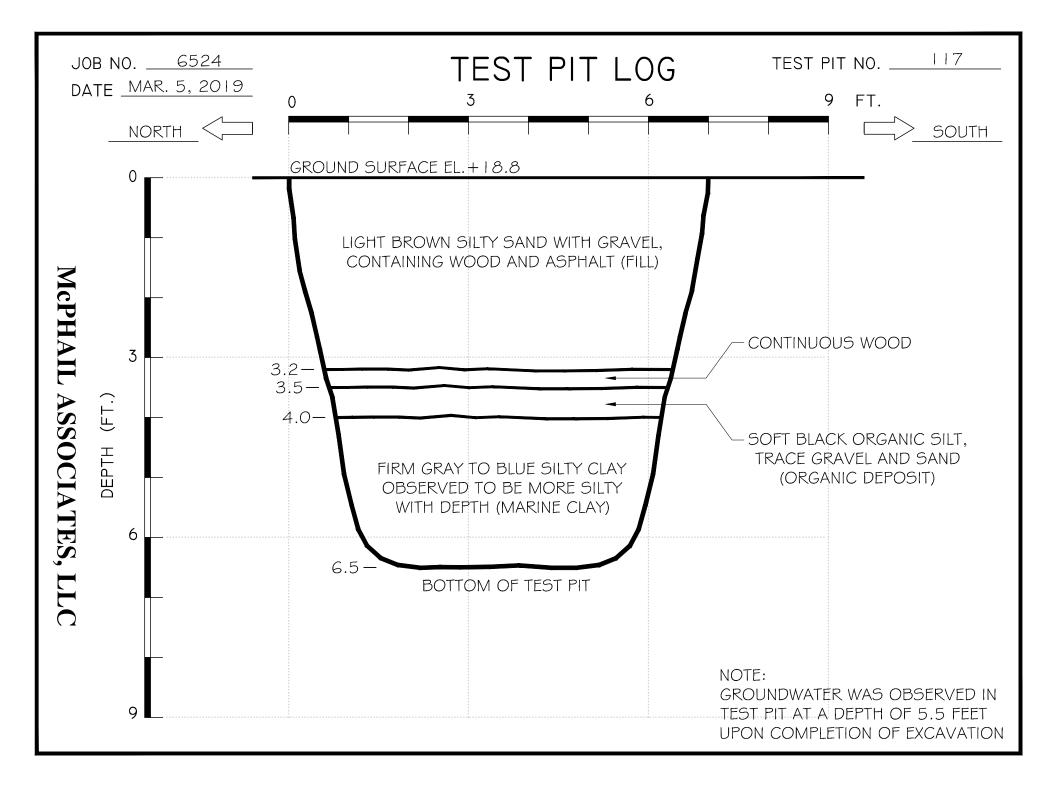


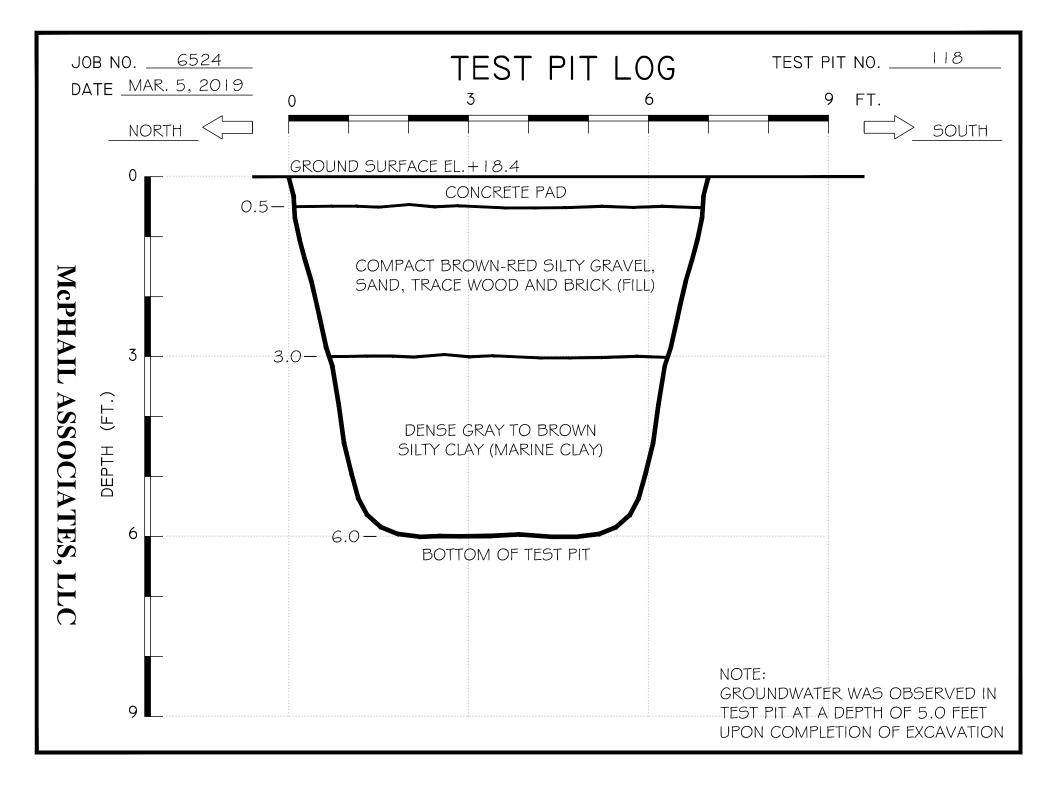


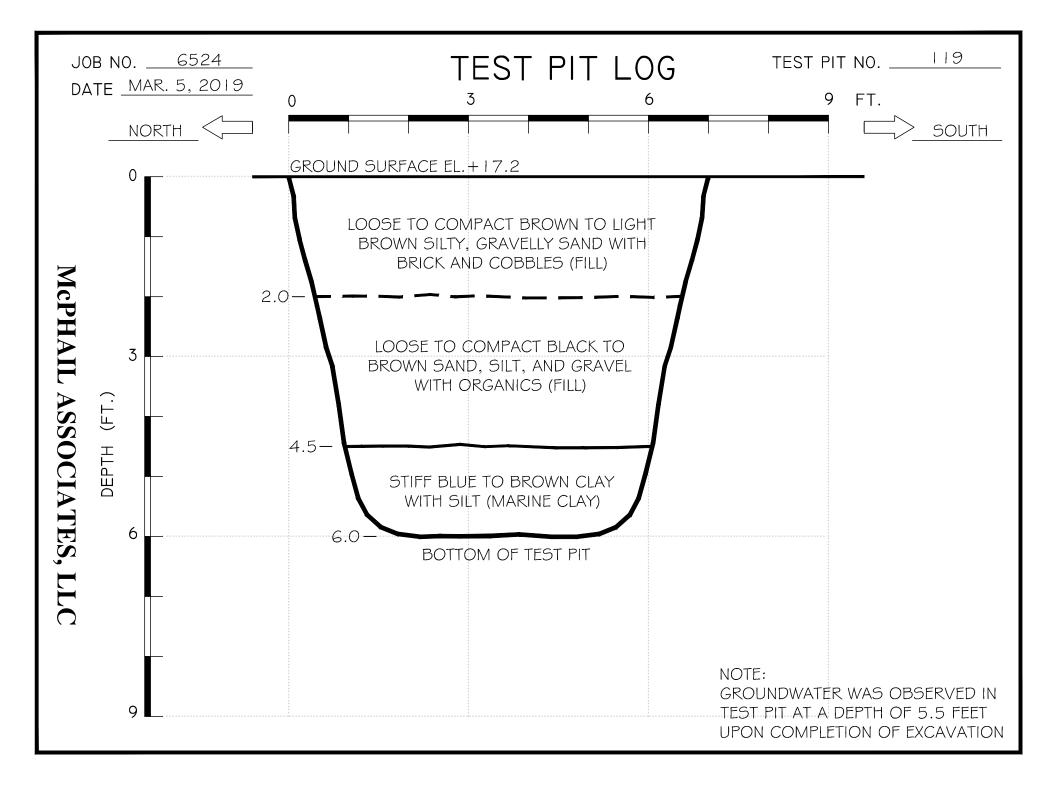








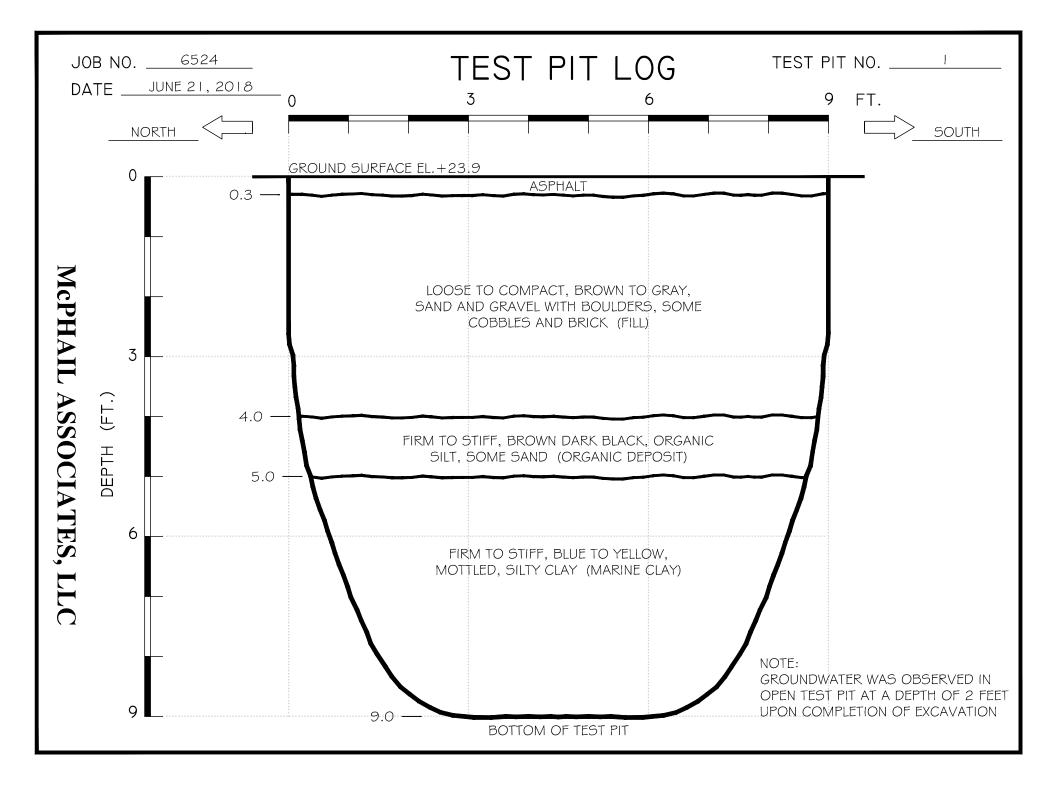


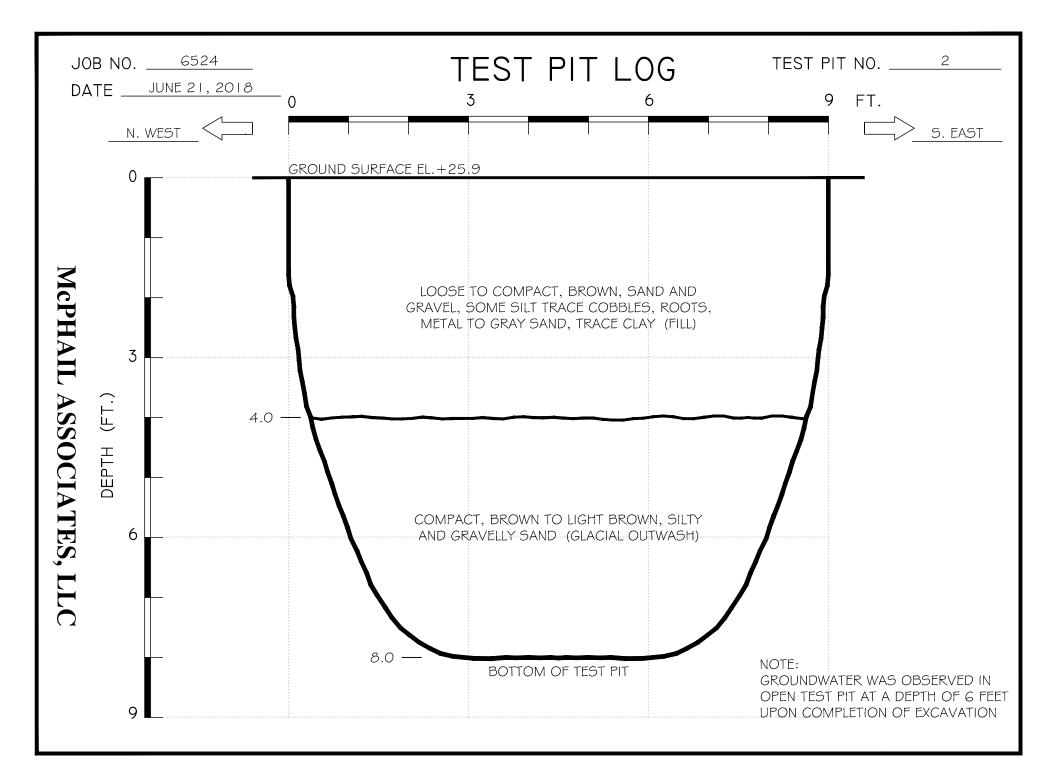


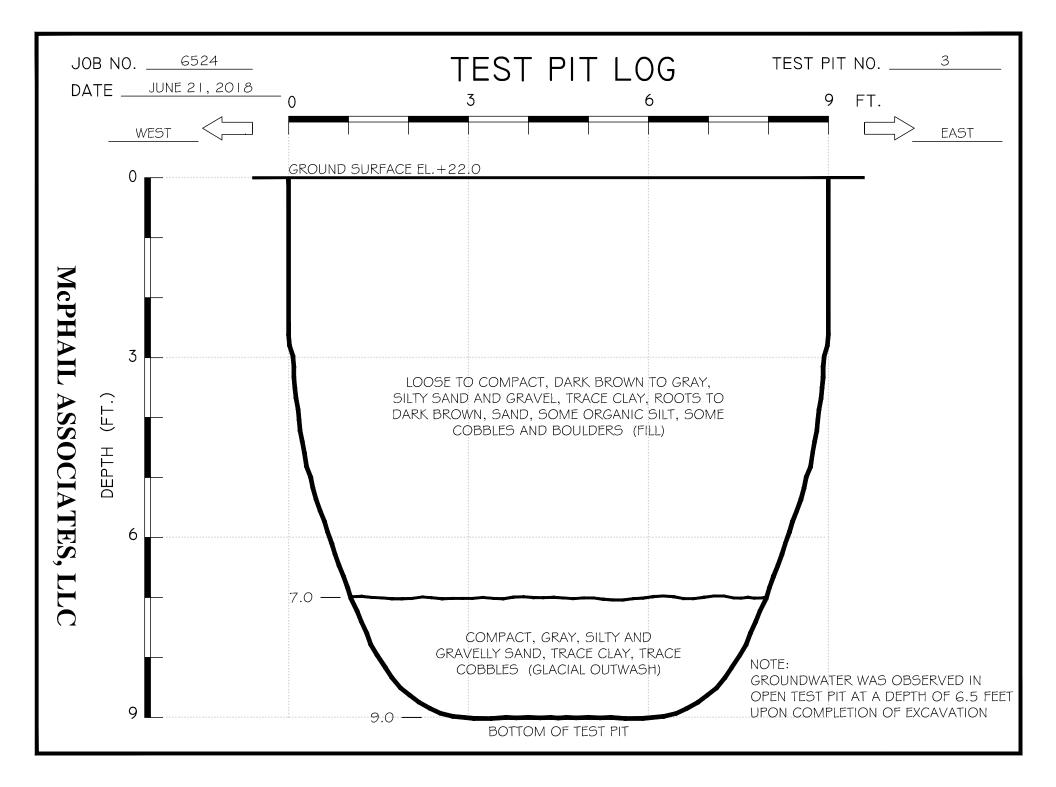
APPENDIX D:

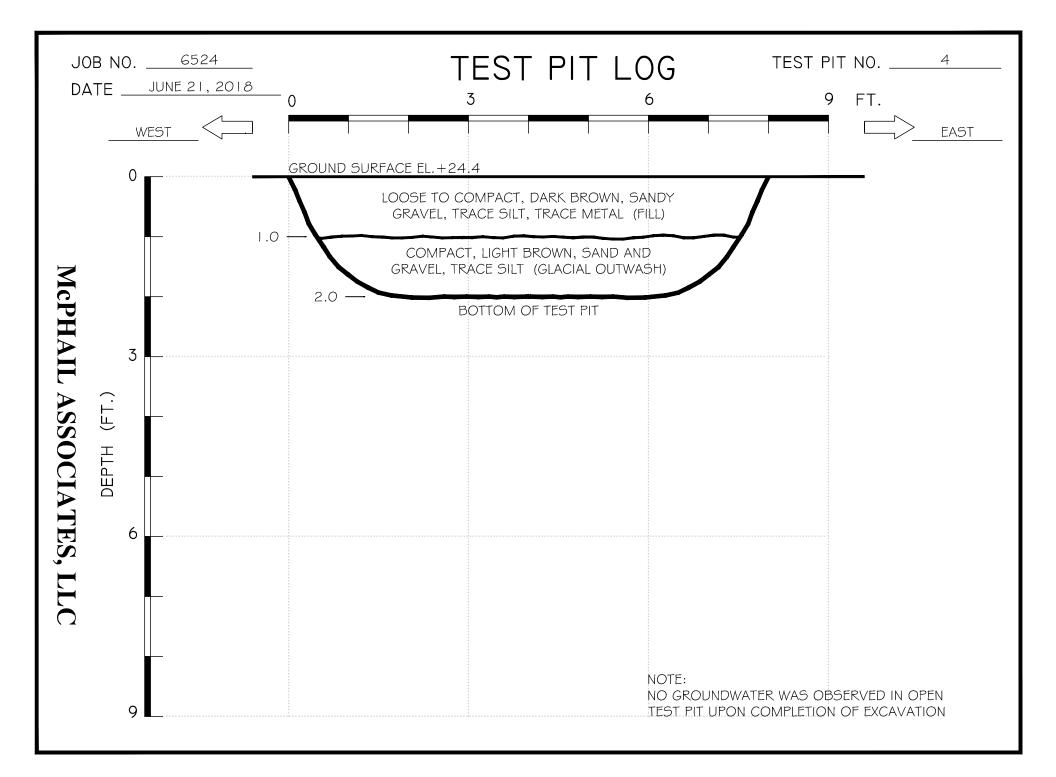
BORING LOGS B-1 THROUGH B-3

Projec Locati City/S	ion:	55	tsmout Cate St tsmout						t: Started: Finished:	12-1		Boring No. B-1 (OW)
Driller/I	Helper: I By/Re	Stev viewe		Miller	Ca Sa	ising Ha	mmer (l ize/Type	9: 24" sp	9" (in): 300/2 lit spoon o p (in): 140/			Groundwater Observations ate Depth Elev. Notes 10-19 4 21.2
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft	:	Sample Description and Boring Notes
- 1 -	- 25 - 24		0.4 / 24.8	FILL	0.0	22	S1	18/16	0.5-2.0	40 22 18	Compact, light brown asphalt and glass (Fl	to black, SAND and GRAVEL, some silt, with LL).
- 2 -	- 23 - 22	××,	2.0/23.2	GLACIAL OUTWASH	0.0	89	S2	24/16	2.0-4.0	30 29 60 65	Very dense, light bro OUTWASH).	wn, SILTY SAND, some gravel (GLACIAL
- 4 -	- 21 - 20				0.0	62	S3	24/2	4.0-6.0	29 30 32 42	Very dense, light bro OUTWASH).	wn, SILTY SAND, some gravel (GLACIAL
- 6 -	- 19		6.8 / 18.4		0.0	130/10"	S4	10/4	6.0-6.8	30 100/4"	OUTWASH).	SAND and SILT and GRAVEL (GLACIAL 10° below ground surface. Roller bit refusal
- 8 -	- 18 - 17			Bottom of borehole 6.83' below ground surface.							(
- 9 -	- 16											
- 10 - - 11 -	- 15 - 14											
- 12 -	- 13											
- 13 -	- 12											
	- 11 RANULAI	RSOILS	8	SOIL COMPONENT								
BLOWS 0-4 4-10 10-30 30-50 >50 CC BLOWS	/FT.))) DHESIVE	DENSI V.LOO LOOS COMPA DENS V.DEN SOILS	TY SE SE ACT SE SE SE TENCY N	DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" Iotes:		Y)	PORTION 0-10 10-2 20-3 35-5	MCPHAIL MCPHAIL ASSOCIATES, LLC 2269 MASSACHUSETTS AVENUE CAMBRIDGE, MA 02140				
<2 2-4 4-8 8-15 15-30		V.SO SOF FIR STIF V.ST	FT TO FF TO IFF W	W installed 6.83' below otal Volatile Organic Cor VOC Background: ppm /eather: emperature:	mpounds		neasured	w/ PID Mc	del:			TEL: 617-868-1420 FAX: 617-868-1423 Page 1 of 1


Projec Locati City/S	ion:	55	Cate S	th Parcels Street th, NH					⊭: Started: Finished:	12-1		Boring B-2 (
Driller/I Loggec	Helper: I By/Re	Stev	ee Corp. ve/Frank d By: t): 24.4	s J. Miller	Ca Sa	mpler S	mmer (l ize/Type	bs)/Drop : 24" sp	N/A (in): N/A blit spoon o p (in): 140/3	30"	Da 12-1	ate Depth	Elev. Note	, , , ,	
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft			nple Description d Boring Notes		
- 1 -	- 24 - 23		0.3 / 24.		0.0	29	S1	18/14	0.5-2.0	36 29 54	Compact, brown, SIL1 (FILL).	TY SAND, some grav	el, with brick and aspha	alt	
- 2 -	- 22 - 21			FILL	0.0	34	S2	24/12	2.0-4.0	40 24 10 13	Dense, black to brown (FILL).	n, SILTY SAND, some	e gravel, some cobbles	s	
- 4 -	- 20 - 19				1.7	41	S3	24/10	4.0-6.0	17 16 25 33	Dense, black, SAND a cinders (FILL). Odor of mothballs.	and GRAVEL, some s	silt, with wood and ash	ı and	
- 6 -	- 18 - 17		6.0 / 18.4 7.5 / 16.9	GLACIAL OUTWASH	0.0	36	S4	17/14	6.0-7.4	54 36 11/5"	Dense, brown to light (GLACIAL OUTWASH Split spoon refusal 7'5 below ground surface	H). 5" below ground surfa			
- 8 -	- 16			Bottom of borehole 7.5' below ground surface.											
- 9 - - - 10 -	- 15														
- 11 -	- 14 - 13														
- 12 - - - 13 -	- 12														
- 14 -	- 11 - 10														
GF BLOWS 0-4 4-10 10-30 30-50 >50)	R SOILS DENSI V.LOO LOOS COMPA DENS V.DEN	<u>TY</u> SE SE ACT SE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND"	DY, SILT		PORTION 0-10 10-2 20-3 35-5	0% 5%	COMP COMPI THE TO	ONENTS E RISE AT L DTAL ARE	IG THREE EACH OF WHICH EAST 25% OF CLASSIFIED AS ED MIXTURE OF"	MC	PHAIL CIATES, LLC		
BLOWS <2 2-4 4-8		ONSIST V.SO SOF FIRI	FT FT M	Notes: OW installed 7.5' below g Total Volatile Organic Cor	npounds				odel:			2269 MASSAC CAMBRIE TEL: 6	SSOCIATES, LLC HUSETTS AVENU OGE, MA 02140 517-868-1420 517-868-1423		
8-15 15-30 >30)	STIF V.STI HAR	IFF	TVOC Background: ppm Weather: Temperature:								Pag	e 1 of 1		


Projec Locat City/S	ion:	55	tsmou Cate S tsmou						♯: Started: Finished:	12-1		Boring No. B-3 (OW)
Driller/ Logged	Helper d By/Re	: Stev eviewe	ee Corp. ve/Frank d By: J t): 24.2		Ca Sa	mpler S	mmer (l ize/Type	bs)/Drop 9: 24" sp	3" 9 (in): 300/2 9 (in): 300/2 9 (in): 300/2			Groundwater Observations ate Depth Elev. Notes 0-19 6 18.2
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	TVOC (ppm)	N-Value RQD	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows/6" Min/ft		Sample Description and Boring Notes
	- 24		0.4 / 23.8	3 ASPHALT								
1 -	- 23				0.0	28	S1	18/10	0.5-2.0	18 28 18	Dense, light brown, S	AND and GRAVEL, trace silt (FILL).
- 2 -	- 22 - 21			FILL	0.0	46	S2	24/16	2.0-4.0	21 23 23 23	Dense, light brown, S	AND and GRAVEL, trace silt (FILL).
- 4 - - 5 -	- 20 - 19		4.0 / 20.2	2	0.0	50	S3	24/20	4.0-6.0	27 24 26	Dense to very dense, OUTWASH).	SILTY SAND and GRAVEL (GLACIAL
6 -	- 18 - 17			GLACIAL OUTWASH	0.0	54	S4	24/14	6.0-8.0	30 25 26 28 35	Very dense, light brov OUTWASH).	wn, SILTY SAND and GRAVEL (GLACIAL
8 - 9 -	- 16 - 15				0.0	53	S5	23/12	8.0-9.9	35 25 22 31 100/5"	OUTWASH).	wn, SILT and SAND, some gravel (GLACIAL 11" below ground surface.
10 -	- 14	*	9.9 / 14.3	Bottom of borehole 10.42' below ground surface.								
11 -	- 13											
12 -	- 12											
14 -	- 11 - 10											
			<u> </u>									1
BLOWS 0-4 4-10 10-30 30-50 >50	DHESIVI	DENSI V.LOO LOOS COMP/ DENS V.DEN	TY SE SE ACT SE SE TENCY IFT	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SAN "AND" Notes: DW installed 10' below gr		Y)	0-10 10-2 20-3 35-5	0% 5%	COMP COMP THE TO	ONENTS I RISE AT L OTAL ARE	NG THREE EACH OF WHICH EAST 25% OF E CLASSIFIED AS ED MIXTURE OF"	MCPHAIL ASSOCIATES, LLC 2269 MASSACHUSETTS AVENUE CAMBRIDGE, MA 02140 TEL: 617-868-1420 FAX: 617-868-1423
4-8 8-15 15-30 >30	5	FIR STIF V.ST HAF	FF 1	Fotal Volatile Organic Cor FVOC Background: ppm Neather: Femperature:	npounds	(TVOC) n	neasured	w/ PID Mo	odel:			Page 1 of 1




APPENDIX E:

TEST PIT LOGS TP-1 THROUGH TP-4

APPENDIX F:

GEOPROBE LOGS GP-1 THROUGH GP-15

Proje Locat City/S	ion:	55	Cate \$	uth Parcels Street uth, NH				#: Started: Finished:	1-19			Boring P-1 (/)
Logge	Helpe d By/R	r: Dai eviewe	ed By: P ft): 21.6	C K. Hanrahan S S S	ampler S	mmer (l ize/Type	bs)/Drop e: 5' Sle	(in): NA		1-1	Grou ate 9-18 2-18	Undwater Depth DRY 7.21	Observa Elev. 14.4	ations Notes
Depth	Elev	bol	EL to hange				Samp	le			Sampl	e Descrip	otion	
(ft)	(ft)	E EVE STRATUM Pen Donth Plowe					boring No							
1 - 2 -	- 21 - 20		2.5 / 19.	FILL	n/a	S1	30/16	0.0-2.5		Brown/gray/black, S	ILTY SAN	D, trace grav	el, with bricł	κ. (Fill)
3 -	- 19 - 18 - 17			··	n/a	S2	30/16	2.5-5.0		Brown/gray, SILTY S	SAND, sor	ne gravel, tra	ce cobbles.	(Outwash)
5 - 6 - 7 -	- 16 - 15			OUTWASH	n/a	S3	27/20	5.0-7.3		Brown/gray, SILTY S	SAND, sor	ne gravel. (O	utwash)	
8 - 9 -	- 14 - 13 - 12				n/a	S4	27/20	7.3-9.5		Brown/gray, SILTY S partings. (Outwash)	SAND, sor	ne gravel, so	me clay with	i fine sand
10 -	- 11	<u></u>	10.0 / 11	.6 Geoprobe refusal at 10 feet below ground surface.	'									
11 - 12 -	- 10													
13 -	- 9													
14 -	- 8													
15 -	- 7													
16 -	- 6 - 5													
17 -	- 4													
18 -	- 3													
19 -	- 2													
20 -	- 1													
21 -	- 0													
22 -	1													
GF BLOWS		AR SOIL DENS		SOIL COMPONENT										
0-4 4-10		V.LOO LOO	DSE	DESCRIPTIVE TERM	PRO	PORTIO	N OF TOT			G THREE		\leq		
10-3 30-5	0	COMP	ACT	"TRACE" "SOME"		0-1(10-2		COMPO	NENTS E	ACH OF WHICH EAST 25% OF THE		Me	РНА	
>50		V.DEM	ISE	"ADJECTIVE" (eg SANDY, SILT "AND"	Y)	20-3 35-5	5%	TOTAL	ARE CLAS	SSIFIED AS "A MIXTURE OF"		ASSO	CIATES, I	LC
3LOWS <2 2-4 4-8	S/FT.	<u>E SOIL</u> CONSIS V.SC SO FIF	TENCY DFT FT RM	Notes: Geoprobe installed observation w of PVC riser.	ell at 10 fee								HUSETT	S ÁVENU 02140 420
8-15 15-3	0	STI V.ST	IFF	Weether Q								Pag	e 1 of	1
>30		HA	RD	Weather: Overcast										-

Project:Portsmouth ParcelsLocation:55 Cate StreetCity/State:Portsmouth, NH					Job #: 6524.9.00 Date Started: 1-19-18 Date Finished: 1-19-18							Boring P-2 (OW	
	Helper d By/Re	: Dar eviewe	d By: K. t): 20.4	Ca Hanrahan Sa	ampler Si	mmer (l ize/Type	bs)/Drop e: 5' Sle (Ibs)/Dro	o (in): NA eve op (in): NA			Grou Date 1-19-18 1-22-18	Depth 5.5 8.76	Observa Elev. 14.9 11.6	ations Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"			e Descrip oring No		
1 -	- 20 - 19 - 18		0.5 / 19.9		n/a	S1	30/15	0.0-2.5		Brown/black, SIL	T, SAND, trac	e gravel. (Fil	1)	
3 - 4 - 5 -	- 17 - 16		4.5 / 15.9		n/a	S2	30/15	2.5-5.0		Brown/gray/black	ς, SILTY SANI	D, trace grav	el with ash &	k cinders. (Fi
6 - 7 -	- 15 - 14 - 13		5.5 / 14.9	ORGANIC DEPOSIT	n/a	S3	30/30	5.0-7.5		Gray, SILTY SAN				
8 - 9 - 10 -	- 12 - 11			OUTWASH	n/a	S4	30/30	7.5-10.0		Brown/gray, mott				
11 -	- 10 - 9 - 8				n/a	S5	24/10	10.0-12.0		Brown/gray, mott				
13 - 14 - 15 - 16 - 17 -	- 7 - 6 - 5 - 4		14.0 / 6.4	Geoprobe refusal at 14 feet below ground surface.	n/a	S6	24/10	12.0-14.0						
18 - 19 - 20 - 21 -	- 3 - 2 - 1 - 0 1													
22 - GF	2 RANULA	R SOIL	S	SOIL COMPONENT										
BLOWS 0-4 4-10 10-3(30-50 >50 CC BLOWS <2 2-4 4-8	/FT. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DENS V.LOC LOOS COMP/ DENS V.DEN E SOILS CONSIS V.SC SOIF	TY SE SE ACT SE ISE TENCY FT M	SOLE COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT" "AND" Notes: Geoprobe installed observation we of PVC riser.	Y)	0-1(10-2 20-3 35-5	0% 5% 0%	SOIL CO COMPO COMPR TOTAL / WELL-G	NENTS E ISE AT LE ARE CLAS RADED N	G THREE ACH OF WHICH AST 25% OF T SSIFIED AS "A /IXTURE OF" creen and 3 fee	HE M 2269	CAMBRID	HUSETTS	S ÁVENUE)2140 420
8-15 15-30 >30	0	STII V.ST HAF	IFF	Weather: Overcast								Pag	e 1 of	1

Projec Locat City/S	ion:	55	Cate S	th Parcels Street th, NH				≭: Started: Finished:	1-19		G	Boring P-3 (OW		
	Helper d By/Ro	: Dar eviewe	d By: K t): 19.5	C: . Hanrahan Si Si	ampler S	mmer (l ize/Type	bs)/Drop e: 5' Sle (Ibs)/Dro	o (in): NA eve op (in): NA		-	Grou Date 1-19-18 1-22-18	Depth 4 6.24	Observa Elev. 15.5 13.3	ations Notes	
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows Per 6"			e Descrip oring No			
- 1 - - 2 -	- 19 - 18				n/a	S1	30/27	0.0-2.5		Brown/gray, S	SILY SAND, trace	gravel. (Fill)			
3 -	- 17 - 16 - 15		5.0 / 14.5	FILL	n/a	S2	30/27	2.5-5.0		Brown/gray, s	SILT, some clay, v	with wood an	d organic fil	oers. (Fill)	
5 - 6 - 7 -	- 14 - 13 - 12				n/a	S3	30/30	5.0-7.5		Brown/gray,	mottled, SILTY CL	I, SILTY CLAY. (Marine Clay) I, SILTY CLAY. (Marine Clay)			
8 - 9 - 10 -	- 11 - 10				n/a	S4	30/30	7.5-10.0		Brown/gray, i	mottled, SILTY CL	ed, SILTY CLAY. (Marine Clay)			
10 11 - 12 -	- 9 - 8 - 7			MARINE CLAY	n/a	S5	30/20	10.0-12.5		Brown/gray, i Clay)	mottled, SILTY CL	gs. (Marine			
13 - 14 -	- 6 - 5				n/a	S6	30/20	12.5-15.0		Brown/gray, i Clay)	mottled, SILTY CL	AY with fine	sand partin	gs. (Marine	
15 - 16 -	- 4 - 3		16.5 / 3.0)	n/a	S7	18/23	15.0-16.5		Brown/gray, Clay)	mottled, SILTY CL	AY with fine	sand partin	gs. (Marine	
17 - 18 - 19 -	- 2 - 1			Geoprobe refusal at 16.5 feet below ground surface.											
20 - 21 - 22 -	- 0 1 2														
-	3														
GF BLOWS 0-4 4-10 10-30 30-50 >50	/FT.)))	R SOIL DENS V.LOC LOOS COMP/ DENS V.DEN	ITY DSE SE ACT SE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT"		0-10 10-2 20-3	0% 5%	SOIL CO COMPO COMPR TOTAL	NENTS E ISE AT LE ARE CLAS	G THREE ACH OF WH AST 25% O SSIFIED AS '	F THE "A	Mcl	PHA MATES, I		
CC BLOWS <2 2-4 4-8	DHESIV /FT. (<u>E SOILS</u> CONSIS V.SC SOI FIR	S TENCY DFT -T M	"AND" Notes: Geoprobe installed observation we feet of PVC riser.	ell at 16.5 f	35-5 eet below				VC screen a	Mo 2269		HUSETTS	S ÁVENUE)2140 420	
8-15 15-30 >30	5	STII V.ST HAF	IFF	Weather: Overcast								Pag	e 1 of	1	

Projec Locati City/S	ion:	55	Cate S	th Parcels Street th, NH				#: Started: Finished:	1-19		G	Boring P-4 (OW		
	Helpe d By/F	r: Dar Reviewe	d By: K t): 19.7	. Hanrahan Sa	ampler Si	mmer (l ize/Type	bs)/Drop e: 5' Slee (Ibs)/Dro	o (in): NA eve op (in): NA		-	Grou Date 1-19-18 1-22-18	Depth 5.5 5.13	Observa Elev. 14.2 14.6	Notes	
Depth (ft)	Elev (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"			e Descrip oring No			
· 1 -	- 19 - 18				n/a	S1	30/19	0.0-2.5		Brown/gray, S	SILTY SAND, son	ne gravel, wit	h trace brick	xs. (Fill)	
· 3 -	- 17 - 16 - 15			FILL	n/a	S2	30/19	2.5-5.0		Brown/gray, S	SAND, some silt, :	some gravel.	(Fill)		
5 - 6 - 7 -	- 14 - 13		7.5 / 12.2		n/a	S3	30/22	5.0-7.5		Brown/gray, S					
· 8 -	- 12 - 11 - 10				n/a	S4	30/22	7.5-10.0			w, SILTY SAND, some gravel. (Outwash) dor and staining observed approximately 9 feet l GRAVEL, some sand, some silt. (Outwash)				
10 - 11 - 12 -	- 9 - 8			OUTWASH	n/a	S5	24/18	10.0-12.0			y, GRAVEL, some sand, some silt. (Outwash) y, SILTY SAND. (Outwash)				
- 13 - - 14 -	- 7 - 6		14.0 / 5.7		n/a	S6	24/18	12.0-14.0		Brown/gray, s	SILTY SAND. (Ou	iwasn)			
15 - 16 -	- 5 - 4 - 3			Geoprobe refusal at 14 feet below ground surface.											
17 - 18 - 19 -	- 2 - 1														
20 - 21 -	- 0 1														
- 22 -	2 3	AR SOILS	2												
BLOWS 0-4 4-10 10-30 30-50 >50	/FT.))))))	AR SOLS DENSI V.LOO LOOS COMP/ DENS V.DEN /E SOILS CONSIS	TY SE SE ACT SE SE	<u>SOIL COMPONENT</u> <u>DESCRIPTIVE TERM</u> "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILTY "AND" Notes:		PORTION 0-10 10-2 20-3 35-5	0% 5%	SOIL CO COMPO COMPR TOTAL	NENTS E ISE AT LE ARE CLAS	G THREE ACH OF WH EAST 25% OF SSIFIED AS " MIXTURE OF	DF THE "A F" McPHAIL ASSOCIATES, LLC McPHAIL ASSOCIATES, I 2269 MASSACHUSETTS AV				
<2 2-4 4-8 8-15		V.SC SOF FIR STIF	PFT FT M	Geoprobe installed observation we of PVC riser.	ell at 14 fee	et below g	round sur	face with 11 fee	et of PVC	screen and 3		THE MCPHA ASSOCIATES, McPHAIL ASSOCIAT 2269 MASSACHUSETTS CAMBRIDGE, MA TEL: 617-868-1			
15-30 >30	o	V.ST HAF	IFF	Weather: Overcast								Pag	e 1 of ′	1	

Projec Locat City/S	ion:	428	3 Вура	th Parcels ss Road th, NH				#: Started: Finished:	1-19			Boring P-5 (/)
	Helper d By/R	: Dar eviewe	d By: K t): 23.3	. Hanrahan Sa	ampler Si	mmer (l ize/Type	bs)/Drop e: 5' Sle	(in): NA		1-	Grou Date 19-18 22-18	Depth 6 7.95	Observa Elev. 17.3 15.4	Notes
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows Per 6"		-	e Descrip 3oring No		
1 -	- 23 - 22 - 21		0.3/23.0)ASPHALT	n/a	S1	30/16	0.0-2.5		Brown/black, SILT	Y SAND, so	ome gravel, w	ith brick and	asphalt. (Fill
3 - 4 - 5 -	- 20 - 19			FILL	n/a	S2	30/16	2.5-5.0		Brown/black, SILTY	Y SAND, so	ome gravel, w	ith brick. (Fil	1)
6 -	- 18 - 17 - 16		7.5 / 15.8	3	n/a	S3	30/8	5.0-7.5		Brown, SILTY SAN		wood. (Fill)		
8 - 9 - 10 -	- 15 - 14				n/a	S4	30/8	7.5-10.0		Brown, SILTY SAN				
11 - 12 -	- 13 - 12 - 11			OUTWASH	n/a	S5	27/16	10.0-12.3			nd GRAVEL, some silt. (Outwash) SAND and GRAVEL. (Outwash)			
13 - 14 -	- 10 - 9		14.5 / 8.8	Geoprobe refusal at 14.5 feet	n/a	S6	27/16	12.3-14.5						
15 - 16 - 17 -	- 8 - 7 - 6			below ground surface.										
18 - 19 - 20 -	- 5 - 4													
21 - 22 -	- 3 - 2 - 1													
GF BLOWS 0-4 4-10 10-30 30-50	0 0	AR SOIL DENS V.LOC LOOS COMP/ DENS	ITY DSE DSE ACT DSE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME"		0-1(10-2	:0%	SOIL CO COMPO	NENTS E	G THREE ACH OF WHICH EAST 25% OF TH	E	>		
>50	OHESIV S/FT. (V.DEN E SOILS CONSIS V.SC SOI FIR	ISE 3 TENCY DFT -T	"ADJECTIVE" (eg SANDY, SILTY "AND" Notes: Geoprobe installed observation we feet of PVC riser.	-	20-3 35-5 eet below	0%	WELL-G	RADED N	SSIFIED AS "A /IXTURE OF" /VC screen and 3		MCPHAI ASSOCIATES, L MCPHAIL ASSOCIATE 2269 MASSACHUSETTS CAMBRIDGE, MA 0 TEL: 617-868-14 FAX: 617-868-14 Page 1 of 1		
8-15 15-30 >30	5 0	STII V.ST HAF	FF IFF	Weather: Overcast								Pag	e 1 of	1

Projec Locat City/S	ion:	428	3 Вура	th Parcels ss Road th, NH				#: Started: Finished:	1-19			Boring P-6 (')
Logged	Helpe d By/R	r: Dar Reviewe	d By: K t): 24.6	. Hanrahan S	ampler Si	mmer (l ize/Type	bs)/Drop e: 5' Slee	(in) : NA		1-1	Grou Date 19-18 22-18	Depth 10 8.65	Observa Elev. 14.6 16.0	ations Notes
Depth (ft)	Elev (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"			e Descrip 3oring No		
1 - 2 -	- 24 - 23		2.5 / 22.1	FILL	n/a	S1	30/18	0.0-2.5		Brown/gray, SILTY	SAND, sor	ne gravel, wit	h ash & cino	lers. (Fill)
3 - 4 - 5 -	- 22 - 21 - 20				n/a	S2	30/18	2.5-5.0		Brown, SAND, som	e silt, some	e gravel. (Out	wash)	
6 - 7 -	- 19 - 18			OUTWASH	n/a	S3	30/2	5.0-7.5		Brown, SILTY SANI	D. (Outwas			
8 - 9 - 10 -	- 17 - 16 - 15				n/a	S4	30/2	7.5-10.0		Brown, SILTY SANI		. (Outwash		
10 11 - 12 -	- 14 - 13		12.0 / 12.	6 Geoprobe refusal at 12 feet below	n/a	S5	24/7	10.0-12.0		Brown/gray, SILTY	ILTY SAND, some clay. (Outwash)			
13 - 14 - 15 -	- 12 - 11 - 10			ground surface.										
16 - 17 -	- 9 - 8 - 7													
18 - 19 - 20 -	- 6 - 5													
21 - 22 -	- 4 - 3 - 2													
GF BLOWS 0-4 4-10 10-30 30-50 >50	6/FT.) 0 0	AR SOIL DENS V.LOC LOOS COMP/ DENS V.DEN	ITY ISE SE ACT SE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT" "AND"		PORTIO 0-10 10-2 20-3 35-5	0% 5%	SOIL CO COMPO COMPR TOTAL	NENTS E ISE AT LE ARE CLAS	G THREE ACH OF WHICH EAST 25% OF THI SSIFIED AS "A AUXTUBE OE"	=		PHA CIATES, I	
BLOWS <2 2-4 4-8	/FT.	/E SOILS CONSIS V.SC SOF FIR	TENCY DFT -T M	Notes: Geoprobe installed observation w of PVC riser.	ell at 12 fee					/IXTURE OF"			HUSETTS	S ÁVENU 2140 420
8-15 15-3(>30	0	STII V.ST HAF	IFF	Weather: Overcast								Pag	e 1 of	1

Projec Locat City/S	ion:	428	3 Вура	th Parcels ss Road th, NH				#: Started: Finished:	1-22			Boring P-7 (j No. (OW	/)
Logged	Helpe d By/R	r: Mat eviewe	d By: K t): 22.3	. Hanrahan S	ampler Si	mmer (l ze/Type	bs)/Drop e: 5' Slee	(in) : NA		1-22	ate	ndwater Depth 5	Observa Elev. 17.3	ations Notes
Depth (ft)	Elev (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows Per 6"			Descrip pring No		
1 - 2 -	- 22 - 21 - 20		<u>0.3 / 22.0</u> 2.5 / 19.8	FILL	n/a	S1	30/20	0.0-2.5		Brown/black, SILT, S/	AND, som	e gravel, wi	th ash & cind	ders. (Fill)
3 - 4 - 5 -	- 19 - 18				n/a	S2	30/20	2.5-5.0		Brown/gray, mottled,	SILTY CL/	AY. (Marine	Clay)	
6 - 7 -	- 17 - 16 - 15			MARINE CLAY	n/a	S3	30/30	5.0-7.5						
8 - 9 - 10 -	- 14 - 13		10.0 / 12.	3	n/a	S4	30/30	7.5-10.0		Brown/gray, mottled, Clay)	SILTY SAI	ND and CL/	ΑΥ, some gr	avel. (Marin
11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 -	- 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4 - 3			Geoprobe refusal at 10 feet below ground surface.							SILT, SAND, some clay. (Marine C			
20 - 21 - 22 -	- 2 - 1 - 0													
BLOWS 0-4 4-10 10-30 30-50 >50	5/FT. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AR SOIL DENS V.LOC LOOS COMP, DENS V.DEN //E SOILS CONSIS V.SC SOI FIR STII	ITY DSE DSE ACT DSE ISE DSE TENCY DFT T M	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT "AND" Notes: Geoprobe installed observation w of PVC riser.	Y)	0-10 10-2 20-3 35-5	0% 5% 0%	SOIL CO COMPO COMPR TOTAL / WELL-G	NENTS E ISE AT LE ARE CLAS RADED N	G THREE ACH OF WHICH EAST 25% OF THE SSIFIED AS "A MXTURE OF" creen and 3 feet	2269	PHAIL AS MASSAC CAMBRIE TEL: (PHA CIATES, SSOCIATI HUSETTS OGE, MA (317-868-14 317-868-14	S ÁVENU 02140 420
8-15 15-30 >30	0	V.ST HAF	IFF	Weather: Snow/Rain								Pag	e 1 of	1

Projec Locat City/S	ion:	428	3 Вура	ith Parcels iss Road ith, NH				t: Started: Finished:	1-22		GP	?-8 (No. (OW	-
Logged	Helpe d By/R	r: Mat	d By: k i t): 25.3	C. Hanrahan S	Casing Typ Casing Hai Sampler Si Sampler Ha	mmer (l ize/Type	bs)/Drop e: 5' Slee) (in): NA		 1-22	ite	dwater Depth DRY	Observ Elev.	ations Notes
Depth (ft)	Elev (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"		Sample and Bo	•		
1 - 2 -	- 25 - 24 - 23		0.3 / 25. 2.5 / 22.	0 ASPHALT FILL	n/a	S1	30/20	0.0-2.5		Brown/black, SILT and bricks. (Fill)	d SAND, so	me gravel	, with ash &	& cinders and
3 -	- 22 - 21		<u> </u>	·	n/a	S2	30/20	2.5-5.0		Brown/gray, SILTY S/	AND, some	gravel. (O	utwash)	
5 - 6 - 7 -	- 20 - 19 - 18			OUTWASH	n/a	S3	30/10	5.0-7.5		Brown/gray, SILTY S/	AND, some	gravel. (O	utwash)	
8 - 9 - 10 -	- 17 - 16		10.0 / 15	3	n/a	S4	30/10	7.5-10.0		Brown/gray, SAND, so	ome gravel,	some silt.	(Outwash))
11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 -	- 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 8 - 7 - 6 - 5 - 4 - 3	AR SOIL		Geoprobe refusal at 10 feet below ground surface.	v									
BLOWS 0-4 4-10 10-3(30-50 >50 CC BLOWS <2 2-4 4-8	5/FT. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AR SOIL DENS V.LOO LOO COMP. DEN: V.DEN V.DEN V.DEN V.SC SO FIR STI	ITY DSE SE ACT SE ISE S TENCY DFT FT M	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT "AND" Notes: Geoprobe installed observation v of PVC riser.	⁻ Y)	0-10 10-2 20-3 35-5	0% 5% 0%	SOIL CO COMPO COMPR TOTAL / WELL-G	NENTS E ISE AT LE ARE CLAS GRADED N	G THREE ACH OF WHICH SAST 25% OF THE SSIFIED AS "A MIXTURE OF"	McF 2269 N	HAIL AS IASSAC AMBRID TEL: 6		420
8-15 15-30 >30	0	V.ST HAF	IFF	Weather: Snow/Rain								Pag	e 1 of	1

Projec Locati City/S	ion:	428	3 Вура	th Parcels ss Road th, NH				t: Started: Finished:	1-22			Boring P-9 (/)
Logged	Helpei d By/R	r: Mat eviewe	d By: K t): 25.7	. Hanrahan s	Casing Typ Casing Hai Sampler Si Sampler Ha	mmer (l ize/Type	bs)/Drop e: 5' Slee	(in): NA			Grou ate 2-18	Indwater Depth 5	Observa Elev. 20.7	ations Note:
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"			e Descrip oring No		
1 -	- 25 - 24		0.3 / 25.4 2.5 / 23.;	ASPHALT FILL	_∕ n/a	S1	30/14	0.0-2.5		Brown/gray/black, S	LT and S	AND, trace g	ravel. (Fill)	
3 - 4 -	- 23 - 22 - 21		2.37 23.	<u> </u>	n/a	S2	30/14	2.5-5.0		Brown/gray, mottled (Outwash)	SILTY SA	AND, some c	lay, trace gr	avel.
5 - 6 - 7 -	- 20 - 19			OUTWASH	n/a	S3	30/12	5.0-7.5		Brown/gray, SILTY S				
8 - 9 - 10 -	- 18 - 17 - 16		10.0 / 15.	7	n/a	S4	30/12	7.5-10.0		Brown/gray, SILTY S	AND, some gravel. (Outwash)			
10 11 - 12 - 13 -	- 15 - 14 - 13			Geoprobe refusal at 10 feet below ground surface.	v									
14 - 15 - 16 -	- 12 - 11 - 10													
17 - 18 -	- 9 - 8 - 7													
19 - 20 - 21 - 22 -	- 6 - 5 - 4													
-	- 3													
GF BLOWS 0-4 4-10 10-30 30-50 >50	/FT.) 0 0	AR SOIL DENS V.LOO LOOS COMP/ DENS V.DEN	ITY DSE SE ACT SE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT "AND"		0-10 0-10 10-2 20-3 35-5	0% 5%	SOIL CO COMPO COMPR TOTAL	NENTS E ISE AT LE ARE CLAS	G THREE ACH OF WHICH EAST 25% OF THE SSIFIED AS "A AIXTLIBE OE"		MC	PHA CIATES, I	
3LOWS <2 2-4 4-8	;/FT. (<u>E SOILS</u> CONSIS V.SC SOI FIR	TENCY DFT -T M	Notes: Geoprobe installed observation v of PVC riser.	vell at 10 fee					/IXTURE OF"		ES, LLC 6 AVENU 02140 420 423		
8-15 15-30		STII V.ST	IFF	Weather: Snow/Rain							\vdash	Pao	e 1 of	1

Projec Locat City/S	ion:	428	3 Bypa	th Parcels ss Road th, NH				#: Started: Finished:	1-22	4.9.00 -18 -18	Boring GP-10	(WO)				
	Helper: d By/Re	Mat viewe	d By: K t): 21.6	. Hanrahan Sa	ampler S	mmer (l ize/Type	bs)/Drop e: 5' Slee	o (in) : NA		Da 1-22	ate Depth	Observations Elev. Notes				
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows Per 6"		Sample Descrip and Boring No					
1 -	- 21 - 20		0.3/21.3	ASPHALT	n/a	S1	30/20	0.0-2.5		Brown/gray, SAND, so crushed stone. (Fill)	ome silt, some gravel	with ash & cinders and				
3 -	- 19 - 18 - 17			FILL	n/a	S2	30/20	2.5-5.0		Brown, SAND, some o	gravel, trace silt. (Fill)					
5 - 6 - 7 -	- 16 - 15 - 14				n/a	S3	36/30	5.0-8.0		cinders. (Fill)	ND and GRAVEL, with crushed stone and ash and staining observed.					
8 - 9 - 10 -	- 13 - 12		8.0 / 13.6	Geoprobe refusal at 8 feet below ground surface.												
11 - 12 - 13 -	- 11 - 10 - 9															
14 - 15 -	- 8 - 7 - 6															
16 - 17 - 18 -	- 5 - 4															
19 - 20 -	- 3 - 2 - 1															
21 - 22 -	- 0 1		_													
BLOWS 0-4 4-10 10-30 30-50 >50) 0 0	DENSI V.LOO LOOS COMP/ DENS V.DEN	ITY ISE SE ACT SE ISE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILTY "AND"		PORTIOI 0-1(10-2 20-3 35-5	0% 5%	SOIL CO COMPO COMPR TOTAL	NENTS E ISE AT LE ARE CLAS	g Three Fach of Which East 25% of The Ssified as "A Mixture of"		PHAIL CIATES, LLC				
BLOWS <2 2-4 4-8		ONSIS V.SC SOF FIR	S TENCY OFT T	Notes: Geoprobe installed observation we PVC riser.	ell at 8 feet						2269 MASSAC CAMBRII TEL: (SSOCIATES, LLC HUSETTS AVENUE DGE, MA 02140 517-868-1420 517-868-1423				
8-15 15-30 >30	0	STIF V.ST HAF	IFF	Weather: Snow/Rain							Pag	e 1 of 1				

Projec Locat City/S	ion:	428	3 Вура	th Parcels ss Road th, NH				t: Started: Finished:	1-22	4.9.00 -18 -18	Boring GP-11	(WO)
	Helpei d By/R	r: Mat	ed By: K i t): 26.2	Hanrahan S	ampler Si	mmer (l ize/Type	bs)/Drop e: 5' Slee (Ibs)/Dro	o (in): NA eve op (in): NA		Da 1-22	te Depth	Observations Elev. Notes 22.7
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"		Sample Descrij and Boring No	
1 - 2 -	- 26 - 25 - 24			9 ASPHALT FILL	n/a	S1	30/15	0.0-2.5		Brown/gray, SILTY SA	ND, some gravel, w	th ash & cinders. (Fill)
3 -	- 23 - 22				n/a	S2	30/15	2.5-5.0		Brown/gray, SAND, so partings. (Outwash)	ome silt, some grave	, some clay with fine sa
5 - 6 - 7 -	- 21 - 20 - 19			OUTWASH	n/a	S3	30/14	5.0-7.5		Brown/gray, SILTY SA	ND, trace gravel. (O	utwash)
8 - 9 - 10 -	- 18 - 17		10.0 / 16	2	n/a	S4	30/14	7.5-10.0		Brown/gray, SILTY SA	ND and GRAVEL. ((Dutwash)
11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 20 - 21 - 22 -	- 16 - 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 6 - 5 - 4			Geoprobe refusal at 10 feet below ground surface.								
BLOWS 0-4 4-10 10-3(30-5(>50 CC BLOWS <2 2-4 4-8	5/FT. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AR SOIL DENS V.LOC LOC COMP DENS V.DEN V.DEN (E SOIL CONSIS V.SC SO FIR	ITY DSE SE ACT SE VSE TENCY DFT FT	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT "AND" Notes: Geoprobe installed observation w of PVC riser.	Y)	0-10 10-2 20-3 35-5	0% 5% 0%	SOIL CO COMPO COMPR TOTAL / WELL-G	NENTS E ISE AT LE ARE CLAS GRADED N	G THREE ACH OF WHICH EAST 25% OF THE SSIFIED AS "A MXTURE OF" creen and 3 feet	McPHAIL A 2269 MASSAC CAMBRII TEL:	SSOCIATES, LLC HUSETTS AVENU 00GE, MA 02140 317-868-1423
8-15 15-30 >30	0	STI V.ST HAF	IFF	Weather: Snow/Rain							Ρας	je 1 of 1

Projec Locati City/S	ion:	428	3 Вура	ith Parcels ss Road ith, NH				#: Started: Finished:	1-22	9.00 -18 -18	Boring	
_ogged	Helpe d By/R	r: Mat eviewe	d By: K t): 26.6	. Hanrahan s	Casing Typ Casing Hai Sampler Si Sampler Ha	mmer (l ize/Type	bs)/Drop e: 5' Slee (Ibs)/Dro	o (in): NA eve op (in): NA		Da 	ate Depth	r Observations Elev. Note
Depth (ft)	Elev (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	Depth (ft)	Blows Per 6"		Sample Descri and Boring No	
1 - 2 -	- 26 - 25		0.3 / 26.	3 ASPHALT	n/a	S1	30/20	0.0-2.5		Brown/gray, SILTY S/ (Fill)	AND, trace gravel, w	ith trace pulverized grav
3 - 4 -	- 24 - 23 - 22				n/a	S2	30/20	2.5-5.0		Brown/gray, SILTY S/	AND. (Fill)	
5 - 6 - 7 -	- 21 - 20			FILL	n/a	S3	30/30	5.0-7.5		Brown/gray/black, SIL	TY SAND, with som	e crushed stone. (Fill)
8 - 9 - 10 -	- 19 - 18 - 17		10.0 / 16	6	n/a	S4	30/30	7.5-10.0		Brown, SILTY SAND,	some gravel, trace o	clay. (Fill)
11 - 12 - 13 -	- 16 - 15 - 14			Geoprobe refusal at 10 feet below ground surface.	v							
14 - 15 - 16 -	- 13 - 12 - 11											
17 - 18 - 19 -	- 10 - 9 - 8											
20 - 21 - 22 -	- 7 - 6 - 5											
	- 4		0									
3LOWS 0-4 4-10 10-30 30-50 >50	9/FT. 0 0	AR SOIL DENS V.LOC LOOS COMP DENS V.DEN	ITY DSE SE ACT SE ISE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT "AND"		PORTIOI 0-1(10-2 20-3 35-5	0% 5%	SOIL CO COMPO COMPR TOTAL	ISE AT LE ARE CLAS	G THREE ACH OF WHICH AST 25% OF THE SIFIED AS "A IIXTURE OF"	Mc	PHAIL CIATES, LLC
3LOWS <2 2-4 4-8	i/FT.	/E SOILS CONSIS V.SC SOI FIR	TENCY DFT -T M	Notes: Geoprobe installed observation v of PVC riser.	vell at 10 fee						2269 MASSA CAMBRI TEL:	ASSOCIATES, LLC CHUSETTS AVENU DGE, MA 02140 617-868-1420 617-868-1423
8-15 15-30 >30	0	STI V.ST HAF	IFF	Weather: Snow/Rain							Pa	ge 1 of 1

Projec Locat City/S	ion:	428	3 Вура	ith Parcels ss Road ith, NH				#: Started: Finished:	1-22	I.9.00 -18 -18	Boring GP-13	
Logged	Helpei d By/R	: Mat eviewe	d By: K t): 24.7	. Hanrahan	Casing Typ Casing Har Sampler Si Sampler Ha	mmer (l ze/Type	bs)/Drop e: 5' Slee (Ibs)/Dro	o (in): NA eve op (in): NA		Da 	te Depth	Observations Elev. Note 19.7
Depth (ft)	Elev. (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"		Sample Descrip and Boring No	
1 -	- 24 - 23		0.3 / 24.	4 ASPHALT	n/a	S1	30/15	0.0-2.5		Brown/gray/black, SIL	TY SAND, trace clay	. (Fill)
3 -	- 22 - 21 - 20			FILL	n/a	S2	30/15	2.5-5.0		Brown/gray, SILTY SA	ND, trace clay, with l	bricks. (Fill)
5 - 6 - 7 -	- 19 - 18		7.5 / 17.	2	n/a	S3	30/15	5.0-7.5		Brown/gray/blue, SILT	Y SAND, some clay,	with ash & cinders. (Fi
8 - 9 - 10 -	- 17 - 16 - 15		10.0 / 14	MARINE CLAY	n/a	S4	30/15	7.5-10.0		Gray/blue, SILTY CLA	Y, some gravel. (Mar	ine Clay)
11 - 12 - 13 -	- 14 - 13 - 12			Geoprobe refusal at 10 feet bek ground surface.	wo							
14 - 15 - 16 -	- 11 - 10 - 9											
17 - 18 -	- 8 - 7											
19 - 20 - 21 -	- 6 - 5 - 4											
22 -	- 3 - 2 RANULA	AR SOIL:	s									
0-4 4-10 10-30 30-50 >50	/FT.) 0 0	DENS V.LOC LOOS COMP/ DENS V.DEN	ITY DSE SE ACT SE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SIL		0-10 10-2 20-3	0% 5%	SOIL CO COMPO COMPR TOTAL	ISE AT LE ARE CLAS	ACH OF WHICH EAST 25% OF THE SSIFIED AS "A	Mc	PHAIL CIATES, LLC
CC BLOWS <2 2-4 4-8	DHESIV	E SOILS CONSIS ⁻ V.SC SOF FIR	S TENCY DFT -T M	"AND" Notes: Geoprobe installed observation of PVC riser.	well at 10 fee	35-5 t below g				/IIXTURE OF"	2269 MASSAC CAMBRIE TEL: 6	SSOCIATES, LLC HUSETTS AVENU OGE, MA 02140 517-868-1420 517-868-1423
8-15 15-30 >30	0	STII V.ST HAF	IFF	Weather: Snow/Rain							Pag	e 1 of 1

Projec Locat City/S	ion:	428	3 Вура	th Parcels ss Road th, NH				t: Started: Finished:	1-22		GF	3oring ?-14	(OV	-		
Logged	Helpe d By/F	r: Mat Reviewe	d By: K t): 25.4	. Hanrahan s	Casing Typ Casing Hai Gampler Si Gampler Ha	mmer (l ize/Type	bs)/Drop e: 5' Slee (Ibs)/Dro	o (in): NA eve op (in): NA			Grou Date	ndwater Depth	Observa Elev.	ations Note:		
Depth (ft)	Elev (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	Ie Depth (ft)	Blows Per 6"			e Descrip oring Not				
1 - 2 -	- 25 - 24 - 23		0.3 / 25.4	L ASPHALT	n/a	S1	30/18	0.0-2.5		Brown/gray,	SILT, some sand,	trace gravel.	(Fill)			
3 - 4 - 5 -	- 22 - 21			FILL	n/a	S2	30/18	2.5-5.0		Brown/gray/t	black, SILTY SANI	D, trace clay.	(Fill)			
6 - 7 -	- 20 - 19 - 18		7.5 / 17.9		n/a	S3	30/15	5.0-7.5		Blue/gray, m fibers. (Fill)	ottled, SILT, some	LT, some clay, trace sand, with some of the some clay, trace sand, with some clay, trace of the source of the sour				
8 - 9 - 10 -	- 17 - 16		10.0 / 15.	OUTWASH	n/a	S4	30/15	7.5-10.0		Brown/gray/t (Outwash)	blue, mottled, SILT	tled, SILTY SAND, some gravel, trace o				
10 11 - 12 - 13 -	- 15 - 14 - 13			Geoprobe refusal at 10 feet belov ground surface.	/											
14 - 15 -	- 12 - 11 - 10															
16 - 17 - 18 -	- 9 - 8 - 7															
19 - 20 -	- 6 - 5															
21 -	- 4 - 3	AR SOIL	9													
0-4 0-4 4-10 10-30 30-50 >50	0 0 0	DENS V.LOC LOOS COMP/ DENS V.DEN	ITY DSE SE ACT SE	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT "AND"		0-10 10-2 20-3	0% 5%	SOIL CO COMPO COMPR TOTAL	NENTS E ISE AT LE ARE CLAS	G THREE ACH OF WH EAST 25% C SSIFIED AS	OF THE "A	Mcl	PHA STATES, I			
3LOWS <2 2-4 4-8	S/FT.	/E SOILS CONSIS V.SC SOI FIR	TENCY DFT FT	"AND" Notes: Geoprobe installed observation v of PVC riser.	<i>v</i> ell at 10 fee	35-5 et below g				/IXTURE OF	Mo 2269	MCPHAIL ASSOCIATES MCPHAIL ASSOCIA				
8-15 15-30 >30	0	STII V.ST HAF	IFF	Weather: Snow/Rain								Pag	e 1 of	1		

Projec Locat City/S	ion:	428	8 Вура	th Parcels ss Road th, NH				t: Started: Finished:	1-22				j No. (OV	V)
Contra Driller/ Loggeo	ctor: Helpe d By/R	TDS r: Mat	d By: K t): 25.1	. Hanrahan S	asing Typ asing Har ampler Si ampler Ha	mmer (l ize/Type	bs)/Drop a: 5' Slee) (in): NA				dwater Depth 5	Observa Elev. 20.1	ations Note:
Depth (ft)	Elev (ft)	Symbol	Depth/EL to Strata Change (ft)	Stratum	N-Value	No.	Samp Pen. /Rec. (in)	le Depth (ft)	Blows Per 6"	S	Sample and Bo			
1 -	- 24 - 23		2.5 / 22.6	FILL	n/a	S1	30/24	0.0-2.5		Brown/gray/black, SIL (Fill)	TY SAND,	trace grav	el, with ash	& cinders.
3 -	- 22 - 21		2.3722.0		n/a	S2	30/24	2.5-5.0		Brown/gray, SILT and	I SAND, so	me clay. (N	<i>l</i> larine Clay)	I
5 - 6 - 7 -	- 20 - 19 - 18			MARINE CLAY	n/a	S3	30/30	5.0-7.5		Brown/gray, mottled,	SILTY SAN	ID and CL/	AY. (Marine	Clay)
8 - 9 - 10 -	- 17 - 16		10.0 / 15.	1	n/a	S4	30/30	7.5-10.0		Brown/gray, SILTY S/	AND and C	LAY, some	e gravel. (Ma	arine Clay)
11 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 -	- 15 - 14 - 13 - 12 - 11 - 10 - 9 - 8 - 7 - 8 - 7 - 6 - 5 - 4 - 3			Geoprobe refusal at 10 feet below ground surface.	,									
BLOWS 0-4 4-10 10-3(30-50 >50 CC BLOWS <2 2-4 4-8	5/FT. 0 0 0 0 0 0 0 0 0 0 0 0 7 FT.	AR SOIL: DENSI V.LOO LOOS COMP/ DENS V.DEN V.DEN V.DEN V.SO SOF FIR	TY SE SE ACT SE ISE TENCY FT T M	SOIL COMPONENT DESCRIPTIVE TERM "TRACE" "SOME" "ADJECTIVE" (eg SANDY, SILT "AND" Notes: Geoprobe installed observation w of PVC riser.	Y)	0-1(10-2 20-3 35-5	0% 5% 0%	SOIL CO COMPO COMPR TOTAL / WELL-G	NENTS E ISE AT LE ARE CLAS GRADED N	G THREE ACH OF WHICH EAST 25% OF THE SSIFIED AS "A MIXTURE OF" creen and 3 feet	McF 2269 M	MASSAC AMBRIE TEL: 6	PHA CIATES, SSOCIAT HUSETTS GGE, MA 317-868-1 317-868-1	S ÁVENU 02140 420
8-15 15-3(>30	0	STII V.ST HAF	IFF	Weather: Snow/Rain								Pag	e 1 of	1

APPENDIX G:

GROUNDWATER MONITORING REPORTS GP-1 THROUGH GP-15 AND B-1(OW) THROUGH B-3(OW)

	GROUNDWATER MONITORING REPORT										
Well I.D.	GP-1 (OW)	Elevation of Road Box	+21.6	Job. No. Job Name	6524.9.00 Portsmouth Parcels						
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/19/2018	11:30	Initial	DRY		Screened installed from 3' to 10' bgs	KEH					
1/22/2018		3	7.21	+14.39	Well Sampled	KEH					
1/25/2018		6	6.05	+15.55	Well Sampled	KEH					
6/21/2018		153			Well destroyed	CAC					

	GROUNDWATER MONITORING REPORT										
Well I.D.	GP-2 (OW)	Elevation of Road Box	+20.4	Job. No. Job Name	6524.9.00 Portsmouth Parcels						
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/19/2018	12:30	Initial	5.5	+14.90	Screened installed from 3' to 14' bgs	KEH					
1/22/2018		3	8.76	+11.64	Well Sampled	KEH					
1/25/2018		6	4.68	+15.72	Well Sampled	KEH					
6/21/2018		153			Well was inaccessible	CAC					
11/8/2018		293	4.21	+16.19	Well read	KEH					
12/10/2018		325	4.17	+16.23	Well read	KEH					
12/13/2018		328	4.6	+15.80	Well read	PJH					
		-									
		+									
		+									
		+									
		+	l								

	GROUNDWATER MONITORING REPORT										
Well I.D.GP-3 (OW)Elevation of Road Box+19.5Job. No.6524.9.00 Job NameJob NamePortsmouth Parcels											
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/19/2018	13:30	Initial	4	+15.50	Screened installed from 3' to 10.5' bgs	KEH					
1/22/2018		3	6.24	+13.26	Well Sampled	KEH					
1/25/2018		6			Ice in the well at 1.5' b.g.s preventing an accurate reading	KEH					
6/21/2018		153			Damaged well; could not be read.	CAC					
11/8/2018		293	1	+18.50	Roadbox missing; PVC with plug located and well sampled	KEH					

	GROUNDWATER MONITORING REPORT										
Well I.D.	GP-4 (OW)	Elevation of Road Box	+19.7	Job. No. Job Name	6524.9.00 Portsmouth Parcels						
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/19/2018	14:30	Initial	5.5	+14.20	Screened installed from 3' to 14' bgs	KEH					
1/22/2018		3	5.13	+14.57	Well Sampled	KEH					
1/25/2018		6	4.71	+14.99	Well Sampled	KEH					
6/21/2018		153			Well was inaccessible; stockpile over well.	CAC					
		_									
		+		 							

	GROUNDWATER MONITORING REPORT									
Well I.D.	GP-5 (OW)	Elevation of Road Box	+23.3	Job. No. Job Name	6524.9.00 Portsmouth Parcels					
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By				
		Days	Feet	Feet						
1/19/2018	14:30	Initial	6	+17.30	Screened installed from 3' to 14.5' bgs	KEH				
1/22/2018		3	7.95	+15.35	Well Sampled	KEH				
1/25/2018		6	7.2	+16.10	Well Sampled	KEH				
6/21/2018		153	8.25	+15.05	Well read	CAC				
11/8/2018		293	6.62	+16.68	Well read	KEH				
12/10/2018		325	7.61	+15.69	Well read	KEH				
12/13/2018		328	7.8	+15.50	Well read	PJH				
3/8/2019		413	8.3	+15.00	Well read	JM				
3/10/2019		415	7.1	+16.20	Well read	JM				

	GROUNDWATER MONITORING REPORT									
Well I.D.	GP-6 (OW)	Elevation of Road Box	+24.6	Job. No. Job Name	6524.9.00 Portsmouth Parcels					
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By				
		Days	Feet	Feet						
1/19/2018	14:30	Initial	10	+14.60	Screened installed from 3' to 12' bgs	KEH				
1/22/2018		3	8.65	+15.95	Well Sampled	KEH				
1/25/2018		6	7.95	+16.65	Well Sampled	KEH				
6/21/2018		153	8.5	+16.10	Well read	CAC				
11/8/2018		293	7.96	+16.64	Well read	KEH				
12/10/2018		325	6.4	+18.20	Well read	KEH				
12/13/2018		328	6.8	+17.80	Well read	PJH				
3/8/2019		413	6.9	+17.70	Well read	JM				
3/10/2019		415	6.8	+17.80	Well read	JM				

	GROUNDWATER MONITORING REPORT										
Well I.D.	GP-7 (OW)	Elevation of Road Box	+22.3	Job. No. Job Name	6524.9.00 Portsmouth Parcels						
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/22/2018	8:30	Initial	5	+17.30	Screened installed from 3' to 10' bgs	KEH					
1/25/2018		3	2.75	+19.55	Well sampled	KEH					
6/21/2018		150	3.15	+19.15	No well cap	CAC					
11/8/2018		290			Road Box missing	KEH					
3/8/2019		410			Broken	JM					
3/10/2019		412			Broken	JM					

	GROUNDWATER MONITORING REPORT										
Well I.D.	GP-8 (OW)	Elevation of Road Box	+25.3	Job. No. Job Name	6524.9.00 Portsmouth Parcels						
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/22/2018	9:00	Initial	DRY		Screened installed from 3' to 10' bgs	KEH					
1/25/2018		3	DRY			KEH					
6/21/2018		150	DRY		No well cap	CAC					
11/8/2018		290			Road box missing	KEH					
3/8/2019		410			well not read, cover with snow	JM					
3/10/2019		412			well not read, cover with snow	JM					

	GROUNDWATER MONITORING REPORT										
Well I.D.	GP-9 (OW)	Elevation of Road Box	+25.7	Job. No. Job Name	6524.9.00 Portsmouth Parcels						
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/22/2018	9:30	Initial	5	+20.70	Screened installed from 3' to 10' bgs	KEH					
1/25/2018		3	5.95	+19.75	Well Sampled	KEH					
6/21/2018		150	7	+18.70	Well read	CAC					
11/8/2018		290	5.65	+18.70	Well read	KEH					
12/10/2018		322	5.6	+18.70	Well read	KEH					
12/13/2018		325	5.95	+18.70	Well read	PJH					
3/8/2019		410			well not read, cover with snow	JM					
3/10/2019		412			well not read, cover with snow	JM					

	GROUNDWATER MONITORING REPORT										
Well I.D.	GP-10 (OW)	Elevation of Road Box	+24.1	Job. No. Job Name	6524.9.00 Portsmouth Parcels						
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By					
		Days	Feet	Feet							
1/22/2018	10:00	Initial	DRY		Screened installed from 3' to 10' bgs	KEH					
1/25/2018		3	5.45	+18.65	Well sampled	KEH					
6/21/2018		150			Damaged well cap prevented well from being read	CAC					
11/8/2018		290	5.65	+18.45	Well sampled	KEH					
12/10/2018		322	5.66	+18.44	Well read	KEH					
12/13/2018		325	5.75	+18.35	Well read and sampled	PJH					
3/8/2019		410	5.65	+18.45	Well read	JM					
3/10/2019		412	5.45	+18.65	Well read	JM					

	GROUNDWATER MONITORING REPORT									
Well I.D.	GP-11 (OW)	Elevation of Road Box	+26.2	Job. No. Job Name	6524.9.00 Portsmouth Parcels					
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By				
		Days	Feet	Feet						
1/22/2018	11:00	Initial	5.5	+20.70	Screened installed from 3' to 10' bgs	KEH				
1/25/2018		3	4.4	+21.80	Well sampled	KEH				
6/21/2018		150	5.85	+20.35	Well Read	CAC				
11/8/2018		290	3.3	+22.90	Well Read	KEH				
12/10/2018		322	3.5	+22.70	Well Read	KEH				
12/13/2018		325	3.8	+22.40	Well read	PJH				
3/8/2019		410			well not read, cover with snow	JM				
3/10/2019		412			well not read, cover with snow	JM				

	GROUNDWATER MONITORING REPORT								
Well I.D.	GP-12 (OW)	Elevation of Road Box	+26.6	Job. No. Job Name	6524.9.00 Portsmouth Parcels				
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By			
		Days	Feet	Feet					
1/22/2018	11:00	Initial	DRY		Screened installed from 3' to 10' bgs	KEH			
1/25/2018		3	4.7	+21.90	Purged dry from sampling	KEH			
6/21/2018		150			Well couldn't be read	CAC			
11/8/2018		290	4.55	+22.05	Well read	KEH			
12/10/2018		322	4	+22.60	Well read	KEH			
12/13/2018		325	4.55	+22.05	Well read	KEH			
3/8/2019		410			well not read, cover with snow	JM			
3/10/2019		412			well not read, cover with snow	JM			

	GROUNDWATER MONITORING REPORT							
Well I.D.	GP-13 (OW)	Elevation of Road Box	+24.7	Job. No. Job Name	6524.9.00 Portsmouth Parcels			
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By		
		Days	Feet	Feet				
1/22/2018	12:00	Initial	DRY		Screened installed from 3' to 10' bgs	KEH		
1/25/2018		3	N/A		Well was covered in ice	KEH		
6/21/2018		150	3.85	+20.85	Well read	CAC		
11/8/2018		290	0.4	+24.30	Well read	KEH		
12/10/2018		322	2.51	+22.19	Well read	KEH		
12/13/2018		325	2.8	+21.90	Well read	PJH		
3/8/2019		410			well not read, cover with snow	JM		
3/10/2019		412	2.8	+21.90	Well read	JM		
3/8/2019		410			well not read, cover with snow	JM		
3/10/2019		412			well not read, cover with snow	JM		

GROUNDWATER MONITORING REPORT								
Well I.D.	GP-14 (OW)	Elevation of Road Box	+25.4	Job. No. Job Name	6524.9.00 Portsmouth Parcels			
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By		
		Days	Feet	Feet				
1/22/2018	13:30	Initial	5	+20.40	Screened installed from 3' to 10' bgs	KEH		
1/25/2018		3	2.49	+22.91	Well sampled	KEH		
6/21/2018		150	4.00	+21.40	Well read	CAC		
11/8/2018		290	0.70	+24.70	Well read	KEH		
12/10/2018		322	2.75	+22.65	Well read	KEH		
12/13/2018		325	3.1	+22.30	Well read	PJH		
3/8/2019		410			well not read, cover with snow	JM		
3/10/2019		412			well not read, cover with snow	JM		
				}				

	GROUNDWATER MONITORING REPORT								
Well I.D.	GP-15 (OW)	Elevation of Road Box	+25.1	Job. No. Job Name	6524.9.00 Portsmouth Parcels				
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By			
		Days	Feet	Feet					
1/22/2018	14:00	Initial	5	+20.10	Screened installed from 3' to 10' bgs	KEH			
1/25/2018		3	2.35	+22.75	Well sampled	KEH			
6/21/2018		150	3.6	+21.50	Well read	CAC			
11/8/2018		290	1.75	+23.35	Well read	KEH			
12/10/2018		322	2.6	+22.50	Well read	KEH			
12/13/2018		325	3	+22.10	Well read	PJH			
3/8/2019		410			well not read, cover with snow	JM			
3/10/2019		412	3	+22.10	well read	JM			

	GROUNDWATER MONITORING REPORT								
Well I.D.	B-1(OW)) Elevation of Road Box	+25.2	Job. No. Job Name	6524.9.00 Portsmouth Parcels				
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By			
		Days	Feet	Feet					
12/10/2018	14:00	Initial	4	+21.20	Well installed; all screen from 0' to 8' t	JDM			
12/13/2018			4.85	+20.35	Well read and sampled	PJH			

	GROUNDWATER MONITORING REPORT								
Well I.D.	B-2(OW)	Elevation of Road Box	+24.2	Job. No. Job Name	6524.9.00 Portsmouth Parcels				
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By			
		Days	Feet	Feet					
12/10/2018	14:00	Initial	6	+18.20	Well installed; all screen from 0' to 7.5	JDM			
12/13/2018			NA	NA	Well dry	PJH			

	GROUNDWATER MONITORING REPORT								
Well I.D.	B-3(OW)	Elevation of Road Box	+24.2	Job. No. Job Name	6524.9.00 Portsmouth Parcels				
Date	Time	Elapsed Time	Depth of Water from Road Box	Elevation of Water	Remarks	Read By			
		Days	Feet	Feet					
12/10/2018	14:00	Initial	6	+18.20	Well installed; all screen from 0' to 10'	JDM			
12/13/2018			3.55	+20.65	Well read and sampled	PJH			

Appendix J

UIC Registration for infiltration to Groundwater (underground systems)

REGISTRATION AND NOTIFICATION FORM FOR STORM WATER INFILTRATION TO GROUNDWATER (5H1) Groundwater Discharge Program

RSA/Rule: RSA 485-A:6, VII; 485:3, X; Env-Wq 402

Applicant Information Name<u>Cate Street Development</u>, LLCDaytime Phone: (978)490-5278 Mailing Address: <u>11 Elkins Street, Suite 420</u> State: <u>MA</u> Zip: 02127 City: <u>Bos</u>ton Contact Person Name: <u>Jay Bisognano</u> Email: <u>jb@torprops.com</u> Contact Person: Phone Number 978-490-5278 Fax Number: **Facility Information** Facility Name: West End Yards | Cate Street Redevelopment Address: <u>428 US Route 1 Bypass</u> Cate Street City: <u>Portsmouth</u> State: <u>NH</u> Zip: <u>03801</u> Property Tax Map: _____ Lot #<u>163-33&34</u>, 163-37, 165-2, 172-1&173-2 Latitude & Longitude of discharge location(s): **SSIB1:** LAT 43.0692, LONG -70.7756 **SSIB2:** LAT 43.0694, LONG -70.7751 **SSIB3:** LAT 43.0696 LONG -70.7747 **Facility Owner Information** (complete only if different than applicant) Owner Name: ______ Daytime Phone : (____)___--_____ Mailing Address: _____ City: _____ State: _____ Zip: _____ Contact Person Name:_____Email:_____Email:_____ Contact Person: Phone Number ______ Fax Number: ______ **Property Owner Information** (complete only if different than applicant) Mailing Address: _____ City: _____ State: _____ Zip: _____ Contact Person Name: ______ Email: _____ Contact Person: Phone Number ______ Fax Number: ______ **Facility Operator's Information** (complete only if different than applicant) Owner Name: ______ Daytime Phone: (_____) ____-

Complete this form if you are using a drywell or other subsurface infiltration structures to recharge storm water to the ground or groundwater. If a completed UIC registration form was submitted to the Alteration of Terrain Program for this project, then one is not required to be sent directly to the GWB.

REGISTRATION AND NOTIFICATION FORM FOR STORM WATER INFILTRATION TO GROUNDWATER (attach additional sheets, as necessary, for responses to questions below)

Please provide a complete description of the facility including historic uses, any former contamination and/or on-going remedial action at the site:

The site has been occupied by the Frank Jones Center, PK Brown Construction, a house, a number of Light industrial / warehousing buildings and a large expanse of pavement. there has been a fuel tank associated with a diesel garage operating out of the industrial buildings. This tank is being removed. The infiltration Systems are not located in the area of the tank. there are no ongoing remedial actions on the site.

Please provide information concerning the location of the infiltration activity, include Locus map (i.e. USGS map):

<u>Please refer to Figure 1 Site Location Map (USGS) and design</u> <u>plans CG-100thru CG-104 Roadway Plans and CG-200 thru CG-203</u> of the Site Plans.

Please describe the pretreatment system, if any, and capacity of the system: <u>Deep sum hooded catch basins in offline configuration and</u> <u>isolation rows on each SSIB.</u>

Please describe the materials and products used for the subsurface infiltration structure (i.e., pipe and stone leachfield, plastic chamber units, concrete drywell, etc.): Stormtech SC-740 chamber systems with isolator rows

Please describe the disposal method and location. Include a site plan showing: the infiltration structure, any other on-site infiltration structures, dimensions, depth to groundwater (if known), adjacent septic system(s), and Drinking water source(s):

<u>Subsruface chamber systems see sheet CG-202 for SSIB1 thru 3</u> <u>as well as detail sheet CD-512 for typical detail</u>

Please provide information concerning methods and schedule for periodic inspection and/or maintenance: <u>I & M plan for project is attached</u>. **Applicant/Owner Certification Statement and Signature**

By signing this application the signer certifies that the information contained in or otherwise submitted with this application is true, complete and not misleading to the best of the signer's knowledge and belief.

By signing this application the signer understands that submission of false, incomplete or misleading information is grounds for:

- Denying the application;

- Revoking any application that is granted based on the information; and

- If the signer is acting as or on behalf of a listed engineer as defined in Env-C 502.10, debarring the listed engineer from the roster.

By signing the application the signer and applicant agree to comply with all applicable rules and conditions of this permit and to not discharge to the holding tank(s) until written permission from the department has been received.

Signature of Facility Owner or Contact

Date

Appendix K

Inspection and Maintenance Manual

Inspection & Maintenance Plan West End Yards

Cate Street/Route 1 Portsmouth, NH 03801

APPLICANT & OWNER Cate Street Development, LLC 11 Elkins Street

Suite 420 Boston, MA 02127

July 24, 2019

5 Fletcher Street, Suite 1 Kennebunk, ME 04043

Project No. 20180317.A10

Table of Contents

Long-Term Inspection & Maintenance Plan Cate Street Development, LLC Belmont, NH 03220

1	Introc	luction	1
2	2.1 2.2 2.3	ction and Maintenance Requirements Bioretention Basins Drainage Channel Drainage Structures Energy Dissipator and Level Spreader	. 2 . 2 . 2
3	3.1 3.2 3.3	ion Prevention Spill Procedures Sanitary Facilities Material Storage Material Disposal	. 4 . 4 . 4
4	Conta	acts	5

Appendices

End of Report

- A Operation, Maintenance, and Management Inspection Checklists
- B BMP Location Map

1 Introduction

This report outlines the long-term inspection and maintenance for West End Yards, owned by Cate Street Development, LLC, located at 428 US Route 1 Bypass & Cate Street in Portsmouth, New Hampshire. Site development includes two residential buildings, one commercial building, 23 townhomes, and new section of roadway. The stormwater management system consists of 2 bioretention basins, 3 subsurface infiltration basins, 2 subsurface detention basins, 2 water quality units, deep sump hooded catch basins in an off line configuration, and rip rap energy dissipaters, together with conveyance systems that open grass channels. Theses best management practices (BMPs) will provide groundwater recharge and peak flow mitigation of stormwater runoff.

The purpose of this this Long-Term Inspection and Maintenance Plan is to identify specific inspection and maintenance activities that are necessary to ensure the success and minimize the deterioration of the stormwater system over time. The Contractor is responsible for implementing Inspection and Maintenance through the completion of construction and during the warrantee period. The Inspection shall be responsible implementing this Long-Term Inspection and Maintenance Plan thereafter.

Maintenance operations shall be funded by the Operator. In the event the facility becomes owned by different entities, this Long-Term Inspection and Maintenance Plan shall be transferred to the future owners/operators.

2 Inspection and Maintenance Requirements

The following inspection and maintenance activities shall be conducted to ensure the success and minimize the deterioration of the stormwater system over time. All BMPs shall be inspected after every storm event larger than one-inch (over a 24-hour period) in the first six-months following construction. Afterwards, BMPs shall be inspected after major storm events greater than 2.8 inches (over a 48-hour period), and at a minimum twice per year in late spring (May/June) and early fall (September/October). Checklists to assist with the inspection and maintenance activities are provided in Appendix A. A map depicting the location of the components of the stormwater management system is provided in Appendix B.

2.1 Bioretention Basins

Bioretention basin inspections shall include inspecting the isolator rows for accumulated sediment. Inlets and outlets should be inspected for erosion and damage. If inspection of the isolator row indicates the need for maintenance, the sediment shall be removed using the JetVac process. Once sediment is removed from the isolator row, catch basins and manholes upstream of the basin shall be inspected and cleaned.

2.2 Drainage Channel

Channels shall be inspected for sediment accumulation, erosion, and condition of the surface lining material. Vegetative channels shall be inspected to determine if high flows have caused erosion of the vegetative surface lining. Any areas subject to erosion shall be replenished with the original design material and re-vegetated according to design drawings. Materials deposited on the surface of the channels (e.g., trash, litter, sediment, debris) must be removed manually. Vegetation within the channel shall be mowed a minimum of once per year to eliminate woody vegetation. It is recommended to cut grass no shorter than four inches to maintain establishment of hearty stand of grass.

2.3 Drainage Structures

Immediately prior to the end of construction or acceptance by the Owner/Operator, the Contractor shall clean all drainage structures. Once construction is complete and has been accepted by the Owner/Operator, all drainage structures shall be inspected annually. Inspections shall include checking for debris, sediment, and hydrocarbons, and structural integrity or damage. Deficiencies must be corrected immediately. Grates shall not be welded to the frame so the structures can be easily inspected and maintained.

2.4 Energy Dissipator and Level Spreader

Energy dissipator shall be inspected to determine if high flows have caused scour or dislodged any of the stone. If repairs are needed, they should be accomplished immediately. Materials deposited on the surface of the dissipator/spreader (e.g., trash, litter, sediment, debris) must be removed.

3 Pollution Prevention

The following pollution prevention activities shall be conducted to minimize potential impacts on stormwater runoff quality. The Contractor is responsible for all activities during construction. The Owner/Operator is responsible thereafter.

3.1 Spill Procedures

Any discharge of waste oil or other pollutant shall be reported immediately to the New Hampshire Department of Environmental Services (NHDES). The operator will be responsible for any incident of groundwater contamination resulting from the improper discharge of pollutants to the stormwater system, and may be required by NHDES to remediate incidents that may impact groundwater quality. Should property ownership be transferred, the subsequent owner/operator will be informed of the legal responsibilities associated with operation of the stormwater system, as indicated above.

3.2 Sanitary Facilities

Sanitary facilities shall be provided during all phases of construction. There are no bathroom facilities on site long term.

3.3 Material Storage

No on site trash facility is provided. The customers are required to remove trash from the site. Hazardous material storage is prohibited.

3.4 Material Disposal

All waste material, trash, sediment, and debris shall be removed from the site and disposed of in accordance with applicable local, state, and federal guidelines and regulations. Removed sediments shall be dewatered (if necessary) prior to disposal.

4 Contacts

Owner Cate Street Development, LLC 11 Elkins Street Suite 420 Boston, MA 02127 Operator TBD Maintenance Contact TBD I&M Plan Contact Fuss & O'Neill, Inc. Richard Lundborn, PE 5 Fletcher Street, Suite 1 Kenebunk, ME 04043 207.363.0669 RLundborn@fando.com

Appendix A

Operation, Maintenance, and Management Inspection Checklist

Inspection & Maintenance Manual Checklist

			1
BMP/System	Minimum Inspection Frequency	Minimum Inspection requirements	Maintenance / Cleanout Threshold
Closed Drainage (Structures & Pipes)	Twice Annually	Check for sediment accumulation, clogging, and debris.	Clean catch basin sump when half full. Remove all floating debris. Clean pipe runs with 2" or more of sediment.
Catch Basin Hood Inserts	Twice Annually	Check for blocked hoods and floating debris in associated catch basins	Unclog any debris from hoods, remove floatables and hydrocarbons. Check insertion to outlet pipe. Replace if damaged.
Infiltration Basin	Routinely during 1st year, twice annually after	Check for sediment accumulation, clogging, and debris. Monitor growth of vegetation	Inspect vegetation as necessary, remove debris from structures, and remove sediment accumulation from forebay and basin bottom. Mow, cut back, and control woody growth on the side slopes and inside the infiltration basin. Check slopes and spillways for structural integrity.
Bioretention Basin	Twice Annually	System should be inspected for drawdown time, sediment removed, and vegetation	Remove any trash or debris from structures or drains, vegetation maintained in healthy condition and bioretention basin drain time inspected for filtration function.
Invasive Plant Control	Routinely	Inspect for any invasive plants that destroy the natural communities or obstruct drainage structures	Pull deadhead, mow, cut, use controlled burning use a herbicide, girdle, frill or use a foliar spray with glyphosate to control or remove invasive plants.
Litter / Trash Removal	Routinely	Inspect parking areas, driveways, storm water systems, and around buildings.	Site will be free of trash / litter

Inspection & Maintenance Manual Log Form

West End Yards Cate Street / Route 1 Portsmouth, New Hampshire 03801

BMP / System	Date Inspected	Inspector	Cleaning or Repair	Repair Date	Repair Performed By

Appendix B

BMP Location Map

800.286.2469 www.fando.com

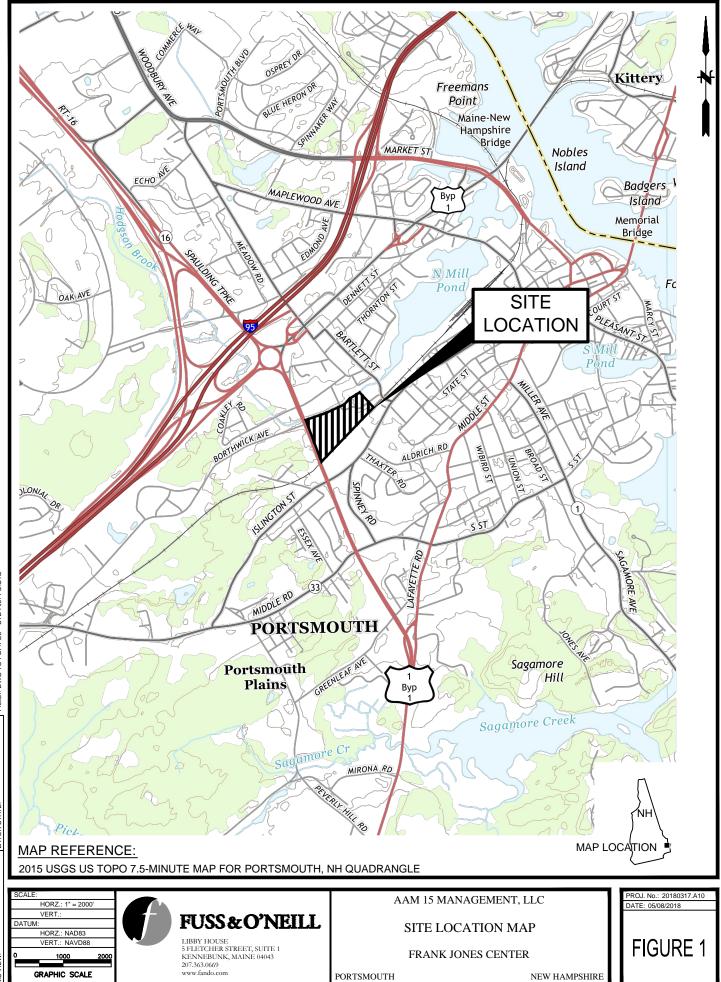

ENGINEERS • SCIENTISTS • PLANNERS

Figure 1

Site Location Map

File Path: F:N2018/0317A10/Civil3/Dwg/20180317A10_COV01.dwg Layout: FIGURE 1 Plotter: Tue, May 08, 2018-10.43 AM User: jandretta MS VIEW: LAYER STATE: Detter: DWG TO PDF.PC3 CTB File: FO.STB

Figure 2

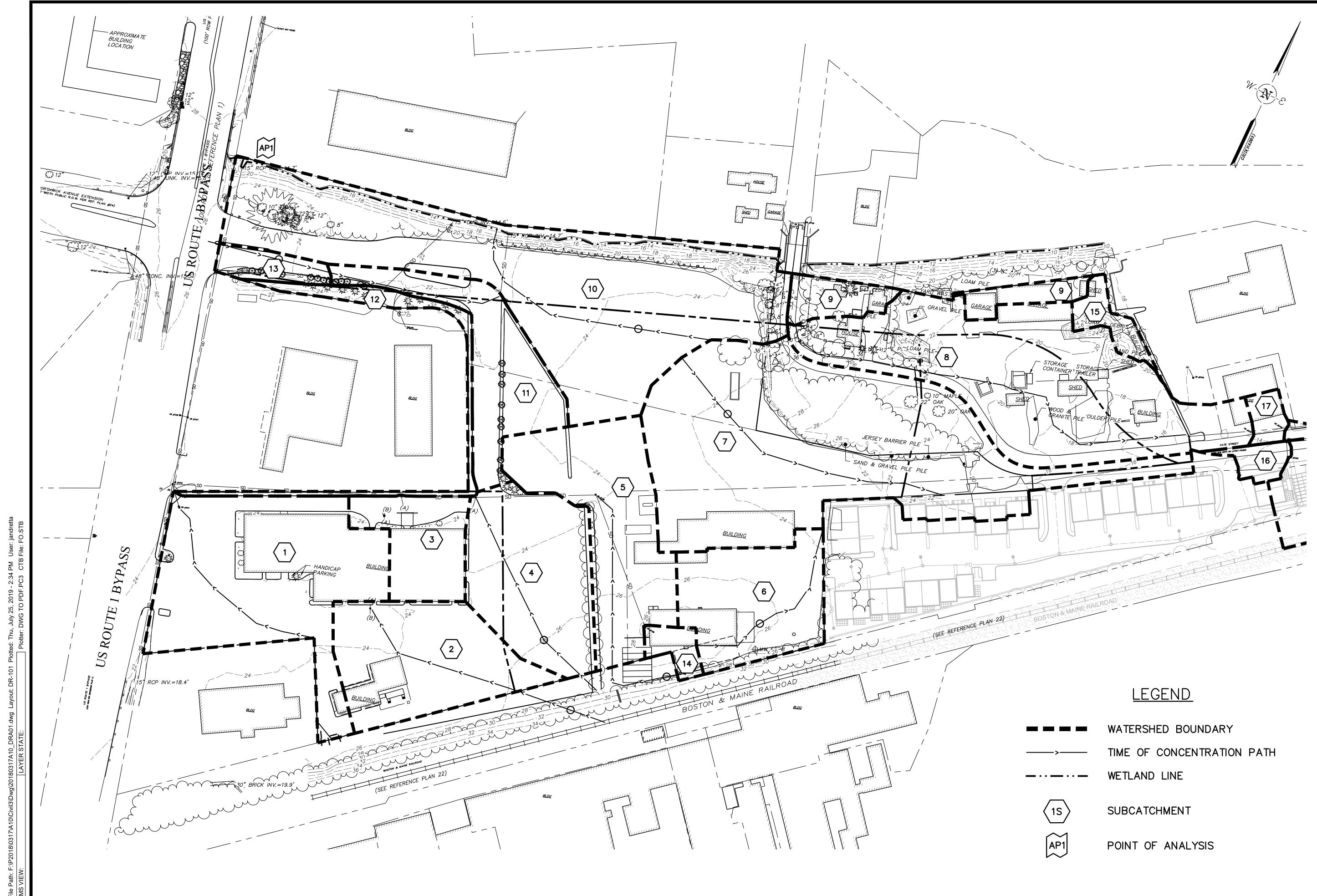
FEMA Flood Insurance Rate Map

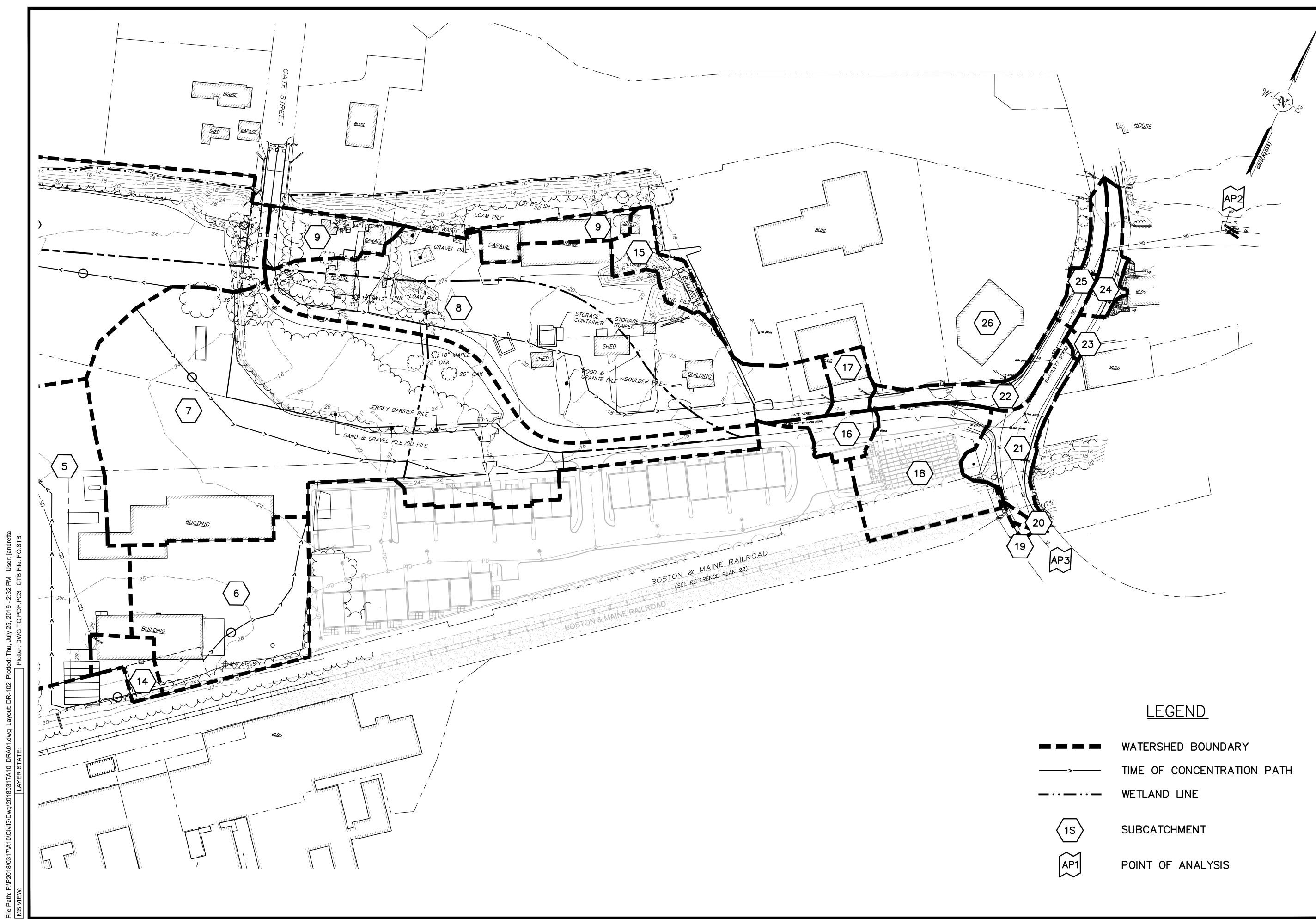
National Flood Hazard Layer FIRMette

Legend

43°4'22.13"N SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD Zone AE HAZARD AREAS **Regulatory Floodway** (EL9 Feet) 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X Future Conditions 1% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF FLOOD HAZARD Area with Flood Risk due to Levee Zone D NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D GENERAL - -- - Channel, Culvert, or Storm Sewer STRUCTURES IIIIII Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation CITY OF PORTSMOUTH AREA OF MINIMAL FLOOD HAZARD **Coastal Transect** Base Flood Elevation Line (BFE) ~ 513 ~~~~ 330139 Limit of Study Jurisdiction Boundary **Coastal Transect Baseline** OTHER **Profile Baseline** 33015 C0259 E FEATURES Hydrographic Feature eff.5/17/2005 **Digital Data Available** No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location. This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 11/18/2018 at 8:15:07 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time. This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, USGS The National Map: Orthoimagery. Data refreshed October 2017. legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for 43°3'55.84"N 1:6,000 Feet unmapped and unmodernized areas cannot be used for regulatory purposes. 250 500 1,000 1,500 2,000

Figure 3


Pre-Development Subwatershed Plan



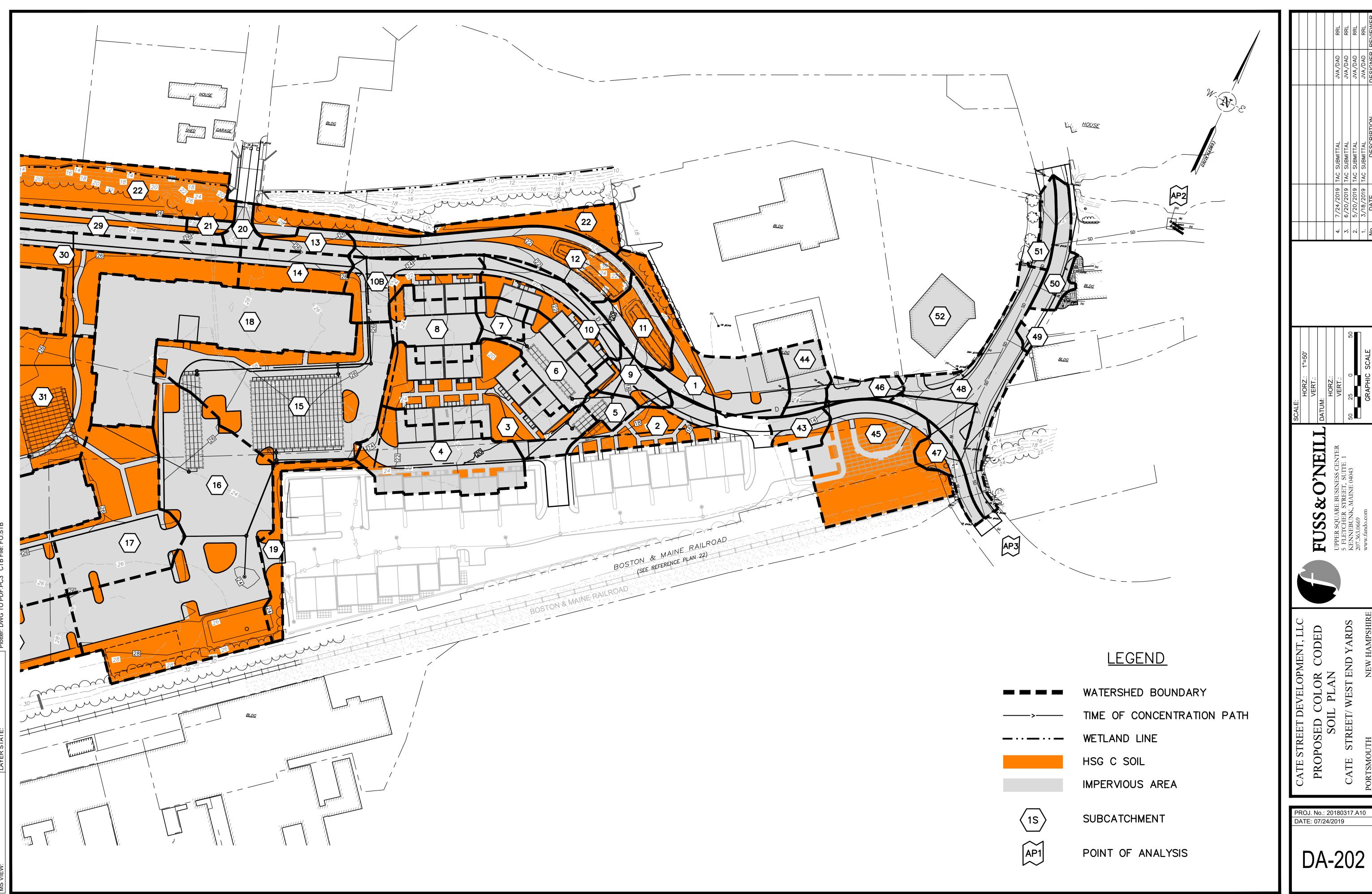
ile Path: F:\P2018\0317\A10\Civil3\Dwg\20180317A10_DRA01.dwg Layout: DA-101 Plotted: Thu, July 25, 2019 - 2:32 PM User: jandretta MS VIEW: Plotter: DWG TO PDF.PC3 CTB File: FO.STB

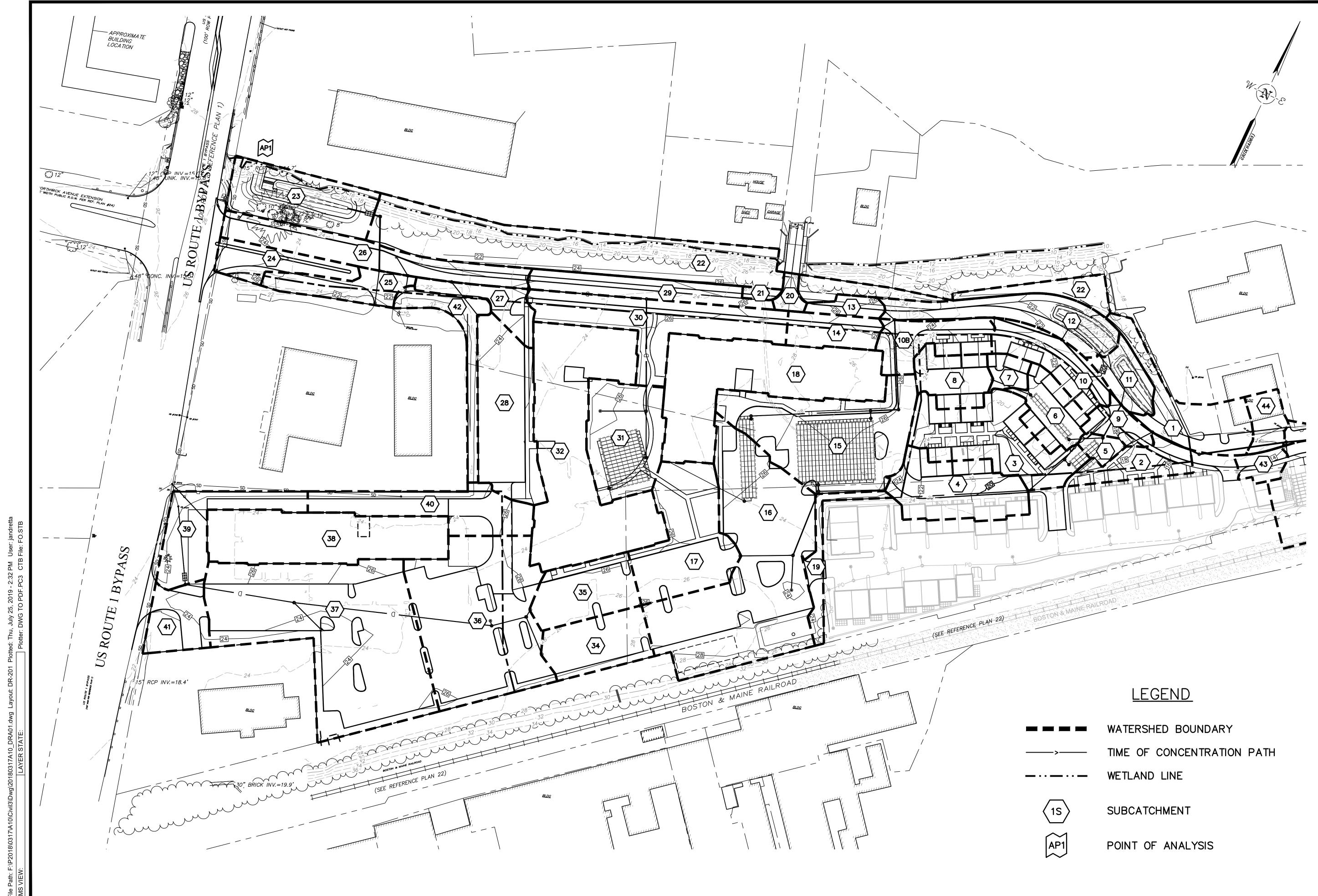
SCALE: HORZ.	DATUM:	50 25	GRAPHI	
	FUSS & O'NEILL	5 FLETCHER STREET, SUITE 1 KENNEBUNK, MAINE 04043 207 363 0669	www.fando.com	
CATE STREET DEVELOPMENT, LLC	EXISTING DRAINAGE AREA PLAN	CATE STREET/ WEST END YARDS	PORTSMOUTH NEW HAMPSHIRE	
	J. No.: 2018 E: 07/24/20	19		

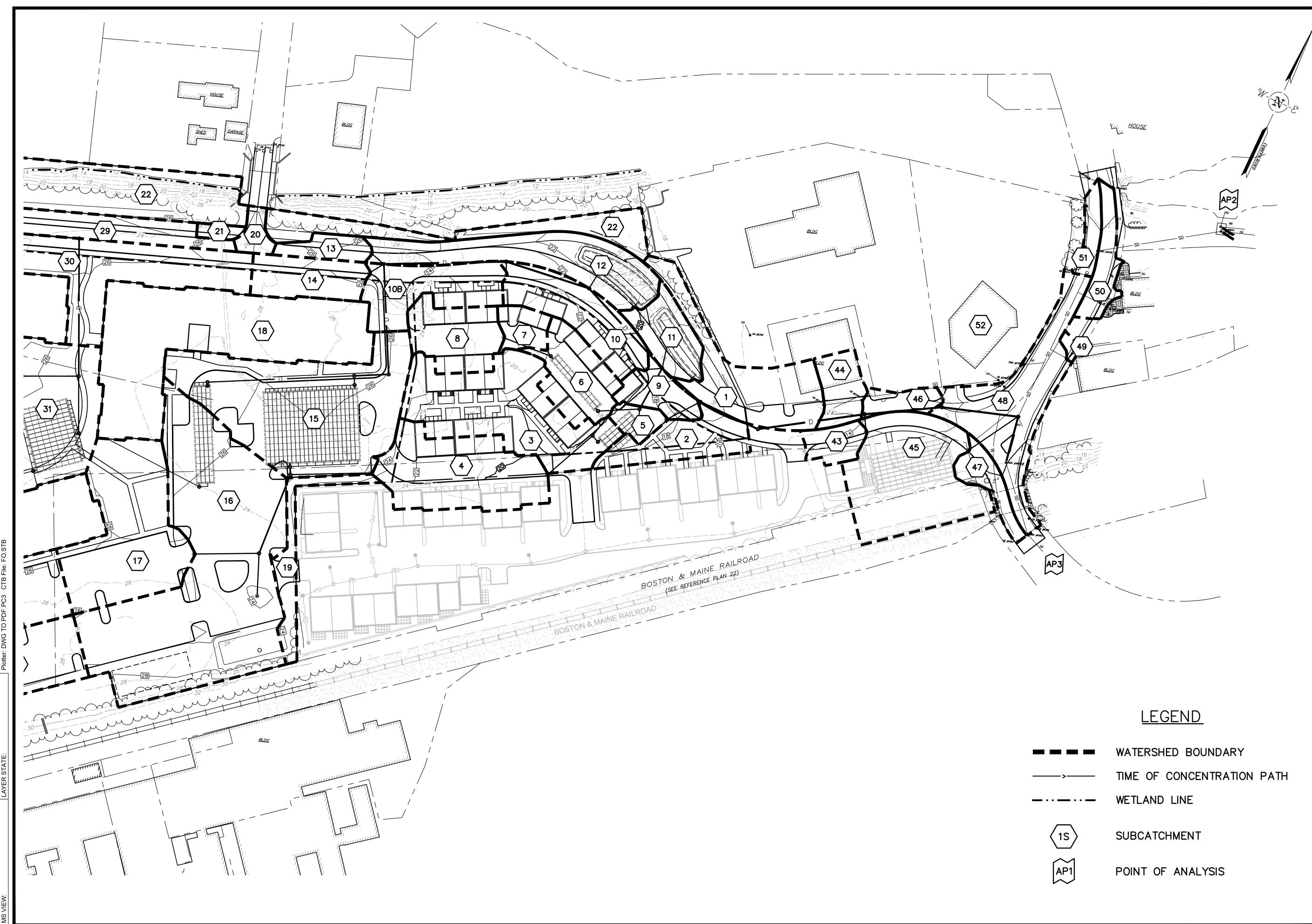
					RRL	RRL	RRL	RRL	REVIEWER
					JVA/DAD	JVA/DAD	JVA/DAD	JVA/DAD	DESIGNER REVIEWER
					7/24/2019 TAC SUBMITTAL	6/20/2019 TAC SUBMITTAL	5/20/2019 TAC SUBMITTAL	3/18/2019 TAC SUBMITTAL	DESCRIPTION
					4. 7/24/2019	3. 6/20/2019	2. 5/20/2019	1. 3/18/2019	No. DATE
SCALE:	HORZ.: 1"=50'	VERT.:	DATUM:	HORZ.:	VERT.:		0		GRAPHIC SUALE
			FUSS & O NEILL		UPPER SQUARE BUSINESS CENTER	5 FLETCHER STREET, SUITE 1	NEINNEDUNN, MAIINE 04045 207 363 0669	www.fando.com	
CATE STDEET DEVELODMENT IIC			EAIDTINU UKAINAUE	AREA PLAN		CATE STREET/ WEST END VARDS			NEW HAMPSHIKE
	CALE MINEE		EAISIL	AF		CATF STRF			PUKISMUUIH
		Ξ: Ο)7/2	20 24/2	2019	9			
-)_		1	1		

Figure 4

Post-Development Subwatershed Plan




User: jandretta 3 File: FO.STB PM CTB 2:32 PC3


WATERSHED BOUNDARY
TIME OF CONCENTRATION PATH
WETLAND LINE
HSG C SOIL
IMPERVIOUS AREA
SUBCATCHMENT

	PI	EET DEVIEI ODMENIT II O		SCALE:					
C	ROLATE OLA	CALE STREET DEVELOFMENT, LLC		HORZ.: 1"=50'					
)/	J. N			VERT.:					
А —	lo.:	rkurusen uuluk uulen	FUSS C NEILL	DATUM:					
\ —		SOIL PLAN		HORZ.:					
2			UPPER SQUARE BUSINESS CENTER	VERT.:	7	4. 7/24/20	7/24/2019 TAC SUBMITTAL	JVA/DAD	RRL
2()31	CATE STREET/ WEST END VARDS	5 FLETCHER STREET, SUITE 1			3. 6/20/20	6/20/2019 TAC SUBMITTAL	JVA/DAD	RRL
)^			NEINNEDUNN, MAINE 04040 207363 0669	0		2. 5/20/20	5/20/2019 TAC SUBMITTAL	JVA/DAD	RRL
1			www.fando.com			l. 3/18/20	3/18/2019 TAC SUBMITTAL	JVA/DAD	RRL
	PUKISMUUTH	1 NEW HAMPSHIKE		GRAFING SCALE	Z	No. DATE	DESCRIPTION	DESIGNER REVIEWER	REVIEWER

ile Path: F:\P2018\0317\A10\Civil3\Dwg\20180317A10_DRA01.dwg Layout: DA-202 Plotted: Thu, July 25, 2019 - 2:33 PM User: jandret As VIEW:

CATE STREET DEVELOPMENT, LLC PROPOSED DRAINAGE PROPOSED DRAINAGE PROPOSED DRAINAGE AREA PLAN CATE STREET / WEST END YARDS CATE STREET / WEST END YARDS MOD DATE OF A DATE					RRL	RRL	RRL	RRL	DESIGNER REVIEWER
CATE STREET DEVELOPMENT, LLC PROPOSED DRAINAGE PROPOSED DRAINAGE PROPOSED DRAINAGE AREA PLAN CATE STREET/ WEST END YARDS CATE STREET/ WEST END WAINE 04043 207.363.0669 PORTSMOUTH New HAMPSHIE PORTSMOUTH MERICIAL PORTSMOUTH MERICI					JVA/DAD	JVA/DAD	JVA/DAD	JVA/DAD	DESIGNER
CATE STREET DEVELOPMENT, LLC PROPOSED DRAINAGE PROPOSED DRAINAGE AREA PLAN CATE STREET/ WEST END YARDS CATE: 1"=50' HORZ: 1"=50' VERT:: UPER SQ'NBILL PORT:: 1"=50' VERT:: PORT:: 1"=50' VERT:: PORT:: PORT:: 1"=50' VERT:: PORT					TAC SUBMITTAL	TAC SUBMITTAL	TAC SUBMITTAL	TAC SUBMITTAL	DESCRIPTION
CATE STREET DEVELOPMENT, LLC CATE STREET DEVELOPMENT, LLC PROPOSED DRAINAGE AREA PLAN CATE STREET WEST END YARDS CATE STREET, WEST END YARDS CATE STREET, WEST END YARDS CATE STREET, WEST END YARDS DATUM: HORZ: 1"=50' UPPER SQUARE BUSINESS CENTER SCALE: HORZ: 1"=50' VERT: HORZ: 1"=50' VERT: DATUM: HORZ: 1"=50' VERT: DATUM: HORZ: 1"=50' VERT: DATUM: HORZ: 1"=50' VERT: DATUM: HORZ: 1"=50' VERT: DATUM: CATE STREET/ WEST END YARDS DATUM: HORZ: 1"=50' CATE STREET/ WEST END YARDS DATUM: CATE STREET/ WEST END YARDS DATUM: CATE STREET/ WEST END YARDS DATUM: CATE STREET/ WEST END YARDS CATE STREET/ WEST END YARDS CATE STREET/ WEST END YARDS CATE STREET/ WEST END YARDS DATUM: CATE STREET/ WEST END YARDS CATE STREET/ SUITE 1 DATUM: CATE STREET/ WEST END YARDS CATE STREET/ WEST END YARDS CATE STREET/ SUITE 1 DATUM: CATE STREET/ WEST END YARDS CATE STREET/ SUITE 1 CATE STREET/					7/24/2019	6/20/2019	5/20/2019	3/18/2019	
CATE STREET DEVELOPMENT, LLC CATE STREET DEVELOPMENT, LLC PROPOSED DRAINAGE AREA PLAN AREA PLAN AREA PLAN CATE STREET/ WEST END YARDS CATE STREET/ WEST END YARDS DOT:30 DORTSMOUTH DORTSMO	SCALE:	HORZ.: 1"=50'			ER	ео 26			GRAFTIU SUALE
CATE STREET DEVELO CATE STREET DEVELO PROPOSED DRA AREA PLA AREA PLA AREA PLA AREA PLA DALE: 01/57/57/57/57/57/57/57/57/57/57/57/57/57/			Z	; [}	USINESS CE	EET, SUITE	NE 04043		
PROJ. No.: 20180317.A10 DATE: 07/24/2019			どうつして		UPPER SQUARE B	5 FLETCHER STRE	NEINNEDUNN, IMALIN 207363 A660	www.fando.com	
DATE: 07/24/2019	T DEVELODMENT II O							7	
DR-202	CATE STREET DEVELODMENT IIC	CALE STINEET DEVELOFINIENT, ELO							NEW HAMPSHIKE
	PF	20,		AREA PLAN	180	CATE STREET/ WEST END VARDS			NEW HAMPSHIKE