

Large Production Wells and Wells for Large Community Water Systems Drinking Water and Groundwater Bureau

Rule: Env-Dw 302

REPORT COVER PAGE

PROJECT NAME	Haven Well Reactivation					
PROJECT TOWN	City of Portsmouth					
PWS ID	1951020					
	APPLICANT (Project/Water System Owner)					
Name	Brian Goetz/City of Portsmouth					
Mailing Address	680 Peverly Hill Road, Portsmouth, NH 03801					
Daytime Phone Number	(603) 766-1420					
Email Address bfgoetz@cityofportsmouth.com						
	WELL SITE OWNER (Property Owner)					
Name	Brian Goetz/City of Portsmouth					
Mailing Address	680 Peverly Hill Road, Portsmouth, NH 03801					
Daytime Phone Number	(603) 766-1420					
Email Address	bfgoetz@cityofportsmouth.com					
	PROJECT CONTACT/REPORT PREPARER					
Name	Frank Getchell					
Company Name	Weston & Sampson					
Mailing Address	100 International Drive, Suite 152, Portsmouth, NH 03801					
Daytime Phone Number	(603) 431-3937					
Email Address	getchell.frank@wseinc.com					
	PUMPING TEST PERFORMER/CONTACT					
Name	Frank Getchell					
Mailing Address	100 International Drive, Suite 152, Portsmouth, NH 03801					
	(603) 431-3937					
Daytime Phone Number						

Project Type:

a. New well(s) for New System.

b. New well(s) for Existing System.

c. Replacement well(s) for Existing System.

d. Hydrofractured or Deepened well(s) for Existing System.

e. REACTIVATION OF AN INACTIVE WELL FOR AN EXISTING SYSTEM.

2. Proposed permitted production volume in gallons per day: 768,960 (534 gpm)

1.

REPORT CERTIFICATION STATEMENT

By signing this report, the signer certifies that the information contained in or otherwise submitted with this report is true, complete and not misleading to the best of the signer's knowledge and belief.

By signing this report, the signer understands that submission of false, incomplete or misleading information is grounds for:

- Not approving the report;
- Revoking any approval that is granted based on the information;
- Suspending or revoking the professional license held by the signer if the department is the licensing authority or referring the matter to the appropriate licensing authority for potential action against the professional license held by the signer if other than the department; and
- If the signer is acting as or on behalf of a listed engineer as defined in Env-C 502.10, debarring the listed engineer from the roster.

By signing this report, the signer understands that they are subject to the penalties specified in New Hampshire law, currently RSA 641:3, for making unsworn false statements.

By signing this report, the signer and applicant agree to comply with all applicable rules and conditions of the approval, if one is issued.

SIGNATURES

APPLICANT	Bria	n Go	retz						DATE	7/12/2021
PRINTED NAME	Brian Go	etz			/	NEW	HAMA			
*REPORT PREPARER	Fran	k	Telebell	15	4/	FRAN	IK	3	DATE	7/12/2021
PRINTED NAME	Frank Ge			2	G	ETCH	ELL 3	12		
PROFESSIONAL LICENS	E TYPE	NH Pro	fessional Geologist	PRO	No	0	572	18/9		
PROFESSIONAL LICENS	E NUMBEI	R	00572	1	155	CEN				

For additional information contact NHDES' Community Well Siting program manager at (603) 271-8866.

^{*}This cover page must bear the stamp or seal of the NH-licensed Professional Engineer (P.E.) or Professional Geologist (P.G.) who prepared the report.

July 12, 2021

100 International Drive, Suite 152, Portsmouth, NH 03801 Tel: 603.431.3937

Mr. Andrew Koff, PG Hydrogeologist NHDES Drinking Water Groundwater Bureau 29 Hazen Drive Concord, NH 03302-0095

Re: Haven Well Reactivation Request
Portsmouth Water Works EPAID 1951010

Dear Mr. Koff:

On behalf of the City of Portsmouth (the City), Weston & Sampson has completed a 5-day pumping test of the Haven Well (the Well) located at the former Pease Air Force Base (Pease) in Portsmouth, New Hampshire. The Haven Well was removed from service by the City in 2014 due to the detection of per- and poly-fluoroalkyl substances (PFAS) in the groundwater pumped from the local sand and gravel aquifer system underlying Pease. As per our previous communications with the New Hampshire Department of Environmental Services (NHDES), the pumping test was conducted in support of the City's intent to return to service the Haven Well in conjunction with the activation of the Pease Water Treatment Facility (PWTF) located on Grafton Drive. The testing and related data collection activities were conducted in accordance with the information that was emailed to the NHDES on April 6, 2021 [e.g., City correspondence and related Weston & Sampson memorandum describing the proposed testing plan (the Plan)], and subsequently acknowledged by you on April 7, 2021.

The testing efforts spanned from April 29 through May 8, 2021, with the actual pumping period spanning May 3 to May 8 [a total of five (5) days duration]. As indicated by the Plan, the pumping test was completed in order to collect data necessary to establish the current performance of the Well relative to its previously established safe yield, and relative to the design parameters of the City's PWTF. The collected data focused on groundwater-level and water-quality conditions and hydrogeologic responses representative of the currently prevailing conditions in the aquifer system and at the Well. In preparation of the pumping test effort, the City arranged with the Air Force Civil Engineer Center (AFCEC) to temporarily route water discharged during the test from the Haven Well to the Airfield Interim Mitigation System (AIMS) treatment facility at Pease.

Background

Based on previous hydrogeologic studies of the Pease area, including the study regarding the "safe yield test" of the Haven Well completed by Montgomery Watson Harza (MWH), with assistance from Weston & Sampson, for the AFCEC in April 2002, the aquifer system underlying Pease consists primarily of a sequence of unconsolidated geologic deposits ("overburden") associated with past glacial activity that occurred in the region about 10,000 to 12,000 years ago. The system can generally be separated into units of relatively uniform deposits of sand; mixtures of varying amounts of sand and gravel; layers of clay and silt (related to glacial ice influences on the local marine environment); and mixtures of clay through gravel deposited directly by glacial ice ("till"). The overburden is locally underlain by a layer of weathered bedrock developed in the shallow fractures of the underlying bedrock (considered to be hydraulicly differentiated from the generally linearly orientated vertical/subvertical fracture zones and faults which locally occur within the deeper bedrock).

Of the overburden units comprising the aquifer system, the relatively uniform deposits of sand, and the mixtures of sand and gravel, are considered the primary groundwater bearing units of the overburden and are typically referred to in the Pease area as the upper sand (US) and the lower sand and gravel (aka lower sand, or LS). Locally, and primarily to the east and south of the Haven Well, the upper and lower sand units may be separated by a low permeability or "confining" unit corresponding to significant thicknesses of clay and silt deposits related to past glacio-marine conditions in the area. Based on the information available from the 2002 MWH report, this

confining unit does not reportedly occur in the vicinity of the Haven Well, resulting in the upper sand and lower sand units being hydraulically in contact with each other and potentially acting as a single aquifer unit. In addition, the depth to bedrock decreases locally to the east and south. These conditions influence the naturally occurring local groundwater flow direction (generally from north/northwest to south/southwest/southeast), and recharge conditions influencing the safe yield and response to pumping of the aquifer system in the vicinity of the Haven Well.

The current Haven Well is located in an area of Pease that has been developed as a drinking water supply for the City since the late 1800's. The existing well consists of an 18-inch diameter steel casing and screen, extending to a depth of about 72 feet below grade (ft bg), or an elevation of about 7 feet below mean sea level (-7 ft msl), consistent with the reported approximate depth to the top of bedrock. The 15-feet length of screen, spans a depth interval from about 57 ft bg to 72 ft bg (or from about 8 ft msl to -7 ft msl). Based on this depth setting the screen is set in the lower sand unit (LS) of the aquifer system. The Haven Well is recognized by the NHDES as having a maximum design pumping rate of 534 gallons per minute (gpm), consistent with its minimum long-term safe yield and in consideration of remedial efforts previously being conducted by the AFCEC at Pease. The 2002 MWH study involved the pumping of the Haven Well continuously for about 14 days at varying rates from about 750 to 1,360 gpm (reported average of about 870 gpm based on the pumping of a total of about 17 million gallons over the test period), with the respective test results supporting the conclusion that the Haven Well is capable of supporting pumping at rates greater than 534 gpm.

Pumping Test Summary

As per the proposed Plan and based on related discussions with the NHDES, Weston & Sampson conducted the recent pumping test of the Haven Well following the applicable guidelines of NHDES ENV-DW 302, and related sampling of the Well in accordance with NHDES ENV-DW 700. To this end the Haven Well was pumped through the AlMS facility for five (5) days at a constant rate of 300 gpm, while collecting water-level data via an electric water level indicator (manually) and the City's dedicated SCADA system. The test rate of 300 gpm was selected since it corresponded to the maximum rate that could currently be accommodated by the AlMS facility. The AlMS-based limitation is the result of the PFAS-treatment design parameters of the facility which normally receives groundwater discharged from the AFCEC IMW Well. The pumping rate during the test was determined using the in-line flow meter (SCADA connected with direct readout at wellhouse), while "raw" water samples were collected either from the sampling tap at the wellhouse or from the discharge point at the AlMS facility (pre-treatment). The samples collected from the discharge point at the AlMS facility were submitted for laboratory analyses associated with ENV-DW 700 (e.g., PFAS), while those collected at the wellhouse were used for field parameter monitoring (e.g., temperature, pH, etc.).

Besides collecting water level data from the Haven Well during the test, Weston & Sampson collected water-level measurements and groundwater samples at existing nearby monitor wells (MWs) representative (based on reported screen interval settings) of the upper sand unit ("US"), lower sand unit ("LS"), fractured bedrock/upper weathered bedrock ("FBR"), and deeper bedrock ("BR") groundwater bearing formations comprising the aquifer system underlying Pease and tapped by the Haven Well (completed in the LS). The selected monitor wells (aka observation wells) and corresponding groundwater bearing formations, consistent with AFCEC identification and listed in order of distance from the Haven Well, are: 7530 (LS), 15-TH1AR (LS), PHA-4779 (US), 15-7533 (LS), 15-6144 (BR), 15-6522 (FBR), 15-7535 (US), and 15-7532 (LS). An attempt was made to utilize the Interim Mitigation Well (IMW) for water level monitoring, however, due to wellhead accessibility issues including the existence of a transducer installed and utilized by Wood, the AFCEC consultant, this effort was abandoned. The water level data collected by the transducer in the IMW Well during the test was subsequently downloaded by Wood and provided to Weston & Sampson. However, it was deemed to be of limited use relative to the Haven Well pumping test due to the reported measurements consisting of a single record per day without a designated collection time, corresponding to the daily average over the respective 24-hour period. A summary of the utilized monitor wells and a map of their locations relative to the Haven Well are provided as Table 1 and Figure 1, respectively.

The testing period occurred between April 29 and May 10, 2021, with the actual pumping of the Haven Well occurring from 9:46 on May 3 to 11:03 on May 8, 2021. The four (4) days prior to initiating pumping of the Haven

Well were used by Weston & Sampson staff to: collect an initial round of samples from the selected monitor wells for analyses by Alpha Analytical of "Secondary" parameters commonly used as groundwater quality indicators of well performance impact potential; and manually collect groundwater levels at the selected monitor wells and subsequently install dedicated pressure transducers and data-logger units (data loggers). A dedicated "barologger" was set up inside the casing of Monitor Well 15-6144 to collect barometric pressure data for subsequent use in correcting the data-logger collected water level data for the respective monitored wells. The utilized electric water level indicators and data loggers were decontaminated prior to deployment at the respective locations and selected based on their having been manufactured with no evidence of known PFAS containing materials. Data collected over the four days of water level monitoring prior to initiating pumping were used to establish background ("ambient") conditions and the pre-pumping static water level for use in determining the drawdown resulting from the pumping of the Haven Well at the respective observation wells. Short-term pumpperformance testing, completed on April 28 by Weston & Sampson CMR personnel following their completion of the temporary hookup of the Haven Well discharge piping to the AIMS facility, indicated that the pump was operating consistent with its design curve. The collection of water level data by Weston & Sampson continued throughout the pumping period, and for the two (2) days following (recovery) the shutdown of the pump in the Haven Well on May 8. The piping for the Haven Well was subsequently disconnected from the AIMS facility and returned to its pre-test configuration.

Though proposed in the Plan, an extensive step-rate pumping test (utilization of three to four "steps") was not able to be conducted due to the design constraints of the pump in the Haven Well. As a result, the Haven Well was pumped at a rate of 200 gpm for the initial 60-minutes of the test (the initial step) from 9:47 a.m., to 10:51 a.m., following which the pumping rate was increased to 300 gpm (the second step) at which it was maintained for the remainder of the test (five days). The test consisted of initiating pumping of the Haven Well at 200 gallons per minute (gpm) at 9:47 a.m. on May 3rd for about 60 minutes, following which the pumping rate was increased to 300 gpm at 10:51 a.m. and continued pumping at that rate for five (5) days after which time pumping ceased (May 8th).

The adjustment and maintenance of the utilized pumping rate was controlled by City staff through the SCADA system. The water level and discharge rate were monitored and recorded by the available SCADA system throughout the test. The direct readout of the pumping rate from the inline meter in the wellhouse was periodically recorded manually by Weston & Sampson. Water levels at the Haven Well were also manually measured and recorded daily throughout the test by Weston & Sampson.

Groundwater samples were collected using PFAS-free equipment (peristaltic pump with HDPE tubing and removal of three volumes of standing water) from the respective monitor wells on the initial day of pumping and prior to pump shutdown for Secondaries analyses, and from the Haven Well for PFAS on the initial day of the pumping period (May 3), the mid-point of the pumping period (May 5), and immediately prior to pump shutdown (May 8). In addition, samples were collected from the Haven Well for the entire suite of NHDES Drinking Water parameters (including Secondaries) immediately prior to pump shutdown (May 8). The existing sampling port at the Haven Well wellhead was used to collect field parameter samples (temperature, pH, conductivity) during the pumping period of the test. The PFAS analyses and NHDES Drinking Water parameter samples were collected at the discharge location at the AIMS facility using the sampling port setup installed by City staff using PFAS-free components and materials.

Pumping Test Results

The water level in the Haven Well declined by a total of about 2.12 feet (i.e., total drawdown) in response to the 5-day test pumping period (Table 1, Figure 2). The water level at the Haven Well reached equilibrium rapidly within the initial hour of increasing the pumping rate to 300 gpm, continuing with a slightly declining rate of about 0.1 feet per day for the remainder of the pumping period. Based on the ratio of pumping rate to total drawdown, the corresponding specific capacity value for the Haven Well associated with the test is about 143 gallons per minute per foot of drawdown (gpm/ft). This value is consistent with that calculated from the corresponding MWH 14-day pumping test completed in 2002, which based on the average pumping rate of 870 gpm and total drawdown of about 6.3 feet, reflected a specific capacity for the Haven Well of 138 gpm/ft. A comparison between these two

values suggests that the Haven Well has not experienced any determinable reduction in performance (and efficiency) since 2002 (and 2014 when the well was removed from service). Furthermore, this consistency in efficiency combined with the very high specific capacity value, is further evidence of the capabilities of the Haven Well and tapped aquifer to support the pumping test rate of 300 gpm. Given this specific capacity value, less than 4 feet of drawdown would be required for the Haven Well to support a safe yield value of 534 gpm, which under the prevailing conditions, the Well would be more than capable of supporting.

The water levels in each of the monitored observation wells responded to the pumping of the Haven Well, indicating that the upper sand unit, lower sand unit, fractured (weathered) bedrock unit and the bedrock are locally hydraulically connected to the lower sand unit of the aquifer system tapped by the Well, with the overlying (upper sand) and underlying (fractured bedrock and bedrock) units acting as sources of groundwater recharge (see respective hydrographs in Attachment A). Generally, the degree of drawdown exhibited at each well was reflective of the respective distance and degree of hydraulic connectivity (equivalent to recharge potential) of the corresponding tapped aquifer unit with the lower sand (Table 1). In the instance of the observation wells located closest (within about 100 feet) to the Haven Well (e.g., MW 7530), the amount of total drawdown may have been slightly exacerbated by the setting and length of screen relative to the depth and thickness of the lower sand unit (Figure 3). Overall, the amount of exhibited drawdown was greatest for the observation wells completed in the lower sand and closest to the Haven Well. The water-level trends (corrected for barometric pressure influence) corresponding to the Haven Well and each of the observation wells in response to the pumping period exhibited an early time rapid rate of decline (drawdown), followed by a "flattening" with a subsequent slight increase in decline and subsequent consistency in the rate of decline for the remainder of the pumping period (equilibrium). The water-level data exhibited minimal influence from precipitation events occurring during the testing program, with the exception of that occurring on May 5 (see illustrative example Figure 4). Following pump shutdown, the water levels at the Haven Well and monitored observation wells exhibited recovery trends indicating a return to the corresponding pre-test static water levels generally within about two days. The drawdown and recovery conditions exhibited by each well are indicative of the recharge capacity of the tapped aquifer system to support long-term pumping well in excess of the test rate of 300 gpm and supportive of a safe yield value for the Haven Well of 534 gpm. A point further supported by the fact that the test was conducted at a time when the New Hampshire Seacoast region, including Portsmouth, was experiencing abnormally dry conditions, with the 12-month total precipitation amount at 24% below normal, with an approximately 11-inch deficit for the rolling 12-month period leading into the Haven Well test event. Hydrographs for each of the monitored wells are provided as Attachment Α.

The water-level data collected from the Haven Well and respective observation wells during the 5-day pumping test were reviewed and evaluated relative to drawdown and the respective elapsed time since pumping started and with distance from the Haven Well in order to determine site-specific hydraulic characteristics of the lower sand aguifer unit (e.g., transmissivity). Each of the elapsed time versus drawdown plots for the respective Haven Well and observation wells exhibit a relatively slow though generally consistent rate of drawdown for the entirety of the five-days (or about 7,200 minutes) of pumping with minor and temporary rises and declines associated with rate adjustments (200 gpm to 300 gpm after the initial 60 minutes of pumping), pre-sample collection purging events (May 3 and May 7), and precipitation event influences (primarily the May 5th event). Using a straight line fitted to the corresponding elapsed time (logarithmic) since pumping started versus drawdown trends (Cooper-Jacob Method, 1946) for the data associated with the 300-gpm rate, the corresponding transmissivity (hydraulic conductivity distributed across the aguifer thickness) values for the tapped lower sand aguifer unit near the Haven Well range from approximately 121,900 (Haven Well) gallons per day per foot (gpd/ft) to 293,300 gpd/ft [Figures 5 and 6 (MW 7530 used for representative purposes)]. Besides the aguifer transmissivity, the storativity of the lower sand unit of the aquifer system (related to porosity and degree of confinement) was also determined from the same elapsed time versus drawdown graphs using the Cooper-Jacob Method. Based on the evaluation of the respective data, the average storativity values ranged between 0.013 and 0.16 which is reflective of unconfined/semi-confined aquifer conditions. The elapsed time versus drawdown graphs for each of the monitor wells completed in the lower sand aquifer unit are provided as Attachment B.

The Cooper-Jacob Method was also used to analyze the pumping test recovery response data to calculate transmissivity and assess the adequacy of the groundwater recharge to the lower sand aquifer unit to meet the

safe yield demand of the Haven Well. Using a straight line fitted to the corresponding ratio (logarithmic) of elapsed time since pumping started to elapsed time since pumping stopped (time ratio or "T/T") versus recovering drawdown (residual drawdown), the corresponding transmissivity values for the tapped lower sand aquifer unit near the Haven Well range from approximately 102,900 gpd/ft to 247,500 gpd/ft (Figures 7 and 8). In addition to transmissivity values, the time ratio versus residual drawdown graphs were also used to determine the capability of the recharge available to the lower sand unit to support the long-term utilization of the 300-gpm pumping rate, based on the position of the fitted straight line relative to the T/T' value of 1.0. In each case, the straight line intercepted the T/T' axis at a value of 1.0 or greater indicating that the aquifer at that location received recharge commensurate with the 300-gpm pumping rate further substantiating this rate as a minimum safe yield value. The time ratio versus residual drawdown graphs for each of the monitor wells completed in the lower sand aquifer unit are provided as Attachment B.

Besides using the drawdown and residual drawdown data versus elapsed time and time ration for each well location to determine the location specific transmissibly, storativity, and recharge capacity adequacy for the lower sand, the relationship between the drawdown values for each well were evaluated relative to distance from the Haven Well to also determine these aquifer characteristics from an "areal" perspective, along with the radius of influence associated with the pumping of the Well (Figure 9). Based on a straight line fitted to the corresponding distance from the Haven Well (logarithmic) versus drawdown data values for the wells completed in the lower sand unit, the use of the Cooper-Jacob Method resulted in transmissivity and storativity values of 282,900 gpd/ft and 0.05, respectively. The corresponding calculated radius of influence (distance from the Haven Well to the location where the corresponding drawdown value would be close to 0 feet) is about 3,100 feet.

The overall range of transmissivity and storativity values for the lower sand aquifer unit ranged from 108,500 to 293,300 gpd/ft and 0.013 to 0.16, respectively, with corresponding average values of 182,500 gpd/ft and 0.06. The range in calculated transmissivity and storativity values and corresponding averages, as well as the radius of influence determined from the recent Haven Well test is consistent with those previously determined and reported in the 2002 MWH study which utilized a long-term average pumping rate of about 870 gpm.

Water Quality Analysis Results

Besides collecting water-level data for the Haven Well and the monitored observation wells, groundwater samples were also collected and either analyzed in the field (i.e., field parameters), or submitted to a NHDES certified laboratory for analyses. The respective samples were collected to establish the groundwater quality relative to possible future Haven Well performance impacts, as well as to confirm the quality of pumped water from the Haven Well relative to NHDES Drinking Water standards.

The analytical results for samples collected from the respective monitor wells were used to establish the current groundwater quality conditions (based on Secondary parameter analyses) for the respective aquifer units prior to pumping (background), and in response to pumping the Haven Well at 300 gpm. In addition, samples of the water pumped from the Haven Well during the test were collected and analyzed using a combination of field equipment and the City's water quality laboratory. The sampling of the respective monitor wells was conducted in three rounds on dates consisting of April 29, May 3, and May 7. The sampling of the Haven Well was conducted on May 3, May 5, and May 8 (just prior to pump shutdown). A summary of the results for the field parameters is provided as Table 2. A summary of the analytical results for the Secondary parameters completed by Alpha Analytical for the respective monitor wells, along with those completed for the Haven Well by Granite State Analytical Services is provided as Table 3. The corresponding laboratory reports are provided in Attachment C.

Based on the summary provided in Table 2, the quality of water pumped from the Haven Well during the test was relatively consistent with respect to the selected field parameters (pH, alkalinity/hardness, iron, manganese, and chloride). Based on the detected alkalinity and hardness concentrations, the groundwater pumped by the Haven Well can be characterized as being moderately "hard". Of special note is the dominance of manganese concentrations relative to iron, and the generally low iron concentrations. These two parameters are typically used as indicators of current and/or future potential for well performance impact due to their tendency under favorable geochemical and hydraulic conditions to plug the intake intervals of wells, with iron typically being the more

naturally occurring prevalent of the two. The analytical results for Secondary parameters determined for the respective monitor wells as summarized by Table 3, reflect generally similar geochemical conditions, to that influencing the water quality pumped from the Haven Well, with it being moderately hard (except for MW 4779 completed in the upper sand unit), and containing either elevated iron and/or manganese concentrations. Of significance relative to the future performance of the Haven Well is the observed general tendency for the concentrations of the respective parameters to remain relatively stable under pumping conditions. Given the field determined concentrations of the corresponding parameters for the water discharge over the course of 5 days, the respective analytical results for the tapped aquifer system as reflected in the monitor well sample results, and assuming that the prevailing geochemical and hydrogeologic conditions continue to prevail, the performance of the Haven Well is not anticipated to exhibit any rapid deterioration once it is reactivated.

In addition to the analyses for Secondary parameters, three rounds of water samples were also collected from the Haven Well for analyses of PFAS compounds during the pumping period beginning (May 3rd), at the approximate mid-point (May 5th), and just prior to pump shutdown (May 8th). The samples collected on May 3rd and 5th were submitted to Alpha Analytical for PFAS compound analysis using USEPA Method 533, while the samples collected on May 8th were submitted to Alpha Analytical for PFAS, and for all remaining parameters and compounds required by the NHDES for Drinking Water compliance (e.g., VOCs, SOCs, IOCs, pesticides, herbicides, PCBs, etc.) to Granite State Analytical Services. The corresponding laboratory reports are provided as Attachment C.

With the exception of manganese, a naturally occurring IOC, and several PFAS compounds, none of the targeted compounds or parameters exceeded the respective NHDES maximum contaminant level (MCL). The detected manganese concentration was 0.137 milligrams per liter (mg/L) which though slightly elevated, is not out of the norm or what is commonly anticipated for naturally occurring groundwater in other parts of New Hampshire and the northeast, including at the Pease site and other wells in the seacoast area (Table 2 and 3).

The concentrations [expressed in units of as nanograms per liter (ng/L)] of those PFAS compounds regulated by the NHDES and detected in the water pumped from the Haven Well during the test are summarized and compared to the respective NHDES MCLs and historical data in Table 4. Of special note is that the concentrations of the respective NHDES-regulated PFAS compounds detected in the water pumped from the Haven Well during the test are significantly less that those detected in 2016, which, prior to now, was the most recent sampling event following the well being removed from service in 2014. Furthermore, each of these respective PFAS compounds decreased in concentration over the course of the pumping test period. This condition is most likely reflective of the increasing influence of non-impacted groundwater being pumped from the well as the corresponding zone of influence expanded over the 5-day pumping period. As such, the samples collected early in the test period (May 3), reflect the water quality conditions proximal to the Haven Well, while the sample collected later on are more reflective of the currently prevailing long-term conditions, assuming no change in the local geochemical and/or hydrogeological conditions. Given the design parameters incorporated by the City and Weston & Sampson into the PWTF, these PFAS concentrations are considered to be well within the treatment capabilities of the plant for the Haven Well.

Closing

As part of the proposed reactivation of the Haven Well into the City of Portsmouth water supply system, Weston & Sampson has completed a pumping test evaluation of the Haven Well to determine its current performance and establish the current water quality conditions in the locally tapped aquifer system and at the well. Based on the test results, Weston & Sampson has concluded the following:

1. The collected pumping test data indicates that the safe yield of the Haven Well is capable of sustaining long-term pumping at its previously approved safe yield and current design rate of 534 gpm. Based on the calculated specific capacity value for the well compared with that determined from the testing completed in 2002, the performance (and related efficiency) is high, and has not experienced any readily distinguishable decline since that time. As such, the Haven Well is considered to be returnable to service without the need for intake interval rehabilitation at this time. As with all water supply wells, the performance of the Haven Well should be regularly monitored as part of its future use.

- 2. The prevailing, naturally occurring groundwater quality appears to be moderately hard, with locally elevated iron and manganese concentrations that vary with distance and by aquifer system unit. This combination of hardness and iron/manganese could in the long-term affect the performance of the Haven Well under continued pumping, though the potential rate of such impact is anticipated to be relatively slow given the relative stability of the concentrations of these parameters under pumping conditions.
- 3. With the exception of manganese (an IOC) and three of the four PFAS compounds currently regulated by the NHDES, the quality of water pumped from the Haven Well appears to currently be suitable for use as a public drinking water supply. The three PFAS compounds detected in excess of the respective NHDES MCL are Perfluorohexanesulfonic Acid (PFHxS) at 156 to 106 ng/L, Perfluorooctanoic Acid (PFOA) at 57.2 to 37.5 ng/L, and Perfluorooctanesulfonic Acid (PFOS) at 531 to 368 ng/L. Each of these PFAS compounds were previously detected in water collected from the Haven Well, but at much higher concentrations. Based on these recently detected concentrations and the observed reduction since the last sampling round, the PWTF is expected to be more than capable of treating PFAS impacted water pumped from the Haven Well as part of its return to service.
- 4. Weston & Sampson, on behalf of the City, requests that the NHDES reactivate the Haven Well as a water supply source well for the Pease Tradeport water system (PWSID #1951020). The City expects the approval of the reactivation of the Well to be contingent upon its connection to and approval of the PWTF.

If you have any questions or wish to discuss further, please do not hesitate to contact us.

Sincerely,

WESTON & SAMPSON ENGINEERS, INC.

Frank Getchell, PG Sr. Technical Leader

Fund Selectell

Ashe & Mit

Blake Martin Vice President

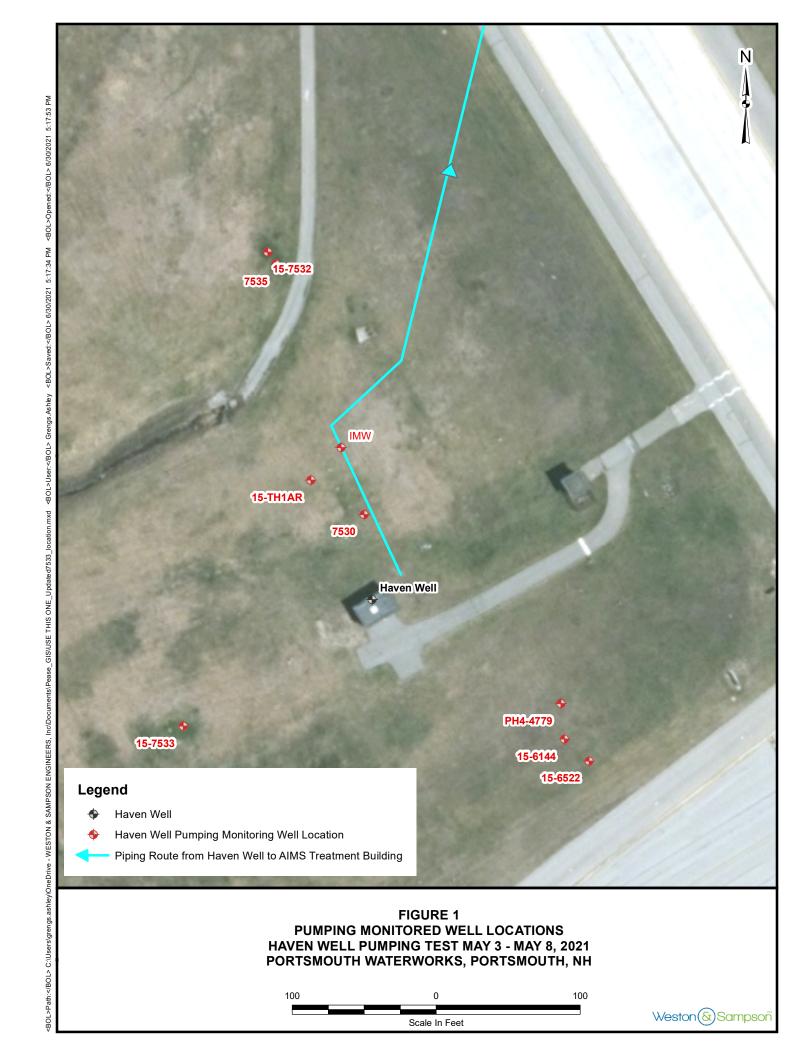
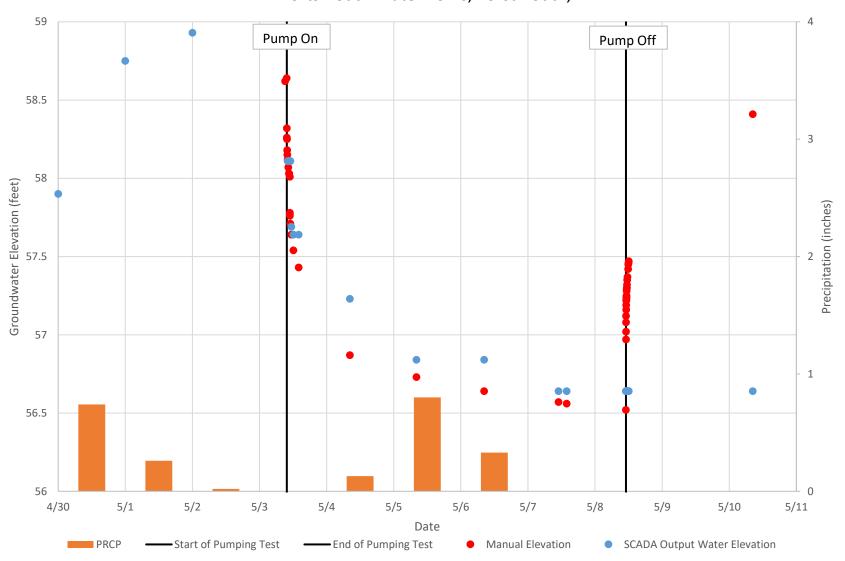
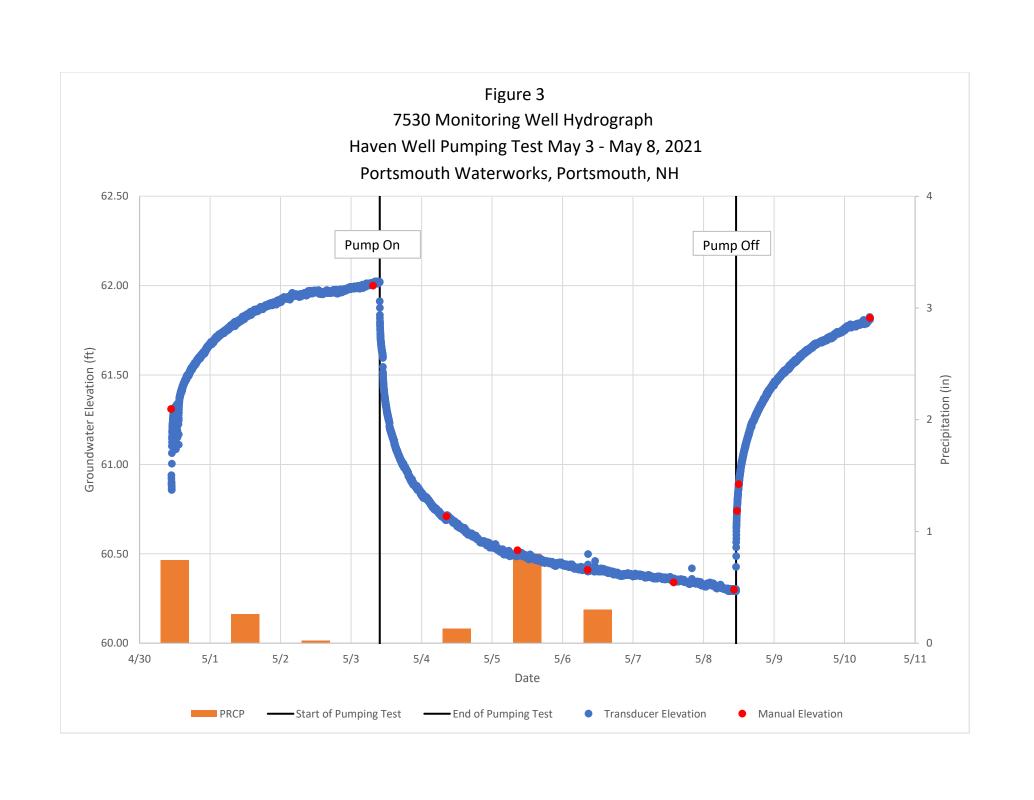
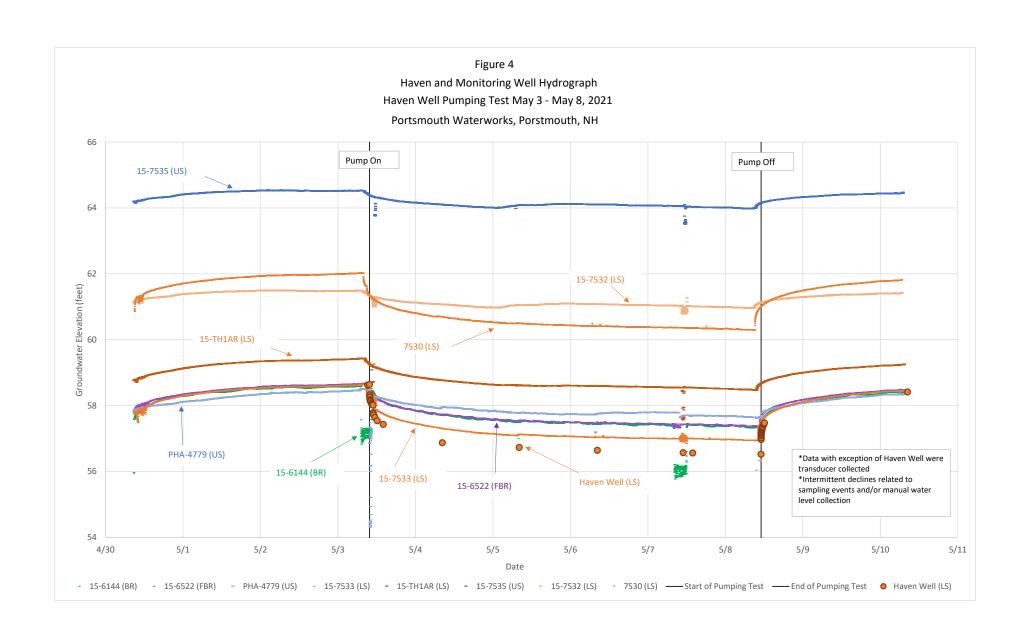
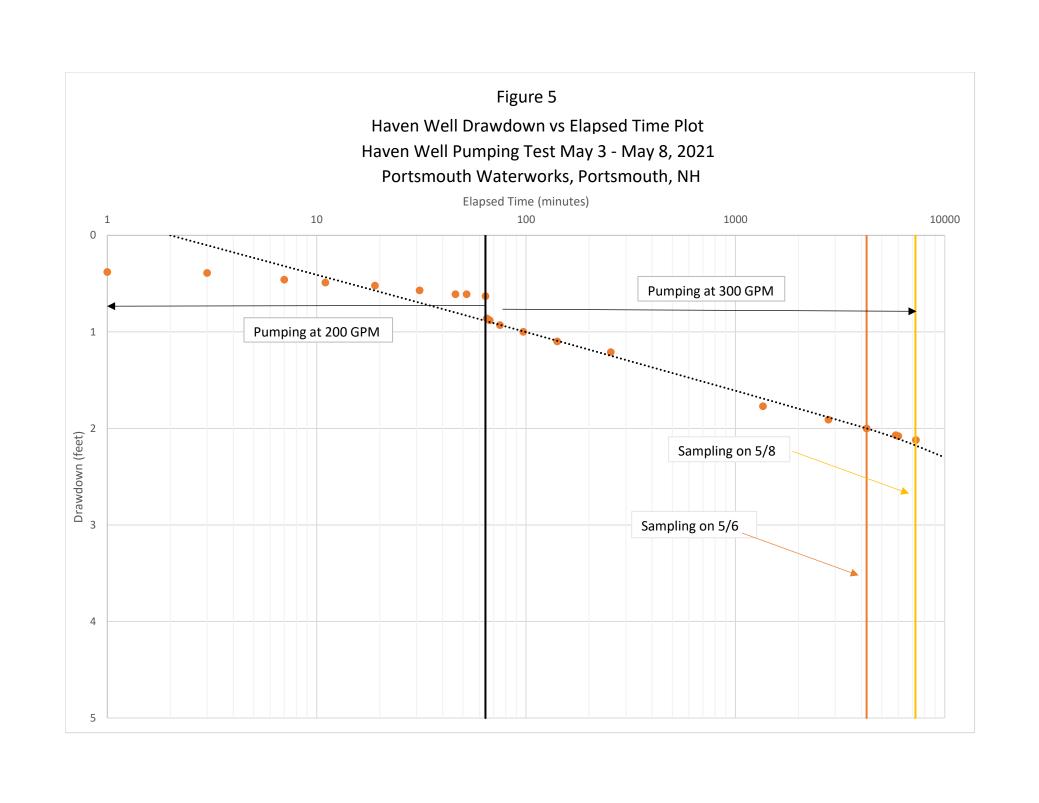
Attachments

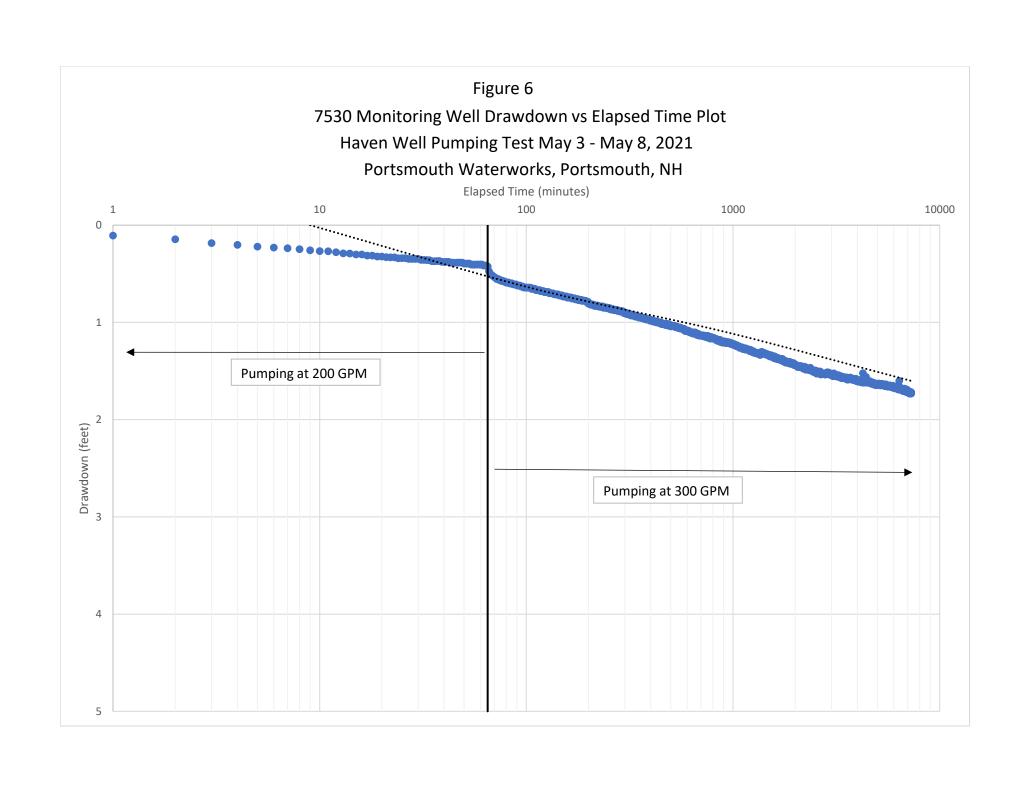
Distribution: B. Goetz; City of Portsmouth

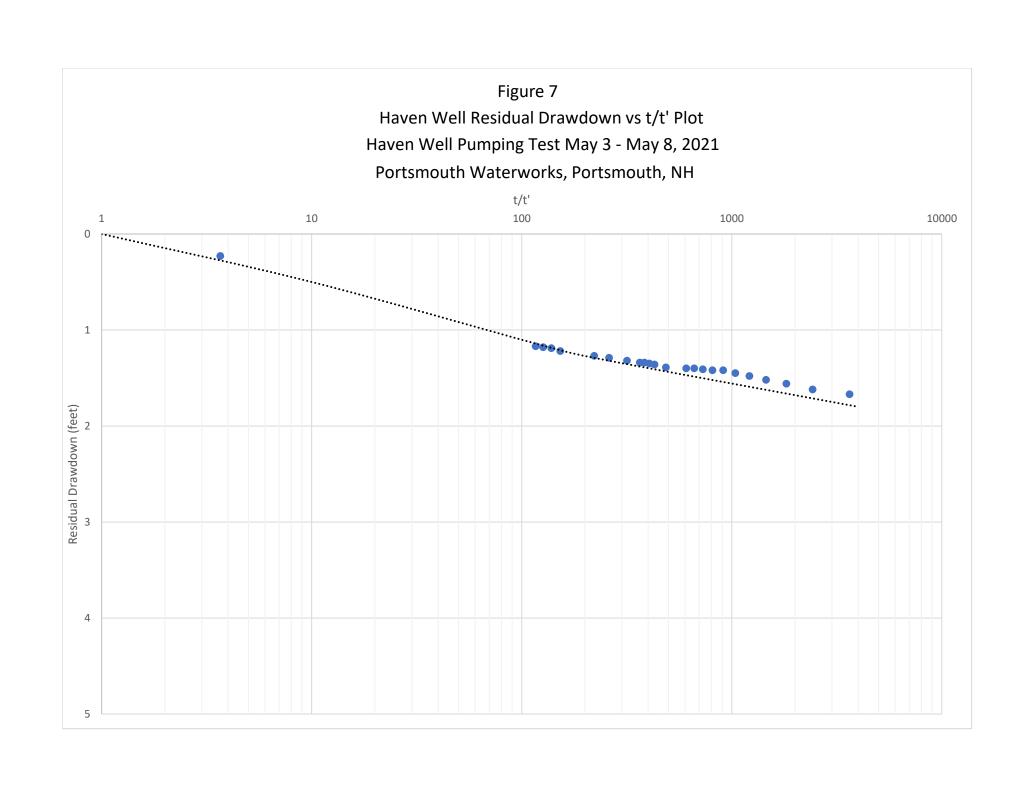
A. Pratt; City of Portsmouth

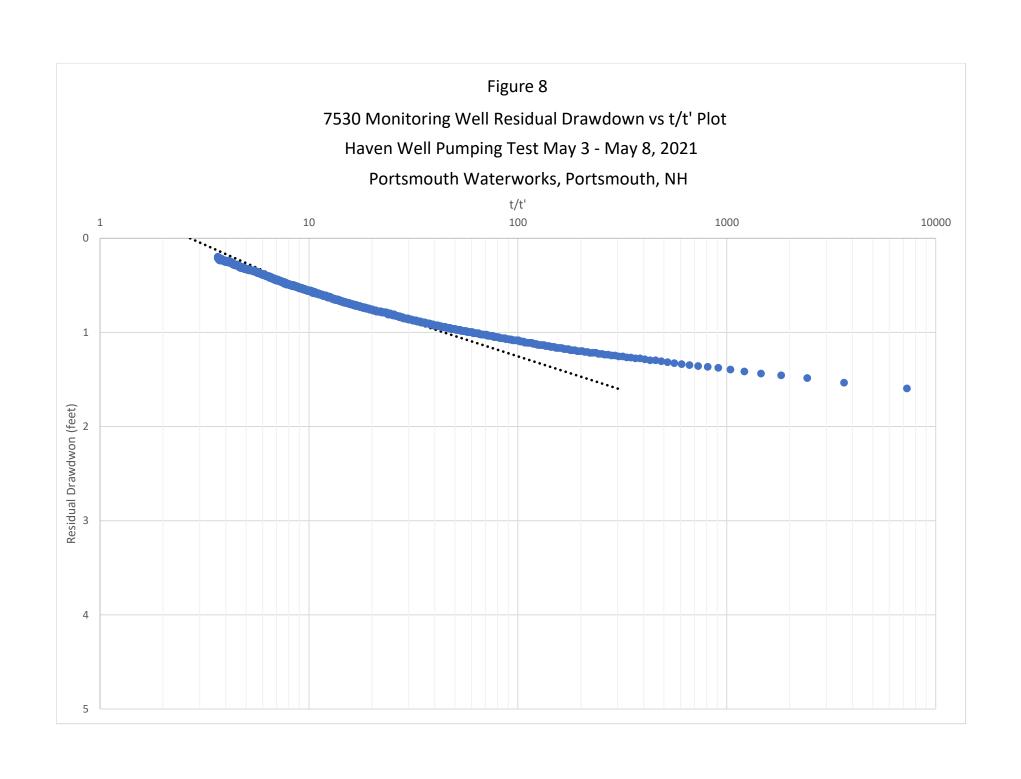
M. McCarthy; Weston & Sampson

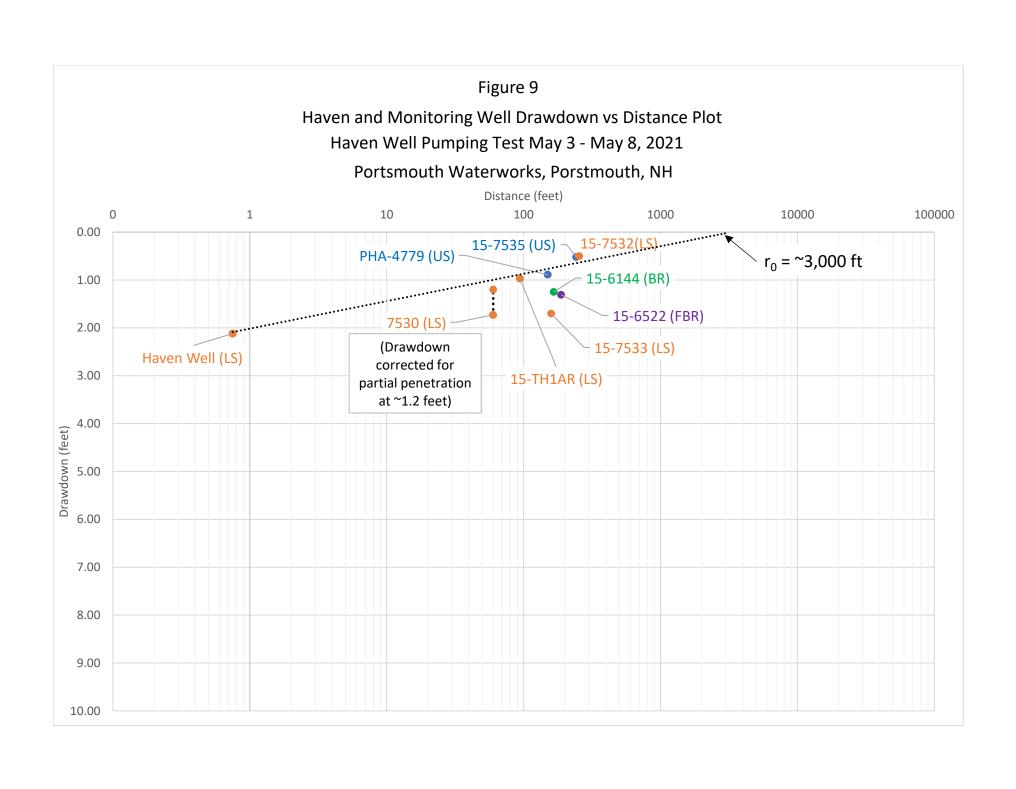
FIGURES


Figure 2
Haven Well Hydrograph
Haven Well Pumping Test May 3 - May 8, 2021
Portsmouth Waterworks, Porstmouth, NH







TABLES

Table 1
Haven Well Pumping Test Summary Table
Haven Well Pumping Test May 3 – May 8, 2021
Portsmouth Waterworks, Portsmouth, NH

Well ID ⁽¹⁾	Aquifer Unit ⁽²⁾	Static DTW (ft) ⁽³⁾	Static Groundwater Elevation (ft msl) ⁽⁴⁾	Pumping DTW (ft)	Pumping Groundwater Elevation (ft msl)	Drawdown (ft)	Distance to Haven Well (ft) (5)
Haven Well	LS	8.23	58.64	10.35	56.52	2.12	-
7530	LS	3.85	62.02	5.58	60.29	1.73	60
15-TH1AR	LS	4.10	59.43	5.07	58.46	0.97	94
PHA-4779	US	7.96	58.51	8.85	57.62	0.89	150
15-7533	LS	4.59	58.64	6.29	57.06	1.70	159
15-6144	BR	6.84	58.59	8.09	57.34	1.25	166
15-6522	FBR	8.74	58.67	10.05	57.36	1.31	188
15-7535	US	4.25	64.52	4.77	64.00	0.52	242
15-7532	LS	4.32	61.47	4.82	60.97	0.50	255

Notes:

- (1) See Figure 1.
- (2) LS=Lower Sand Unit; US=Upper Sand Unit; BR=Deeper Bedrock Unit; FBR=Fractured Bedrock/Upper Weathered Bedrock Unit.
- (3) Depth to water in feet below measuring point.
- (4) Elevation indicated in feet above mean sea level. Based on measuring point elevations previously reported by Wood.
- (5) Distances based on locations and scale provided on Figure 1.

Table 2
Haven Well Pumping Test - Water Quality Testing
Haven Well Pumping Test May 3 - May 8, 2021
Portsmouth Waterworks, Portsmouth, NH

Date ⁽¹⁾	Time of Sample	Location of Sample	рН	Alkalinity as CaCo₃ (ppm) ⁽²⁾	Turbidity (ntu) ⁽³⁾	Apparent Color	Iron (ppm)	Manganese (ppm)	Calcium Hardness (ppm)	Chloride (ppm)
5/3/2021	14:00	Haven	7.62	160	0.754	0	0.06	0.194	161	41
5/3/2021	14:20	AIMS	7.53	165	0.064	0	0.01	0.133	171	41
5/3/2021	21:09	AIMS	7.55	160	0.067	0	0.02	0.150	169	34
5/4/2021	14:20	AIMS	7.60	158	0.052	0	0.00	0.151	150	34
5/4/2021	21:05	AIMS	7.56	150	0.052	0	0.01	0.147	163	28
5/5/2021	9:00	Haven	7.91	190	0.419	0	0.04	0.243	168	34
5/5/2021	14:20	AIMS	7.51	156	0.083	18	0.01	0.158	148	28
5/5/2021	21:14	AIMS	7.53	160	0.078	1	0.01	0.153	155	28
5/6/2021	9:12	AIMS	7.57	148	0.086	0	0.01	0.152	158	28
5/6/2021	15:15	AIMS	7.53	144	0.066	10	0.01	0.166	145	28
5/6/2021	21:00	AIMS	7.80	150	0.107	0	0.02	0.150	145	28
5/7/2021	14:45	AIMS	7.52	150	0.106	2	<0.01	0.166	154	28
5/7/2021	20:59	AIMS	7.52	135	0.047	2	0.01	0.172	149	28
5/7/2021	9:00	Haven	not measured	not measured	not measured	not measured	0.05	0.244	167	41

Notes: (1) Samples analyzed by Portsmouth Waterworks staff.

(2) Reported in units of parts per million, equivalent to milligrams per liter (mg/l).

(3) reported in nephelometric turbidity units.

Table 3
Water Quality Secondaries Summary
Haven Well Pumping Test May 3 – May 8, 2021
Portsmouth Waterworks, Portsmouth, NH

			WELL ID																					
Analytes ⁽¹⁾		Haven Well (LS) ⁽²⁾		4779 (US) ⁽³⁾		7535 (US) ⁽³⁾		7533 (LS) ⁽³⁾			7532 (LS) ⁽³⁾		TH1AR (LS) ⁽³⁾		3)	6522 (FBR) ⁽³⁾			6144 (BR) ⁽³⁾					
		2016 ⁽⁴⁾	5/8/21	4/29/21	5/3/21	5/7/21	4/29/21	5/3/21	5/7/21	4/29/21	5/3/21	5/7/21	4/29/21	5/3/21	5/7/21	4/29/21	5/3/21	5/7/21	4/29/21	5/3/21	5/7/21	4/29/21	5/3/21	5/7/21
	Calcium	55	59.7	1.83	1.65	1.7	45.5	42.6	44.6	67.4	62.1	65.9	49.6	47.1	48.7	49.5	46.3	47.8	59.6	55	60.1	23.7	22.2	22.7
6	Iron	0.16	<0.01	1.87	1.9	1.3	0.086	0.106	0.057	ND ⁽⁵⁾	ND	ND	ND	ND	ND	0.427	0.17	1.09	ND	ND	ND	0.138	0.127	0.144
etals	Magnesium	11	9.4	_(6)	0.371	0.36	-	8.65	8.93	-	9.14	9.39	-	9.15	9.32	-	9.22	9.27	-	10.8	11.5	-	12.7	12.7
■	Manganese	0.31 ⁽⁷⁾	0.137	0.016	0.015	0.015	0.588	0.558	0.605	0.022	0.022	0.021	0.419	0.386	0.418	0.226	0.216	0.223	0.185	0.178	0.187	0.093	0.091	0.094
	Sodium	-	16.2	2.65	2.59	3.35	24	22.8	24.2	17	16.3	17.5	23.4	22.7	23	22.8	22.2	22.6	26.2	24.8	26.9	33	32.3	32.3
	Hardness	180	188	6.08	5.66	5.71	149	142	148	206	193	203	161	155	160	161	154	157	193	182	197	112	108	109
	Alkalinity	160	143	6.4	7.4	5.6	124	129	122	162	161	160	130	130	129	135	132	128	144	141	143	105	108	108
	Bicarbonate	-	-	6.9	7.4	5.6	143	129	122	149	161	160	122	130	129	124	132	128	138	141	143	102	108	108
	Alkalinity																						<u> </u>	
	Specific	490	-	-	30	30	-	420	410	-	490	470	-	430	430	-	440	420	-	520	520	-	380	370
<u>ics</u>	Conductance																						ļ!	
gan	TDS	260	237	-	39	54	-	230	240	-	270	310	-	250	240	-	240	250	-	280	300	-	220	210
org	рН	7.5	7.6	6.5	6.4	6.2	7.4	7.3	7.1	7.9	7.8	7.6	7.6	7.6	7.2	7.6	7.4	7.2	7.9	7.7	7.7	8.2	8.1	8.1
드	Nitrogen,	ND	<0.2	0.378	0.373	0.433	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Nitrate																						<u> </u>	
	Bromide	-	-	ND	ND	ND	0.085	0.072	0.067	0.074	0.069	0.068	0.874	0.069	0.069	0.078	0.071	0.07	0.073	0.066	0.065	0.116	0.119	0.112
	Chloride	49	37	1.68	2.04	2.09	43.1	48.9	44	40.4	46	39.9	9.98	49.5	45.1	44.4	47.8	44.1	87	72.4	68.3	29.8	34.3	29.7
	Sulfate	14	19	3	3.3	2.97	18.8	19.6	19	30.7	30.2	30	19.8	23.4	22.3	22.2	22.7	20.7	21.7	22	21.2	45.5	45.9	44.3

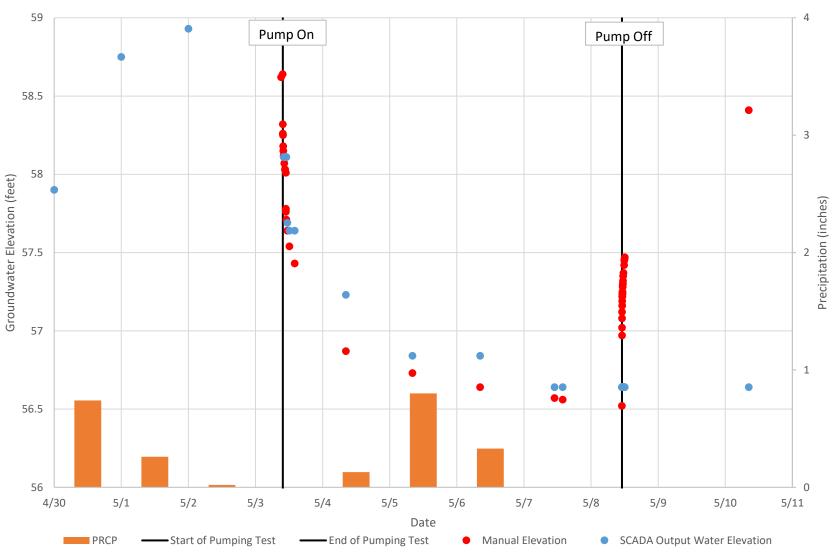
Notes:

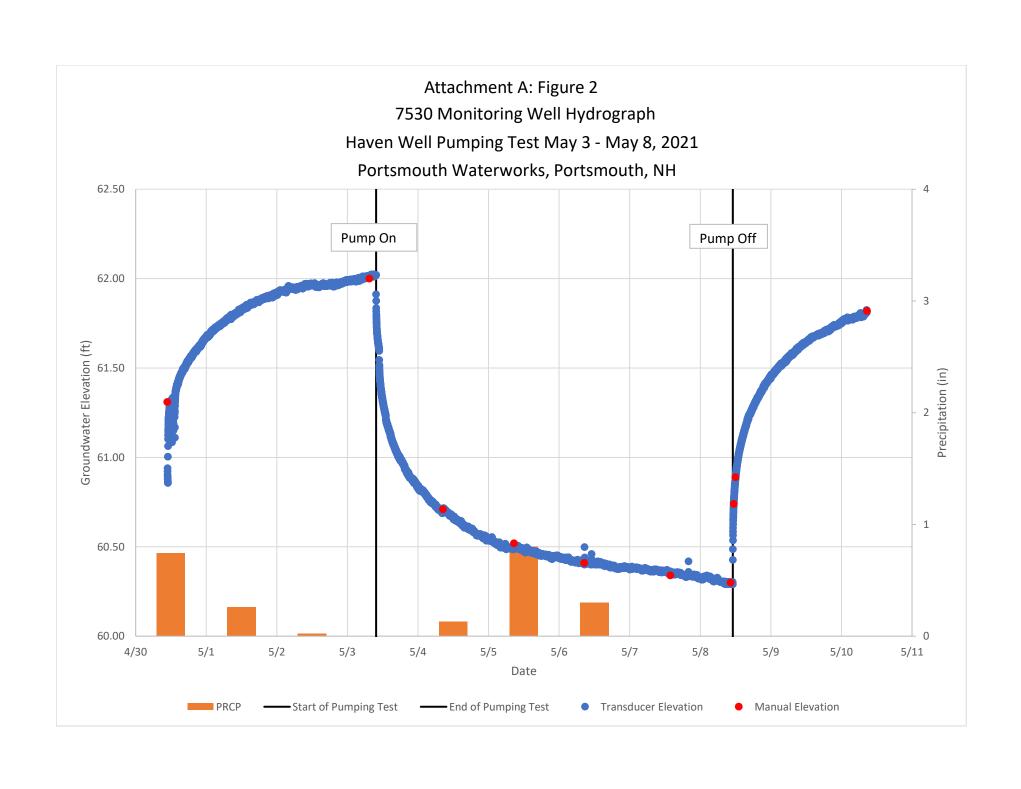
- (1) See Attachment A for complete analytical reports for 2021 sampling.
- (2) Analyses completed by Granite State Analytical Services using respective NHDES Drinking Water methodology unless indicated otherwise.
- (3) Analyses completed by Alpha Analytical.
- (4) Analytical laboratory and methodology not specified with provided results.
- (5) Denotes parameter not detected by laboratory.
- (6) Denotes parameter was not analyzed for by laboratory.
- (7) Pink highlighted concentration indicates that compound exceeds respective NHDES Drinking Water MCL (relevant for Haven Well only).

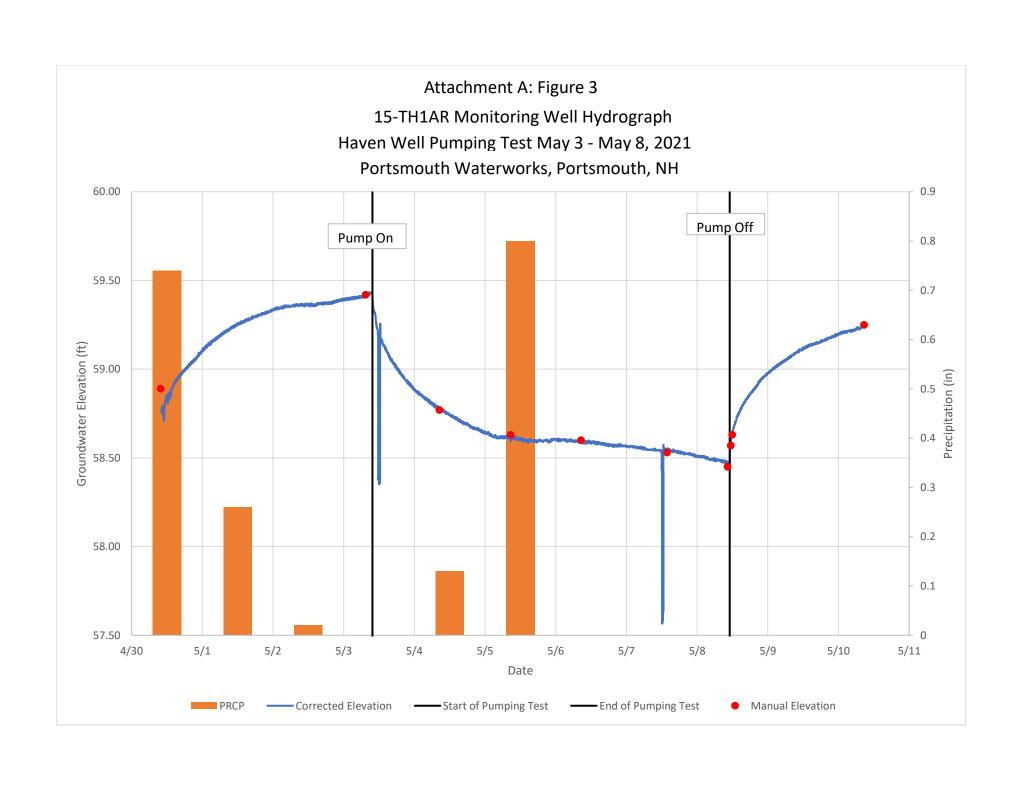
Table 4 Haven Well PFAS Comparisons Haven Well Pumping Test May 3 – May 8, 2021 Portsmouth Waterworks, Portsmouth, NH

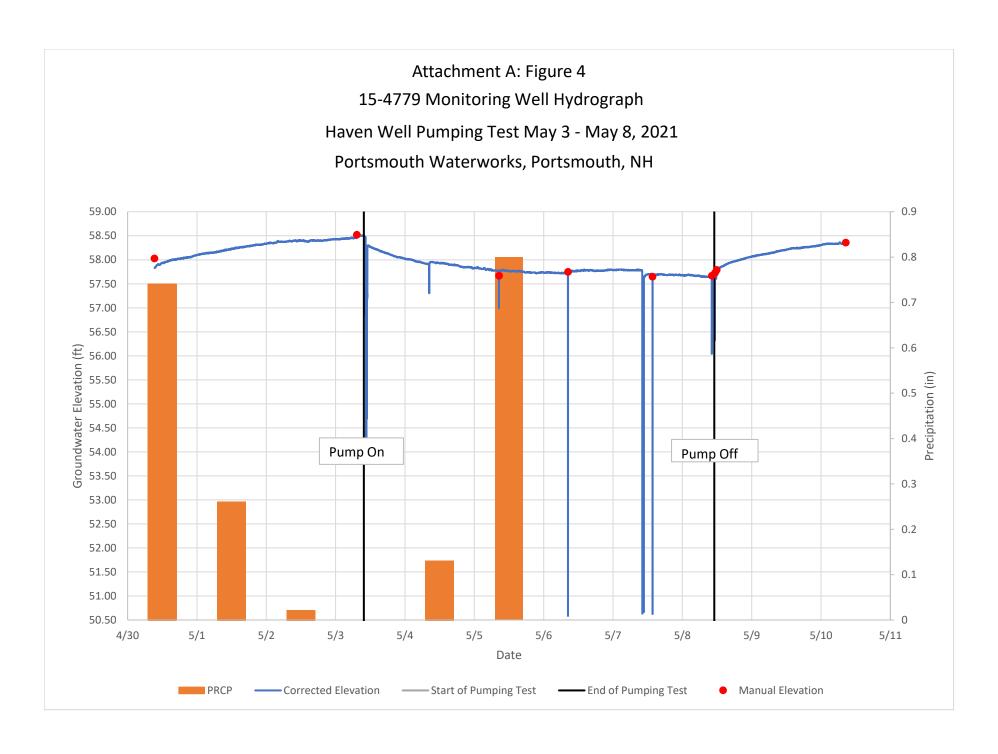
DEAC Commission (1/1)(2)	NHDES	Sampling Date							
PFAS Compound ⁽¹⁾⁽²⁾	MCL ⁽³⁾	2016 ⁽⁴⁾	5/3/2021	5/5/2021	5/8/2021				
Perfluorohexanesulfonic Acid (PFHxS)	18	830 ⁽⁵⁾	156	126	106				
Perfluorooctanoic Acid (PFOA)	12	270	57.2	45.4	37.5				
Perfluorononanoic Acid (PFNA)	11	18	4.68	3.17	2.68				
Perfluorooctanesulfonic Acid (PFOS)	15	1000	531	383	368				
Perfluorobutanoic Acid (PFBA)	_(6)	75	40.3	45	36.9				
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	-	-	ND ⁽⁷⁾	ND	ND				
Perfluoropentanoic Acid (PFPeA)	-	250	75.6	65.7	50.4				
Perfluorobutanesulfonic Acid (PFBS)	-	43	12.4	9.89	7.88				
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	-	-	ND	ND	ND				
Perfluoro (2-Ethoxyethane) Sulfonic Acid (PFEESA)	-	-	ND	ND	ND				
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	-	-	ND	ND	ND				
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	-	-	ND	ND	ND				
(4:2FTS)									
Perfluorohexanoic Acid (PFHxA)	-	290	67.4	55.2	40.1				
Perfluoropentanesulfonic Acid (PFPeS)	-	-	12.8	10.7	9.84				
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-	-	-	ND	ND	ND				
Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)									
Perfluoroheptanoic Acid (PFHpA)	-	120	27.8	21.6	15.6				
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	-	-	ND	ND	ND				
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	-	220	75.2	40.6	41.2				
Perfluoroheptanesulfonic Acid (PFHpS)	-	54	10.2	7.29	7.08				
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	-	-	ND	ND	ND				
(9CI-PF3ONS)									
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	-	37	18.4	13.3	10.6				
Perfluorodecanoic Acid (PFDA)	-	ND	ND	ND	ND				
Perfluoroundecanoic Acid (PFUnA)	-	ND	ND	ND	ND				
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic	-	-	ND	ND	ND				
Acid (11Cl-PF3OUdS)									
Perfluorododecanoic Acid (PFDoA)	-	ND	ND	ND	ND				
Perfluorotridecanoic Acid (PFTrDA)	-	ND	-	-	-				
N-Methyl Perfluorooctanesulfonamidoacetic Acid	-	-	-	-	-				
(NMeFOSAA)									
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	-	-	-	-	-				
Perfluorotetradecanoic Acid (PFTA)	-	-	-	-	-				
TOTAL PFAS ⁽⁸⁾	56	2118	748.88	557.57	514.18				

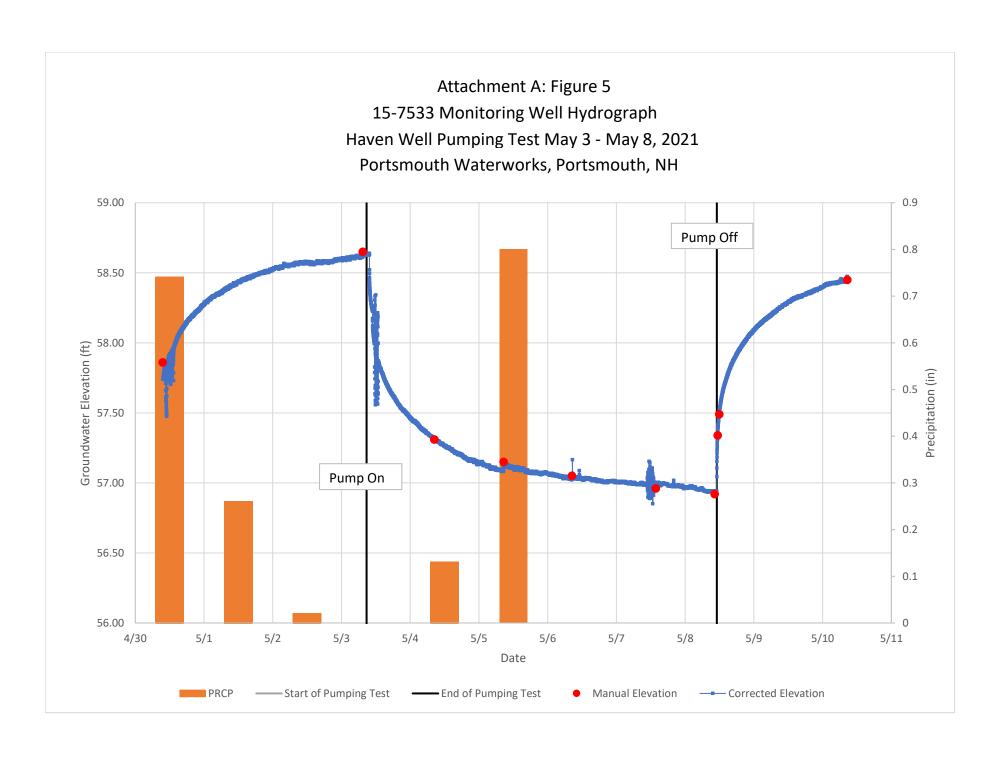
Notes:

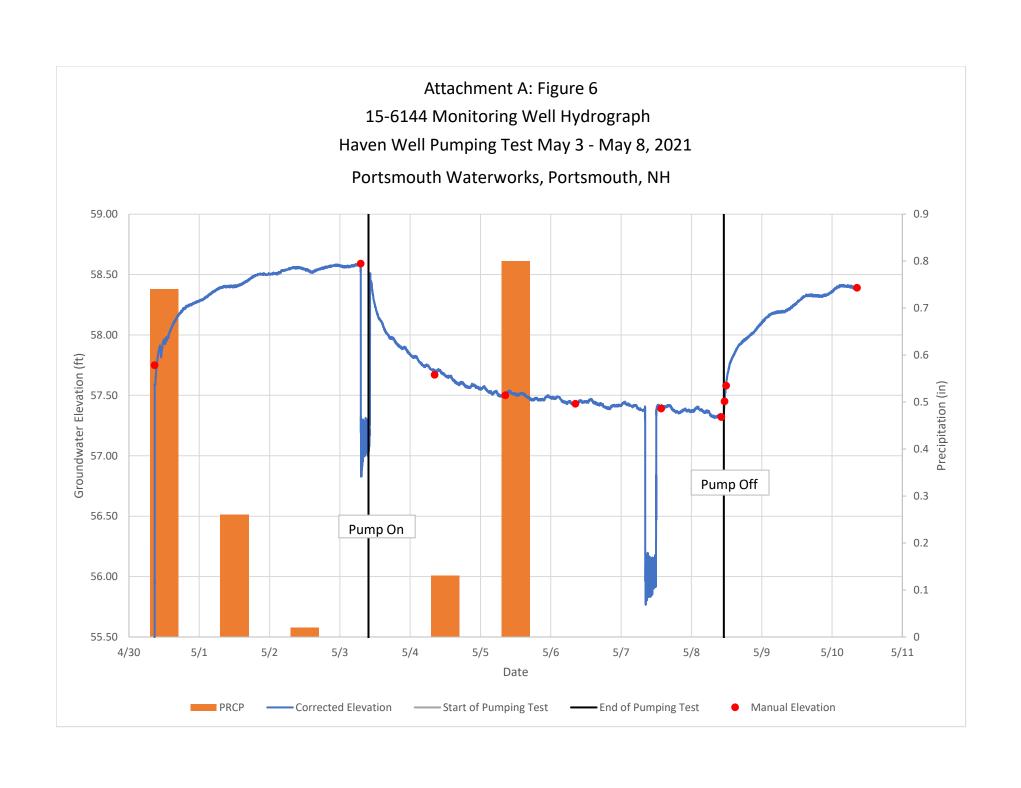

- (1) Except where noted, all samples analyzed using EPA Method 533. See Attachment A for complete analytical report.
- (2) All concentrations reported in units of parts per trillion or nanograms per liter (ng/L).
- (3) New Hampshire Drinking Water Maximum Contaminant Level for corresponding regulated PFAS compound indicated in **Bold**.
- (4) Analytical methodology not specified with results.
- (5) Pink highlighted concentration indicates that compound exceeds respective NHDES MCL
- (6) Denotes no NHDES MCL exists for compound, or compound not targeted by analytical method.
- (7) Denotes parameter not detected by laboratory at concentration above the respective method reportable limit.
- (8) Total of NHDES regulated PFAS compounds.

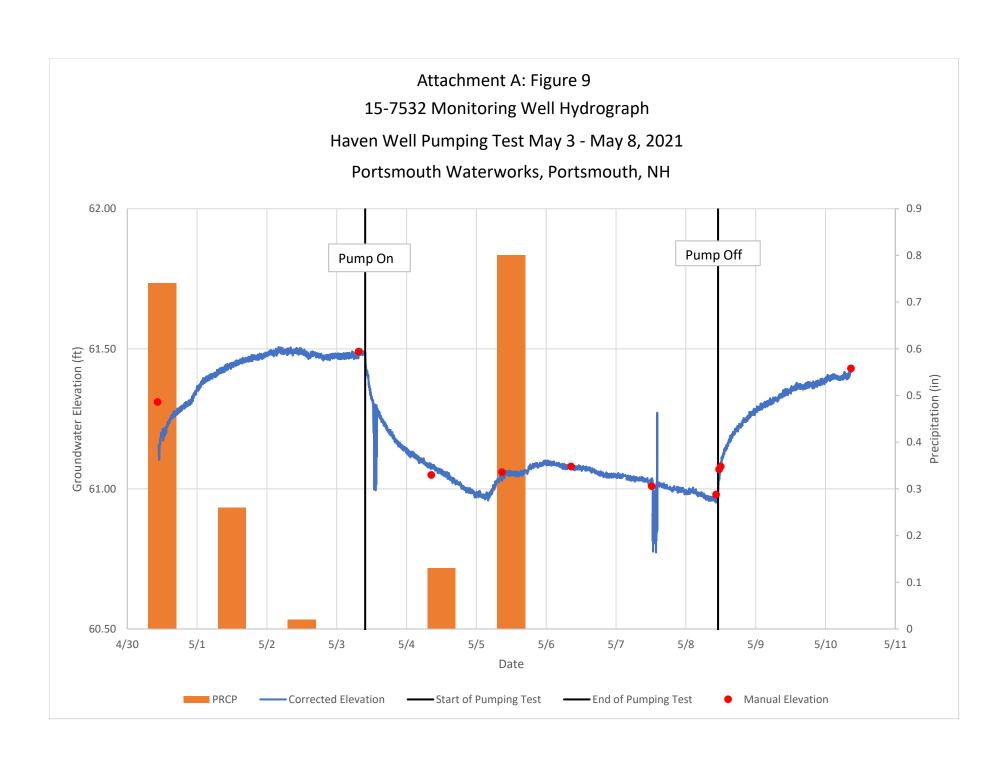

ATTACHMENT A

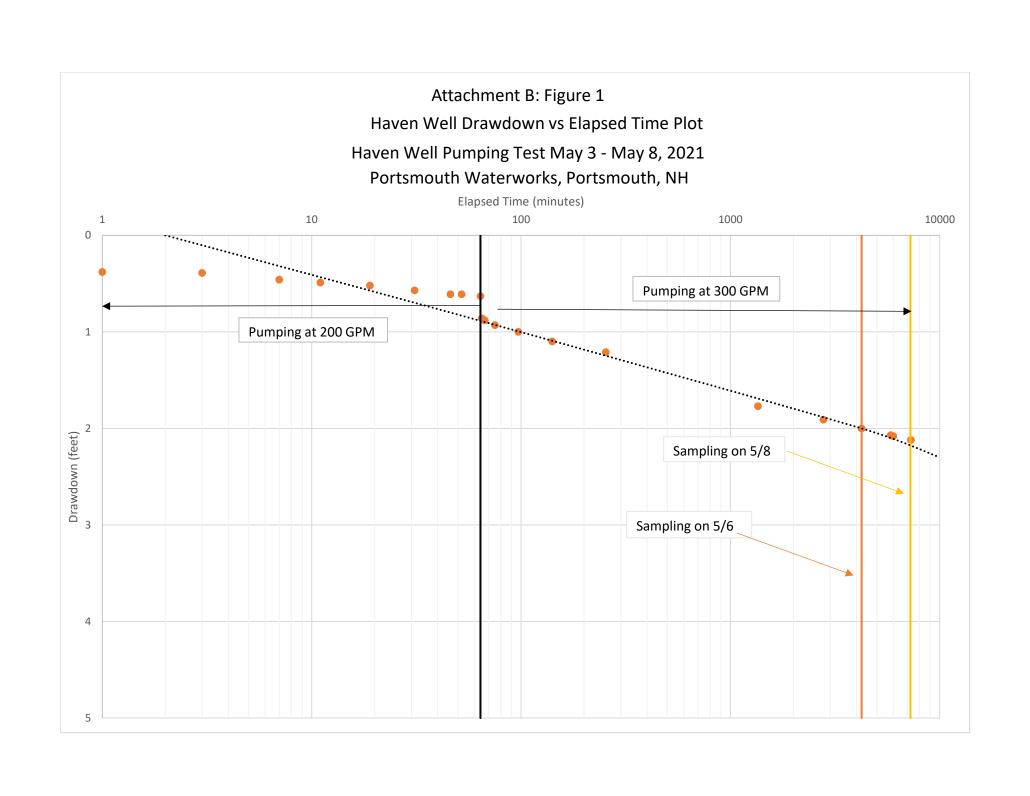


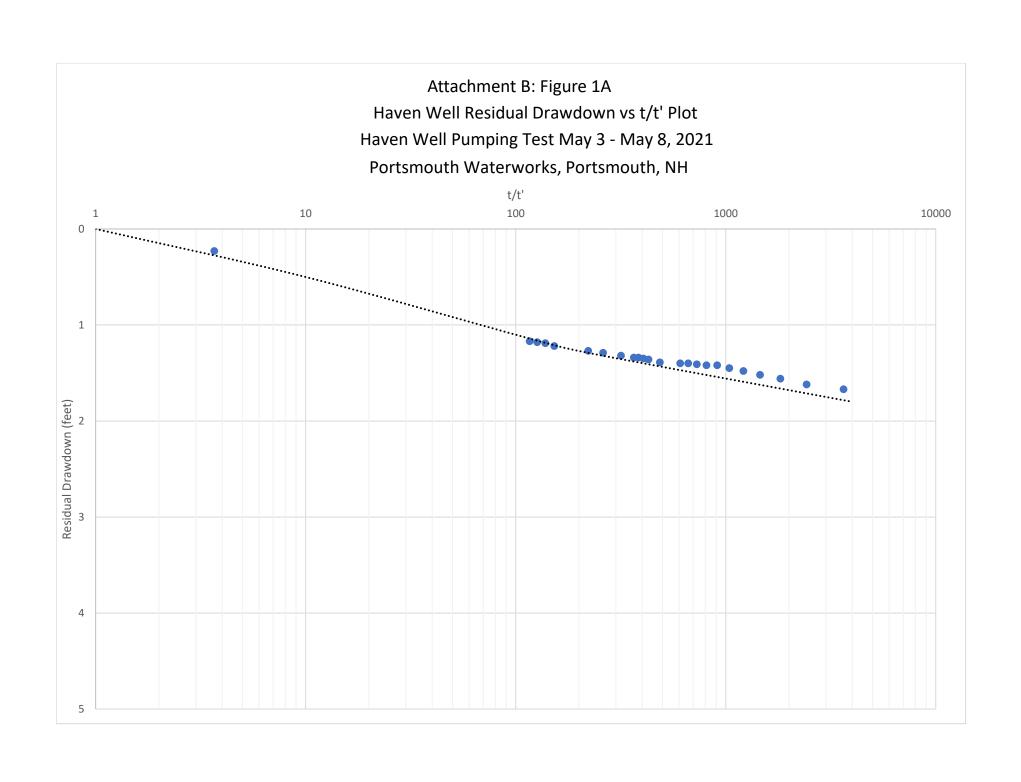

Attachment A: Figure 1 Haven Well Hydrograph Haven Well Pumping Test May 3 - May 8, 2021

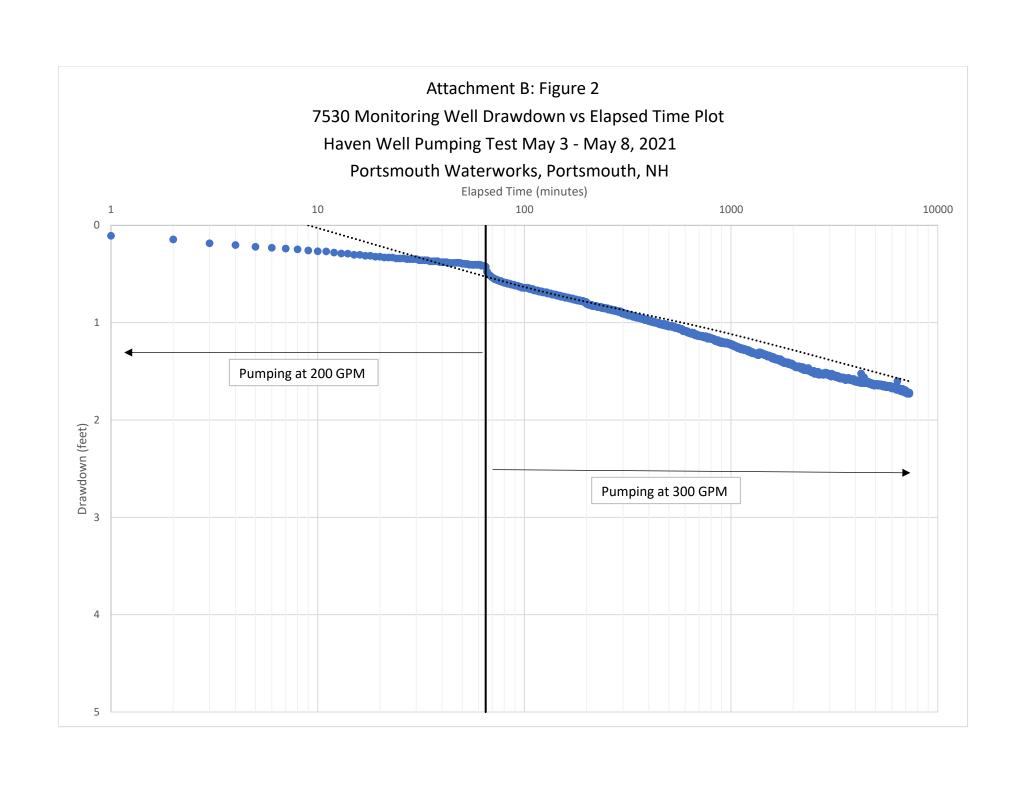

Portsmouth Waterworks, Porstmouth, NH

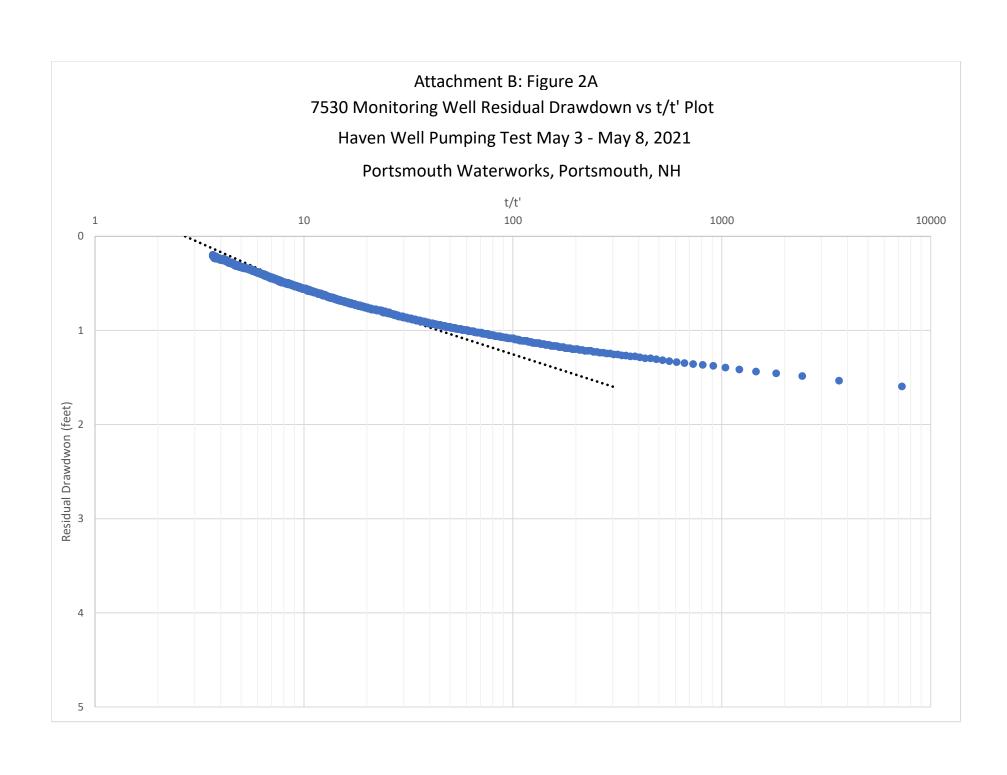


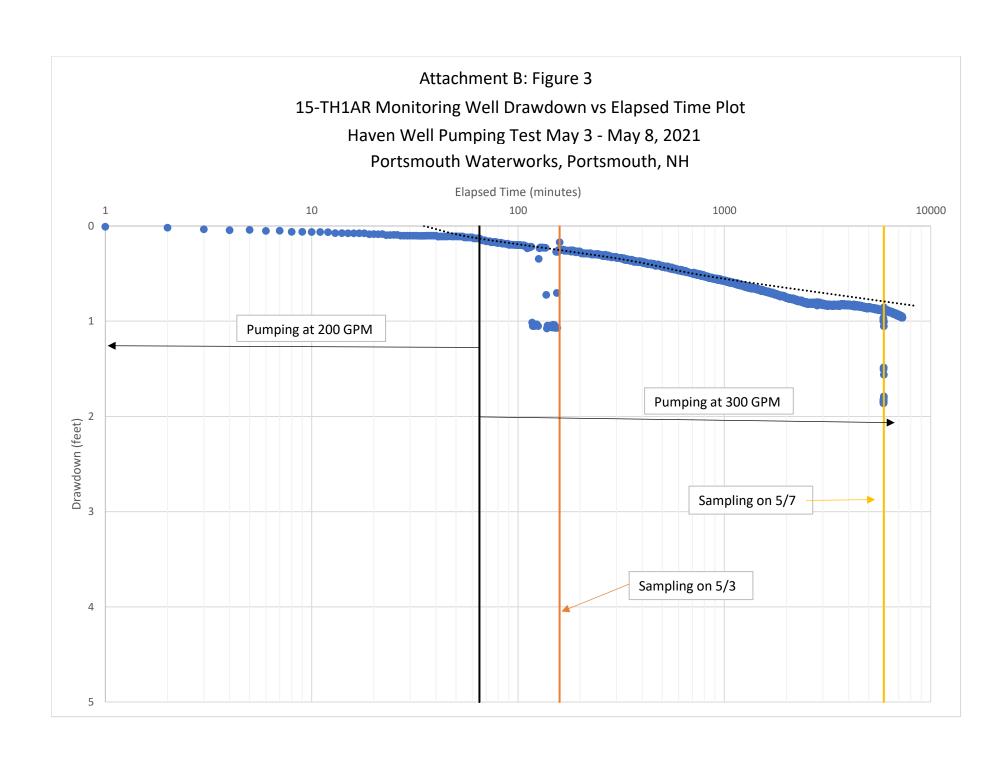


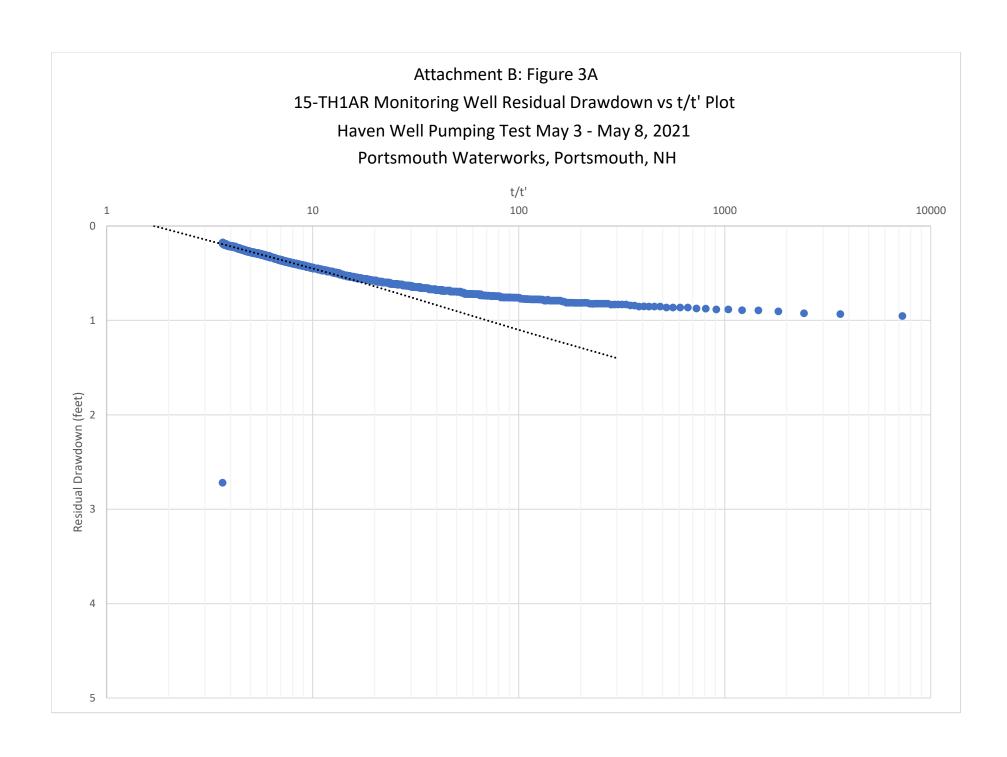


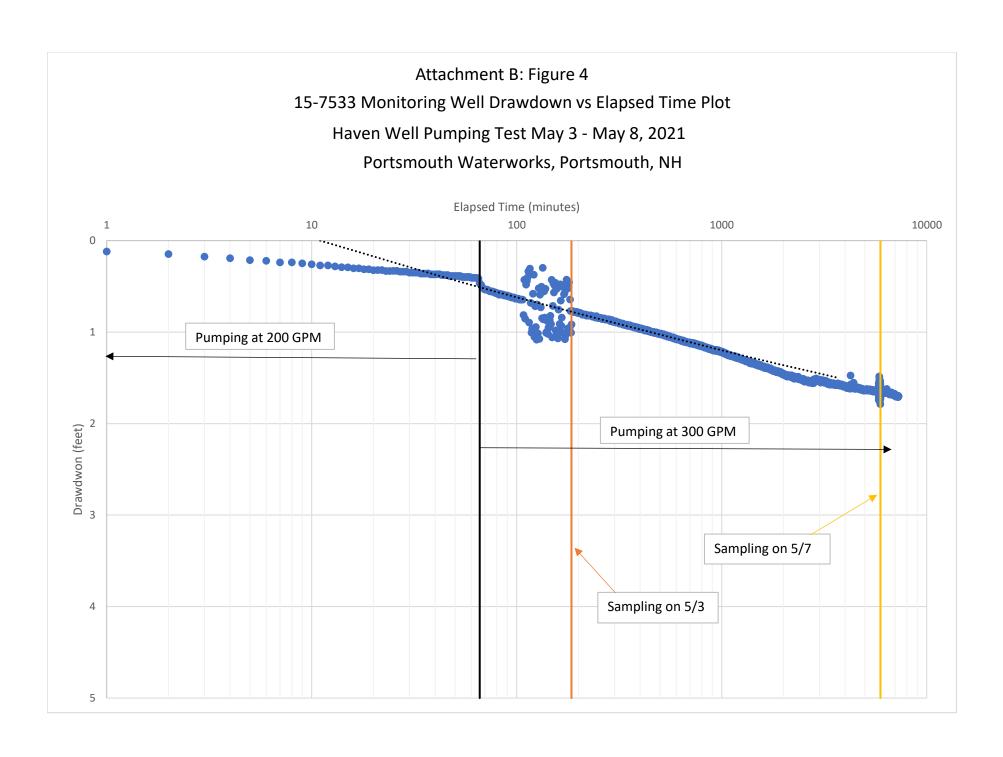


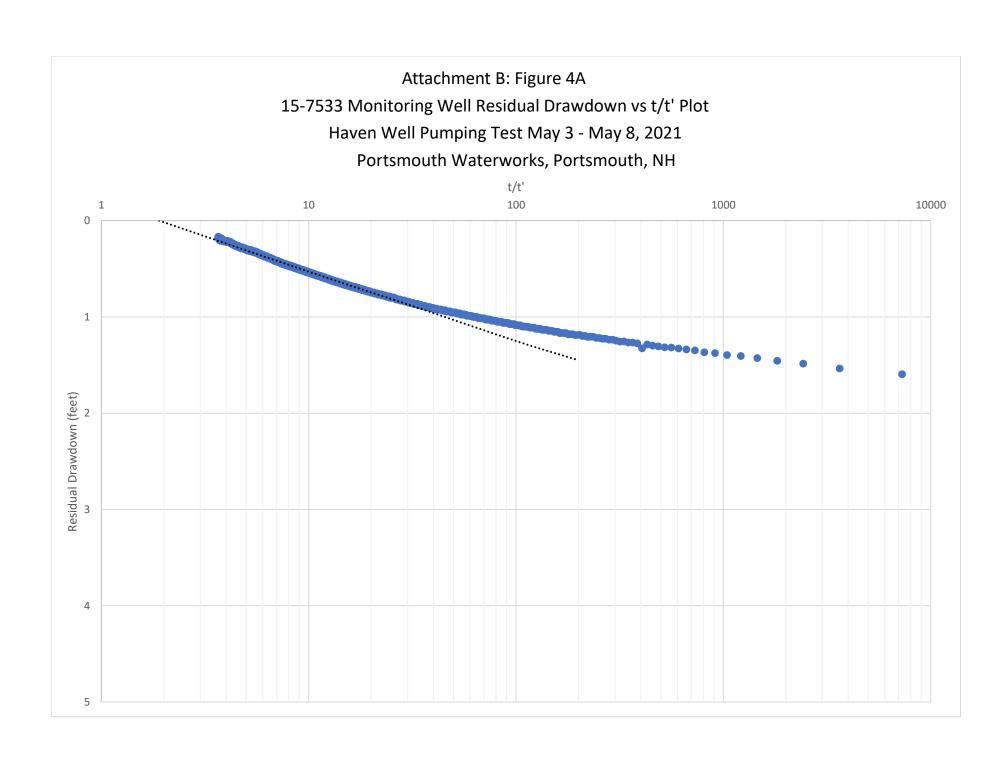


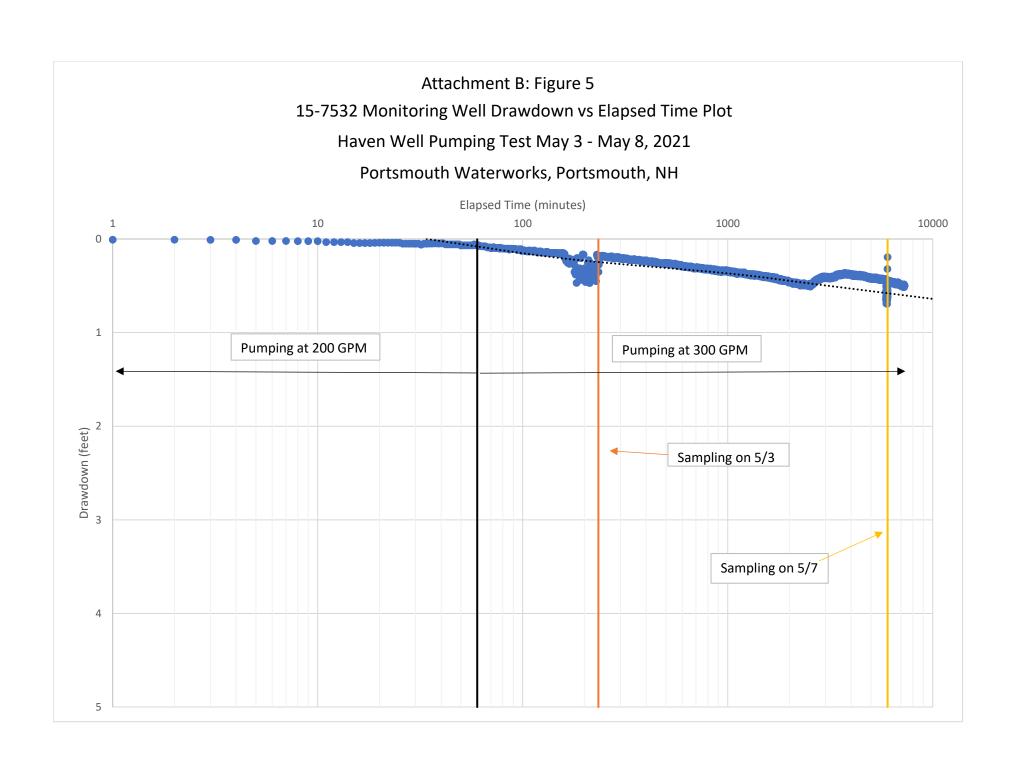

ATTACHMENT B

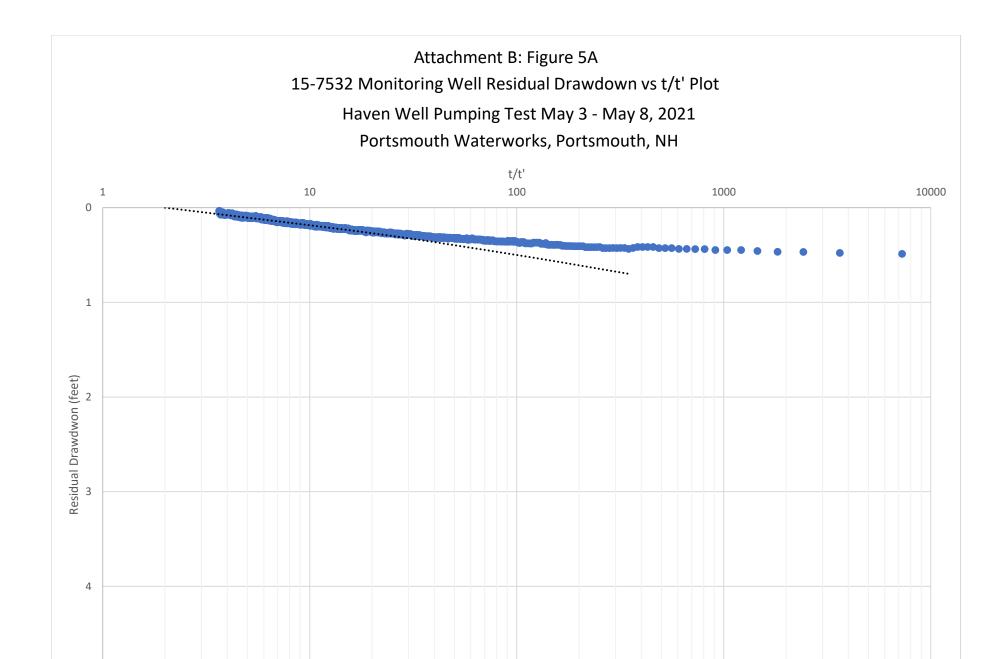












ATTACHMENT C

ANALYTICAL REPORT

Lab Number: L2122205

Client: Weston & Sampson

100 International Drive

Suite 152

Portsmouth, NH 03801

ATTN: Frank Getchell
Phone: (603) 570-6319
Project Name: HAVEN WELL PT

Project Number: 2190120

Report Date: 05/14/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122205 **Report Date:** 05/14/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2122205-01	15-7535	WATER	PORTSMOUTH, NH	04/29/21 14:20	04/29/21
L2122205-02	15-7532	WATER	PORTSMOUTH, NH	04/29/21 16:00	04/29/21
L2122205-03	15-TH1AR	WATER	PORTSMOUTH, NH	04/29/21 13:00	04/29/21
L2122205-04	15-7533	WATER	PORTSMOUTH, NH	04/29/21 16:20	04/29/21
L2122205-05	15-6522	WATER	PORTSMOUTH, NH	04/29/21 11:10	04/29/21
L2122205-06	15-6144	WATER	PORTSMOUTH, NH	04/29/21 13:20	04/29/21
L2122205-07	PH4-4779	WATER	PORTSMOUTH, NH	04/29/21 12:00	04/29/21

L2122205

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/14/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2122205

Project Name: HAVEN WELL PT Lab Number:

Project Number: 2190120 Report Date: 05/14/21

Case Narrative (continued)

Anions by Ion Chromatography

The WG1496983-3 MS recovery, performed on L2122205-01, is outside the acceptance criteria for bromide (59%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/14/21

Custen Walker Cristin Walker

METALS

Project Name: HAVEN WELL PT Lab Number: L2122205

Project Number: 2190120 Report Date: 05/14/21

SAMPLE RESULTS

 Lab ID:
 L2122205-01
 Date Collected:
 04/29/21 14:20

 Client ID:
 15-7535
 Date Received:
 04/29/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	sfield Lab										
Calcium, Total	45.5		mg/l	0.100		1	05/08/21 06:0	8 05/11/21 21:03	EPA 3005A	1,6010D	BV
Iron, Total	0.086		mg/l	0.050		1	05/08/21 06:0	8 05/11/21 21:03	EPA 3005A	1,6010D	BV
Manganese, Total	0.588		mg/l	0.010		1	05/08/21 06:0	8 05/11/21 21:03	EPA 3005A	1,6010D	BV
Sodium, Total	24.0		mg/l	2.00		1	05/08/21 06:0	8 05/11/21 21:03	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	149		mg/l	0.660	NA	1	05/08/21 06:0	8 05/11/21 21:03	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122205

Project Number: 2190120 Report Date: 05/14/21

SAMPLE RESULTS

 Lab ID:
 L2122205-02
 Date Collected:
 04/29/21 16:00

 Client ID:
 15-7532
 Date Received:
 04/29/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mans	sfield Lab										
Calcium, Total	49.6		mg/l	0.100		1	05/08/21 06:0	8 05/11/21 21:08	EPA 3005A	1,6010D	BV
Iron, Total	ND		mg/l	0.050		1	05/08/21 06:0	8 05/11/21 21:08	EPA 3005A	1,6010D	BV
Manganese, Total	0.419		mg/l	0.010		1	05/08/21 06:0	8 05/11/21 21:08	EPA 3005A	1,6010D	BV
Sodium, Total	23.4		mg/l	2.00		1	05/08/21 06:0	8 05/11/21 21:08	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfield	d Lab								
Hardness	161		mg/l	0.660	NA	1	05/08/21 06:0	8 05/11/21 21:08	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122205

Project Number: 2190120 Report Date: 05/14/21

SAMPLE RESULTS

 Lab ID:
 L2122205-03
 Date Collected:
 04/29/21 13:00

 Client ID:
 15-TH1AR
 Date Received:
 04/29/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Calcium, Total	49.5		mg/l	0.100		1	05/08/21 06:0	8 05/11/21 21:22	EPA 3005A	1,6010D	BV
Iron, Total	0.427		mg/l	0.050		1	05/08/21 06:0	8 05/11/21 21:22	EPA 3005A	1,6010D	BV
Manganese, Total	0.226		mg/l	0.010		1	05/08/21 06:0	8 05/11/21 21:22	EPA 3005A	1,6010D	BV
Sodium, Total	22.8		mg/l	2.00		1	05/08/21 06:0	8 05/11/21 21:22	EPA 3005A	1,6010D	BV
Total Hardness by	' SM 2340E	3 - Mansfiel	ld Lab								
Hardness	161		mg/l	0.660	NA	1	05/08/21 06:0	8 05/11/21 21:22	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122205

Project Number: 2190120 Report Date: 05/14/21

SAMPLE RESULTS

 Lab ID:
 L2122205-04
 Date Collected:
 04/29/21 16:20

 Client ID:
 15-7533
 Date Received:
 04/29/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	67.4		mg/l	0.100		1	05/08/21 06:0	8 05/11/21 21:27	EPA 3005A	1,6010D	BV
Iron, Total	ND		mg/l	0.050		1	05/08/21 06:0	8 05/11/21 21:27	EPA 3005A	1,6010D	BV
Manganese, Total	0.022		mg/l	0.010		1	05/08/21 06:0	8 05/11/21 21:27	EPA 3005A	1,6010D	BV
Sodium, Total	17.0		mg/l	2.00		1	05/08/21 06:0	8 05/11/21 21:27	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	206		mg/l	0.660	NA	1	05/08/21 06:0	8 05/11/21 21:27	EPA 3005A	1,6010D	BV

Project Name:HAVEN WELL PTLab Number:L2122205

Project Number: 2190120 Report Date: 05/14/21

SAMPLE RESULTS

 Lab ID:
 L2122205-05
 Date Collected:
 04/29/21 11:10

 Client ID:
 15-6522
 Date Received:
 04/29/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	59.6		mg/l	0.100		1	05/08/21 06:0	8 05/11/21 21:32	EPA 3005A	1,6010D	BV
Iron, Total	ND		mg/l	0.050		1	05/08/21 06:0	8 05/11/21 21:32	EPA 3005A	1,6010D	BV
Manganese, Total	0.185		mg/l	0.010		1	05/08/21 06:0	8 05/11/21 21:32	EPA 3005A	1,6010D	BV
Sodium, Total	26.2		mg/l	2.00		1	05/08/21 06:0	8 05/11/21 21:32	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	193		mg/l	0.660	NA	1	05/08/21 06:0	8 05/11/21 21:32	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122205

Project Number: 2190120 Report Date: 05/14/21

SAMPLE RESULTS

 Lab ID:
 L2122205-06
 Date Collected:
 04/29/21 13:20

 Client ID:
 15-6144
 Date Received:
 04/29/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	23.7		mg/l	0.100		1	05/09/21 10:1	6 05/11/21 17:37	EPA 3005A	1,6010D	SV
Iron, Total	0.138		mg/l	0.050		1	05/09/21 10:1	6 05/11/21 17:37	EPA 3005A	1,6010D	SV
Manganese, Total	0.093		mg/l	0.010		1	05/09/21 10:1	6 05/11/21 17:37	EPA 3005A	1,6010D	SV
Sodium, Total	33.0		mg/l	2.00		1	05/09/21 10:1	6 05/11/21 17:37	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	112		mg/l	0.660	NA	1	05/09/21 10:1	6 05/11/21 17:37	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT Lab Number: L2122205

Project Number: 2190120 Report Date: 05/14/21

SAMPLE RESULTS

 Lab ID:
 L2122205-07
 Date Collected:
 04/29/21 12:00

 Client ID:
 PH4-4779
 Date Received:
 04/29/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	1.83		mg/l	0.100		1	05/09/21 10:10	6 05/11/21 18:31	EPA 3005A	1,6010D	SV
Iron, Total	1.87		mg/l	0.050		1	05/09/21 10:10	6 05/11/21 18:31	EPA 3005A	1,6010D	SV
Manganese, Total	0.016		mg/l	0.010		1	05/09/21 10:10	6 05/11/21 18:31	EPA 3005A	1,6010D	SV
Sodium, Total	2.65		mg/l	2.00		1	05/09/21 10:10	6 05/11/21 18:31	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	6.08		mg/l	0.660	NA	1	05/09/21 10:10	6 05/11/21 18:31	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date:

05/14/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	l Analyst
Total Metals - Mansfie	ld Lab for sample(s):	01-05 B	atch: Wo	G14956	36-1				
Iron, Total	ND	mg/l	0.050		1	05/08/21 06:08	05/11/21 14:46	1,6010D	SV
Manganese, Total	ND	mg/l	0.010		1	05/08/21 06:08	05/11/21 14:46	1,6010D	SV
Sodium, Total	ND	mg/l	2.00		1	05/08/21 06:08	05/11/21 14:46	1,6010D	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	2340B - Mansfield Lal	b for sam	ple(s):	01-05	Batch: WG	1495636-1			
Hardness	ND	mg/l	0.660	NA	1	05/08/21 06:08	05/11/21 14:46	1,6010D	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	06-07 E	Batch: Wo	G14962	92-1				
Calcium, Total	ND	mg/l	0.100		1	05/09/21 10:16	05/11/21 17:53	3 1,6010D	SV
Iron, Total	ND	mg/l	0.050		1	05/09/21 10:16	05/11/21 17:53	3 1,6010D	SV
Manganese, Total	ND	mg/l	0.010		1	05/09/21 10:16	05/11/21 17:53	3 1,6010D	SV
Sodium, Total	ND	mg/l	2.00		1	05/09/21 10:16	05/11/21 17:53	3 1,6010D	SV

Prep Information

Digestion Method: EPA 3005A

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date:

05/14/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	1 2340B - Mansfield Lab	for samp	ole(s):	06-07 I	Batch: WG	1496292-1			
Hardness	ND	mg/l	0.660	NA	1	05/09/21 10:16	05/11/21 17:53	1,6010D	SV

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122205

Report Date: 05/14/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-05 Batcl	h: WG14956	636-2					
Calcium, Total	106		-		80-120	-		
Iron, Total	96		-		80-120	-		
Manganese, Total	99		-		80-120	-		
Sodium, Total	107		-		80-120	-		
Total Hardness by SM 2340B - Mansfield Lab A	Associated sample	e(s): 01-05	Batch: WG149	5636-2				
Hardness	107		-		80-120	-		
Total Metals - Mansfield Lab Associated sample	e(s): 06-07 Batcl	h: WG14962	292-2					
Calcium, Total	101		-		80-120	-		
Iron, Total	99		-		80-120	-		
Manganese, Total	99		-		80-120	-		
Sodium, Total	106		-		80-120	-		
Total Hardness by SM 2340B - Mansfield Lab A	Associated sample	e(s): 06-07	Batch: WG149	6292-2				
Hardness	103		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery al Limits	RPD Qual	RPD Limits
Total Metals - Mansfield La	b Associated sam	ple(s): 01-05	QC Bato	h ID: WG149	5636-3	QC Sam	ple: L2121855-01	Client ID: MS	Sample	
Calcium, Total	66.5	10	75.1	86		-	-	75-125	-	20
Iron, Total	6.22	1	7.00	78		-	-	75-125	-	20
Manganese, Total	0.187	0.5	0.663	95		-	-	75-125	-	20
Sodium, Total	80.0	10	88.0	80		-	-	75-125	-	20
Total Hardness by SM 2340	OB - Mansfield Lal	Associated s	sample(s):	01-05 QC E	Batch ID	: WG1495	636-3 QC Sampl	e: L2121855-01	Client ID:	MS Sample
Hardness	243	66.2	304	92		-	-	75-125	-	20
Total Metals - Mansfield La	b Associated sam	ple(s): 06-07	QC Bato	h ID: WG149	6292-3	QC Sam	ple: L2123599-21	Client ID: MS	Sample	
Calcium, Total	ND	10	10.6	106		-	-	75-125	-	20
Iron, Total	0.102	1	1.08	98		-	-	75-125	-	20
Manganese, Total	ND	0.5	0.509	102		-	-	75-125	-	20
Sodium, Total	ND	10	10.8	108		-	-	75-125	-	20
Total Hardness by SM 2340	OB - Mansfield Lal	Associated :	sample(s):	06-07 QC E	Batch ID	: WG1496	292-3 QC Sampl	e: L2123599-21	Client ID:	MS Sample
Hardness	ND	66.2	69.6	105		-	-	75-125	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date:

05/14/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Total Hardness by SM 2340B - Mansfield Lab Associated Sample	d sample(s): 01-05	QC Batch ID: WG1495636	-4 QC Samp	le: L2121	855-01 Cli	ent ID: DUP
Hardness	243	245	mg/l	1		20
Total Metals - Mansfield Lab Associated sample(s): 06-0	7 QC Batch ID: \	WG1496292-4 QC Sample:	L2123599-21	Client ID:	: DUP Sam	ple
Calcium, Total	ND	ND	mg/l	NC		20
Iron, Total	0.102	ND	mg/l	NC		20
Manganese, Total	ND	ND	mg/l	NC		20
Sodium, Total	ND	ND	mg/l	NC		20

INORGANICS & MISCELLANEOUS

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

SAMPLE RESULTS

Lab ID: L2122205-01

Client ID: 15-7535

Sample Location: PORTSMOUTH, NH

Date Collected: Date Received: 04/29/21

04/29/21 14:20

Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	124.	mg CaCO3/L	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
Alkalinity, Bicarbonate	143.	mg CaCO3/L	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
pH (H)	7.4	SU	-	NA	1	-	05/04/21 18:22	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/01/21 04:58	121,4500NO3-F	MR
Anions by Ion Chromat	ography - Westl	borough Lab							
Bromide	0.085	mg/l	0.050		1	-	05/10/21 19:20	44,300.0	SH
Chloride	43.1	mg/l	0.500		1	-	05/10/21 19:20	44,300.0	SH
Sulfate	18.8	mg/l	1.00		1	-	05/10/21 19:20	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

SAMPLE RESULTS

Lab ID: L2122205-02

Client ID: 15-7532

Sample Location: PORTSMOUTH, NH

Date Collected:

04/29/21 16:00

Date Received:

04/29/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	130.	mg CaCO3/L	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
Alkalinity, Bicarbonate	122.	mg CaCO3/L	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
pH (H)	7.6	SU	-	NA	1	-	05/04/21 18:22	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/01/21 05:00	121,4500NO3-F	MR
Anions by Ion Chromat	ography - Westb	orough Lab							
Bromide	0.874	mg/l	0.050		1	-	05/10/21 19:32	44,300.0	SH
Chloride	9.98	mg/l	0.500		1	-	05/10/21 19:32	44,300.0	SH
Sulfate	19.8	mg/l	1.00		1	-	05/10/21 19:32	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

SAMPLE RESULTS

Lab ID: L2122205-03

Client ID: 15-TH1AR

Date Collected:

Date Received:

04/29/21 13:00

Sample Location: PORTSMOUTH, NH

Date Received: 04/29/21 Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	135.	mg CaCO3/L	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
Alkalinity, Bicarbonate	124.	mg CaCO3/L	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
pH (H)	7.6	SU	-	NA	1	-	05/04/21 18:22	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/01/21 05:01	121,4500NO3-F	MR
Anions by Ion Chromat	ography - Westb	orough Lab							
Bromide	0.078	mg/l	0.050		1	-	05/10/21 23:34	44,300.0	SH
Chloride	44.4	mg/l	0.500		1	-	05/10/21 23:34	44,300.0	SH
Sulfate	22.2	mg/l	1.00		1	-	05/10/21 23:34	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

SAMPLE RESULTS

Lab ID: L2122205-04

Client ID: 15-7533

Sample Location: PORTSMOUTH, NH

Date Collected:

04/29/21 16:20

Date Received:

04/29/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)							
Alkalinity, Total	162.	mg CaCO3/L	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
Alkalinity, Bicarbonate	149.	mg CaCO3/L	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
pH (H)	7.9	SU	-	NA	1	-	05/04/21 18:22	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/01/21 05:02	121,4500NO3-F	MR
Anions by Ion Chromate	ography - West	borough Lab							
Bromide	0.074	mg/l	0.050		1	-	05/10/21 23:46	44,300.0	SH
Chloride	40.4	mg/l	0.500		1	-	05/10/21 23:46	44,300.0	SH
Sulfate	30.7	mg/l	1.00		1	-	05/10/21 23:46	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

SAMPLE RESULTS

Lab ID: L2122205-05

Client ID: 15-6522

Sample Location: PORTSMOUTH, NH

Date Collected:

04/29/21 11:10

Date Received:

04/29/21

Field Prep:

Not Specified

Sample Depth:

Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
stborough Lab								
144.	mg CaCO3/L	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
138.	mg CaCO3/L	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
7.9	SU	-	NA	1	-	05/04/21 18:22	121,4500H+-B	AS
ND	mg/l	0.100		1	-	05/01/21 05:03	121,4500NO3-F	MR
graphy - Westb	orough Lab							
0.073	mg/l	0.050		1	-	05/10/21 23:58	44,300.0	SH
87.0	mg/l	5.00		10	-	05/12/21 00:54	44,300.0	SH
21.7	mg/l	1.00		1	-	05/10/21 23:58	44,300.0	SH
	estborough Lab 144. 138. 7.9 ND ography - Westb 0.073 87.0	sstborough Lab 144. mg CaCO3/L 138. mg CaCO3/L 7.9 SU ND mg/l graphy - Westborough Lab 0.073 mg/l 87.0 mg/l	sstborough Lab 144. mg CaCO3/L 2.00 138. mg CaCO3/L 2.00 7.9 SU - ND mg/l 0.100 graphy - Westborough Lab 0.073 mg/l 0.050 87.0 mg/l 5.00	sstborough Lab 144. mg CaCO3/L 2.00 NA 138. mg CaCO3/L 2.00 NA 7.9 SU - NA ND mg/l 0.100 graphy - Westborough Lab 0.073 mg/l 0.050 87.0 mg/l 5.00	Result Qualifier Units RL MDL Factor estborough Lab 144. mg CaCO3/L 2.00 NA 1 138. mg CaCO3/L 2.00 NA 1 7.9 SU - NA 1 ND mg/l 0.100 1 ography - Westborough Lab 0.073 mg/l 0.050 1 87.0 mg/l 5.00 10	Result Qualifier Units RL MDL Factor Prepared estborough Lab 144. mg CaCO3/L 2.00 NA 1 - 138. mg CaCO3/L 2.00 NA 1 - 7.9 SU - NA 1 - ND mg/l 0.100 1 - ography - Westborough Lab 0.073 mg/l 0.050 1 - 87.0 mg/l 5.00 10 -	Result Qualifier Units RL MDL Factor Prepared Analyzed estborough Lab 144. mg CaCO3/L 2.00 NA 1 - 05/10/21 08:47 138. mg CaCO3/L 2.00 NA 1 - 05/06/21 09:45 7.9 SU - NA 1 - 05/04/21 18:22 ND mg/l 0.100 1 - 05/01/21 05:03 ography - Westborough Lab 0.073 mg/l 0.050 1 - 05/10/21 23:58 87.0 mg/l 5.00 10 - 05/12/21 00:54	Result Qualifier Units RL MDL Factor Prepared Analyzed Method estborough Lab 144. mg CaCO3/L 2.00 NA 1 - 05/10/21 08:47 121,2320B 138. mg CaCO3/L 2.00 NA 1 - 05/06/21 09:45 121,2320B 7.9 SU - NA 1 - 05/04/21 18:22 121,4500H+-B ND mg/l 0.100 1 - 05/01/21 05:03 121,4500NO3-F ography - Westborough Lab 0.073 mg/l 0.050 1 - 05/10/21 23:58 44,300.0 87.0 mg/l 5.00 10 - 05/12/21 00:54 44,300.0

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

SAMPLE RESULTS

Lab ID: L2122205-06

Client ID: 15-6144

Sample Location: PORTSMOUTH, NH

Date Collected:

04/29/21 13:20

Date Received:

04/29/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	105.	mg CaCO3/L	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
Alkalinity, Bicarbonate	102.	mg CaCO3/L	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
pH (H)	8.2	SU	-	NA	1	-	05/04/21 18:22	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/01/21 05:09	121,4500NO3-F	MR
Anions by Ion Chromat	ography - Westb	orough Lab							
Bromide	0.116	mg/l	0.050		1	-	05/11/21 00:10	44,300.0	SH
Chloride	29.8	mg/l	0.500		1	-	05/11/21 00:10	44,300.0	SH
Sulfate	45.5	mg/l	1.00		1	-	05/11/21 00:10	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

SAMPLE RESULTS

Lab ID: L2122205-07

Client ID: PH4-4779 Date Collected: Date Received: 04/29/21 12:00

Sample Location: PORTSMOUTH, NH

04/29/21 Not Specified Field Prep:

Sample Depth:

Matrix:

Water

Parameter	Result 0	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab								
Alkalinity, Total	6.40	mg CaCO3/L	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
Alkalinity, Bicarbonate	6.90	mg CaCO3/L	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
pH (H)	6.5	SU	-	NA	1	-	05/04/21 18:22	121,4500H+-B	AS
Nitrogen, Nitrate	0.378	mg/l	0.100		1	-	05/01/21 05:10	121,4500NO3-F	MR
Anions by Ion Chromat	ography - Westb	orough Lab							
Bromide	ND	mg/l	0.050		1	-	05/11/21 00:22	44,300.0	SH
Chloride	1.68	mg/l	0.500		1	-	05/11/21 00:22	44,300.0	SH
Sulfate	3.00	mg/l	1.00		1	-	05/11/21 00:22	44,300.0	SH

L2122205

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/14/21

N

Method	Blank	Anal	ysis
Batch	Quality	Contr	ol

Parameter	Result Qualifie	er Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sa	ample(s): 01	-07 Bat	tch: WC	G1493132-1				
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/01/21 05:54	121,4500NO3-F	F MR
General Chemistry - V	Vestborough Lab for sa	ample(s): 01	-07 Bat	tch: WC	G1495179-1				
Alkalinity, Bicarbonate	ND	mg CaCO3/	2.00	NA	1	-	05/06/21 09:45	121,2320B	JB
General Chemistry - V	Vestborough Lab for sa	ample(s): 01	-07 Bat	tch: WC	G1496632-1				
Alkalinity, Total	ND	mg CaCO3/	2.00	NA	1	-	05/10/21 08:47	121,2320B	JB
Anions by Ion Chroma	ntography - Westboroug	h Lab for sa	ample(s):	01-07	Batch: Wo	G1496983-1			
Bromide	ND	mg/l	0.050		1	-	05/10/21 18:32	44,300.0	SH
Chloride	ND	mg/l	0.500		1	-	05/10/21 18:32	44,300.0	SH
Sulfate	ND	mg/l	1.00		1	-	05/10/21 18:32	44,300.0	SH
Anions by Ion Chroma	atography - Westboroug	h Lab for sa	ample(s)	05 B	atch: WG14	197556-1			
Chloride	ND	mg/l	0.500		1	-	05/11/21 18:51	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date:

05/14/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s)	: 01-07	Batch: WG1493	132-2				
Nitrogen, Nitrate	96		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s)	: 01-07	Batch: WG14943	343-1				
рН	101		-		99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s)	: 01-07	Batch: WG14966	632-2				
Alkalinity, Total	107		-		90-110	-		10
Anions by Ion Chromatography - Westb	orough Lab Associate	ed sampl	e(s): 01-07 Bato	ch: WG1496	983-2			
Bromide	92		-		90-110	-		
Chloride	97		-		90-110	-		
Sulfate	98		-		90-110	-		
Anions by Ion Chromatography - Westb	orough Lab Associate	d sampl	e(s): 05 Batch: '	WG1497556	6-2			
Chloride	108		-		90-110	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122205

Report Date: 05/14/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recove Limits	•	RPD Qual Limit	
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01-07	QC Batch II	D: WG1	493132-4	QC Sample:	L212220	01-04	Client ID:	MS Sample	
Nitrogen, Nitrate	ND	4	3.81	95		-	-		83-113	-	17	
General Chemistry - Westbord	ough Lab Assoc	iated samp	ole(s): 01-07	QC Batch II	D: WG1	496632-4	QC Sample:	L212206	66-14	Client ID:	MS Sample	
Alkalinity, Total	387	100	495	108		-	-		86-116	-	10	
Anions by Ion Chromatograph 7535	y - Westboroug	h Lab Asso	ociated samp	ole(s): 01-07	QC Bat	tch ID: WG	1496983-3	QC Sam	ple: L21	22205-01	Client ID: 1	15-
Bromide	0.085	0.4	0.322	59	Q	-	-		90-110	-	20	
Chloride	43.1	4	47.5	108		-	-		90-110	-	18	
Sulfate	18.8	8	27.5	109		-	-		90-110	-	20	
Anions by Ion Chromatograph D: MS Sample	y - Westboroug	h Lab Asso	ociated samp	ole(s): 05 Q0	C Batch	ID: WG149	7556-3 WG1	497556-4	4 QCS	ample: L2	2122184-03	Cli
Chloride	34.6	4	37.7	79	Q	37.7	77	Q	90-110	1	18	

L2122205

Lab Duplicate Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

05/14/21 Report Date:

Lab Number:

Parameter	Nati	ve Samp	ole D	Ouplicate Samp	ole Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-07	QC Batch ID:	WG1493132-3	3 QC Sample:	L2122201-04	Client ID:	DUP Sample
Nitrogen, Nitrate		ND		ND	mg/l	NC		17
General Chemistry - Westborough Lab	Associated sample(s):	01-07	QC Batch ID:	WG1494343-2	2 QC Sample:	L2122205-01	Client ID:	15-7535
pH (H)		7.4		7.3	SU	1		5
General Chemistry - Westborough Lab	Associated sample(s):	01-07	QC Batch ID:	WG1495179-2	2 QC Sample:	L2121953-08	Client ID:	DUP Sample
Alkalinity, Bicarbonate		1030		955	mg CaCO3/l	8		9
General Chemistry - Westborough Lab	Associated sample(s):	01-07	QC Batch ID:	WG1496632-3	3 QC Sample:	L2122066-14	Client ID:	DUP Sample
Alkalinity, Total		387		388	mg CaCO3/l	0		10
Anions by Ion Chromatography - Westb 7532	orough Lab Associated	l sample((s): 01-07 C	QC Batch ID: W	/G1496983-4(QC Sample: L	.2122205-0	2 Client ID: 15-
Bromide		0.874		0.856	mg/l	2		20
Chloride		9.98		9.71	mg/l	3		18
Sulfate		19.8		19.6	mg/l	1		20

Serial_No:05142111:36

Lab Number: L2122205

Report Date: 05/14/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

HAVEN WELL PT

YES

Cooler Information

Container Information

Project Name:

Cooler Custody Seal

A Absent

Project Number: 2190120

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2122205-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		5.8	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122205-01B	Plastic 250ml unpreserved	Α	7	7	5.8	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01)
L2122205-01C	Plastic 250ml HNO3 preserved	Α	<2	<2	5.8	Υ	Absent		FE-TI(180),MN-TI(180),NA- TI(180),HARDT(180),CA-TI(180)
L2122205-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		5.8	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122205-02B	Plastic 250ml unpreserved	Α	7	7	5.8	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01)
L2122205-02C	Plastic 250ml HNO3 preserved	Α	<2	<2	5.8	Υ	Absent		FE-TI(180),MN-TI(180),HARDT(180),NA- TI(180),CA-TI(180)
L2122205-03A	Plastic 250ml unpreserved/No Headspace	Α	NA		5.8	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122205-03B	Plastic 250ml unpreserved	Α	7	7	5.8	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),PH-4500(.01),BR-300(28)
L2122205-03C	Plastic 250ml HNO3 preserved	Α	<2	<2	5.8	Υ	Absent		MN-TI(180),FE-TI(180),CA-TI(180),NA- TI(180),HARDT(180)
L2122205-04A	Plastic 250ml unpreserved/No Headspace	Α	NA		5.8	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122205-04B	Plastic 250ml unpreserved	Α	7	7	5.8	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),PH-4500(.01),BR-300(28)
L2122205-04C	Plastic 250ml HNO3 preserved	Α	<2	<2	5.8	Υ	Absent		FE-TI(180),MN-TI(180),HARDT(180),NA- TI(180),CA-TI(180)
L2122205-05A	Plastic 250ml unpreserved/No Headspace	Α	NA		5.8	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122205-05B	Plastic 250ml unpreserved	Α	7	7	5.8	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01)
L2122205-05C	Plastic 250ml HNO3 preserved	Α	<2	<2	5.8	Υ	Absent		MN-TI(180),FE-TI(180),HARDT(180),CA- TI(180),NA-TI(180)
L2122205-06A	Plastic 250ml unpreserved/No Headspace	Α	NA		5.8	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122205-06B	Plastic 250ml unpreserved	Α	7	7	5.8	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01)
L2122205-06C	Plastic 250ml HNO3 preserved	Α	<2	<2	5.8	Υ	Absent		FE-TI(180),MN-TI(180),HARDT(180),NA- TI(180),CA-TI(180)
L2122205-07A	Plastic 250ml unpreserved/No Headspace	Α	NA		5.8	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)

Serial_No:05142111:36

Lab Number: L2122205

Report Date: 05/14/21

Project Name: HAVEN WELL PT

Project Number: 2190120

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2122205-07B	Plastic 250ml unpreserved	Α	7	7	5.8	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01)
L2122205-07C	Plastic 250ml HNO3 preserved	Α	<2	<2	5.8	Υ	Absent		FE-TI(180),MN-TI(180),HARDT(180),NA- TI(180),CA-TI(180)

L2122205

Project Name: HAVEN WELL PT Lab Number:

Project Number: Report Date: 2190120 05/14/21

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration. **EPA**

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

- No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile NR

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2122205Project Number:2190120Report Date:05/14/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2122205Project Number:2190120Report Date:05/14/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:05142111:36

Project Name: HAVEN WELL PT Lab Number: L2122205
Project Number: 2190120 Report Date: 05/14/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05142111:36

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

ANALYTICAL REPORT

Lab Number: L2122771

Client: Weston & Sampson

100 International Drive

Suite 152

Portsmouth, NH 03801

ATTN: Frank Getchell
Phone: (603) 570-6319
Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/20/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Number: 2190120

Lab Number: L2122771 **Report Date:** 05/20/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2122771-01	15-7535	WATER	PORTSMOUTH, NH	05/03/21 13:20	05/03/21
L2122771-02	15-7532	WATER	PORTSMOUTH, NH	05/03/21 13:45	05/03/21
L2122771-03	15-TH1AR	WATER	PORTSMOUTH, NH	05/03/21 12:25	05/03/21
L2122771-04	15-7533	WATER	PORTSMOUTH, NH	05/03/21 12:50	05/03/21
L2122771-05	15-6522	WATER	PORTSMOUTH, NH	05/03/21 11:10	05/03/21
L2122771-06	15-6144	WATER	PORTSMOUTH, NH	05/03/21 10:10	05/03/21
L2122771-07	PH4-4779	WATER	PORTSMOUTH, NH	05/03/21 10:45	05/03/21
L2122771-08	HAVEN WELL	WATER	PORTSMOUTH, NH	05/03/21 12:00	05/03/21
L2122771-09	TB-01	WATER	PORTSMOUTH, NH	05/03/21 00:00	05/03/21
L2122771-10	FB-01	WATER	PORTSMOUTH, NH	05/03/21 12:05	05/03/21

L2122771

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/20/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2122771

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/20/21

Case Narrative (continued)

Sample Receipt

The analyses performed were specified by the client.

L2122771-07: The sample identified as "PH4-4799" on the chain of custody was identified as "PH4-4779" on the container label. At the client's request, the sample is reported as "PH4-4779".

Perfluorinated Alkyl Acids by EPA 533

L2122771-08: The sample was re-analyzed on dilution in order to quantiitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

Alkalinity, Total

WG1498791: A Matrix Spike and Laboratory Duplicate were prepared with the sample batch, however, the native sample was not available for reporting; therefore, the results could not be reported.

Alkalinity, Bicarbonate

WG1498809: A Laboratory Duplicate was prepared with the sample batch, however, the native sample required re-analysis; therefore, the result could not be reported.

Anions by Ion Chromatography

The WG1498655-3 MS recovery, performed on L2122771-01, is outside the acceptance criteria for bromide (85%); however, the associated LCS recovery is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/20/21

Jufani Morrissey-Tiffani Morrissey

ALPHA

ORGANICS

VOLATILES

L2122771

05/03/21 12:00

Project Name: HAVEN WELL PT

Project Number: 2190120

SAMPLE RESULTS

Lab Number:

Report Date: 05/20/21

Lab ID: L2122771-08 Date Collected:

Client ID: **HAVEN WELL** Sample Location: PORTSMOUTH, NH

Date Received: 05/03/21 Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/12/21 02:09

Analyst: LAC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	3.0		1
1,1-Dichloroethane	ND		ug/l	0.75		1
Chloroform	ND		ug/l	0.75		1
Carbon tetrachloride	ND		ug/l	0.50		1
1,2-Dichloropropane	ND		ug/l	1.8		1
Dibromochloromethane	ND		ug/l	0.50		1
1,1,2-Trichloroethane	ND		ug/l	0.75		1
Tetrachloroethene	ND		ug/l	0.50		1
Chlorobenzene	ND		ug/l	0.50		1
Trichlorofluoromethane	ND		ug/l	2.5		1
1,2-Dichloroethane	ND		ug/l	0.50		1
1,1,1-Trichloroethane	ND		ug/l	0.50		1
Bromodichloromethane	ND		ug/l	0.50		1
trans-1,3-Dichloropropene	ND		ug/l	0.50		1
cis-1,3-Dichloropropene	ND		ug/l	0.50		1
1,3-Dichloropropene, Total	ND		ug/l	0.50		1
1,1-Dichloropropene	ND		ug/l	2.5		1
Bromoform	ND		ug/l	2.0		1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1
Benzene	ND		ug/l	0.50		1
Toluene	ND		ug/l	0.75		1
Ethylbenzene	ND		ug/l	0.50		1
Chloromethane	ND		ug/l	2.5		1
Bromomethane	ND		ug/l	1.0		1
Vinyl chloride	ND		ug/l	1.0		1
Chloroethane	ND		ug/l	1.0		1
1,1-Dichloroethene	ND		ug/l	0.50		1
trans-1,2-Dichloroethene	ND		ug/l	0.75		1

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-08 Date Collected: 05/03/21 12:00

Client ID: Date Received: 05/03/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
1,2-Dichloroethene, Total	ND		ug/l	0.50		1
Trichloroethene	ND		ug/l	0.50		1
1,2-Dichlorobenzene	ND		ug/l	2.5		1
1,3-Dichlorobenzene	ND		ug/l	2.5		1
1,4-Dichlorobenzene	ND		ug/l	2.5		1
Methyl tert butyl ether	ND		ug/l	1.0		1
p/m-Xylene	ND		ug/l	1.0		1
o-Xylene	ND		ug/l	1.0		1
Xylenes, Total	ND		ug/l	1.0		1
cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Dibromomethane	ND		ug/l	5.0		1
1,2,3-Trichloropropane	ND		ug/l	5.0		1
Styrene	ND		ug/l	1.0		1
Dichlorodifluoromethane	ND		ug/l	5.0		1
Acetone	ND		ug/l	5.0		1
Carbon disulfide	ND		ug/l	5.0		1
2-Butanone	ND		ug/l	5.0		1
4-Methyl-2-pentanone	ND		ug/l	5.0		1
2-Hexanone	ND		ug/l	5.0		1
Bromochloromethane	ND		ug/l	2.5		1
Tetrahydrofuran	ND		ug/l	5.0		1
2,2-Dichloropropane	ND		ug/l	2.5		1
1,2-Dibromoethane	ND		ug/l	2.0		1
1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
Bromobenzene	ND		ug/l	2.5		1
n-Butylbenzene	ND		ug/l	0.50		1
sec-Butylbenzene	ND		ug/l	0.50		1
tert-Butylbenzene	ND		ug/l	2.5		1
o-Chlorotoluene	ND		ug/l	2.5		1
p-Chlorotoluene	ND		ug/l	2.5		1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1
Hexachlorobutadiene	ND		ug/l	0.50		1
Isopropylbenzene	ND		ug/l	0.50		1
p-Isopropyltoluene	ND		ug/l	0.50		1
Naphthalene	ND		ug/l	2.5		1
n-Propylbenzene	ND		ug/l	0.50		1
1,2,3-Trichlorobenzene	ND		ug/l	2.5		1

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-08 Date Collected: 05/03/21 12:00

Client ID: Date Received: 05/03/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westbor	ough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	2.5		1
1,3,5-Trimethylbenzene	ND		ug/l	2.5		1
1,3,5-Trichlorobenzene	ND		ug/l	2.0		1
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1
Ethyl ether	ND		ug/l	2.5		1
Isopropyl Ether	ND		ug/l	2.0		1
Tert-Butyl Alcohol	ND		ug/l	10		1
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1
1,4-Dioxane	ND		ug/l	250		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	90	70-130	
Toluene-d8	111	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	99	70-130	

L2122771

Project Name: HAVEN WELL PT

Project Number: 2190120

SAMPLE RESULTS

Report Date: 05/20/21

Lab Number:

Lab ID: L2122771-09

Client ID: TB-01

Sample Location: PORTSMOUTH, NH

Sample Depth:

Matrix: Water Analytical Method: 1,8260C Analytical Date: 05/11/21 19:54

Analyst: LAC

Date Collected:	05/03/21 00:00
Date Received:	05/03/21
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
Methylene chloride	ND		ug/l	3.0		1	
1,1-Dichloroethane	ND		ug/l	0.75		1	
Chloroform	ND		ug/l	0.75		1	
Carbon tetrachloride	ND		ug/l	0.50		1	
1,2-Dichloropropane	ND		ug/l	1.8		1	
Dibromochloromethane	ND		ug/l	0.50		1	
1,1,2-Trichloroethane	ND		ug/l	0.75		1	
Tetrachloroethene	ND		ug/l	0.50		1	
Chlorobenzene	ND		ug/l	0.50		1	
Trichlorofluoromethane	ND		ug/l	2.5		1	
1,2-Dichloroethane	ND		ug/l	0.50		1	
1,1,1-Trichloroethane	ND		ug/l	0.50		1	
Bromodichloromethane	ND		ug/l	0.50		1	
trans-1,3-Dichloropropene	ND		ug/l	0.50		1	
cis-1,3-Dichloropropene	ND		ug/l	0.50		1	
1,3-Dichloropropene, Total	ND		ug/l	0.50		1	
1,1-Dichloropropene	ND		ug/l	2.5		1	
Bromoform	ND		ug/l	2.0		1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50		1	
Benzene	ND		ug/l	0.50		1	
Toluene	ND		ug/l	0.75		1	
Ethylbenzene	ND		ug/l	0.50		1	
Chloromethane	ND		ug/l	2.5		1	
Bromomethane	ND		ug/l	1.0		1	
Vinyl chloride	ND		ug/l	1.0		1	
Chloroethane	ND		ug/l	1.0		1	
1,1-Dichloroethene	ND		ug/l	0.50		1	
trans-1,2-Dichloroethene	ND		ug/l	0.75		1	

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-09 Date Collected: 05/03/21 00:00

Client ID: TB-01 Date Received: 05/03/21 Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

1,2-Dichloroethene, Total ND Ugh 0.50 - 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Trichioroethene ND ugil 0.50 - 1 1,2-Dichiorobenzene ND ugil 2.5 - 1 1,3-Dichiorobenzene ND ugil 2.5 - 1 1,4-Dichiorobenzene ND ugil 1.0 - 1 1,4-Dichiorobenzene ND ugil 5.0 - 1 1,2-Dichioropenane ND ugil 5.0 - 1 1,2-Dichioropenane ND ugil 5.0 - 1 1,2-Dichioropenane ND ugil 5.0 - 1 1,2-Dichiorobenzene ND ugil 5.0 - 1 1,2-Dichiorobenzene ND ugil 5.0 - 1 1,2-Dichioropenane ND ugil 5.0 - 1 1,1-Dichioropenane ND ugil 5.0 - 1 1,1-Dibrioropenane ND ugil 5.0 - 1 1,	Volatile Organics by GC/MS - Westl	oorough Lab					
1,2-Dichlorobanzene ND ugil 2,5 1 1,3-Dichlorobenzene ND ugil 2,5 1 1,4-Dichlorobenzene ND ugil 2,5 1 Mehry Iter buyl eher ND ugil 1,0 1 pim-Xylene ND ugil 1,0 1 xylenes, Total ND ugil 1,0 1 Xylenes, Total ND ugil 5,0 1 Lest, 2 Dichlorothene ND ugil 5,0 1 Dibromomethane ND ugil 5,0 1 Syrene ND ugil 5,0 1 Acetone ND ugil 5,0 1 Carbon disullide ND ugil 5,0 1 Carbon disullide ND ugil 5,0 1 Carbon disullide	1,2-Dichloroethene, Total	ND		ug/l	0.50		1
A-Dichlorobenzene ND ug/l 2.5 - 1 1 1 1 1 1 1 1 1	Trichloroethene	ND		ug/l	0.50		1
1,4-Dichlorobenzene ND Ug/l 2.5 1	1,2-Dichlorobenzene	ND		ug/l	2.5		1
Methyl terb buyl ether ND ug/l 1.0 1 p/m-Xylene ND ug/l 1.0 1 o-Xylene ND ug/l 1.0 1 v/ylenes, Total ND ug/l 0.50 1 sis-1,2-Dichloroethene ND ug/l 5.0 1 Dibromomethane ND ug/l 5.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1 Styrene ND ug/l 5.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanon	1,3-Dichlorobenzene	ND		ug/l	2.5		1
p/m-Xylene ND ug/l 1.0 1 c-Xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 xylenes, Total ND ug/l 5.0 1 Dibromomethane ND ug/l 5.0 1 1.23-Trichloropropane ND ug/l 5.0 1 Styrene ND ug/l 5.0 1 Dichlorodifluromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 4-Methyl-z-pentanone ND ug/l 5.0 1 2-Butanone ND ug/l 2.5 1 2-Hexanone ND	1,4-Dichlorobenzene	ND		ug/l	2.5		1
o-Xylene ND ug/l 1.0 1 Xylenes, Total ND ug/l 1.0 1 cis-1,2-Dichloroethene ND ug/l 0.50 1 Dibromomethane ND ug/l 5.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1 Styrene ND ug/l 5.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 Carbon disulfide </td <td>Methyl tert butyl ether</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td></td> <td>1</td>	Methyl tert butyl ether	ND		ug/l	1.0		1
Xylenes, Total ND ug/l 1.0 - 1 cis-1,2-Dichloroethene ND ug/l 0.50 - 1 Dibromorethane ND ug/l 5.0 - 1 1,2,3-Trichloropropane ND ug/l 5.0 - 1 Slyrene ND ug/l 5.0 - 1 Slyrene ND ug/l 5.0 - 1 Acetone ND ug/l 5.0 - 1 Acetone ND ug/l 5.0 - 1 Carbon disulfide ND ug/l 5.0 - 1 2-Butanone ND ug/l 5.0 - 1 2-Hexanone ND ug/l 5.0 - 1 2-Hexanone ND ug/l 5.0 - 1 1-Evanone ND ug/l 5.0 - 1 1-Evanone ND ug/l 2.5<	p/m-Xylene	ND		ug/l	1.0		1
cis-1,2-Dichloroethene ND ug/l 5.0 1 Dibromomethane ND ug/l 5.0 1 1,2,3-Tichloropropane ND ug/l 5.0 1 Styrene ND ug/l 5.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 2.5 1 Bromochloromethane ND ug/l 2.5 1 1-2-Dibromodethane <td>o-Xylene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td></td> <td>1</td>	o-Xylene	ND		ug/l	1.0		1
Dibromomethane ND ug/l 5.0 1 1,2,3-Trichloropropane ND ug/l 5.0 1 Styrene ND ug/l 1.0 1 Dichlorodiffuormethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Etertahydrofuran ND ug/l 2.5 1 1,2-Dibromothane ND ug/l 2.5 1 1,1,1,2-Tetrachlor	Xylenes, Total	ND		ug/l	1.0		1
1,2,3-Trichloropropane ND ug/l 5.0 - 1	cis-1,2-Dichloroethene	ND		ug/l	0.50		1
Styrene ND ug/l 1.0 1 Dichlorodifluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 5.0 1 2-Ethexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 2-Hexanone ND ug/l 2.5 1 2-Eutranoloroune ND <td< td=""><td>Dibromomethane</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td></td><td>1</td></td<>	Dibromomethane	ND		ug/l	5.0		1
Dichlorodiffluoromethane ND ug/l 5.0 1 Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.5 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1	1,2,3-Trichloropropane	ND		ug/l	5.0		1
Acetone ND ug/l 5.0 1 Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 1-tertahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,2-Dibromoethane ND ug/l 2.5 1 Bromobenzene ND ug/l 2.5 1 Bromobenzene ND ug/l 0.50 1 Browalbylbenzene <td>Styrene</td> <td>ND</td> <td></td> <td>ug/l</td> <td>1.0</td> <td></td> <td>1</td>	Styrene	ND		ug/l	1.0		1
Carbon disulfide ND ug/l 5.0 1 2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 2.5 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 2.5 1 ec-Butylbenzene ND ug/l 2.5 1 et-Butylbenzene ND ug/l 2.5 1 ec-Butylbe	Dichlorodifluoromethane	ND		ug/l	5.0		1
2-Butanone ND ug/l 5.0 1 4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 1,2-	Acetone	ND		ug/l	5.0		1
4-Methyl-2-pentanone ND ug/l 5.0 1 2-Hexanone ND ug/l 5.0 1 Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 <td< td=""><td>Carbon disulfide</td><td>ND</td><td></td><td>ug/l</td><td>5.0</td><td></td><td>1</td></td<>	Carbon disulfide	ND		ug/l	5.0		1
ND	2-Butanone	ND		ug/l	5.0		1
Bromochloromethane ND ug/l 2.5 1 Tetrahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetrt-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1	4-Methyl-2-pentanone	ND		ug/l	5.0		1
Tetrahydrofuran ND ug/l 5.0 1 2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 c-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 <	2-Hexanone	ND		ug/l	5.0		1
2,2-Dichloropropane ND ug/l 2.5 1 1,2-Dibromoethane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 0.50 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tetr-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 ND ug/l 0.50 1 ND	Bromochloromethane	ND		ug/l	2.5		1
1,2-Dibromoethane ND ug/l 2.0 1 1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1	Tetrahydrofuran	ND		ug/l	5.0		1
1,1,1,2-Tetrachloroethane ND ug/l 0.50 1 Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 ND ug/l 0.50 1	2,2-Dichloropropane	ND		ug/l	2.5		1
Bromobenzene ND ug/l 2.5 1 n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1	1,2-Dibromoethane	ND		ug/l	2.0		1
n-Butylbenzene ND ug/l 0.50 1 sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 P-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	1,1,1,2-Tetrachloroethane	ND		ug/l	0.50		1
Sec-Butylbenzene ND ug/l 0.50 1 tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	Bromobenzene	ND		ug/l	2.5		1
tert-Butylbenzene ND ug/l 2.5 1 o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 ND ug/l 0.50 1 n-Propylbenzene ND ug/l 0.50 1	n-Butylbenzene	ND		ug/l	0.50		1
o-Chlorotoluene ND ug/l 2.5 1 p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	sec-Butylbenzene	ND		ug/l	0.50		1
p-Chlorotoluene ND ug/l 2.5 1 1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	tert-Butylbenzene	ND		ug/l	2.5		1
1,2-Dibromo-3-chloropropane ND ug/l 2.5 1 Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	o-Chlorotoluene	ND		ug/l	2.5		1
Hexachlorobutadiene ND ug/l 0.50 1 Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	p-Chlorotoluene	ND		ug/l	2.5		1
Isopropylbenzene ND ug/l 0.50 1 p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	1,2-Dibromo-3-chloropropane	ND		ug/l	2.5		1
p-Isopropyltoluene ND ug/l 0.50 1 Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	Hexachlorobutadiene	ND		ug/l	0.50		1
Naphthalene ND ug/l 2.5 1 n-Propylbenzene ND ug/l 0.50 1	Isopropylbenzene	ND		ug/l	0.50		1
n-Propylbenzene ND ug/l 0.50 1	p-Isopropyltoluene	ND		ug/l	0.50		1
	Naphthalene	ND		ug/l	2.5		1
1,2,3-Trichlorobenzene ND ug/l 2.5 1	n-Propylbenzene	ND		ug/l	0.50		1
•	1,2,3-Trichlorobenzene	ND		ug/l	2.5		1

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-09 Date Collected: 05/03/21 00:00

Client ID: TB-01 Date Received: 05/03/21 Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Wes	stborough Lab						
1,2,4-Trichlorobenzene	ND		ua/l	2.5		1	
1,3,5-Trimethylbenzene	ND ND		ug/l ug/l	2.5		1	
1,3,5-Trichlorobenzene	ND		ug/l	2.0		1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5		1	
Ethyl ether	ND		ug/l	2.5		1	
Isopropyl Ether	ND		ug/l	2.0		1	
Tert-Butyl Alcohol	ND		ug/l	10		1	
Ethyl-Tert-Butyl-Ether	ND		ug/l	2.0		1	
Tertiary-Amyl Methyl Ether	ND		ug/l	2.0		1	
1,4-Dioxane	ND		ug/l	250		1	

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	98	70-130	
Toluene-d8	105	70-130	
4-Bromofluorobenzene	88	70-130	
Dibromofluoromethane	108	70-130	

Project Number: 2190120

Lab Number: L2122771

Report Date: 05/20/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/21 19:33

Analyst: LAC

Parameter	Result C	Qualifier Units	RL	MDL
olatile Organics by GC/MS - Wes	tborough Lab fo	or sample(s): 08-09	Batch:	WG1498119-5
Methylene chloride	ND	ug/l	3.0	
1,1-Dichloroethane	ND	ug/l	0.75	
Chloroform	ND	ug/l	0.75	
Carbon tetrachloride	ND	ug/l	0.50	
1,2-Dichloropropane	ND	ug/l	1.8	
Dibromochloromethane	ND	ug/l	0.50	
1,1,2-Trichloroethane	ND	ug/l	0.75	
Tetrachloroethene	ND	ug/l	0.50	
Chlorobenzene	ND	ug/l	0.50	
Trichlorofluoromethane	ND	ug/l	2.5	
1,2-Dichloroethane	ND	ug/l	0.50	
1,1,1-Trichloroethane	ND	ug/l	0.50	
Bromodichloromethane	ND	ug/l	0.50	
trans-1,3-Dichloropropene	ND	ug/l	0.50	
cis-1,3-Dichloropropene	ND	ug/l	0.50	
1,3-Dichloropropene, Total	ND	ug/l	0.50	
1,1-Dichloropropene	ND	ug/l	2.5	
Bromoform	ND	ug/l	2.0	
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	
Benzene	ND	ug/l	0.50	
Toluene	ND	ug/l	0.75	
Ethylbenzene	ND	ug/l	0.50	
Chloromethane	ND	ug/l	2.5	
Bromomethane	ND	ug/l	1.0	
Vinyl chloride	ND	ug/l	1.0	
Chloroethane	ND	ug/l	1.0	
1,1-Dichloroethene	ND	ug/l	0.50	
trans-1,2-Dichloroethene	ND	ug/l	0.75	
1,2-Dichloroethene, Total	ND	ug/l	0.50	

Project Number: 2190120

Lab Number: L2122771

Report Date: 05/20/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/21 19:33

Analyst: LAC

Parameter	Result	Qualifier Units	; RL	MDL
Volatile Organics by GC/MS - Wes	tborough Lab	for sample(s):	08-09 Batch:	WG1498119-5
Trichloroethene	ND	ug/l	0.50	
1,2-Dichlorobenzene	ND	ug/l		
1,3-Dichlorobenzene	ND	ug/l	2.5	
1,4-Dichlorobenzene	ND	ug/l	2.5	
Methyl tert butyl ether	ND	ug/l	1.0	
p/m-Xylene	ND	ug/l	1.0	
o-Xylene	ND	ug/l	1.0	
Xylenes, Total	ND	ug/l	1.0	
cis-1,2-Dichloroethene	ND	ug/l	0.50	
Dibromomethane	ND	ug/l	5.0	
1,2,3-Trichloropropane	ND	ug/l	5.0	
Styrene	ND	ug/l	1.0	
Dichlorodifluoromethane	ND	ug/l	5.0	
Acetone	ND	ug/l	5.0	
Carbon disulfide	ND	ug/l	5.0	
2-Butanone	ND	ug/l	5.0	
4-Methyl-2-pentanone	ND	ug/l	5.0	
2-Hexanone	ND	ug/l	5.0	
Bromochloromethane	ND	ug/l	2.5	
Tetrahydrofuran	ND	ug/l	5.0	
2,2-Dichloropropane	ND	ug/l	2.5	
1,2-Dibromoethane	ND	ug/l	2.0	
1,1,1,2-Tetrachloroethane	ND	ug/l	0.50	
Bromobenzene	ND	ug/l	2.5	
n-Butylbenzene	ND	ug/l	0.50	
sec-Butylbenzene	ND	ug/l	0.50	
tert-Butylbenzene	ND	ug/l	2.5	
o-Chlorotoluene	ND	ug/l	2.5	
p-Chlorotoluene	ND	ug/l	2.5	

Project Number: 2190120

Lab Number: L2122771

Report Date: 05/20/21

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 05/11/21 19:33

Analyst: LAC

				MDL
olatile Organics by GC/MS - Wes	stborough Lab	for sample(s):	08-09 Batch:	WG1498119-5
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	
Hexachlorobutadiene	ND	ug/l	0.50	
Isopropylbenzene	ND	ug/l	0.50	
p-Isopropyltoluene	ND	ug/l	0.50	
Naphthalene	ND	ug/l	2.5	
n-Propylbenzene	ND	ug/l	0.50	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	
1,3,5-Trichlorobenzene	ND	ug/l	2.0	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	
Ethyl ether	ND	ug/l	2.5	
Isopropyl Ether	ND	ug/l	2.0	
Tert-Butyl Alcohol	ND	ug/l	10	
Ethyl-Tert-Butyl-Ether	ND	ug/l	2.0	
Tertiary-Amyl Methyl Ether	ND	ug/l	2.0	
1,4-Dioxane	ND	ug/l	250	

	Accepta						
Surrogate	%Recovery Qual	ifier Criteria					
			_				
1,2-Dichloroethane-d4	97	70-130					
Toluene-d8	106	70-130					
4-Bromofluorobenzene	90	70-130					
Dibromofluoromethane	105	70-130					

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

Report Date: 05/20/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	08-09 Batch: W0	G1498119-3 WG1498119-4		
Methylene chloride	93		95	70-130	2	20
1,1-Dichloroethane	95		97	70-130	2	20
Chloroform	97		98	70-130	1	20
Carbon tetrachloride	88		89	63-132	1	20
1,2-Dichloropropane	120		120	70-130	0	20
Dibromochloromethane	95		98	63-130	3	20
1,1,2-Trichloroethane	100		100	70-130	0	20
Tetrachloroethene	120		120	70-130	0	20
Chlorobenzene	110		110	75-130	0	25
Trichlorofluoromethane	79		78	62-150	1	20
1,2-Dichloroethane	100		100	70-130	0	20
1,1,1-Trichloroethane	94		96	67-130	2	20
Bromodichloromethane	84		90	67-130	7	20
trans-1,3-Dichloropropene	86		90	70-130	5	20
cis-1,3-Dichloropropene	85		89	70-130	5	20
1,1-Dichloropropene	94		94	70-130	0	20
Bromoform	82		85	54-136	4	20
1,1,2,2-Tetrachloroethane	88		88	67-130	0	20
Benzene	100		100	70-130	0	25
Toluene	110		110	70-130	0	25
Ethylbenzene	110		110	70-130	0	20
Chloromethane	77		76	64-130	1	20
Bromomethane	110		100	39-139	10	20

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

Report Date: 05/20/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wo	estborough Lab Associated	sample(s):	08-09 Batch: V	NG1498119-3	WG1498119-4			
Vinyl chloride	110		110		55-140	0		20
Chloroethane	95		86		55-138	10		20
1,1-Dichloroethene	94		92		61-145	2		25
trans-1,2-Dichloroethene	98		100		70-130	2		20
Trichloroethene	100		100		70-130	0		25
1,2-Dichlorobenzene	100		99		70-130	1		20
1,3-Dichlorobenzene	100		99		70-130	1		20
1,4-Dichlorobenzene	100		98		70-130	2		20
Methyl tert butyl ether	81		84		63-130	4		20
p/m-Xylene	100		100		70-130	0		20
o-Xylene	100		100		70-130	0		20
cis-1,2-Dichloroethene	100		100		70-130	0		20
Dibromomethane	97		100		70-130	3		20
1,2,3-Trichloropropane	80		81		64-130	1		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	76		73		36-147	4		20
Acetone	69		72		58-148	4		20
Carbon disulfide	86		86		51-130	0		20
2-Butanone	99		100		63-138	1		20
4-Methyl-2-pentanone	120		130		59-130	8		20
2-Hexanone	96		100		57-130	4		20
Bromochloromethane	100		110		70-130	10		20
Tetrahydrofuran	110		95		58-130	15		20

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

Report Date: 05/20/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	08-09 Batch: WG	G1498119-3 WG1498119-4		
2,2-Dichloropropane	90		88	63-133	2	20
1,2-Dibromoethane	97		99	70-130	2	20
1,1,1,2-Tetrachloroethane	99		100	64-130	1	20
Bromobenzene	100		100	70-130	0	20
n-Butylbenzene	98		96	53-136	2	20
sec-Butylbenzene	92		88	70-130	4	20
tert-Butylbenzene	93		91	70-130	2	20
o-Chlorotoluene	94		91	70-130	3	20
p-Chlorotoluene	92		90	70-130	2	20
1,2-Dibromo-3-chloropropane	79		89	41-144	12	20
Hexachlorobutadiene	120		110	63-130	9	20
Isopropylbenzene	90		88	70-130	2	20
p-Isopropyltoluene	95		92	70-130	3	20
Naphthalene	76		78	70-130	3	20
n-Propylbenzene	96		94	69-130	2	20
1,2,3-Trichlorobenzene	98		99	70-130	1	20
1,2,4-Trichlorobenzene	100		100	70-130	0	20
1,3,5-Trimethylbenzene	89		85	64-130	5	20
1,3,5-Trichlorobenzene	110		110	70-130	0	20
1,2,4-Trimethylbenzene	88		87	70-130	1	20
Ethyl ether	86		92	59-134	7	20
Isopropyl Ether	100		100	70-130	0	20
Tert-Butyl Alcohol	86		94	70-130	9	20

Project Name: HAVEN WELL PT

Lab Number:

L2122771

Project Number: 2190120

Report Date: 05/20/21

Parameter Volatile Organics by GC/MS - Westborough	LCS %Recovery	Qual	LCSD %Recovery 08-09 Batch:	Qual	%Recovery Limits WG1498119-4	RPD	Qual	RPD Limits
Ethyl-Tert-Butyl-Ether	100		110		70-130	10		20
Tertiary-Amyl Methyl Ether	85		89		66-130	5		20
1,4-Dioxane	88		86		56-162	2		20

Surragata	LCS	LCSD I %Recoverv Qual	Acceptance Criteria	
Surrogate	%Recovery Qua	l %Recovery Qual		_
1,2-Dichloroethane-d4	91	96	70-130	
Toluene-d8	109	107	70-130	
4-Bromofluorobenzene	89	87	70-130	
Dibromofluoromethane	102	103	70-130	

SEMIVOLATILES

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-08 Date Collected: 05/03/21 12:00

Client ID: Date Received: 05/03/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 533

Analytical Method: 136,533 Extraction Date: 05/09/21 11:00

Analyst: LV

05/10/21 11:44

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab					
Perfluorobutanoic Acid (PFBA)	40.3		ng/l	2.00		1
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1
Perfluoropentanoic Acid (PFPeA)	75.6		ng/l	2.00		1
Perfluorobutanesulfonic Acid (PFBS)	12.4		ng/l	2.00		1
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1
Perfluorohexanoic Acid (PFHxA)	67.4		ng/l	2.00		1
Perfluoropentanesulfonic Acid (PFPeS)	12.8		ng/l	2.00		1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1
Perfluoroheptanoic Acid (PFHpA)	27.8		ng/l	2.00		1
Perfluorohexanesulfonic Acid (PFHxS)	156		ng/l	2.00		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	75.2		ng/l	2.00		1
Perfluorooctanoic Acid (PFOA)	57.2		ng/l	2.00		1
Perfluoroheptanesulfonic Acid (PFHpS)	10.2		ng/l	2.00		1
Perfluorononanoic Acid (PFNA)	4.68		ng/l	2.00		1
Perfluorooctanesulfonic Acid (PFOS)	531	Е	ng/l	2.00		1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	18.4		ng/l	2.00		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: Date Collected: 05/03/21 12:00

Client ID: Date Received: 05/03/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	108	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	120	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	138	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	140	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	116	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	120	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	139	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	116	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	117	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	105	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	117	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	140	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	128	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	147	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	178	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	113	50-200

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-08 RE Date Collected: 05/03/21 12:00

Client ID: HAVEN WELL Date Received: 05/03/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 533

Analytical Method: 136,533 Extraction Date: 05/11/21 14:04
Analytical Date: 05/12/21 14:01

Analyst: LV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 533	- Mansfield Lab					
Perfluorooctanesulfonic Acid (PFOS)	612		ng/l	10.0		1
Surrogate (Extracted Internal Standard)		% Recovery	Qualifier		eptance criteria
Perfluoro[13C8]Octanesulfonic Acid (M8PF	OS)		103			50-200

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

05/10/21 12:11

Lab ID: Date Collected: 05/03/21 12:05

Client ID: FB-01 Date Received: 05/03/21 Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 533

Analytical Method: 136,533 Extraction Date: 05/09/21 11:00

Analyst: LV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab						
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		1	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		1	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		1	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		1	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		1	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1	

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-10 Date Collected: 05/03/21 12:05

Client ID: FB-01 Date Received: 05/03/21 Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	115	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	126	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	108	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	112	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	114	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	120	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	108	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	126	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	90	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	124	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	106	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	139	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	102	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	137	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	181	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	106	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120 Lab Number: L2122771

Report Date: 05/20/21

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533

Analytical Date: 05/10/21 09:50

Analyst: LV Extraction Method: EPA 533

05/09/21 11:00 **Extraction Date:**

Parameter	Result	Qualifier	Units	RL	ı	MDL
Perfluorinated Alkyl Acids by EPA 53	3 - Mansfi	eld Lab for s	ample(s):	08,10	Batch:	WG1496421-1
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		
Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND		ng/l	2.00		
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	I ND		ng/l	2.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPC DA)	ND)-		ng/l	2.00		-
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		-
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	I ND		ng/l	2.00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		

L2122771

Lab Number:

Project Name: HAVEN WELL PT

Report Date:

Project Number: 2190120 05/20/21

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 136,533 Extraction Method: EPA 533

Analytical Date: 05/10/21 09:50 05/09/21 11:00 **Extraction Date:**

Analyst: LV

> MDL Result Qualifier Units RL**Parameter**

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s): 08,10 Batch: WG1496421-1

			cceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier	Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	105		50-200	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	108		50-200	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	98		50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	100		50-200	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	99		50-200	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107		50-200	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102		50-200	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	139		50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	90		50-200	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	115		50-200	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105		50-200	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	126		50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	99		50-200	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	121		50-200	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	153		50-200	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	101		50-200	

Project Name: HAVEN WELL PT

Project Number: 2190120 Lab Number: L2122771

Report Date: 05/20/21

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533

Analytical Date: 05/12/21 13:26

Analyst: LV Extraction Method: EPA 533 05/11/21 14:04

Extraction Date:

Parameter	Result	Qualifier	Units	R	L	MDL	
Perfluorinated Alkyl Acids by EPA 53	3 - Mansfi	eld Lab for	sample(s):	80	Batch:	WG1497309-1	
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.0	00		
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.0	00		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.0	00		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.0	00		
Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND		ng/l	2.0	00		
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.0	00		
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.0	00		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)			ng/l	2.0	00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.0	00		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.0	00		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPC DA)	ND)-		ng/l	2.0	00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.0	00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.0	00		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.0	00		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.0	00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.0	00		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.0	00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.0	00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.0	00		
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.0	00		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	I ND		ng/l	2.0	00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.0	00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.0	00		
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.0	00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.0	00		

L2122771

Project Name: HAVEN WELL PT

Project Number: 2190120 **Report Date:** 05/20/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533 Extraction Method: EPA 533

Analytical Date: 05/12/21 13:26 05/11/21 14:04 **Extraction Date:**

Analyst: LV

> RLResult Qualifier Units MDL **Parameter**

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s): 08 Batch: WG1497309-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	99	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	97	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	85	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	95	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	108	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	106	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	83	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	111	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	110	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	83	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	111	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	117	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	103	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 533 - N	Mansfield Lab Assoc	ciated sample(s): 08,10 Ba	tch: WG1496421-2		
Perfluorobutanoic Acid (PFBA)	100	-	70-130	-	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	110	-	70-130	-	30
Perfluoropentanoic Acid (PFPeA)	116	-	70-130	-	30
Perfluorobutanesulfonic Acid (PFBS)	104	-	70-130	-	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	98	-	70-130	-	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	103	-	70-130	-	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	114	-	70-130	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	96	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	124	-	70-130	-	30
Perfluoropentanesulfonic Acid (PFPeS)	121	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	74	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	108	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	88	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	106	-	70-130	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	97	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	112	-	70-130	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	111	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	104	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	106	-	70-130	-	30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	111	-	70-130	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	96	-	70-130	-	30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 533 - Mans	sfield Lab Assoc	ciated sample(s	s): 08,10 Batch	: WG149	96421-2				
Perfluorodecanoic Acid (PFDA)	108		-		70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	110		-		70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11CI-PF3OUdS)	110		-		70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	106		-		70-130	-		30	

	LCS	%Recovery Qual %Recovery Qual Criteria 106 50-200 113 50-200 106 50-200 105 50-200 96 50-200 101 50-200 112 50-200 106 50-200 90 50-200 118 50-200 106 50-200 122 50-200 101 50-200 120 50-200 150 50-200			
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	106				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	113				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	105				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	96				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	112				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	106				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	90				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	118				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	106				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	122				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	101				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	120				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	150				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	113				50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 533 - M	lansfield Lab Associa	ted sample(s): 08 Batch:	WG1497309-2 WG1497309	9-3	
Perfluorobutanoic Acid (PFBA)	88	87	70-130	1	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	95	90	70-130	5	30
Perfluoropentanoic Acid (PFPeA)	94	95	70-130	1	30
Perfluorobutanesulfonic Acid (PFBS)	89	86	70-130	3	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	87	89	70-130	2	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	90	93	70-130	3	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	105	110	70-130	5	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	102	101	70-130	1	30
Perfluorohexanoic Acid (PFHxA)	100	96	70-130	4	30
Perfluoropentanesulfonic Acid (PFPeS)	85	83	70-130	2	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	95	98	70-130	3	30
Perfluoroheptanoic Acid (PFHpA)	90	94	70-130	4	30
Perfluorohexanesulfonic Acid (PFHxS)	85	81	70-130	5	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	98	101	70-130	3	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	87	90	70-130	3	30
Perfluorooctanoic Acid (PFOA)	98	94	70-130	4	30
Perfluoroheptanesulfonic Acid (PFHpS)	89	83	70-130	7	30
Perfluorononanoic Acid (PFNA)	91	100	70-130	9	30
Perfluorooctanesulfonic Acid (PFOS)	90	86	70-130	5	30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	89	94	70-130	5	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	93	92	70-130	1	30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

<u>Parameter</u>	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab Assoc	iated sample	(s): 08 Batch:	WG149730	09-2 WG1497309)-3		
Perfluorodecanoic Acid (PFDA)	96		94		70-130	2		30
Perfluoroundecanoic Acid (PFUnA)	97		94		70-130	3		30
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11CI-PF3OUdS)	98		104		70-130	6		30
Perfluorododecanoic Acid (PFDoA)	92		94		70-130	2		30

	LCS	LCSD	Acceptance
Surrogate (Extracted Internal Standard)	%Recovery C	Qual %Recovery	Qual Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	98	98	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	104	99	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	94	94	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	95	93	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	97	100	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	97	102	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	99	99	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97	107	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	88	84	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	108	113	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	99	99	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	108	117	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	94	95	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	113	121	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	122	127	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	91	96	50-200

Matrix Spike Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date:

05/20/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by E	PA 533 - Ma	nsfield Lab	Associated s	sample(s): 08,10	QC Ba	tch ID: WG	31496421-3	QC Sample: L2122	271-01	Client ID: MS Sample
Perfluorobutanoic Acid (PFBA)	38.7	2	40.2	75		-	-	70-130	-	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND	2	2.28	114		-	-	70-130	-	30
Perfluoropentanoic Acid (PFPeA)	51.9	2	56.2	215	Q	-	-	70-130	-	30
Perfluorobutanesulfonic Acid (PFBS)	7.88	1.77	10.2	131		-	-	70-130	-	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND	2	2.00	100		-	-	70-130	-	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND	1.78	ND	103		-	-	70-130	-	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND	2	2.00	100		-	-	70-130	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	1.87	2.92	156	Q	-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	49.7	2	52.8	155	Q	-	-	70-130	-	30
Perfluoropentanesulfonic Acid (PFPeS)	9.21	1.88	11.7	133		-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	2	2.16	108		-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	16.1	2	19.1	150		-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	114	1.82	118	220	Q	-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	1.88	ND	98		-	-	70-130	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	33.9	1.9	40.0	321	Q	-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	39.7	2	42.6	145		-	-	70-130	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	8.14	1.9	9.30	61		-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	3.16	2	4.71	78		-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	459E	1.85	424E	0	Q	-	-	70-130	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	11.7	1.92	13.7	104		-	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	ND	2	3.55	178	Q	-	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	2	2.12	106		-	-	70-130	-	30

Matrix Spike Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date:

05/20/21

Parameter Perfluorinated Alkyl Acids by E	Native Sample PA 533 - Ma	MS Added	MS Found	MS %Recovery ample(s): 08,10	Qual QC Bat	MSD Found ch ID: WG	MSD %Recovery 31496421-3	Qual	Recovery Limits	RPD 271-01	Qual Client	RPD Limits ID: MS Sample
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS) Perfluorododecanoic Acid (PFDoA)	ND ND	1.88	2.08	110		-	-		70-130 70-130	-		30

	MS	6	MS	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	112				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	126				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	105				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	95				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	124				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	123				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	119				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	147				50-200
Perfluoro[13C4]Butanoic Acid (MPFBA)	101				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	114				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	109				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	109				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	104				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	128				50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

L2122771 05/20/21 Report Date:

Lab Number:

Parameter	Native Sample	Duplicate	e Sample	Units	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 533 - Mansfield La Sample	b Associated sample(s):	08,10 Q	C Batch ID:	WG1496421-4	QC Samp	ole: L21222	71-02 Client ID:	DUP
Perfluorobutanoic Acid (PFBA)	34.5	33	3.1	ng/l	4		30	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND	N	D	ng/l	NC		30	
Perfluoropentanoic Acid (PFPeA)	31.1	30).7	ng/l	1		30	
Perfluorobutanesulfonic Acid (PFBS)	ND	N	D	ng/l	NC		30	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND	N	D	ng/l	NC		30	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND	N	D	ng/l	NC		30	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND	N	D	ng/l	NC		30	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	N	D	ng/l	NC		30	
Perfluorohexanoic Acid (PFHxA)	7.32	6.	71	ng/l	9		30	
Perfluoropentanesulfonic Acid (PFPeS)	ND	N	D	ng/l	NC		30	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND	N	D	ng/l	NC		30	
Perfluoroheptanoic Acid (PFHpA)	ND	N	D	ng/l	NC		30	
Perfluorohexanesulfonic Acid (PFHxS)	ND	N	D	ng/l	NC		30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	N	D	ng/l	NC		30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	2.13	N	D	ng/l	NC		30	
Perfluorooctanoic Acid (PFOA)	ND	N	D	ng/l	NC		30	
Perfluoroheptanesulfonic Acid (PFHpS)	ND	N	D	ng/l	NC		30	
Perfluorononanoic Acid (PFNA)	ND	N	D	ng/l	NC		30	
Perfluorooctanesulfonic Acid (PFOS)	ND	N	D	ng/l	NC		30	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	N	D	ng/l	NC		30	

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771 **Report Date:** 05/20/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by EPA 533 - Mar Sample	nsfield Lab Associated sample(s):	08,10 QC Batch ID	: WG1496421-4	QC Samp	ole: L21222	71-02 Client ID: D
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC		30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC		30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC		30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND	ND	ng/l	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC		30

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier %Recovery	Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	105	106	50-200	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	113	115	50-200	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	112	115	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	111	112	50-200	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	96	101	50-200	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	111	104	50-200	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110	120	50-200	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	117	114	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	96	99	50-200	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	120	115	50-200	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	107	113	50-200	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	118	121	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	101	98	50-200	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	126	126	50-200	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	151	151	50-200	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	104	100	50-200	

Lab Number:

L2122771

Report Date:

05/20/21

					RPD	
Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual Limits	
Perfluorinated Alkyl Acids by EPA 533 - Mansfield Law	b Associated sample(s):	08 QC Batch ID:	WG1497309-4	QC Sample:	L2122771-08 Client I	D: HAVEN
Perfluorooctanesulfonic Acid (PFOS)	612	695	ng/l	13	30	

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery Qualit	ier %Recovery Qua	alifier Criteria	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	103	91	50-200	_

Project Name:

Project Number: 2190120

HAVEN WELL PT

METALS

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

 Lab ID:
 L2122771-01
 Date Collected:
 05/03/21 13:20

 Client ID:
 15-7535
 Date Received:
 05/03/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Calcium, Total	42.6		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 20:38	EPA 3005A	1,6010D	BV
Iron, Total	0.106		mg/l	0.050		1	05/14/21 00:54	4 05/19/21 20:38	EPA 3005A	1,6010D	BV
Magnesium, Total	8.65		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 20:38	EPA 3005A	1,6010D	BV
Manganese, Total	0.558		mg/l	0.010		1	05/14/21 00:54	4 05/19/21 20:38	EPA 3005A	1,6010D	BV
Sodium, Total	22.8		mg/l	2.00		1	05/14/21 00:54	4 05/19/21 20:38	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	142		mg/l	0.660	NA	1	05/14/21 00:54	4 05/19/21 20:38	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

 Lab ID:
 L2122771-02
 Date Collected:
 05/03/21 13:45

 Client ID:
 15-7532
 Date Received:
 05/03/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	47.1		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 20:33	EPA 3005A	1,6010D	BV
Iron, Total	ND		mg/l	0.050		1	05/14/21 00:54	4 05/19/21 20:33	EPA 3005A	1,6010D	BV
Magnesium, Total	9.15		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 20:33	EPA 3005A	1,6010D	BV
Manganese, Total	0.386		mg/l	0.010		1	05/14/21 00:54	4 05/19/21 20:33	EPA 3005A	1,6010D	BV
Sodium, Total	22.7		mg/l	2.00		1	05/14/21 00:54	4 05/19/21 20:33	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	155		mg/l	0.660	NA	1	05/14/21 00:54	4 05/19/21 20:33	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

 Lab ID:
 L2122771-03
 Date Collected:
 05/03/21 12:25

 Client ID:
 15-TH1AR
 Date Received:
 05/03/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	46.3		mg/l	0.100		1	05/14/21 00:54	1 05/19/21 21:12	EPA 3005A	1,6010D	BV
Iron, Total	0.170		mg/l	0.050		1	05/14/21 00:54	1 05/19/21 21:12	EPA 3005A	1,6010D	BV
Magnesium, Total	9.22		mg/l	0.100		1	05/14/21 00:54	1 05/19/21 21:12	EPA 3005A	1,6010D	BV
Manganese, Total	0.216		mg/l	0.010		1	05/14/21 00:54	1 05/19/21 22:36	EPA 3005A	1,6010D	BV
Sodium, Total	22.2		mg/l	2.00		1	05/14/21 00:54	1 05/19/21 21:12	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	154		mg/l	0.660	NA	1	05/14/21 00:54	1 05/19/21 21:12	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

 Lab ID:
 L2122771-04
 Date Collected:
 05/03/21 12:50

 Client ID:
 15-7533
 Date Received:
 05/03/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mai	nsfield I ah										
Total Motals Mai	ionola Lab										
Calcium, Total	62.1		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:16	EPA 3005A	1,6010D	BV
Iron, Total	ND		mg/l	0.050		1	05/14/21 00:54	4 05/19/21 21:16	EPA 3005A	1,6010D	BV
Magnesium, Total	9.14		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:16	EPA 3005A	1,6010D	BV
Manganese, Total	0.022		mg/l	0.010		1	05/14/21 00:54	4 05/19/21 22:41	EPA 3005A	1,6010D	BV
Sodium, Total	16.3		mg/l	2.00		1	05/14/21 00:54	4 05/19/21 21:16	EPA 3005A	1,6010D	BV
Total Hardness by	/ SM 2340I	3 - Mansfie	ld Lab								
Hardness	193		mg/l	0.660	NA	1	05/14/21 00:54	4 05/19/21 21:16	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

 Lab ID:
 L2122771-05
 Date Collected:
 05/03/21 11:10

 Client ID:
 15-6522
 Date Received:
 05/03/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Calcium, Total	55.0		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:21	EPA 3005A	1,6010D	BV
Iron, Total	ND		mg/l	0.050		1	05/14/21 00:54	4 05/19/21 21:21	EPA 3005A	1,6010D	BV
Magnesium, Total	10.8		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:21	EPA 3005A	1,6010D	BV
Manganese, Total	0.178		mg/l	0.010		1	05/14/21 00:54	4 05/19/21 22:46	EPA 3005A	1,6010D	BV
Sodium, Total	24.8		mg/l	2.00		1	05/14/21 00:54	4 05/19/21 21:21	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	182		mg/l	0.660	NA	1	05/14/21 00:54	4 05/19/21 21:21	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

 Lab ID:
 L2122771-06
 Date Collected:
 05/03/21 10:10

 Client ID:
 15-6144
 Date Received:
 05/03/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	22.2		mg/l	0.100		1	05/14/21 00:54	1 05/19/21 21:26	EPA 3005A	1,6010D	BV
Iron, Total	0.127		mg/l	0.050		1	05/14/21 00:54	105/19/21 21:26	EPA 3005A	1,6010D	BV
Magnesium, Total	12.7		mg/l	0.100		1	05/14/21 00:54	105/19/21 21:26	EPA 3005A	1,6010D	BV
Manganese, Total	0.091		mg/l	0.010		1	05/14/21 00:54	1 05/19/21 22:51	EPA 3005A	1,6010D	BV
Sodium, Total	32.3		mg/l	2.00		1	05/14/21 00:54	1 05/19/21 21:26	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	108		mg/l	0.660	NA	1	05/14/21 00:54	1 05/19/21 21:26	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

 Lab ID:
 L2122771-07
 Date Collected:
 05/03/21 10:45

 Client ID:
 PH4-4779
 Date Received:
 05/03/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	1.65		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:31	EPA 3005A	1,6010D	BV
Iron, Total	1.90		mg/l	0.050		1	05/14/21 00:54	4 05/19/21 21:31	EPA 3005A	1,6010D	BV
Magnesium, Total	0.371		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:31	EPA 3005A	1,6010D	BV
Manganese, Total	0.015		mg/l	0.010		1	05/14/21 00:54	4 05/19/21 22:56	EPA 3005A	1,6010D	BV
Sodium, Total	2.59		mg/l	2.00		1	05/14/21 00:54	4 05/19/21 21:31	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	5.66		mg/l	0.660	NA	1	05/14/21 00:54	4 05/19/21 21:31	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

SAMPLE RESULTS

Lab ID:L2122771-08Date Collected:05/03/21 12:00Client ID:HAVEN WELLDate Received:05/03/21Sample Location:PORTSMOUTH, NHField Prep:Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	59.4		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:36	EPA 3005A	1,6010D	BV
Iron, Total	ND		mg/l	0.050		1	05/14/21 00:54	4 05/19/21 21:36	EPA 3005A	1,6010D	BV
Magnesium, Total	9.89		mg/l	0.100		1	05/14/21 00:54	4 05/19/21 21:36	EPA 3005A	1,6010D	BV
Manganese, Total	0.113		mg/l	0.010		1	05/14/21 00:54	4 05/19/21 23:01	EPA 3005A	1,6010D	BV
Sodium, Total	18.6		mg/l	2.00		1	05/14/21 00:54	4 05/19/21 21:36	EPA 3005A	1,6010D	BV
Total Hardness by	SM 2340E	3 - Mansfiel	ld Lab								
Hardness	189		mg/l	0.660	NA	1	05/14/21 00:54	4 05/19/21 21:36	EPA 3005A	1,6010D	BV

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date: 05/20/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample(s):	01-08	Batch: W	G14981	15-1				
Calcium, Total	ND	mg/l	0.100		1	05/14/21 00:54	05/19/21 20:19	1,6010D	BV
Iron, Total	ND	mg/l	0.050		1	05/14/21 00:54	05/19/21 20:19	1,6010D	BV
Magnesium, Total	ND	mg/l	0.100		1	05/14/21 00:54	05/19/21 20:19	1,6010D	BV
Manganese, Total	ND	mg/l	0.010		1	05/14/21 00:54	05/19/21 20:19	1,6010D	BV
Sodium, Total	ND	mg/l	2.00		1	05/14/21 00:54	05/19/21 20:19	1,6010D	BV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	l 2340B - Mansfield La	b for sam	nple(s):	01-08	Batch: WG	1498115-1			
Hardness	ND	mg/l	0.660	NA	1	05/14/21 00:54	05/19/21 20:19	1,6010D	BV

Prep Information

Digestion Method: EPA 3005A

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated samp	ole(s): 01-08 Batc	ch: WG149	8115-2					
Calcium, Total	102		-		80-120	-		
Iron, Total	98		-		80-120	-		
Magnesium, Total	106		-		80-120	-		
Manganese, Total	93		-		80-120	-		
Sodium, Total	109		-		80-120	-		
Total Hardness by SM 2340B - Mansfield Lab	Associated sample	e(s): 01-08	Batch: WG149	8115-2				
Hardness	104		-		80-120	-		

Matrix Spike Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Q	Recovery Qual Limits	RPD Qua	RPD al Limits
Total Metals - Mansfield Lal	b Associated san	nple(s): 01-08	QC Bat	ch ID: WG149	8115-3	QC Sam	nple: L2122771-01	1 Client ID: 15-	7535	
Calcium, Total	42.6	10	51.8	92		-	-	75-125	-	20
Iron, Total	0.106	1	1.08	97		-	-	75-125	-	20
Magnesium, Total	8.65	10	18.9	102		-	-	75-125	-	20
Manganese, Total	0.558	0.5	1.00	88		-	-	75-125	-	20
Sodium, Total	22.8	10	33.0	102		-	-	75-125	-	20
Total Hardness by SM 2340	DB - Mansfield La	b Associated	sample(s)	: 01-08 QC E	Batch ID): WG1498	3115-3 QC Sam	ple: L2122771-0	1 Client II	D: 15-7535
Hardness	142	66.2	207	98		-	-	75-125	-	20

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date:

05/20/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual R	PD Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	08 QC Batch ID: W	VG1498115-4 QC Sample:	L2122771-01	Client ID:	15-7535	
Calcium, Total	42.6	43.2	mg/l	1		20
Iron, Total	0.106	0.103	mg/l	3		20
Magnesium, Total	8.65	8.77	mg/l	1		20
Manganese, Total	0.558	0.564	mg/l	1		20
Sodium, Total	22.8	23.0	mg/l	1		20
otal Hardness by SM 2340B - Mansfield Lab Associated	d sample(s): 01-08	QC Batch ID: WG1498115	-4 QC Sampl	e: L21227	771-01 Client	ID: 15-7535
Hardness	142	144	mg/l	1		20

INORGANICS & MISCELLANEOUS

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date:

05/20/21

SAMPLE RESULTS

Lab ID: L2122771-01 Client ID:

15-7535

Sample Location: PORTSMOUTH, NH

Date Collected: 05/03/21 13:20 05/03/21

Date Received:

Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough La	b							
Alkalinity, Total	129.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Alkalinity, Bicarbonate	129.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Specific Conductance @ 25 C	420	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	230	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	7.3	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/04/21 06:54	121,4500NO3-F	MR
Anions by Ion Chromatogr	aphy - Wes	stborough Lab							
Bromide	0.072	mg/l	0.050		1	-	05/13/21 22:34	44,300.0	AT
Chloride	48.9	mg/l	0.500		1	-	05/13/21 22:34	44,300.0	AT
Sulfate	19.6	mg/l	1.00		1	-	05/13/21 22:34	44,300.0	AT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-02

Client ID: 15-7532

Sample Location: PORTSMOUTH, NH

Date Collected: 05/03/21 13:45

Date Received: 05/03/21

Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	oorough La	b							
Alkalinity, Total	130.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Alkalinity, Bicarbonate	130.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Specific Conductance @ 25 C	430	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	250	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	7.6	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/04/21 06:58	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - Wes	stborough Lab							
Bromide	0.069	mg/l	0.050		1	-	05/13/21 22:46	44,300.0	AT
Chloride	49.5	mg/l	5.00		10	-	05/14/21 03:48	44,300.0	AT
Sulfate	23.4	mg/l	1.00		1	-	05/13/21 22:46	44,300.0	AT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-03 Client ID: 15-TH1AR

Sample Location: PORTSMOUTH, NH

Date Collected: 05/03/21 12:25 Date Received: 05/03/21

Date Received: 05/0 Field Prep: Not

Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	oorough La	b							
Alkalinity, Total	132.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Alkalinity, Bicarbonate	132.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Specific Conductance @ 25 C	440	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	240	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	7.4	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/04/21 07:03	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - Wes	tborough Lab							
Bromide	0.071	mg/l	0.050		1	-	05/13/21 22:58	44,300.0	AT
Chloride	47.8	mg/l	5.00		10	-	05/14/21 04:00	44,300.0	AT
Sulfate	22.7	mg/l	1.00		1	-	05/13/21 22:58	44,300.0	AT

05/03/21 12:50

Lab Number:

Project Name: HAVEN WELL PT

L2122771 Project Number: 2190120 **Report Date:** 05/20/21

SAMPLE RESULTS

Lab ID: Date Collected: L2122771-04

Client ID: 15-7533 Date Received: 05/03/21

Not Specified Sample Location: PORTSMOUTH, NH Field Prep:

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough La	ab							
Alkalinity, Total	161.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Alkalinity, Bicarbonate	161.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Specific Conductance @ 25 C	490	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	270	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	7.8	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/04/21 07:05	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - Wes	stborough Lab							
Bromide	0.069	mg/l	0.050		1	-	05/13/21 23:46	44,300.0	AT
Chloride	46.0	mg/l	0.500		1	-	05/13/21 23:46	44,300.0	AT
Sulfate	30.2	mg/l	1.00		1	-	05/13/21 23:46	44,300.0	AT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-05

Client ID: 15-6522

Sample Location: PORTSMOUTH, NH

Date Collected: 05/03/21 11:10 Date Received:

05/03/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough La	b							
Alkalinity, Total	141.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Alkalinity, Bicarbonate	141.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Specific Conductance @ 25 C	520	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	280	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	7.7	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/04/21 07:06	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - Wes	tborough Lab							
Bromide	0.066	mg/l	0.050		1	-	05/13/21 23:58	44,300.0	AT
Chloride	72.4	mg/l	5.00		10	-	05/14/21 04:48	44,300.0	AT
Sulfate	22.0	mg/l	1.00		1	-	05/13/21 23:58	44,300.0	AT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-06

Client ID: 15-6144

Sample Location: PORTSMOUTH, NH

Date Collected: 05/03/21 10:10 Date Received: 05/03/21

Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	borough Lat)							
Alkalinity, Total	108.	mg CaCO3/L	2.00	NA	1	=	05/14/21 08:45	121,2320B	JB
Alkalinity, Bicarbonate	108.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Specific Conductance @ 25 C	380	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	220	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	8.1	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/04/21 07:07	121,4500NO3-F	MR
Anions by Ion Chromatogr	aphy - West	tborough Lab							
Bromide	0.119	mg/l	0.050		1	-	05/14/21 00:10	44,300.0	AT
Chloride	34.3	mg/l	0.500		1	-	05/14/21 00:10	44,300.0	AT
Sulfate	45.9	mg/l	1.00		1	-	05/14/21 00:10	44,300.0	AT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-07 Client ID: PH4-4779

Sample Location: PORTSMOUTH, NH

Date Collected: 05/03/21 10:45 Date Received: 05/03/21

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	borough La	b							
Alkalinity, Total	7.40	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Alkalinity, Bicarbonate	7.40	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Specific Conductance @ 25 C	30	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	39.	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	6.4	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	0.373	mg/l	0.100		1	-	05/04/21 07:09	121,4500NO3-F	MR
Anions by Ion Chromatogr	aphy - Wes	stborough Lab							
Bromide	ND	mg/l	0.050		1	-	05/14/21 00:23	44,300.0	AT
Chloride	2.04	mg/l	0.500		1	-	05/14/21 00:23	44,300.0	AT
Sulfate	3.30	mg/l	1.00		1	-	05/14/21 00:23	44,300.0	AT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date: 05/20/21

SAMPLE RESULTS

Lab ID: L2122771-08

Client ID: HAVEN WELL Sample Location: PORTSMOUTH, NH

Date Collected: 05/03/21 12:00

Date Received: 05/03/21

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westl	oorough La	ab							
Alkalinity, Total	154.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Alkalinity, Bicarbonate	154.	mg CaCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
Specific Conductance @ 25 C	490	umhos/cm	10		1	-	05/06/21 18:59	1,9050A	AS
Solids, Total Dissolved	270	mg/l	10		1	-	05/07/21 09:10	121,2540C	DW
pH (H)	7.8	SU	-	NA	1	-	05/10/21 21:44	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/04/21 07:10	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - We	stborough Lab							
Bromide	0.069	mg/l	0.050		1	-	05/14/21 00:35	44,300.0	AT
Chloride	50.4	mg/l	5.00		10	-	05/14/21 05:25	44,300.0	AT
Sulfate	24.3	mg/l	1.00		1	-	05/14/21 00:35	44,300.0	AT

Lab Number:

Project Name: HAVEN WELL PT

L2122771 Project Number: 2190120 **Report Date:** 05/20/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier Uni	s	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry	- Westborough Lab	for sample(s): 01-	08 Ba	tch: W	G1493954-1				
Nitrogen, Nitrate	ND	m	g/l	0.100		1	-	05/04/21 05:59	121,4500NO3-F	F MR
General Chemistry	- Westborough Lab	for sample(s): 01-	08 Ba	tch: W	G1495600-1				
Solids, Total Dissolved	ND	m	g/l	10		1	-	05/07/21 09:10	121,2540C	DW
Anions by Ion Chro	matography - Westbo	orough Lab	or sai	mple(s)	: 01-08	Batch: WG	G1498655-1			
Bromide	ND	m	g/l	0.050		1	-	05/13/21 17:07	44,300.0	AT
Chloride	ND	m	g/l	0.500		1	-	05/13/21 17:07	44,300.0	AT
Sulfate	ND	m	g/l	1.00		1	-	05/13/21 17:07	44,300.0	AT
General Chemistry	- Westborough Lab	for sample(s): 01-	03 Ba	tch: W	G1498791-1				
Alkalinity, Total	ND	mg Ca	CO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
General Chemistry	- Westborough Lab	for sample(s): 04-	06,08	Batch:	WG1498796	i-1			
Alkalinity, Total	ND	mg Ca	aCO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
General Chemistry	- Westborough Lab	for sample(s): 01-	06,08	Batch:	WG1498809)-1			
Alkalinity, Bicarbonate	ND	mg Ca	CO3/L	2.00	NA	1	-	05/14/21 08:45	121,2320B	JB
General Chemistry	- Westborough Lab	for sample(s): 07	Batch	: WG14	199808-1				
Alkalinity, Bicarbonate	ND	mg Ca	aCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
General Chemistry	- Westborough Lab	for sample(s): 07	Batch	: WG14	199812-1				
Alkalinity, Total	ND	mg Ca	CO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date:

05/20/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s):	01-08	Batch: WG14939	954-2				
Nitrogen, Nitrate	98		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-08	Batch: WG1495	508-1				
Specific Conductance	101		-		99-101	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-08	Batch: WG14956	600-2				
Solids, Total Dissolved	93		-		80-120	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-08	Batch: WG14969	965-1				
рН	101		-		99-101	-		5
Anions by Ion Chromatography - Westb	orough Lab Associated	l sampl	le(s): 01-08 Bato	ch: WG149	8655-2			
Bromide	106		-		90-110	-		
Chloride	108		-		90-110	-		
Sulfate	105		-		90-110	-		
General Chemistry - Westborough Lab	Associated sample(s):	01-03	Batch: WG1498	791-2				
Alkalinity, Total	109		-		90-110	-		10

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2122771

Report Date:

05/20/21

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 04-0	06,08 Batch: WG1498796-2			
Alkalinity, Total	91	-	90-110	-	10
General Chemistry - Westborough Lab	o Associated sample(s): 07	Batch: WG1499812-2			
Alkalinity, Total	104	-	90-110	-	10

Matrix Spike Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771

Report Date: 05/20/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Qual	Recovery Limits		RPD Qual Limits
General Chemistry - Westborou	gh Lab Asso	ciated samp	le(s): 01-08	QC Batch II	D: WG1	493954-4	QC Sample:	L21227	771-01 CI	ient ID:	15-7535
Nitrogen, Nitrate	ND	4	3.79	95		-	-		83-113	-	17
Anions by Ion Chromatography 7535	- Westborou	gh Lab Asso	ociated samp	ole(s): 01-08	QC Bat	tch ID: WG	1498655-3	QC Sar	mple: L2122	2771-01	Client ID: 15-
Bromide	0.072	2	1.76	85	Q	-	-		90-110	-	20
Chloride	48.9	40	68.1	96		-	-		90-110	-	18
Sulfate	19.6	80	60.3	102		-	-		90-110	-	20
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 04-06	.08 QC Batc	h ID: W	G1498796-	4 QC Samp	ole: L21	22771-04	Client II	D: 15-7533
Alkalinity, Total	161	100	272	111		-	-		86-116	-	10
General Chemistry - Westborou	gh Lab Asso	ciated samp	ole(s): 07 C	C Batch ID: V	VG1499	812-4 Q	C Sample: L2	122939	-01 Clien	t ID: MS	Sample
Alkalinity, Total	7.10	100	119	112		-	-		86-116	-	10

Lab Duplicate Analysis **Batch Quality Control**

Project Name: HAVEN WELL PT

Project Number: 2190120

L2122771 Report Date: 05/20/21

Lab Number:

RPD Limits RPD Parameter Native Sample Duplicate Sample Units Qual General Chemistry - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1493954-3 QC Sample: L2122771-01 Client ID: 15-7535 Nitrogen, Nitrate ND ND mg/l NC 17 General Chemistry - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1495508-2 QC Sample: L2122771-01 Client ID: 15-7535 Specific Conductance @ 25 C 20 420 420 umhos/cm 0 General Chemistry - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1495600-3 QC Sample: L2122771-01 Client ID: 15-7535 Solids, Total Dissolved 230 230 10 mg/l 0 QC Sample: L2122771-01 Client ID: 15-7535 General Chemistry - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1496965-2 7.2 5 pH (H) 7.3 SU Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01-08 QC Batch ID: WG1498655-4 QC Sample: L2122771-01 Client ID: 15-7535 **Bromide** 0.072 0.075 3 20 mg/l 48.9 48.8 18 Chloride mg/l Sulfate 19.6 18.9 mg/l 20 4 General Chemistry - Westborough Lab Associated sample(s): 04-06,08 QC Batch ID: WG1498796-3 QC Sample: L2122771-04 Client ID: 15-7533 Alkalinity, Total 161 162 mg CaCO3/L 10 General Chemistry - Westborough Lab Associated sample(s): 07 QC Batch ID: WG1499808-2 QC Sample: L2122939-01 Client ID: DUP Sample Alkalinity, Bicarbonate 7.10 5.30 mg CaCO3/L Q 9 29 General Chemistry - Westborough Lab Associated sample(s): 07 QC Batch ID: WG1499812-3 QC Sample: L2122939-01 Client ID: DUP Sample Alkalinity, Total 7.10 5.30 mg CaCO3/L 29 Q 10

Serial_No:05202114:34

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2122771
Report Date: 05/20/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2122771-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122771-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		FE-TI(180),MG-TI(180),MN-TI(180),CA- TI(180),HARDT(180),NA-TI(180)
L2122771-01C	Plastic 500ml unpreserved	Α	7	7	4.5	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),TDS- 2540(7),BR-300(28),PH-4500(.01),COND- 9050(28)
L2122771-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122771-02B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		MG-TI(180),FE-TI(180),MN-TI(180),CA- TI(180),HARDT(180),NA-TI(180)
L2122771-02C	Plastic 500ml unpreserved	Α	7	7	4.5	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01),TDS-2540(7),COND-9050(28)
L2122771-03A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122771-03B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		FE-TI(180),MG-TI(180),MN- TI(180),HARDT(180),NA-TI(180),CA-TI(180)
L2122771-03C	Plastic 500ml unpreserved	Α	7	7	4.5	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),PH- 4500(.01),TDS-2540(7),BR-300(28),COND- 9050(28)
L2122771-04A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122771-04B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		FE-TI(180),MG-TI(180),MN-TI(180),NA- TI(180),HARDT(180),CA-TI(180)
L2122771-04C	Plastic 500ml unpreserved	Α	7	7	4.5	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),TDS-2540(7),PH-4500(.01),BR-300(28),COND-9050(28)
L2122771-05A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122771-05B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		FE-TI(180),MG-TI(180),MN-TI(180),NA- TI(180),CA-TI(180),HARDT(180)
L2122771-05C	Plastic 500ml unpreserved	Α	7	7	4.5	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),PH- 4500(.01),BR-300(28),TDS-2540(7),COND- 9050(28)
L2122771-06A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)

Serial_No:05202114:34

Lab Number: L2122771

Report Date: 05/20/21

Project Name: HAVEN WELL PT

Project Number: 2190120

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2122771-06B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		MG-TI(180),FE-TI(180),MN- TI(180),HARDT(180),NA-TI(180),CA-TI(180)
L2122771-06C	Plastic 500ml unpreserved	Α	7	7	4.5	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01),TDS-2540(7),COND-9050(28)
L2122771-07A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122771-07B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Y	Absent		MG-TI(180),MN-TI(180),FE-TI(180),CA- TI(180),HARDT(180),NA-TI(180)
L2122771-07C	Plastic 500ml unpreserved	Α	6	6	4.5	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),PH-4500(.01),TDS-2540(7),BR-300(28),COND-9050(28)
L2122771-08A	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-NH(14)
L2122771-08B	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-NH(14)
L2122771-08C	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-NH(14)
L2122771-08D	Plastic 250ml Ammonium Acetate preserved	В	NA		4.2	Υ	Absent		A2-NH-533(28)
L2122771-08E	Plastic 250ml Ammonium Acetate preserved	В	NA		4.2	Υ	Absent		A2-NH-533(28)
L2122771-08F	Plastic 250ml unpreserved/No Headspace	Α	NA		4.5	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2122771-08G	Plastic 250ml HNO3 preserved	Α	<2	<2	4.5	Υ	Absent		MN-TI(180),FE-TI(180),MG-TI(180),CA- TI(180),HARDT(180),NA-TI(180)
L2122771-08H	Plastic 500ml unpreserved	Α	7	7	4.5	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),TDS- 2540(7),BR-300(28),PH-4500(.01),COND- 9050(28)
L2122771-09A	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-NH(14)
L2122771-09B	Vial HCl preserved	Α	NA		4.5	Υ	Absent		8260-NH(14)
L2122771-10A	Plastic 250ml Ammonium Acetate preserved	В	NA		4.2	Υ	Absent		A2-NH-533(28)

Serial_No:05202114:34 **Lab Number:** L2122

05/20/21

Report Date:

L2122771 HAVEN WELL PT

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	
	PFDoA	72629-94-8
Perfluorododecanoic Acid		307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS	1120	313 13 3
1H,1H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
	4:2FTS	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4.21 13	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)	=00.	
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
Perfluoro-3-Methoxypropanoic Acid	PFMPA	277 72 4
		377-73-1
Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5
Nonafluoro-3,6-Dioxaheptanoic Acid	NFDHA	151772-58-6

Project Name:

Project Number: 2190120

L2122771

Project Name: HAVEN WELL PT Lab Number:

Project Number: 2190120 Report Date: 05/20/21

GLOSSARY

Acronyms

EDL

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

from dilutions, concentrations of moisture content, where applicable. (Dod report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

of PARS using Solid-Phase Microextraction (SPME)

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

SRM

Project Name:HAVEN WELL PTLab Number:L2122771Project Number:2190120Report Date:05/20/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2122771Project Number:2190120Report Date:05/20/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: HAVEN WELL PT Lab Number: L2122771

Project Number: 2190120 Report Date: 05/20/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 533, EPA Document 815-B-19-020, November 2019.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:05202114:34

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

(A) -1112	CHAIN OF CU	JSTO	DY P	AGE	OF Z	Date R	ec'd in La	b. 5	-/-	2/0	1	Dit.	AL	PH	A Jo	ob#	11	212	27	71
ΔΙΡΠΑ		ct Informa			SI SI SI								1					アロク	01	11
8 Walkup Drive Westboro, MA 0	320 Forbes Blvd	and the state of	(ES)	nu or	EUCV.	The second	t Inform	D E	- Albertage	Delive	erabi	es	1000	rollie (d.	as C	000000	ation	PO #:	100	
Client Informatio	20 Tel: 508-822-9300 Project	Name: -(huer I v	WILTI	h 12 f	Regul	atory Re	and the last		8	Proi	ect li			-		-		THE R	- B
Client: 1/10 STT	on Esampson Inc. Project	Location: F	MCTYO	neuc	VH	☐ Yes □	No MA	MCP A	nalytica	al Metho	ods	THE REAL PROPERTY.		□ Ye	es 🗆	No	CTRO	P Analy	tical Meth	ods
Address: 55 to		Manager:	Ulaco				□ No Mat □ No GW													
reading	NNA ALPH	A Quote #:		_		☐ Yes [No NP	DES RO	3P				LEAD MEN				550	2		
	The second secon	Around Ti	me		STATE OF THE PARTY	a Othe	Jule /F			7 7	7	7	T:		Crite	na_	Je.	7		- 1
	UL. Frank @wseine consista						/ /	ACP.	PP13	Out o	1		100	5/-	1-	18	S E S	1		97
000,0	/		RUSH (only o	confirmed if pre-app	provedl)	ANALYSIS	524.2	14 0	80	anges anges	/	rint	POTOL PIK (SM 32)	(EPA300)	Commen	Smule	Ex.			Ī
Additional P	roject Information:	Due:				MEY	PAH	DMCP 14	C. C	0	/ /.	ringerprint	TOUR	EPA.	Smil	De	SOLVE STATE OF THE	SAI	MPLE INF	0 1
						A 4	10	0 0	arget	argets	15	5/	186	7		300	SON SON	Filtr	ation	L
							D ABN D	Con	68 8 7	PEST	tomis	PIK	S. Call	T A	13	10.6	E		ield ab to do	В.
						C 6260	D ABN	0 0	Rang	0	Owan	Dale	E C	8	din.		7	2525.20	servation ab to do	0 T
ALPHA Lab ID (Lab Use Only)	Sample ID	Coll	ection Time	Sample Matrix	Sampler Initials	SWO.	METALS:	EPH: CIP CRAS	VPH. DR.	D PCB D PEST	B.c. Douant Only	Barrisonale BIK +		The later of	THE PARTY OF THE P	of f	7_	1353	Comment	L
				-							I harry	-	1		-					
22771-01	15-7835	5/3/202	1300	6W	JAG						X	X	X	X	X	X				
22771-01	15-7 6 35 15-7532	5/3/202	1345	6W	JAG						X	X	X	X	X	X				
	15-7532	5/3/202	1345	6W	JAG						X	X	X	X	X	X				
67 03	15-7532 15-TH1AR	5/3/202	1345	6W	JAG						X	X	X	X	X	X				
62 03 04	15-7532 15-TH1AR 15-7533	5/3/202	1845 1250	6W	JAG						X	X	X	X	X	X				
62 03 04 05	15-7532 15-TH1AR 15-7533 15-6522	5/3/202	1345 1250 1110	6W	JAG						X	X	X	X	X	X				
62 03 04 05 06	15-7532 15-TH1AR 15-7533	5/3/202	1845 1285 1110 1110	6W	JAG						X	. X	X	X	X	X				
62 03 04 05 06 07	15-7532 15-7533 15-6522 15-6144 PH4-4799	5/3/202	1845 1885 1850 1110 1010	6W	JAG							X	X	X	X	X				
62 03 04 05 06 07 08	15-7532 15-TH1AR 15-7533 15-6522	5/3/202	1845 1285 1110 1110	6W	JAG						X	X	X	X	X	X				
62 03 04 05 06 07	15-7532 15-7533 15-6522 15-6144 PH4-4799	5/3/202	1845 1885 1850 1110 1015 1800	6W	JAG V							X	X	X	X	X				
62 03 04 05 06 07 08 09 10	15-7532 15-TH1AR 15-7533 15-6522 15-6144 PH4-4799 Haven well TB-01 Preservative	5/3/202	1845 1885 1850 1110 1010	*								X	X	X	X	X				
62 03 04 05 06 07 08 09 10 Container Type P= Plastic A= Amber glass V= Vial	15-7532 15-7533 15-6522 15-6522 15-6522 15-6144 PH4-4799 HOVEN WELL TB-01 Preservative A= None B= HOI C= HNOs	5/3/202	1845 1885 1850 1110 1015 1800	Contai								X	X	X	X	X				
62 03 04 05 06 07 08 09 10 Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube	15-7532 15-7533 15-6522 15-6522 15-6522 15-6522 15-6522 15-6522 15-6144 PH4-4799 HOVEN WELL TB-01 Preservative A= None B= HCI C= HNO, D= H ₃ SO, E= NaOH F= MOOH	5/3/202,	1845 1885 1850 1110 1015 1800	Contai	V iner Type			sived By				X	X.	X	X	X				
62 03 04 05 06 07 08 09 10 Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup	15-7532 15-7533 15-6522 15-6522 15-6522 15-6144 PH4-4799 Haven well TB-01 Preservative A= None B= HNO D= HSO E= NAOH		1845 1885 1850 1110 1015 1800	Contai	iner Type eservative	P		eived By				X	X	X	A	X II sam	nples s	ubmitted and Co	d are subjected	ect to

W.	CHAINIOE	OLIOTO	DV					1					020211		
ALPHA	CHAIN OF	CUSTO	DY P	AGE 2 OF 2	Date Re	ec'd in Lab:	5/	3/2		AL	PHA.	Job #:	121	227	11
8 Walkup Drive	320 Forbes Blvd	oject Inform			Repor	t Informat	ion - Data	Deliver	ables	В	illing Ir	nformat	tion		
Westboro, MA 0 Tel: 508-896-92	1581 Mansfield, MA 02048 20 Tel: 508-822-9300 Pro	oject Name:	W now	eu pr	□ ADE	x	□ EMAIL			0.5	Same as	Client in	nfo PO	#:	
Client Informatio	n Pro	oject Location:	POYTON	auth NH	Regula	atory Req	uirements	& F	rojec	Infor	mation	Requir	rements	W NEW	
Client: W2STO	12 Samogning, Pr	oject#:	219612	0		No MA M No Matrix				32 /Re	☐ Yes	No C	T RCP Ar	nalytical Metho	ds
Address: 55 V	VOLKEYS BYDOX BY PRO	oject Manager:			☐ Yes □	No GW1	Standards (,	
Keadin	a MA	LPHA Quote #:			The state of the s	No NPDE State /Fed					@ Cri	teria			
Phone: 978.	J 532 - 1900 T	urn-Around 1	ime			/ /	15/2	/./.	7	7	# /		7 7	7	
Email: Frank.	Gerchella wseine con	9				/ / ,	JPP1	s Only	/ /				/ / /	/	
			☐ RUSH (mily a	confirmed if pro-approved!)	ANALYSIS	3/ /	2 8 6	ange	DFingerori	1/20	7 /	//	//	li .	Ţ
Additional P	roject Information:	Date Due:			17/	PAH DMG	DRCRA8		ingeri	13		/ /	/ / \$	SAMPLE INFO	D T A
					D 624	10/2	arget	arger	15	Conductores 523 Ctores	5/ /	/	/ /	Filtration	L
					9	MCP MCP	PC.P.	PEST	tonly	/	/ /	//	1	Lab to do	В.
					X 8260	D ABN	Rang	0	uan)	PE	/	/ /	11/2	Preservation Lab to do	O T
ALPHA Lab ID (Lab Use Only)	Sample ID	Co Date	ollection	Sample Sampler Matrix Initials	Noc.	METALS: DMCP 13	EPH: DRanges & Targets D.	D PCB D PEST Ranges Only TPH: DO	She Chily L	E E	//	/ /			- 1
22771-01	15-7536	1000	/ Constant	inidats				7/2	X	1		+	Samp	ole Comments	5
02-17766	15-7536 15-7532	5 3 202	/ Constant	IIIIdis				7/2	X				Samp	pie Comment	3 5
		1000	1300	Initials				7/2	X				Samp	pie Comment	8 8
02	15-7532	1000	1300	Initials					*				Samp	pie Comments	5
02 03 04	15-7532 15-TH1AIR	1000	1300	Initials					X				Samp	pie Comments	5
03	15-7532 15-TH1AR 15-7533	1000	1300 1345 1345 1366 1360	Initials					X				Samp	pie Comments	5
07 03 04 05 06	15-7532 15-TH1AR 15-7533 15-6522	1000	1300 1345 1345 1365 1360 1110	Initials					X				Samp	pie Comments	5
07 08	15-7532 15-TH1A12 15-7533 15-6522 15-6144	1000	1300 1345 1395 1395 1390 1110	Initials	*				X				Samp	pie Comments	
07 03 04 05 06	15-7532 15-TH1A12 15-7533 15-6522 15-6144 PH4-4799	5 3 201	1300 1345 1365 1360 1110 1010	Initials					X				Samp	pie Comment	
07 08	15-7532 15-TH1A12 15-7533 15-6522 15-6144 PH4-4799	1000	1300 1345 1365 1360 1110 1010	Titudis	*				X	X X			Samp	pie Comments	
03 04 05 06 07 08 09 10	15-7532 15-TH1AR 15-7533 15-6522 15-6144 PH4-4799 Haven Well TB-01 FB-01 Preservative A=None	5 3 201	1300 1345 1395 1350 1110 1010 1045	Container Type	*				X				Samp	pie Comment	
03 04 05 06 07 08 09 10 Container Type P= Plastic A= Amber glass V= Vial G= Glass	15-7532 15-TH1AR 15-7533 15-6522 15-6144 PH4-4799 Haven Well TB-01 FB-01 Preservative A= None B= HCI C= HNO, D= H ₂ SO,	5 3 201	1300 1345 1395 1350 1110 1010 1045		*				X				Samp	pie Comments	
03 04 05 06 07 08 09 10 Container Type P= Plastic A= Amber glass V= Vial	15-7532 15-TH1AR 15-7533 15-6522 15-6144 PH4-4799 Haven Well TB-01 FB-01 Preservative A= None B= HCI C= HNO ₃ D= H ₃ SO ₄ E= NaOH F= MeOH	5 3 201	1300 1345 1345 1350 1110 1010 1045 1300	Container Type Preservative Date/Time	*	Receive			X			All cases			
03 04 05 06 07 08 09 10 Container Type P= Plastic A= Amber glass V= Vial G= Glass B= Bacteria cup C= Cube	15-7532 15-7533 15-6522 15-6522 15-6144 PH4-4799 Haven Well TB-01 FB-01 Preservative A= None B= HCI C= HNO, D= H ₂ SO, E= NaOH	5 3 201	1300 1345 1345 1350 1110 1010 1045 1300	Container Type Preservative	*				X	Κ.	450	Alpha's	oles submi	tted are subjet Conditions.	

ANALYTICAL REPORT

Lab Number: L2123175

Client: Weston & Sampson

100 International Drive

Suite 152

Portsmouth, NH 03801

ATTN: Frank Getchell

Phone: (603) 570-6319

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/19/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175 **Report Date:** 05/19/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2123175-01	HAVEN WELL	WATER	PORTSMOUTH, NH	05/05/21 08:15	05/05/21
L2123175-02	FB-01	WATER	PORTSMOUTH, NH	05/05/21 08:20	05/05/21

L2123175

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/19/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2123175

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/19/21

Case Narrative (continued)

Perfluorinated Alkyl Acids by EPA 537.1

L2123175-01: The sample was re-analyzed on dilution in order to quantiitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

WG1499270-3: The sample was re-analyzed on dilution in order to quantilate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

The WG1499270-3D MS recovery, performed on L2123175-01, is outside the acceptance criteria for perfluorooctanesulfonic acid (pfos) (54%). The unacceptable percent recovery is attributed to the elevated concentration of the target compound present in the native sample.

Perfluorinated Alkyl Acids by EPA 533

L2123175-01RE: The sample was not re-analyzed on dilution due to lack of additional sample. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. Only the results of the original analysis are reported.

L2123175-01RE: The sample was re-extracted within holding time due to QC failures in the original extraction. The results of the re-extraction are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jusen & Med Susan O' Neil

Title: Technical Director/Representative Date: 05/19/21

ORGANICS

SEMIVOLATILES

Project Name: HAVEN WELL PT Lab Number: L2123175

Project Number: 2190120 Report Date: 05/19/21

SAMPLE RESULTS

Lab ID: Date Collected: 05/05/21 08:15

Client ID: Date Received: 05/05/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 537.1
Analytical Method: 133,537.1 Extraction Date: 05/15/21 07:25

Analyst: LV

05/17/21 18:37

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab)				
Perfluorobutanesulfonic Acid (PFBS)	12.2		ng/l	2.00		1
Perfluorohexanoic Acid (PFHxA)	56.8		ng/l	2.00		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00		1
Perfluoroheptanoic Acid (PFHpA)	24.9		ng/l	2.00		1
Perfluorohexanesulfonic Acid (PFHxS)	157		ng/l	2.00		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1
Perfluorooctanoic Acid (PFOA)	43.6		ng/l	2.00		1
Perfluorononanoic Acid (PFNA)	3.29		ng/l	2.00		1
Perfluorooctanesulfonic Acid (PFOS)	441	Е	ng/l	2.00		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	2.00		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	102	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	95	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	93	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	100	70-130	

Project Name: HAVEN WELL PT Lab Number: L2123175

Project Number: 2190120 Report Date: 05/19/21

SAMPLE RESULTS

Lab ID: L2123175-01 RE Date Collected: 05/05/21 08:15

Client ID: HAVEN WELL Date Received: 05/05/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 533

Analytical Method: 136,533 Extraction Date: 05/11/21 14:04

Analyst: LV

05/12/21 14:19

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab					
Perfluorobutanoic Acid (PFBA)	45.0		ng/l	2.00		1
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1
Perfluoropentanoic Acid (PFPeA)	65.7		ng/l	2.00		1
Perfluorobutanesulfonic Acid (PFBS)	9.89		ng/l	2.00		1
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1
Perfluorohexanoic Acid (PFHxA)	55.2		ng/l	2.00		1
Perfluoropentanesulfonic Acid (PFPeS)	10.7		ng/l	2.00		1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1
Perfluoroheptanoic Acid (PFHpA)	21.6		ng/l	2.00		1
Perfluorohexanesulfonic Acid (PFHxS)	126		ng/l	2.00		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	40.6		ng/l	2.00		1
Perfluorooctanoic Acid (PFOA)	45.4		ng/l	2.00		1
Perfluoroheptanesulfonic Acid (PFHpS)	7.29		ng/l	2.00		1
Perfluorononanoic Acid (PFNA)	3.17		ng/l	2.00		1
Perfluorooctanesulfonic Acid (PFOS)	383	Е	ng/l	2.00		1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	13.3		ng/l	2.00		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1

Project Name: HAVEN WELL PT Lab Number: L2123175

Project Number: 2190120 Report Date: 05/19/21

SAMPLE RESULTS

Lab ID: L2123175-01 RE Date Collected: 05/05/21 08:15

Client ID: Date Received: 05/05/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	88	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	107	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	123	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	116	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	92	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	96	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	123	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	91	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	100	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	87	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	103	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	96	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	96	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	95	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	87	50-200

Project Name: HAVEN WELL PT Lab Number: L2123175

Project Number: 2190120 Report Date: 05/19/21

SAMPLE RESULTS

Lab ID: L2123175-01 D Date Collected: 05/05/21 08:15

Client ID: Date Received: 05/05/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Water Extraction Method: EPA 537.1
Analytical Method: 133,537.1 Extraction Date: 05/15/21 07:25

Analyst: LV

05/18/21 15:07

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 53	7.1 - Mansfield Lab						
Perfluorooctanesulfonic Acid (PFOS)	310		ng/l	8.84		5	

Surrogate	% Recovery	Qualifier	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	81		70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	78		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	79		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	81		70-130

L2123175

05/19/21

Project Name: HAVEN WELL PT Lab Number:

Project Number: 2190120

L2123175-02

05/10/21 12:28

PORTSMOUTH, NH

FB-01

SAMPLE RESULTS

Date Collected: 05/05/21 08:20

Date Received: 05/05/21

Report Date:

Field Prep: Not Specified

Sample Depth:

Analytical Date:

Sample Location:

Lab ID:

Client ID:

Matrix: Water Extraction Method: EPA 533

Analytical Method: 136,533 Extraction Date: 05/09/21 11:00

Analyst: LV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 533 - Ma	nsfield Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		1
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		1
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		1
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		1
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11CI-PF3OUdS)	ND		ng/l	2.00		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1

Project Name: HAVEN WELL PT Lab Number: L2123175

Project Number: 2190120 Report Date: 05/19/21

SAMPLE RESULTS

Lab ID: L2123175-02 Date Collected: 05/05/21 08:20

Client ID: FB-01 Date Received: 05/05/21 Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	114	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	134	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	110	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	111	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	110	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	115	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	108	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	96	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	113	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	118	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	123	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	104	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	127	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	153	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	104	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

Report Date: 05/19/21

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533

Analytical Date: 05/10/21 09:50

Analyst: LV

Extraction Method: EPA 533

Extraction Date: 05/09/21 11:00

Parameter	Result	Qualifier	Units	R	L	MDL	
Perfluorinated Alkyl Acids by EPA 53	3 - Mansfi	eld Lab for s	sample(s):	02	Batch:	WG1496421-1	
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.0	00		
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.0	00		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.0	00		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.0	00		
Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND		ng/l	2.0	00		
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.0	00		
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.0	00		
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)			ng/l	2.0			
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.0	00		
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.0	00		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPC DA)	ND)-		ng/l	2.0	00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.0	00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.0	00		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.0	00		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.0	00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.0	00		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.0	00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.0	00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.0	00		
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.0	00		
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	I ND		ng/l	2.0	00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.0	00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.0	00		
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.0	00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.0	00		

L2123175

Project Name: HAVEN WELL PT

Project Number: Report Date: 2190120 05/19/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533 Extraction Method: EPA 533

Analytical Date: 05/10/21 09:50 05/09/21 11:00 **Extraction Date:**

Analyst: LV

> RLMDL Result Qualifier Units **Parameter**

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s): 02 Batch: WG1496421-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	105	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	108	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	98	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	100	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	99	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	102	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	139	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	90	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	115	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	105	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	126	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	99	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	121	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	153	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	101	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

Report Date: 05/19/21

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533 Extraction Method: EPA 533

Analytical Date: 05/12/21 13:26 Extraction Date: 05/11/21 14:04

Analyst: LV

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s): 01 Batch: WG14973 Perfluorobutanoic Acid (PFBA) ND ng/l 2.00 Perfluoro-3-Methoxypropanoic Acid (PFMPA) ND ng/l 2.00 Perfluoropentanoic Acid (PFPA) ND ng/l 2.00 Perfluorobutanesulfonic Acid (PFPA) ND ng/l 2.00 Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND ng/l 2.00 Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFMBA) ND ng/l 2.00 Perfluoro(2-Ethoxyethane)Sulfonic Acid (ND ng/l 2.00 Nonafluoro-3,6-Dioxaheptanoic Acid (PFMBA) ND ng/l 2.00 ND ng/l 2.00 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (PFHxA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFPeS) ND ng/l 2.00 1Heptafluoropropoxyl-Propanoic Acid (HFPO-DA) ND ng/l 2.00	
Perfluoro-3-Methoxypropanoic Acid (PFMPA) ND ng/l 2.00	309-1
(PFMPA) Perfluoropentanoic Acid (PFPeA) ND ng/l 2.00 Perfluorobutanesulfonic Acid (PFBS) ND ng/l 2.00 Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND ng/l 2.00 Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFESA) ND ng/l 2.00 (PFESA) Nonafluoro-3,6-Dioxaheptanoic Acid ND ng/l 2.00 Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA) ND ng/l 2.00 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (PFHxA) ND ng/l 2.00 Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 1eptafluoropropoxyl-Propanoic Acid (HFPODA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorooctanesulfonic Acid <	
Perfluoropentanoic Acid (PFPeA) ND ng/l 2.00 Perfluorobutanesulfonic Acid (PFBS) ND ng/l 2.00 Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND ng/l 2.00 Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFESA) ND ng/l 2.00 Nonafluoro-3,6-Dioxaheptanoic Acid (ND (NFDHA)) ND ng/l 2.00 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (ND (NFDHA)) ND ng/l 2.00 Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 1-2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid (HFPODA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHpA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorooctanesulfonic Acid	
Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND ng/l 2.00 Perfluoro(2-Ethoxyethane)Sulfonic Acid ND ng/l 2.00 (PFESA) Nonafluoro-3,6-Dioxaheptanoic Acid ND ng/l 2.00 (NFDHA) 1H,1H,2H,Perfluorohexanesulfonic Acid ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropoxy]-Propanoic Acid (HFPODA) Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
Perfluoro(2-Ethoxyethane)Sulfonic Acid ND ng/l 2.00 (PFEESA) Nonafluoro-3,6-Dioxaheptanoic Acid ND ng/l 2.00 (NFDHA) 1H,1H,2H,2H-Perfluorohexanesulfonic Acid ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- ND ng/l 2.00 Heptafluoropropoxy]-Propanoic Acid (HFPODA) Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid ND ng/l 2.00 (ADONA) 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00 (ADONA)	
(PFEESA) Nonafluoro-3,6-Dioxaheptanoic Acid ND ng/l 2.00 (NFDHA) 1H,1H,2H,2H-Perfluorohexanesulfonic Acid ND ng/l 2.00 1H,1H,2H,2H-Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 1H,2H,2H,2H-Perfluorohexanesulfonic Acid (PFHpA) ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
(NFDHA) 1H,1H,2H,2H-Perfluorohexanesulfonic Acid ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid (HFPO-DA) ND ng/l 2.00 Perfluoroheptanoic Acid (PFHpA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA) ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
(4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-] ND ng/l 2.00 Heptafluoropropoxyl-Propanoic Acid (HFPO-DA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA) ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- ND ng/l 2.00 Heptafluoropropoxy]-Propanoic Acid (HFPO-DA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid (HFPO-DA) Perfluoroheptanoic Acid (PFHpA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA) 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
Heptafluoropropoxy]-Propanoic Acid (HFPO-DA) Perfluoroheptanoic Acid (PFHpA) ND ng/l 2.00 Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid ND ng/l 2.00 (ADONA) 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
4,8-Dioxa-3h-Perfluorononanoic Acid ND ng/l 2.00 (ADONA) 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
(ÁDONA) 1H,1H,2H,2H-Perfluorooctanesulfonic Acid ND ng/l 2.00	
\/	
Perfluorooctanoic Acid (PFOA) ND ng/l 2.00	
Perfluoroheptanesulfonic Acid (PFHpS) ND ng/l 2.00	
Perfluorononanoic Acid (PFNA) ND ng/l 2.00	
Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00	
9-Chlorohexadecafluoro-3-Oxanone-1- ND ng/l 2.00 Sulfonic Acid (9CI-PF3ONS)	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid ND ng/l 2.00 (8:2FTS)	
Perfluorodecanoic Acid (PFDA) ND ng/l 2.00	
Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00	
11-Chloroeicosafluoro-3-Oxaundecane-1- ND ng/l 2.00 Sulfonic Acid (11Cl-PF3OUdS)	
Perfluorododecanoic Acid (PFDoA) ND ng/l 2.00	

L2123175

Project Name: HAVEN WELL PT

Project Number: Report Date: 05/19/21 2190120

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533 Extraction Method: EPA 533

Analytical Date: 05/12/21 13:26 05/11/21 14:04 **Extraction Date:**

Analyst: LV

> RLResult Qualifier Units MDL **Parameter**

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s): 01 Batch: WG1497309-1

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	99	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	101	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	97	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	85	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	95	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	108	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	95	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	106	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	83	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	111	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	91	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	110	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	83	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	111	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	117	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	103	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

Report Date: 05/19/21

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Analytical Date: 05/17/21 18:20

Analyst: LV

Extraction Method: EPA 537.1 Extraction Date: 05/15/21 07:25

arameter	Result	Qualifier	Units	RL		MDL
erfluorinated Alkyl Acids by EPA 53	37.1 - Mans	field Lab f	or sample(s):	01	Batch:	WG1499270-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND		ng/l	2.00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		

		Acceptance	
Surrogate	%Recovery (Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	102	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	92	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	98	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	99	70-130	

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab Assoc	iated sample(s): 02 Batch	: WG1496421-2		
Perfluorobutanoic Acid (PFBA)	100	-	70-130	-	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	110	-	70-130	-	30
Perfluoropentanoic Acid (PFPeA)	116	•	70-130	-	30
Perfluorobutanesulfonic Acid (PFBS)	104	-	70-130	-	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	98	-	70-130	-	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	103	-	70-130	-	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	114	-	70-130	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	96	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	124	-	70-130	-	30
Perfluoropentanesulfonic Acid (PFPeS)	121	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	74	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	108	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	88	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	106	-	70-130	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	97	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	112	-	70-130	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	111	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	104	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	106	-	70-130	-	30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	111	-	70-130	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	96	-	70-130	-	30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 533 - M	lansfield Lab Assoc	iated sample	e(s): 02 Batch:	WG14964	21-2				
Perfluorodecanoic Acid (PFDA)	108		-		70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	110		-		70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11CI-PF3OUdS)	110		-		70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	106		-		70-130	-		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
- Carrogato (=Atractou m.ternar otariaara)	70110007019		70.10007019		
Perfluoro[13C4]Butanoic Acid (MPFBA)	106				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	113				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	106				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	105				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	96				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	101				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	112				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	106				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	90				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	118				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	106				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	122				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	101				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	120				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	150				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	113				50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 533 - N	Mansfield Lab Assoc	ciated sample(s): 01 Batch:	WG1497309-2 WG1497309	9-3	
Perfluorobutanoic Acid (PFBA)	88	87	70-130	1	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	95	90	70-130	5	30
Perfluoropentanoic Acid (PFPeA)	94	95	70-130	1	30
Perfluorobutanesulfonic Acid (PFBS)	89	86	70-130	3	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	87	89	70-130	2	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	90	93	70-130	3	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	105	110	70-130	5	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	102	101	70-130	1	30
Perfluorohexanoic Acid (PFHxA)	100	96	70-130	4	30
Perfluoropentanesulfonic Acid (PFPeS)	85	83	70-130	2	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	95	98	70-130	3	30
Perfluoroheptanoic Acid (PFHpA)	90	94	70-130	4	30
Perfluorohexanesulfonic Acid (PFHxS)	85	81	70-130	5	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	98	101	70-130	3	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	87	90	70-130	3	30
Perfluorooctanoic Acid (PFOA)	98	94	70-130	4	30
Perfluoroheptanesulfonic Acid (PFHpS)	89	83	70-130	7	30
Perfluorononanoic Acid (PFNA)	91	100	70-130	9	30
Perfluorooctanesulfonic Acid (PFOS)	90	86	70-130	5	30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	89	94	70-130	5	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	93	92	70-130	1	30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 533 - M	ansfield Lab Assoc	iated sample((s): 01 Batch:	WG149730	09-2 WG1497309)-3			
Perfluorodecanoic Acid (PFDA)	96		94		70-130	2		30	
Perfluoroundecanoic Acid (PFUnA)	97		94		70-130	3		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	98		104		70-130	6		30	
Perfluorododecanoic Acid (PFDoA)	92		94		70-130	2		30	

Surrogate (Extracted Internal Standard)	LCS %Recovery Qu	LCSD al %Recovery Qual	Acceptance Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	98	98	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	104	99	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	94	94	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	95	93	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	97	100	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	97	102	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	99	99	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97	107	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	88	84	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	108	113	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	99	99	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	108	117	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	94	95	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	113	121	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	122	127	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	91	96	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 537.1 -	- Mansfield Lab Ass	ociated sample(s): 01	Batch:	WG1499	270-2				
Perfluorobutanesulfonic Acid (PFBS)	107		-			70-130	-		30	
Perfluorohexanoic Acid (PFHxA)	110		-			70-130	-		30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	106		-			70-130	-		30	
Perfluoroheptanoic Acid (PFHpA)	115		-			70-130	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	125		-			70-130	-		30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	103		-			70-130	-		30	
Perfluorooctanoic Acid (PFOA)	117		-			70-130	-		30	
Perfluorononanoic Acid (PFNA)	106		-			70-130	-		30	
Perfluorooctanesulfonic Acid (PFOS)	106		-			70-130	-		30	
Perfluorodecanoic Acid (PFDA)	102		-			70-130	-		30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	112		-			70-130	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	108		-			70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	105		-			70-130	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	109		-			70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	106		-			70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	107		-			70-130	-		30	
Perfluorotridecanoic Acid (PFTrDA)	105		-			70-130	-		30	
Perfluorotetradecanoic Acid (PFTA)	114		-			70-130	-		30	

Lab Control Sample Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Lab Number:

L2123175

Project Number: 2190120

Report Date:

05/19/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 Batch: WG1499270-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	99				70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	95				70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	99				70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	101				70-130

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123175

Report Date:

05/19/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		ecovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E	EPA 533 - Ma	nsfield Lab	Associated s	ample(s): 02	QC Batch	ID: WG14	96421-3 QC	Sample:	L2122271	-01 C	lient ID:	MS Sample
Perfluorobutanoic Acid (PFBA)	38.7	2	40.2	75		-	-		70-130	-		30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND	2	2.28	114		-	-		70-130	-		30
Perfluoropentanoic Acid (PFPeA)	51.9	2	56.2	215	Q	-	-		70-130	-		30
Perfluorobutanesulfonic Acid (PFBS)	7.88	1.77	10.2	131		-	-		70-130	-		30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND	2	2.00	100		-	-		70-130	-		30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND	1.78	ND	103		-	-		70-130	-		30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND	2	2.00	100		-	-		70-130	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	1.87	2.92	156	Q	-	-		70-130	-		30
Perfluorohexanoic Acid (PFHxA)	49.7	2	52.8	155	Q	-	-		70-130	-		30
Perfluoropentanesulfonic Acid (PFPeS)	9.21	1.88	11.7	133		-	-		70-130	-		30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	2	2.16	108		-	-		70-130	-		30
Perfluoroheptanoic Acid (PFHpA)	16.1	2	19.1	150		-	-		70-130	-		30
Perfluorohexanesulfonic Acid (PFHxS)	114	1.82	118	220	Q	-	-		70-130	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid	ND	1.88	ND	98		-	-		70-130	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	33.9	1.9	40.0	321	Q	-	-		70-130	-		30
Perfluorooctanoic Acid (PFOA)	39.7	2	42.6	145		-	-		70-130	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	8.14	1.9	9.30	61		-	-		70-130	-		30
Perfluorononanoic Acid (PFNA)	3.16	2	4.71	78		-	-		70-130	-		30
Perfluorooctanesulfonic Acid (PFOS)	459E	1.85	424E	0	Q	-	-		70-130	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	11.7	1.92	13.7	104		-	-		70-130	-		30
Perfluorodecanoic Acid (PFDA)	ND	2	3.55	178	Q	-	-		70-130	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	2	2.12	106		-	-		70-130	-		30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123175

Report Date: 05/19/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	/ Qual	Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E	PA 533 - Ma	nsfield Lab	Associated sa	ample(s): 02	QC Batch	ID: WG14	96421-3 Q	C Sampl	e: L2122271	-01 (Client ID:	MS Sample
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	1.88	2.08	110		-	-		70-130	-		30
Perfluorododecanoic Acid (PFDoA)	ND	2	2.12	106		-	-		70-130	-		30

	MS	6	M:	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	112				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	126				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	105				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	95				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	124				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	123				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	103				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	107				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	119				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	147				50-200
Perfluoro[13C4]Butanoic Acid (MPFBA)	101				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	114				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	109				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	109				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	104				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	128				50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123175

Report Date:

05/19/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E WELL	PA 537.1 -	Mansfield Lab	Associated	l sample(s): 01	QC Batc	h ID: WG1	499270-3 G	QC Sampl	e: L212317	75-01	Client ID	: HAVEN
Perfluorobutanesulfonic Acid (PFBS)	12.2	126	169	125		-	-		70-130	-		30
Perfluorohexanoic Acid (PFHxA)	56.8	142	214	111		-	-		70-130	-		30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	142	150	106		-	-		70-130	-		30
Perfluoroheptanoic Acid (PFHpA)	24.9	142	196	121		-	-		70-130	-		30
Perfluorohexanesulfonic Acid (PFHxS)	157	129	302	112		-	-		70-130	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	134	144	108		-	-		70-130	-		30
Perfluorooctanoic Acid (PFOA)	43.6	142	207	115		-	-		70-130	-		30
Perfluorononanoic Acid (PFNA)	3.29	142	146	101		-	-		70-130	-		30
Perfluorooctanesulfonic Acid (PFOS)	310	131	381	54	Q	-	-		70-130	-		30
Perfluorodecanoic Acid (PFDA)	ND	142	161	114		-	-		70-130	-		30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	132	146	111		-	-		70-130	-		30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	142	154	109		-	-		70-130	-		30
Perfluoroundecanoic Acid (PFUnA)	ND	142	157	111		-	-		70-130	-		30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	142	157	111		-	-		70-130	-		30
Perfluorododecanoic Acid (PFDoA)	ND	142	146	103		-	-		70-130	-		30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	134	145	108		-	-		70-130	-		30
Perfluorotridecanoic Acid (PFTrDA)	ND	142	138	97		-	-		70-130	-		30
Perfluorotetradecanoic Acid (PFTA)	ND	142	147	104		-	-		70-130	-		30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123175

Report Date:

05/19/21

	Native	MS	MS	MS		MSD	MSD		Recovery			RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1499270-3 QC Sample: L2123175-01 Client ID: HAVEN WELL

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifie	r % Recovery Qualifier	Criteria
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	104		70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	74		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	101		70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	79		70-130
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	104		70-130
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	79		70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	73		70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	97		70-130

L2123175

Lab Duplicate Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Report Date: 05/19/21

Lab Number:

RPD Native Sample Duplicate Sample RPD Limits **Parameter** Units Qual Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab Associated sample(s): 02 QC Batch ID: WG1496421-4 QC Sample: L2122271-02 Client ID: DUP Sample Perfluorobutanoic Acid (PFBA) 30 34.5 33.1 ng/l 4 Perfluoro-3-Methoxypropanoic Acid (PFMPA) ND ND ng/l NC 30 Perfluoropentanoic Acid (PFPeA) 30 31.1 30.7 ng/l 1 Perfluorobutanesulfonic Acid (PFBS) ND ND ng/l NC 30 Perfluoro-4-Methoxybutanoic Acid (PFMBA) ND NC 30 ND ng/l Perfluoro(2-Ethoxyethane)Sulfonic Acid NC 30 ND ND ng/l (PFEESA) Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA) NC 30 ND ND ng/l 1H,1H,2H,2H-Perfluorohexanesulfonic Acid ND ND ng/l NC 30 (4:2FTS) Perfluorohexanoic Acid (PFHxA) 7.32 6.71 9 30 ng/l Perfluoropentanesulfonic Acid (PFPeS) NC 30 ND ND ng/l NC 30 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-ND ND ng/l Heptafluoropropoxy]-Propanoic Acid (HFPO-DA) Perfluoroheptanoic Acid (PFHpA) ND ND NC 30 ng/l Perfluorohexanesulfonic Acid (PFHxS) ND NC 30 ND ng/l NC 4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA) 30 ND ND ng/l 1H,1H,2H,2H-Perfluorooctanesulfonic Acid 2.13 ND ng/l NC 30 (6:2FTS) Perfluorooctanoic Acid (PFOA) ND ND ng/l NC 30 Perfluoroheptanesulfonic Acid (PFHpS) NC 30 ND ND ng/l Perfluorononanoic Acid (PFNA) NC 30 ND ND ng/l Perfluorooctanesulfonic Acid (PFOS) ND NC 30 ND ng/l 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic ND NC 30 ND ng/l Acid (9CI-PF3ONS)

Project Name: HAVEN WELL PT

Project Number: 2190120

Quality Control

Lab Number: L2123175

Report Date: 05/19/21

Parameter	Native Sample	Duplicate Sample	e Units	RPD	RPD Qual Limits	
Perfluorinated Alkyl Acids by EPA 533 - Mansfield Sample	Lab Associated sample(s):	02 QC Batch ID:	WG1496421-4	QC Sample:	: L2122271-02 Client II	D: DUP
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC	30	
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30	
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30	
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND	ND	ng/l	NC	30	
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30	

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery Qua	lifier %Recovery Qu	alifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	105	106	50-200	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	113	115	50-200	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	112	115	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	111	112	50-200	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	96	101	50-200	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	111	104	50-200	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	110	120	50-200	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	117	114	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	96	99	50-200	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	120	115	50-200	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	107	113	50-200	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	118	121	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	101	98	50-200	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	126	126	50-200	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	151	151	50-200	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	104	100	50-200	

Lab Number:

L2123175

Report Date:

05/19/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limit	
Perfluorinated Alkyl Acids by EPA 533 - Mansfield La Sample	b Associated sample(s):	01 QC Batch ID: \	WG1497309-4	QC Sample:	L2122771-08 Cli	ent ID: DUP
Perfluorooctanesulfonic Acid (PFOS)	612	695	ng/l	13	30)

			Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery Qualifie	er %Recovery Qualifier	Criteria	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	103	91	50-200	

Project Name:

Project Number: 2190120

HAVEN WELL PT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123175

05/19/21 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfi Sample	eld Lab Associated sample(s)): 01 QC Batch ID:	WG1499270-4	QC Sample	e: L2124864-01 Client ID: DUP
Perfluorobutanesulfonic Acid (PFBS)	2.46	2.33	ng/l	5	30
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/l	NC	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	4.84	4.77	ng/l	1	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	3.67	3.49	ng/l	5	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

Lab Number:

L2123175

Project Number: 2190120

HAVEN WELL PT

Project Name:

Report Date:

05/19/21

RPD Native Sample **Parameter Duplicate Sample** Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1499270-4 QC Sample: L2124864-01 Client ID: DUP Sample

Surrogate	%Recovery	Qualifier %Recovery Q	Acceptance ualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	109	107	70-130	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	92	93	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	88	92	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93	94	70-130	

Serial_No:05192112:13

Project Name: HAVEN WELL PT **Lab Number:** L2123175 Project Number: 2190120

Report Date: 05/19/21

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2123175-01A	Plastic 250ml Trizma preserved	Α	NA		3.3	Υ	Absent		A2-NH-537.1(14)
L2123175-01B	Plastic 250ml Trizma preserved	Α	NA		3.3	Υ	Absent		A2-NH-537.1(14)
L2123175-01C	Plastic 250ml Ammonium Acetate preserved	Α	NA		3.3	Υ	Absent		A2-NH-533(28)
L2123175-01D	Plastic 250ml Ammonium Acetate preserved	Α	NA		3.3	Υ	Absent		A2-NH-533(28)
L2123175-02C	Plastic 250ml Ammonium Acetate preserved	Α	NA		3.3	Υ	Absent		A2-NH-533(28)

Serial No:05192112:13

Lab Number: L2123175

05/19/21 **Report Date:**

PFAS PARAMETER SUMMARY

Parameter Acronym CAS Number PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs) Perfluorooctadecanoic Acid **PFODA** 16517-11-6 Perfluorohexadecanoic Acid **PFHxDA** 67905-19-5 Perfluorotetradecanoic Acid **PFTA** 376-06-7 Perfluorotridecanoic Acid **PFTrDA** 72629-94-8 Perfluorododecanoic Acid **PFDoA** 307-55-1 Perfluoroundecanoic Acid **PFUnA** 2058-94-8 Perfluorodecanoic Acid **PFDA** 335-76-2 Perfluorononanoic Acid **PFNA** 375-95-1 Perfluorooctanoic Acid **PFOA** 335-67-1 Perfluoroheptanoic Acid **PFHpA** 375-85-9 **PFHxA** Perfluorohexanoic Acid 307-24-4 Perfluoropentanoic Acid **PFPeA** 2706-90-3 Perfluorobutanoic Acid **PFBA** 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) Perfluorododecanesulfonic Acid **PFDoDS** 79780-39-5 **PFDS** Perfluorodecanesulfonic Acid 335-77-3 Perfluorononanesulfonic Acid **PFNS** 68259-12-1 Perfluorooctanesulfonic Acid **PFOS** 1763-23-1 Perfluoroheptanesulfonic Acid **PFHpS** 375-92-8 Perfluorohexanesulfonic Acid **PFHxS** 355-46-4 Perfluoropentanesulfonic Acid **PFPeS** 2706-91-4 Perfluorobutanesulfonic Acid **PFBS** 375-73-5 **FLUOROTELOMERS** 1H.1H.2H.2H-Perfluorododecanesulfonic Acid 10:2FTS 120226-60-0 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluorooctanesulfonic Acid 6:2FTS 27619-97-2 1H,1H,2H,2H-Perfluorohexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) **FOSA** Perfluorooctanesulfonamide 754-91-6 N-Ethyl Perfluorooctane Sulfonamide **NEtFOSA** 4151-50-2 **NMeFOSA** N-Methyl Perfluorooctane Sulfonamide 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorooctanesulfonamido Ethanol **NEtFOSE** 1691-99-2 N-Methyl Perfluorooctanesulfonamido Ethanol **NMeFOSE** 24448-09-7 N-Ethyl Perfluorooctanesulfonamidoacetic Acid **NEtFOSAA** 2991-50-6 **NMeFOSAA** N-Methyl Perfluorooctanesulfonamidoacetic Acid 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluorononanoic Acid **ADONA** 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 11CI-PF3OUdS 763051-92-9 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid 9CI-PF3ONS 756426-58-1 PERFLUOROETHER SULFONIC ACIDS (PFESAs) Perfluoro(2-Ethoxyethane)Sulfonic Acid **PFEESA** 113507-82-7 PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs) Perfluoro-3-Methoxypropanoic Acid PFMPA 377-73-1 Perfluoro-4-Methoxybutanoic Acid **PFMBA** 863090-89-5 Nonafluoro-3,6-Dioxaheptanoic Acid **NFDHA** 151772-58-6

Project Name:

Project Number:

HAVEN WELL PT

2190120

Project Name: HAVEN WELL PT Lab Number: L2123175

Project Number: 2190120 Report Date: 05/19/21

GLOSSARY

Acronyms

DL

LOQ

MS

Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when
those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments
from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for
which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated
using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

 SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

STLP

Project Name:HAVEN WELL PTLab Number:L2123175Project Number:2190120Report Date:05/19/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report. Initial pH reflects pH of container determined up.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2123175Project Number:2190120Report Date:05/19/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:05192112:13

Project Name: HAVEN WELL PT Lab Number: L2123175
Project Number: 2190120 Report Date: 05/19/21

REFERENCES

Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 533, EPA Document 815-B-19-020, November 2019.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05192112:13

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	CHAINOT					Serial_No:05192112:13
Reach Phone: 978- Email: Frank.	Mansfield, MA 02048 Feb 508-822-9300 Projection Project Walkers Brook Dy Project Ing MA - 532-1900 Turn Cetchell@wselw.com	ect Informa ect Name: Ho ect Location: ect #: 219 et Manager: HA Quote #:	ation Ovenu Ports	Smou	PT with NA	☐ Yes ☐ No MA MCP Analytical Methods ☐ Yes ☐ No CT RCP Analytical Method ☐ Yes ☐ No Matrix Spike Required on this SDG? (Required for MCP Inorganics) ☐ Yes ☐ No GW1 Standards (Info Required for Metals & EPH with Targets) ☐ Yes ☐ No NPDES RGP ☐ Other State /Fed Program Criteria
ALPHA Lab ID (Lab Use Only) 3/75-0/	Haven well FB-01	Collect Date	ection Time 815 820	Sample Matrix GIV GIV	Sampler Initials UAG UAG	WETALS: DAGO. Samolo Connection Literation METALS: DAGO. Samolo Connection PERSTANS PERSTANS PERSTANS PERSTANS PERSTANS Samolo Connection C
Plastic Amber glass //al Stass Stass Stass Subse Subse Forber COD Bottle J K	Preservative A= None B= HCi C* HNO D= H ₂ SO E= NaOH F= MeOH G= NaHSO H = Na So H = Na So I = Ascorbic Acad J = NH.Ci K= Zn Acetate C= Other	Shed By:	95/20	Contain	ner Type servative Time 9 00 1933	Received By: Date/Time Style 1940 All samples submitted are subject to Skyle 1940 See reverse side. 5/5/21/436 FORM NO: 01-01 (rev. 12-Mai-2012)

ANALYTICAL REPORT

Lab Number: L2123943

Client: Weston & Sampson

100 International Drive

Suite 152

Portsmouth, NH 03801

ATTN: Frank Getchell

Phone: (603) 570-6319

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/24/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123943 **Report Date:** 05/24/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2123943-01	15-7535	WATER	PORTSMOUTH, NH	05/07/21 13:20	05/07/21
L2123943-02	15-7532	WATER	PORTSMOUTH, NH	05/07/21 14:15	05/07/21
L2123943-03	15-TH1AR	WATER	PORTSMOUTH, NH	05/07/21 12:30	05/07/21
L2123943-04	15-7533	WATER	PORTSMOUTH, NH	05/07/21 12:50	05/07/21
L2123943-05	15-6522	WATER	PORTSMOUTH, NH	05/07/21 10:15	05/07/21
L2123943-06	15-6144	WATER	PORTSMOUTH, NH	05/07/21 11:50	05/07/21
L2123943-07	PH4-4779	WATER	PORTSMOUTH, NH	05/07/21 10:40	05/07/21
L2123943-08	TRIP BLANK	WATER	PORTSMOUTH, NH	05/07/21 00:00	05/07/21

L2123943

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/24/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

Case Narrative (continued)

Sample Receipt

L2123943-08: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. This sample was not analyzed.

Anions by Ion Chromatography

The WG1499901-3 MS recoveries, performed on L2123943-02, are outside the acceptance criteria for sulfate (28%) and bromide (69%); however, the associated LCS recoveries is within criteria. No further action was taken.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/24/21

Jufani Morrissey-Tiffani Morrissey

ALPHA

METALS

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

SAMPLE RESULTS

 Lab ID:
 L2123943-01
 Date Collected:
 05/07/21 13:20

 Client ID:
 15-7535
 Date Received:
 05/07/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Calcium, Total	44.6		mg/l	0.100		1	05/14/21 09:31	05/22/21 00:41	EPA 3005A	1,6010D	sv
Iron, Total	0.057		mg/l	0.050		1	05/14/21 09:31	05/22/21 00:41	EPA 3005A	1,6010D	SV
Magnesium, Total	8.93		mg/l	0.100		1	05/14/21 09:31	05/22/21 00:41	EPA 3005A	1,6010D	SV
Manganese, Total	0.605		mg/l	0.010		1	05/14/21 09:31	05/22/21 00:41	EPA 3005A	1,6010D	SV
Sodium, Total	24.2		mg/l	2.00		1	05/14/21 09:31	05/22/21 00:41	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	148		mg/l	0.660	NA	1	05/14/21 09:31	05/22/21 00:41	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

SAMPLE RESULTS

 Lab ID:
 L2123943-02
 Date Collected:
 05/07/21 14:15

 Client ID:
 15-7532
 Date Received:
 05/07/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	sfield Lab										
Calcium, Total	48.7		mg/l	0.100		1	05/14/21 09:3	1 05/22/21 00:55	EPA 3005A	1,6010D	SV
Iron, Total	ND		mg/l	0.050		1	05/14/21 09:3	1 05/22/21 00:55	EPA 3005A	1,6010D	SV
Magnesium, Total	9.32		mg/l	0.100		1	05/14/21 09:3	1 05/22/21 00:55	EPA 3005A	1,6010D	SV
Manganese, Total	0.418		mg/l	0.010		1	05/14/21 09:3	1 05/22/21 00:55	EPA 3005A	1,6010D	SV
Sodium, Total	23.0		mg/l	2.00		1	05/14/21 09:3	1 05/22/21 00:55	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	160		mg/l	0.660	NA	1	05/14/21 09:3	1 05/22/21 00:55	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

SAMPLE RESULTS

 Lab ID:
 L2123943-03
 Date Collected:
 05/07/21 12:30

 Client ID:
 15-TH1AR
 Date Received:
 05/07/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	sfield Lab										
Calcium, Total	47.8		mg/l	0.100		1	05/14/21 09:31	1 05/22/21 01:00	EPA 3005A	1,6010D	SV
Iron, Total	1.09		mg/l	0.050		1	05/14/21 09:3	1 05/22/21 01:00	EPA 3005A	1,6010D	SV
Magnesium, Total	9.27		mg/l	0.100		1	05/14/21 09:3	1 05/22/21 01:00	EPA 3005A	1,6010D	SV
Manganese, Total	0.223		mg/l	0.010		1	05/14/21 09:3	1 05/22/21 01:00	EPA 3005A	1,6010D	SV
Sodium, Total	22.6		mg/l	2.00		1	05/14/21 09:3	1 05/22/21 01:00	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	157		mg/l	0.660	NA	1	05/14/21 09:31	1 05/22/21 01:00	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

SAMPLE RESULTS

 Lab ID:
 L2123943-04
 Date Collected:
 05/07/21 12:50

 Client ID:
 15-7533
 Date Received:
 05/07/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
Calcium, Total	65.9		mg/l	0.100		1	05/14/21 00:31	1 05/22/21 01:04	EDA 3005A	1,6010D	SV
			mg/i			ı					
Iron, Total	ND		mg/l	0.050		1	05/14/21 09:31	1 05/22/21 01:04	EPA 3005A	1,6010D	SV
Magnesium, Total	9.39		mg/l	0.100		1	05/14/21 09:31	1 05/22/21 01:04	EPA 3005A	1,6010D	SV
Manganese, Total	0.021		mg/l	0.010		1	05/14/21 09:31	1 05/22/21 01:04	EPA 3005A	1,6010D	SV
Sodium, Total	17.5		mg/l	2.00		1	05/14/21 09:31	1 05/22/21 01:04	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	203		mg/l	0.660	NA	1	05/14/21 09:31	1 05/22/21 01:04	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

SAMPLE RESULTS

 Lab ID:
 L2123943-05
 Date Collected:
 05/07/21 10:15

 Client ID:
 15-6522
 Date Received:
 05/07/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Calcium, Total	60.1		mg/l	0.100		1	05/14/21 09:31	05/22/21 01:09	EPA 3005A	1,6010D	SV
Iron, Total	ND		mg/l	0.050		1	05/14/21 09:31	05/22/21 01:09	EPA 3005A	1,6010D	SV
Magnesium, Total	11.5		mg/l	0.100		1	05/14/21 09:31	05/22/21 01:09	EPA 3005A	1,6010D	SV
Manganese, Total	0.187		mg/l	0.010		1	05/14/21 09:31	05/22/21 01:09	EPA 3005A	1,6010D	SV
Sodium, Total	26.9		mg/l	2.00		1	05/14/21 09:31	05/22/21 01:09	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	197		mg/l	0.660	NA	1	05/14/21 09:31	05/22/21 01:09	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

SAMPLE RESULTS

 Lab ID:
 L2123943-06
 Date Collected:
 05/07/21 11:50

 Client ID:
 15-6144
 Date Received:
 05/07/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Man	sfield Lab										
	.00.0 _0.0										
Calcium, Total	22.7		mg/l	0.100		1	05/14/21 09:31	05/22/21 01:14	EPA 3005A	1,6010D	SV
Iron, Total	0.144		mg/l	0.050		1	05/14/21 09:31	05/22/21 01:14	EPA 3005A	1,6010D	SV
Magnesium, Total	12.7		mg/l	0.100		1	05/14/21 09:31	05/22/21 01:14	EPA 3005A	1,6010D	SV
Manganese, Total	0.094		mg/l	0.010		1	05/14/21 09:31	05/22/21 01:14	EPA 3005A	1,6010D	SV
Sodium, Total	32.3		mg/l	2.00		1	05/14/21 09:31	05/22/21 01:14	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	B - Mansfiel	d Lab								
Hardness	109		mg/l	0.660	NA	1	05/14/21 09:31	05/22/21 01:14	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

SAMPLE RESULTS

 Lab ID:
 L2123943-07
 Date Collected:
 05/07/21 10:40

 Client ID:
 PH4-4779
 Date Received:
 05/07/21

Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Prep Method	Analytical Method	Analyst
Total Metals - Mar	nsfield Lab										
Calcium, Total	1.70		mg/l	0.100		1	05/14/21 09:31	05/22/21 01:18	EPA 3005A	1,6010D	sv
Iron, Total	1.93		mg/l	0.050		1	05/14/21 09:31	05/22/21 01:18	EPA 3005A	1,6010D	SV
Magnesium, Total	0.360		mg/l	0.100		1	05/14/21 09:31	05/22/21 01:18	EPA 3005A	1,6010D	SV
Manganese, Total	0.015		mg/l	0.010		1	05/14/21 09:31	05/22/21 01:18	EPA 3005A	1,6010D	SV
Sodium, Total	3.35		mg/l	2.00		1	05/14/21 09:31	05/22/21 01:18	EPA 3005A	1,6010D	SV
Total Hardness by	SM 2340E	3 - Mansfiel	d Lab								
Hardness	5.71		mg/l	0.660	NA	1	05/14/21 09:31	05/22/21 01:18	EPA 3005A	1,6010D	SV

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfiel	d Lab for sample(s):	01-07 I	Batch: Wo	G14984	85-1				
Calcium, Total	ND	mg/l	0.100		1	05/14/21 09:31	05/21/21 23:59	1,6010D	SV
Iron, Total	ND	mg/l	0.050		1	05/14/21 09:31	05/21/21 23:59	1,6010D	SV
Magnesium, Total	ND	mg/l	0.100		1	05/14/21 09:31	05/21/21 23:59	1,6010D	SV
Manganese, Total	ND	mg/l	0.010		1	05/14/21 09:31	05/21/21 23:59	1,6010D	SV
Sodium, Total	ND	mg/l	2.00		1	05/14/21 09:31	05/21/21 23:59	1,6010D	SV

Prep Information

Digestion Method: EPA 3005A

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Hardness by SM	M 2340B - Mansfield La	ab for sam	nple(s):	01-07	Batch: WG	1498485-1			
Hardness	ND	mg/l	0.660	NA	1	05/14/21 09:31	05/21/21 23:59	1,6010D	SV

Prep Information

Digestion Method: EPA 3005A

Lab Control Sample Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123943

Report Date: 05/24/21

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sample	e(s): 01-07 Bato	ch: WG149	8485-2					
Calcium, Total	98		-		80-120	-		
Iron, Total	81		-		80-120	-		
Magnesium, Total	100		-		80-120	-		
Manganese, Total	83		-		80-120	-		
Sodium, Total	102		-		80-120	-		
Total Hardness by SM 2340B - Mansfield Lab A	ssociated sample	e(s): 01-07	Batch: WG149	8485-2				
Hardness	99		-		80-120	-		

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123943

Report Date: 05/24/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recover Qual Limits	y RPD Qua	RPD II Limits
Total Metals - Mansfield La	b Associated sam	nple(s): 01-07	QC Bate	ch ID: WG149	8485-3	QC Sam	nple: L2100009-2	270 Client ID:	MS Sample	
Calcium, Total	28.4	10	38.9	105		-	-	75-125	-	20
Iron, Total	0.290	1	1.12	83		-	-	75-125	-	20
Magnesium, Total	0.158	10	9.01	88		-	-	75-125	-	20
Manganese, Total	ND	0.5	0.428	86		-	-	75-125	-	20
Sodium, Total	1810	10	1800	0	Q	-	-	75-125	-	20
otal Hardness by SM 2340 Sample	OB - Mansfield La	b Associated	sample(s)	: 01-07 QC E	Batch ID	: WG1498	485-3 QC Sa	mple: L2100009	-270 Client I	D: MS
Hardness	71.6	66.2	134	94		-	-	75-125	-	20

Project Name: HAVEN WELL PT

Project Number: 2190120

 Lab Number:
 L2123943

 Report Date:
 05/24/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual RPD	Limits
Total Metals - Mansfield Lab Associated sample(s): 01-0	07 QC Batch ID: V	VG1498485-4 QC Sample:	L2100009-270	Client ID:	: DUP Sample	
Calcium, Total	28.4	28.7	mg/l	1		20
Iron, Total	0.290	0.289	mg/l	0		20
Magnesium, Total	0.158	0.156	mg/l	1		20
Manganese, Total	ND	ND	mg/l	NC		20
Sodium, Total	1810	1740	mg/l	4		20
Total Hardness by SM 2340B - Mansfield Lab Associated Sample	d sample(s): 01-07	QC Batch ID: WG1498485	-4 QC Sample	: L21000	09-270 Client ID:	: DUP
Hardness	71.6	72.2	mg/l	1		20

Lab Serial Dilution Analysis Batch Quality Control

HAVEN WELL PT

Project Number: 2190120

Project Name:

L2123943 Report Date: 05/24/21

Lab Number:

Parameter		Native Sample	Serial Dilution	Units	% D	Qual RPI	O Limits
Total Metals - Mansfield Lab	Associated sample(s): 01-07	7 QC Batch ID: \	WG1498485-6 QC Sample:	L2100009-270	Client ID:	: DUP Sample	
Calcium, Total		28.4	29.5	mg/l	4		20
Sodium, Total		1810	2000	mg/l	10		20
Total Hardness by SM 2340B Sample	3 - Mansfield Lab Associated	sample(s): 01-07	QC Batch ID: WG1498485	-6 QC Sample	e: L21000	09-270 Client I	D: DUP
Hardness		71.6	74.5	mg/l	4		20

INORGANICS & MISCELLANEOUS

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

SAMPLE RESULTS

Lab ID: L2123943-01

Client ID: 15-7535

Sample Location: PORTSMOUTH, NH

Date Collected:

05/07/21 13:20

Date Received:

05/07/21

Field Prep:

Not Specified

Sample Depth:

General Chemistry - Westborough Lab Alkalinity, Total 122. mg CaCO3/L 2.00 NA 1 - 05/17/21 09:57 121,2320B Alkalinity, Bicarbonate 122. mg CaCO3/L 2.00 NA 1 - 05/17/21 09:57 121,2320B Specific Conductance @ 25 C 410 umhos/cm 10 1 - 05/13/21 00:58 1,9050A Solids, Total Dissolved 240 mg/l 10 1 - 05/13/21 10:30 121,2540C pH (H) 7.1 SU - NA 1 - 05/10/21 20:50 121,4500H+-B Nitrogen, Nitrate ND mg/l 0.100 1 - 05/08/21 06:19 121,4500NO3-F	
Alkalinity, Bicarbonate 122. mg CaCO3/L 2.00 NA 1 - 05/17/21 09:57 121,2320B Specific Conductance @ 25 C 410 umhos/cm 10 1 - 05/13/21 00:58 1,9050A Solids, Total Dissolved 240 mg/l 10 1 - 05/13/21 10:30 121,2540C pH (H) 7.1 SU - NA 1 - 05/10/21 20:50 121,4500H+-B	
Specific Conductance @ 25 C 410 umhos/cm 10 1 - 05/13/21 00:58 1,9050A Solids, Total Dissolved 240 mg/l 10 1 - 05/13/21 10:30 121,2540C pH (H) 7.1 SU - NA 1 - 05/10/21 20:50 121,4500H+-B	JB
Solids, Total Dissolved 240 mg/l 10 1 - 05/13/21 10:30 121,2540C pH (H) 7.1 SU - NA 1 - 05/10/21 20:50 121,4500H+-B	JB
pH (H) 7.1 SU - NA 1 - 05/10/21 20:50 121,4500H+-B	KA
	AC
Nitrogen, Nitrate ND mg/l 0.100 1 - 05/08/21 06:19 121,4500NO3-F	AS
	MR
Anions by Ion Chromatography - Westborough Lab	
Bromide 0.067 mg/l 0.050 1 - 05/16/21 18:07 44,300.0	SH
Chloride 44.0 mg/l 0.500 1 - 05/16/21 18:07 44,300.0	SH
Sulfate 19.0 mg/l 1.00 1 - 05/16/21 18:07 44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

SAMPLE RESULTS

Lab ID: L2123943-02

Client ID: 15-7532

Sample Location: PORTSMOUTH, NH

Date Collected: 05/07/21 14:15 Date Received:

05/07/21

Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough Lab)							
Alkalinity, Total	129.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Alkalinity, Bicarbonate	129.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Specific Conductance @ 25 C	430	umhos/cm	10		1	-	05/13/21 00:58	1,9050A	KA
Solids, Total Dissolved	240	mg/l	10		1	-	05/13/21 10:30	121,2540C	AC
pH (H)	7.2	SU	-	NA	1	-	05/10/21 20:50	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/08/21 06:20	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - West	borough Lab							
Bromide	0.069	mg/l	0.050		1	-	05/16/21 21:57	44,300.0	SH
Chloride	45.1	mg/l	0.500		1	-	05/16/21 21:57	44,300.0	SH
Sulfate	22.3	mg/l	1.00		1	-	05/16/21 21:57	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

SAMPLE RESULTS

Lab ID: L2123943-03 Client ID:

15-TH1AR

Sample Location: PORTSMOUTH, NH

Date Collected:

05/07/21 12:30

Date Received:

05/07/21

Field Prep:

Not Specified

Sample Depth:

			Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - Westb	orough Lab)								
Alkalinity, Total	128.	mg	g CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Alkalinity, Bicarbonate	128.	mg	g CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Specific Conductance @ 25 C	420	u	mhos/cm	10		1	-	05/13/21 00:58	1,9050A	KA
Solids, Total Dissolved	250		mg/l	10		1	-	05/13/21 10:30	121,2540C	AC
pH (H)	7.2		SU	-	NA	1	-	05/10/21 20:50	121,4500H+-B	AS
Nitrogen, Nitrate	ND		mg/l	0.100		1	-	05/08/21 06:22	121,4500NO3-F	MR
Anions by Ion Chromatogra	phy - West	borough	Lab							
Bromide	0.070		mg/l	0.050		1	-	05/16/21 22:09	44,300.0	SH
Chloride	44.1		mg/l	0.500		1	-	05/16/21 22:09	44,300.0	SH
Sulfate	20.7		mg/l	1.00		1	-	05/16/21 22:09	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

SAMPLE RESULTS

Lab ID: L2123943-04

Client ID: 15-7533

Sample Location: PORTSMOUTH, NH

Date Collected: 05/07/21 12:50

Date Received: 05/07/21

Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westb	orough La	b							
Alkalinity, Total	160.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Alkalinity, Bicarbonate	160.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Specific Conductance @ 25 C	470	umhos/cm	10		1	-	05/13/21 00:58	1,9050A	KA
Solids, Total Dissolved	310	mg/l	10		1	-	05/13/21 10:30	121,2540C	AC
pH (H)	7.6	SU	-	NA	1	-	05/10/21 20:50	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/08/21 06:23	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - Wes	tborough Lab							
Bromide	0.068	mg/l	0.050		1	-	05/16/21 22:21	44,300.0	SH
Chloride	39.9	mg/l	0.500		1	-	05/16/21 22:21	44,300.0	SH
Sulfate	30.0	mg/l	1.00		1	-	05/16/21 22:21	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

SAMPLE RESULTS

Lab ID: L2123943-05

Client ID: 15-6522

Sample Location: PORTSMOUTH, NH

Date Collected:

05/07/21 10:15

Date Received:

05/07/21

Field Prep:

Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	oorough Lab								
Alkalinity, Total	143.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Alkalinity, Bicarbonate	143.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Specific Conductance @ 25 C	520	umhos/cm	10		1	-	05/13/21 00:58	1,9050A	KA
Solids, Total Dissolved	300	mg/l	10		1	-	05/13/21 10:30	121,2540C	AC
pH (H)	7.7	SU	-	NA	1	-	05/10/21 20:50	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/08/21 06:24	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - Westl	oorough Lab							
Bromide	0.065	mg/l	0.050		1	-	05/16/21 22:33	44,300.0	SH
Chloride	68.3	mg/l	5.00		10	-	05/17/21 17:32	44,300.0	SH
Sulfate	21.2	mg/l	1.00		1	-	05/16/21 22:33	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

SAMPLE RESULTS

Lab ID: L2123943-06

Client ID: 15-6144

Sample Location: PORTSMOUTH, NH

Date Collected: 05/07/21 11:50 Date Received: 05/07/21

Date Received: 05/07/21
Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	oorough La	b							
Alkalinity, Total	108.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Alkalinity, Bicarbonate	108.	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Specific Conductance @ 25 C	370	umhos/cm	10		1	-	05/13/21 00:58	1,9050A	KA
Solids, Total Dissolved	210	mg/l	10		1	-	05/13/21 10:30	121,2540C	AC
pH (H)	8.1	SU	-	NA	1	-	05/10/21 20:50	121,4500H+-B	AS
Nitrogen, Nitrate	ND	mg/l	0.100		1	-	05/08/21 06:26	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - Wes	tborough Lab							
Bromide	0.112	mg/l	0.050		1	-	05/16/21 22:45	44,300.0	SH
Chloride	29.7	mg/l	0.500		1	-	05/16/21 22:45	44,300.0	SH
Sulfate	44.3	mg/l	1.00		1	-	05/16/21 22:45	44,300.0	SH

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

SAMPLE RESULTS

Lab ID: L2123943-07

Client ID: PH4-4779

Sample Location: PORTSMOUTH, NH

Date Collected: 05/07/21 10:40

Date Received: 05/07/21

Not Specified Field Prep:

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Westk	orough Lab)							
Alkalinity, Total	5.60	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Alkalinity, Bicarbonate	5.60	mg CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Specific Conductance @ 25 C	30	umhos/cm	10		1	-	05/13/21 00:58	1,9050A	KA
Solids, Total Dissolved	54.	mg/l	10		1	-	05/13/21 10:30	121,2540C	AC
pH (H)	6.2	SU	-	NA	1	-	05/10/21 20:50	121,4500H+-B	AS
Nitrogen, Nitrate	0.433	mg/l	0.100		1	-	05/08/21 06:27	121,4500NO3-F	MR
Anions by Ion Chromatogra	aphy - West	borough Lab							
Bromide	ND	mg/l	0.050		1	-	05/16/21 23:21	44,300.0	SH
Chloride	2.09	mg/l	0.500		1	-	05/16/21 23:21	44,300.0	SH
Sulfate	2.97	mg/l	1.00		1	-	05/16/21 23:21	44,300.0	SH

Lab Number:

Project Name: HAVEN WELL PT

L2123943 Project Number: 2190120 **Report Date:** 05/24/21

Method Blank Analysis Batch Quality Control

Parameter	Result Qu	alifier U	Inits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab	for sample	e(s): 01-	07 Ba	tch: WG	1496088-1				
Nitrogen, Nitrate	ND		mg/l	0.100		1	-	05/08/21 06:00	121,4500NO3-F	MR
General Chemistry -	Westborough Lab	for sample	e(s): 01-	07 Ba	tch: WG	31498351-1				
Solids, Total Dissolved	ND		mg/l	10		1	-	05/13/21 10:30	121,2540C	AC
General Chemistry -	Westborough Lab	for sample	e(s): 01-	03 Ba	tch: WG	61499727-1				
Alkalinity, Total	ND	m	g CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
General Chemistry -	Westborough Lab	for sample	e(s): 01-	07 Ba	tch: WG	1499733-1				
Alkalinity, Bicarbonate	ND	m	g CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
General Chemistry -	Westborough Lab	for sample	e(s): 04-	07 Ba	tch: WG	1499734-1				
Alkalinity, Total	ND	m	g CaCO3/L	2.00	NA	1	-	05/17/21 09:57	121,2320B	JB
Anions by Ion Chror	natography - Westb	orough La	b for sar	mple(s)	: 01-07	Batch: WC	G1499901-1			
Bromide	ND		mg/l	0.050		1	-	05/16/21 17:07	44,300.0	SH
Chloride	ND		mg/l	0.500		1	-	05/16/21 17:07	44,300.0	SH
Sulfate	ND		mg/l	1.00		1	-	05/16/21 17:07	44,300.0	SH
Anions by Ion Chror	natography - Westb	orough La	b for sar	mple(s)	: 05 Ba	atch: WG15	00090-1			
Chloride	ND		mg/l	0.500		1	-	05/17/21 17:07	44,300.0	SH

Lab Control Sample Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date:

05/24/21

Parameter	LCS %Recovery Qual	LCSD %Recovery Q	%Recovery ual Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-07	Batch: WG1496088-	2			
Nitrogen, Nitrate	94	-	90-110	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-07	Batch: WG1496948-	1			
pH	100	-	99-101	-		5
General Chemistry - Westborough Lab	Associated sample(s): 01-07	Batch: WG1498143-	1			
Specific Conductance	100	-	99-101	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-07	Batch: WG1498351-	2			
Solids, Total Dissolved	98	-	80-120	-		
General Chemistry - Westborough Lab	Associated sample(s): 01-03	Batch: WG1499727-	2			
Alkalinity, Total	103	-	90-110	-		10
General Chemistry - Westborough Lab	Associated sample(s): 04-07	Batch: WG1499734-	2			
Alkalinity, Total	103	-	90-110	-		10

Lab Control Sample Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2123943

Report Date: 05/24/21

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Anions by Ion Chromatography - Westborough	gh Lab Associated sa	ample(s): 01-07 Batch: WG	1499901-2		
Bromide	95	-	90-110	-	
Chloride	97	-	90-110	-	
Sulfate	94	-	90-110	-	
Anions by Ion Chromatography - Westborough	gh Lab Associated sa	ample(s): 05 Batch: WG150	00090-2		
Chloride	96	-	90-110	-	

Matrix Spike Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2123943

Report Date: 05/24/21

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	v Qual	Recovery Limits	RPD		RPD Limits
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-07	QC Batch II	D: WG14	496088-4	QC Sample	: L21235	507-01 C	ient ID:	MS Sar	nple
Nitrogen, Nitrate	0.628	4	4.65	101		-	-		83-113	-		17
General Chemistry - Westbor	ough Lab Assoc	ciated samp	ole(s): 01-03	QC Batch II	D: WG14	499727-4	QC Sample	: L21243	310-01 C	ient ID:	MS Sar	nple
Alkalinity, Total	507	200	694	94		-	-		86-116	-		10
General Chemistry - Westbor	ough Lab Assoc	iated samp	ole(s): 04-07	QC Batch II	D: WG14	499734-4	QC Sample	: L21239	943-04 C	ient ID:	15-7533	3
Alkalinity, Total	160	100	269	109		-	-		86-116	-		10
Anions by Ion Chromatograpl 7532	hy - Westboroug	h Lab Asso	ociated samp	ole(s): 01-07	QC Bat	tch ID: WG	1499901-3	QC Sar	nple: L212	3943-02	Client	ID: 15
Bromide	0.069	0.4	0.345	69	Q	-	-		90-110	-		20
Chloride	45.1	4	49.0	97		-	-		90-110	-		18
Sulfate	22.3	8	24.5	28	Q	-	-		90-110	-		20
Anions by Ion Chromatograpl Sample	hy - Westboroug	h Lab Asso	ociated sam	ole(s): 05 Q(C Batch	ID: WG150	0090-3 QC	Sample	e: L212401	6-05 (Client ID:	MS
Chloride	169	40	207	94		-	-		90-110	-		18

Lab Duplicate Analysis Batch Quality Control

Project Name: HAVEN WELL PT

Project Number: 2190120

L2123943 05/24/21

Lab Number:

Report Date:

Parameter	Native Sar	nple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab A	Associated sample(s): 01-07	QC Batch ID:	WG1496088-3	QC Sample:	L2123507-01	Client ID:	DUP Sample
Nitrogen, Nitrate	0.628		0.636	mg/l	2		17
General Chemistry - Westborough Lab A	Associated sample(s): 01-07	QC Batch ID:	WG1496948-2	QC Sample:	L2123677-01	Client ID:	DUP Sample
рН	8.0		8.0	SU	0		5
General Chemistry - Westborough Lab A	Associated sample(s): 01-07	QC Batch ID:	WG1498143-2	QC Sample:	L2123876-01	Client ID:	DUP Sample
Specific Conductance	550		550	umhos/cm	0		20
General Chemistry - Westborough Lab A	Associated sample(s): 01-07	QC Batch ID:	WG1498351-3	QC Sample:	L2123943-01	Client ID:	15-7535
Solids, Total Dissolved	240		240	mg/l	0		10
General Chemistry - Westborough Lab A	Associated sample(s): 01-03	QC Batch ID:	WG1499727-3	QC Sample:	L2124310-01	Client ID:	DUP Sample
Alkalinity, Total	507		493	mg CaCO3/l	_ 3		10
General Chemistry - Westborough Lab A	Associated sample(s): 01-07	QC Batch ID:	WG1499733-2	QC Sample:	L2123834-01	Client ID:	DUP Sample
Alkalinity, Bicarbonate	27.3		27.3	mg CaCO3/l	_ 0		9
General Chemistry - Westborough Lab A	Associated sample(s): 04-07	QC Batch ID:	WG1499734-3	QC Sample:	L2123943-04	Client ID:	15-7533
Alkalinity, Total	160		160	mg CaCO3/l	0		10
Anions by Ion Chromatography - Westbor 7532	rough Lab Associated samp	le(s): 01-07 C	QC Batch ID: WG	1499901-4 (QC Sample: L	2123943-0	2 Client ID: 15-
Bromide	0.069		0.069	mg/l	0		20
Chloride	45.1		45.0	mg/l	0		18
Sulfate	22.3		22.3	mg/l	0		20

Lab Duplicate Analysis

Batch Quality Control

Lab Number: **Project Name:** HAVEN WELL PT L2123943

05/24/21 **Project Number:** 2190120 Report Date:

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Limits
Anions by Ion Chromatography - Westborough Lab Sample	Associated sample(s): 05	QC Batch ID: WG150009	00-4 QC Sa	mple: L21240	16-05 Client ID: DUP
Chloride	169	169	mg/l	0	18

HAVEN WELL PT **Lab Number:** L2123943

Project Number: 2190120 Report Date: 05/24/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Project Name:

Custody Seal Cooler

Α Absent

Container Information			Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2123943-01A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.1	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2123943-01B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Υ	Absent		MG-TI(180),MN-TI(180),FE-TI(180),CA- TI(180),NA-TI(180),HARDT(180)
L2123943-01C	Plastic 500ml unpreserved	Α	6	6	4.1	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01),TDS-2540(7),COND-9050(28)
L2123943-02A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.1	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2123943-02B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Υ	Absent		FE-TI(180),MG-TI(180),MN- TI(180),HARDT(180),CA-TI(180),NA-TI(180)
L2123943-02C	Plastic 500ml unpreserved	Α	6	6	4.1	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),PH-4500(.01),TDS-2540(7),COND-9050(28)
L2123943-03A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.1	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2123943-03B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Y	Absent		FE-TI(180),MN-TI(180),MG-TI(180),NA- TI(180),CA-TI(180),HARDT(180)
L2123943-03C	Plastic 500ml unpreserved	Α	7	7	4.1	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),TDS-2540(7),PH-4500(.01),COND-9050(28)
L2123943-04A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.1	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2123943-04B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Y	Absent		FE-TI(180),MG-TI(180),MN-TI(180),CA- TI(180),NA-TI(180),HARDT(180)
L2123943-04C	Plastic 500ml unpreserved	Α	7	7	4.1	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),PH- 4500(.01),BR-300(28),TDS-2540(7),COND- 9050(28)
L2123943-05A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.1	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2123943-05B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Y	Absent		MG-TI(180),MN-TI(180),FE-TI(180),CA- TI(180),HARDT(180),NA-TI(180)
L2123943-05C	Plastic 500ml unpreserved	Α	7	7	4.1	Y	Absent		SO4-300(28),CL-300(28),NO3-4500(2),BR-300(28),TDS-2540(7),PH-4500(.01),COND-9050(28)
L2123943-06A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.1	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2123943-06B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Υ	Absent		MN-TI(180),FE-TI(180),MG-TI(180),CA- TI(180),HARDT(180),NA-TI(180)

Lab Number: L2123943

Report Date: 05/24/21

Project Name: HAVEN WELL PT

Project Number: 2190120

Container Information				Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2123943-06C	Plastic 500ml unpreserved	Α	7	7	4.1	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),TDS- 2540(7),PH-4500(.01),BR-300(28),COND- 9050(28)
L2123943-07A	Plastic 250ml unpreserved/No Headspace	Α	NA		4.1	Υ	Absent		ALK-T-2320(14),ALK-HCO3-2320(14)
L2123943-07B	Plastic 250ml HNO3 preserved	Α	<2	<2	4.1	Υ	Absent		MN-TI(180),MG-TI(180),FE-TI(180),NA- TI(180),CA-TI(180),HARDT(180)
L2123943-07C	Plastic 500ml unpreserved	А	6	6	4.1	Υ	Absent		SO4-300(28),CL-300(28),NO3-4500(2),PH- 4500(.01),TDS-2540(7),BR-300(28),COND- 9050(28)
L2123943-08A	Vial HCl preserved	Α	N/A	N/A	4.1	Υ	Absent		ARCHIVE()
L2123943-08B	Vial HCl preserved	Α	N/A	N/A	4.1	Υ	Absent		ARCHIVE()

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

GLOSSARY

Acronyms

EMPC

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2123943Project Number:2190120Report Date:05/24/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2123943Project Number:2190120Report Date:05/24/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Project Name: HAVEN WELL PT Lab Number: L2123943

Project Number: 2190120 Report Date: 05/24/21

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

- Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дірна	CHAIN O	- cu	STO	DY PA	GE	OF	Date Re	ec'd in l	Lab:	51	71	12	1		ALI	PHA	A Jo	b #:	L	21	239	13
AND STREET	5 CA	Project	Informat	tion	1		Repor	t Infor	mation	- Data	Deli	ivera	ble	s	Bil	ling	Info	orma	tion	12	11.59	4
8 Walkup Drive Westboro, MA 0 Tel: 508-898-92		Project N	Name: H	oven in	ONP	T	□ ADE	×	刘	EMAIL					□ S	ame	as C	Client	info	PO #:		
Client Informatio	n	Project L		portan			Regul	atory F	Require	ement	s &	Pi	roje	ct In	form	natio	on R	equ	ireme	nts		45
Client: WUSTON	issampson inc	Project #					☐ Yes 0	No M	A MCP atrix Sp	Analytic	cal Me	thod: on th	s is SD	OG?							lytical Meth	ods
Address: 55 W	10114015 Brook DVINE	Project N	Manager:				☐ Yes 0	□ No G	W1 Star	ndards												
Readin	ia MA	ALPHA	Quote #:				☐ Yes (☐ Other								0	0	Criter	ria_y	Sign			
Phone: 078-	932-1900	THE RESERVE OF THE PERSON NAMED IN	Around Ti	me					/ /	13 15	13	/*	/	1		300	3/	13	a s	7		
Email: Getche	11. Frank Owseince	W Keton	dard F	RUSH (only o			60	/ /	/ / Cap	CPP13	o sa	os on	/	8	Y X			15	SMISON	//		
		Date I		a NOOT pany	ontimed if pre-ap	provedly	ANALYSIS	D 524.2	1 4	1.1	Ranges Only	Ranges Only		E Part	A DOUGH	1/2		Section of the sectio		1		T
Additional P	roject Information:	Date					NA /	1	DIMO	C/RCR48	J S	7		3	90	A MORE	-	5 V	0000	SA	AMPLE INF	FO A
							10	1 1	27 48	Targ	Targ	E	T.	J.	19	18	10	73	2/8		Itration Field	#
							D 8260	D ABN	O RCRAE	Ses &	Ses &	D PEST	2	8	Hon	N. Mar	Die die	190	SMARIN	0	Lab to do	В
					term.		10/	10 10	13	ORan	, B	000	7	9	97	9	ष्ट्र	Halinen Ha	5		eservation Lab to do	Ť
ALPHA Lab ID (Lab Use Only)	Sample ID		Coll Date	ection Time	Sample Matrix	Sampler Initials	Voc.	METALS:	METALS: D'RCRAE	VPH: DRanges & Targets	D PCB Targets D	THE DOWN OF ST A Ranges On	TSO B	Dan	N. F. C. Librid	Page 1		1		Sample	e Commen	its S
23943-01	15-7535		5/7/21	1320	GN	JAG						X	X	X	X	X	X	X	4			
02	15 - 7532			1415								1	1		1		1	1				
03	15-TH1AR			1230																		
04	15-7533			1250																		
05	15 - 6522			1015																		
06	15 - 6144			1150																		
07	PH4-4779		V	1040	1	1						V	J	V	V	V	1	4				
																		T				
MENTERS A																						
Container Type	Preservative				Conta	ainer Type												T	1			
P= Plastic A= Amber glass V= Vial	A= None B= HCl C= HNO ₃				Pre	eservative												\top				
G= Glass B= Bacteria cup C= Cube	D= H ₂ SO ₄ E= NaOH F= MeOH	Relind	uished By:		Date	e/Time	1) Re	eceived	By	,			Date	Time	•	10451	ll con	moles	oub-t	ted are suf-	along to
O= Other E= Encore D= BOD Bottle	G= NaHSO ₄ H = Na ₂ S ₂ O ₃ I= Ascorbic Acid	TIM.	LAR	/	5/7/21	1445	19	-	1	14	1		5	17	121	19	43	pha's	s Term	s and	ted are sub Conditions.	ject to
Page 39 of 39	J = NH₄CI K= Zn Acetate O= Other	nou	3770	334	3/1/2	1 1841	ilal	~	hill	w	ta		5/-	1/2	1	54	3300		verse 10: 01-0		2-Mar-2012)	

ANALYTICAL REPORT

Lab Number: L2124240

Client: Weston & Sampson

100 International Drive

Suite 152

Portsmouth, NH 03801

ATTN: Frank Getchell

Phone: (603) 570-6319

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/26/21

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HAVEN WELL PT

Project Number: 2190120

 Lab Number:
 L2124240

 Report Date:
 05/26/21

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2124240-01	HAVEN WELL	DW	PORTSMOUTH, NH	05/08/21 10:50	05/10/21
L2124240-02	FIELD BLANK	DW	PORTSMOUTH, NH	05/08/21 10:55	05/10/21

L2124240

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/26/21

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

L2124240

Lab Number:

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/26/21

Case Narrative (continued)

Perfluorinated Alkyl Acids by EPA 537.1

L2124240-01: The sample was re-analyzed on dilution in order to quantiitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

WG1499513-4: The sample was re-analyzed on dilution in order to quantilate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

Perfluorinated Alkyl Acids by EPA 533

L2124240-01: Perfluorooctanesulfonic Acid (PFOS) exceeded the calibration range; however, re-extraction could not be performed due to lack of additional sample. The result should be considered estimated and is qualified with an E flag.

L2124240-02R: The sample was re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

WG1499735-1R: The sample was re-analyzed due to QC failures in the original analysis. The results of the re-analysis are reported.

WG1499735-2R: The LCS recoveries, associated with L2124240-02R, are within the 50-150% acceptance criteria for low level Perfluorinated Alkyl Acids.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Vuxon & Mel Susan O' Neil

Title: Technical Director/Representative Date: 05/26/21

ORGANICS

SEMIVOLATILES

Project Name: HAVEN WELL PT Lab Number: L2124240

Project Number: 2190120 Report Date: 05/26/21

SAMPLE RESULTS

Lab ID: L2124240-01 Date Collected: 05/08/21 10:50

Client ID: Date Received: 05/10/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537.1

Analytical Method: 133,537.1 Extraction Date: 05/16/21 10:35
Analytical Date: 05/18/21 12:35

Analyst: LV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab					
Perfluorobutanesulfonic Acid (PFBS)	11.0		ng/l	2.00		1
Perfluorohexanoic Acid (PFHxA)	51.4		ng/l	2.00		1
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00		1
Perfluoroheptanoic Acid (PFHpA)	23.5		ng/l	2.00		1
Perfluorohexanesulfonic Acid (PFHxS)	157		ng/l	2.00		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1
Perfluorooctanoic Acid (PFOA)	45.2		ng/l	2.00		1
Perfluorononanoic Acid (PFNA)	3.30		ng/l	2.00		1
Perfluorooctanesulfonic Acid (PFOS)	456	Е	ng/l	2.00		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.00		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1
Perfluorotridecanoic Ácid (PFTrDA)	ND		ng/l	2.00		1
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	92		70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	91		70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	95		70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	89		70-130	

L2124240

05/08/21 10:50

Project Name: HAVEN WELL PT

Project Number: 2190120

SAMPLE RESULTS

Report Date: 05/26/21

Lab Number:

Date Collected:

Lab ID: L2124240-01

Client ID: HAVEN WELL Sample Location: PORTSMOUTH, NH

Date Received: 05/10/21
Field Prep: Not Specified

Sample Depth:

Matrix: Dw

Analytical Method: 136,533 Analytical Date: 05/19/21 23:40

Analyst: JW

Extraction Method: EPA 533

Extraction Date: 05/17/21 11:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 533 - Ma	nsfield Lab					
Perfluorobutanoic Acid (PFBA)	36.9		ng/l	2.00		1
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1
Perfluoropentanoic Acid (PFPeA)	50.4		ng/l	2.00		1
Perfluorobutanesulfonic Acid (PFBS)	7.88		ng/l	2.00		1
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1
Perfluorohexanoic Acid (PFHxA)	40.1		ng/l	2.00		1
Perfluoropentanesulfonic Acid (PFPeS)	9.84		ng/l	2.00		1
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1
Perfluoroheptanoic Acid (PFHpA)	15.6		ng/l	2.00		1
Perfluorohexanesulfonic Acid (PFHxS)	106		ng/l	2.00		1
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	41.2		ng/l	2.00		1
Perfluorooctanoic Acid (PFOA)	37.5		ng/l	2.00		1
Perfluoroheptanesulfonic Acid (PFHpS)	7.08		ng/l	2.00		1
Perfluorononanoic Acid (PFNA)	2.68		ng/l	2.00		1
Perfluorooctanesulfonic Acid (PFOS)	368	Е	ng/l	2.00		1
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	10.6		ng/l	2.00		1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11CI-PF3OUdS)	ND		ng/l	2.00		1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1

Project Name: HAVEN WELL PT Lab Number: L2124240

Project Number: 2190120 Report Date: 05/26/21

SAMPLE RESULTS

Lab ID: Date Collected: 05/08/21 10:50

Client ID: Date Received: 05/10/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	115	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	128	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	160	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	128	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	128	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	119	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	139	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	111	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	122	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	120	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	115	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	119	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	119	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	111	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	112	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	113	50-200

Project Name: HAVEN WELL PT Lab Number: L2124240

Project Number: 2190120 Report Date: 05/26/21

SAMPLE RESULTS

Lab ID: L2124240-01 D Date Collected: 05/08/21 10:50

Client ID: Date Received: 05/10/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Matrix: Dw Extraction Method: EPA 537.1

Analytical Method: 133,537.1 Extraction Date: 05/16/21 10:35
Analytical Date: 05/19/21 02:48

Analyst: LV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 537	′.1 - Mansfield Lab	1				
Perfluorooctanesulfonic Acid (PFOS)	345		ng/l	9.27		5
Surrogate			% Recovery	Qualifier		eptance riteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C	-PFHxA)		80			70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C	-PFDA)		75			70-130

L2124240

05/26/21

Project Name: HAVEN WELL PT Lab Number:

Project Number: 2190120

L2124240-02

05/19/21 23:49

SAMPLE RESULTS

R

Date Collected: 05/08/21 10:55

Report Date:

Client ID: FIELD BLANK Date Received: 05/10/21
Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Analytical Date:

Lab ID:

Matrix: Dw Extraction Method: EPA 533

Analytical Method: 136,533 Extraction Date: 05/17/21 11:00

Analyst: JW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 533 - Ma	ansfield Lab						
Perfluorobutanoic Acid (PFBA)	ND		ng/l	2.00		1	
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND		ng/l	2.00		1	
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.00		1	
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		1	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND		ng/l	2.00		1	
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND		ng/l	2.00		1	
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND		ng/l	2.00		1	
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		1	
Perfluoropentanesulfonic Acid (PFPeS)	ND		ng/l	2.00		1	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND		ng/l	2.00		1	
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		1	
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		1	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	2.00		1	
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		1	
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.00		1	
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		1	
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		1	
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	2.00		1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		1	
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		1	

Project Name: HAVEN WELL PT Lab Number: L2124240

Project Number: 2190120 Report Date: 05/26/21

SAMPLE RESULTS

Lab ID: L2124240-02 R Date Collected: 05/08/21 10:55

Client ID: FIELD BLANK Date Received: 05/10/21 Sample Location: PORTSMOUTH, NH Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab

Surrogate (Extracted Internal Standard)	% Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	125	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	125	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	152	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	104	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	135	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	120	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	134	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	131	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	116	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	132	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	122	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	127	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	100	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	123	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	120	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	118	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2124240

Report Date: 05/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 133,537.1 Analytical Date: 05/18/21 11:00

Analyst: LV

Extraction Method: EPA 537.1 Extraction Date: 05/16/21 10:35

arameter	Result	Qualifier	Units	RL		MDL
erfluorinated Alkyl Acids by EPA 53	37.1 - Mans	sfield Lab f	or sample(s):	01	Batch:	WG1499513-1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	2.00		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	2.00		
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND		ng/l	2.00		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	2.00		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	2.00		
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND		ng/l	2.00		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	2.00		
Perfluorononanoic Acid (PFNA)	ND		ng/l	2.00		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	2.00		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.00		
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	ND		ng/l	2.00		
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	c ND		ng/l	2.00		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.00		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.00		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.00		
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND		ng/l	2.00		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.00		
Perfluorotetradecanoic Acid (PFTA)	ND		ng/l	2.00		

	Acceptance			
Surrogate	%Recovery (Qualifier Criteria		
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	81	70-130		
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	77	70-130		
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	79	70-130		
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	93	70-130		

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2124240

Report Date: 05/26/21

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533

Analytical Date: 05/19/21 23:05

Analyst: JW

Extraction Method: EPA 533

Extraction Date: 05/17/21 11:00

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s): 01-02 Batch: WG1499735-1 R	Parameter	Result	Qualifier Units	RL	MDL
Perfluoro-3-Methoxypropanoic Acid (PFPeA)	Perfluorinated Alkyl Acids by EPA 53	3 - Mansfie	eld Lab for sample(s):	01-02	Batch: WG1499735-1 R
Perfluoropentanoic Acid (PFPeA) ND ng/l 2.00	Perfluorobutanoic Acid (PFBA)	ND	ng/l	2.00	
Perfluorobutanesulfonic Acid (PFBS)		ND	ng/l	2.00	
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	Perfluoropentanoic Acid (PFPeA)	ND	ng/l	2.00	
Perfluoro (2-Ethoxyethane) Sulfonic Acid (PFESA) ND ng/l 2.00	Perfluorobutanesulfonic Acid (PFBS)	ND	ng/l	2.00	
PFEESA Nonafluoro-3,6-Dioxaheptanoic Acid ND ng/l 2.00 (NFDHA) 1H,1H,2H,2H-Perfluorohexanesulfonic Acid ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFHxA) ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFPeS) ND ng/l 2.00 (4:2FTS) Perfluorohexanoic Acid (PFPeS) ND ng/l 2.00 (4:2FTS) Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 (4:2FTS) Perfluorooctanoic Acid (PFDA) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFDA) ND ng/l 2.00 (4:2FTS) Perfluoronanoic Acid (PFNA) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFOS) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFDA) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFDA) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFDA) ND ng/l 2.00 (4:2FTS) Perfluorohexanesulfonic Acid (PFDA) ND ng/l 2.00 (4:2FTS) Perfluorohexanes	Perfluoro-4-Methoxybutanoic Acid (PFMBA	.) ND	ng/l	2.00	
NDHA 1H,1H,2H,2H-Perfluorohexanesulfonic Acid ND ng/l 2.00		ND	ng/l	2.00	
Perfluoronexanoic Acid (PFHxA)	· • • • • • • • • • • • • • • • • • • •	ND	ng/l	2.00	
Perfluoropentanesulfonic Acid (PFPeS) ND ng/l 2.00		l ND	ng/l	2.00	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	Perfluorohexanoic Acid (PFHxA)	ND	ng/l	2.00	
Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	Perfluoropentanesulfonic Acid (PFPeS)	ND	ng/l	2.00	
Perfluorohexanesulfonic Acid (PFHxS) ND ng/l 2.00 4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA) ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (BFCTS) ND ng/l 2.00 Perfluorooctanoic Acid (PFOA) ND ng/l 2.00 Perfluoroheptanesulfonic Acid (PFNA) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFNA) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS) ND ng/l 2.00 9-Chlorodecanesulfonic Acid (PFDA) ND ng/l 2.00 9-Chlorodecanoic Acid (PFDA) ND ng/l 2.00	Heptafluoropropoxy]-Propanoic Acid (HFPC		ng/l	2.00	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA) ND ng/l 2.00 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (BFTS) ND ng/l 2.00 Perfluorooctanoic Acid (PFOA) ND ng/l 2.00 Perfluoroheptanesulfonic Acid (PFHS) ND ng/l 2.00 Perfluorononanoic Acid (PFNA) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS) ND ng/l 2.00 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (9FDA) ND ng/l 2.00 Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS) ND ng/l 2.00	Perfluoroheptanoic Acid (PFHpA)	ND	ng/l	2.00	
(ADONA) 1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS) ND ng/l 2.00 Perfluorooctanoic Acid (PFOA) ND ng/l 2.00 Perfluoroheptanesulfonic Acid (PFHpS) ND ng/l 2.00 Perfluorononanoic Acid (PFNA) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS) ND ng/l 2.00 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) ND ng/l 2.00 Perfluoroundecanoic Acid (PFDA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxandecane-1-Sulfonic Acid (11CI-PF3OUdS) ND ng/l 2.00	Perfluorohexanesulfonic Acid (PFHxS)	ND	ng/l	2.00	
Perfluorooctanoic Acid (PFOA) ND ng/l 2.00 Perfluoroheptanesulfonic Acid (PFHpS) ND ng/l 2.00 Perfluorononanoic Acid (PFHpS) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFNA) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS) ND ng/l 2.00 Sulfonic Acid (9CI-PF3ONS) ND ng/l 2.00 Perfluorodecanesulfonic Acid ND ng/l 2.00 Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 Sulfonic Acid (11CI-PF3OUdS) ND ng/l 2.00 Sulfonic Acid (11CI-PF3OUdS) Sulfonic Acid (11CI-PF3OUdS)		ND	ng/l	2.00	
Perfluoroheptanesulfonic Acid (PFHpS) ND ng/l 2.00 Perfluorononanoic Acid (PFNA) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 9-Chlorohexadecafluoro-3-Oxanone-1- ND ng/l 2.00 Sulfonic Acid (9CI-PF3ONS) 1H,1H,2H,2H-Perfluorodecanesulfonic Acid ND ng/l 2.00 (8:2FTS) Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- ND ng/l 2.00 Sulfonic Acid (11CI-PF3OUdS)		ND	ng/l	2.00	
Perfluorononanoic Acid (PFNA) ND ng/l 2.00 Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9Cl-PF3ONS) 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	Perfluorooctanoic Acid (PFOA)	ND	ng/l	2.00	
Perfluorooctanesulfonic Acid (PFOS) ND ng/l 2.00 9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS) 1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS) Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11CI-PF3OUdS)	Perfluoroheptanesulfonic Acid (PFHpS)	ND	ng/l	2.00	
9-Chlorohexadecafluoro-3-Oxanone-1- ND ng/l 2.00 Sulfonic Acid (9Cl-PF3ONS) 1H,1H,2H,2H-Perfluorodecanesulfonic Acid ND ng/l 2.00 (8:2FTS) Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- ND ng/l 2.00 Sulfonic Acid (11Cl-PF3OUdS)	Perfluorononanoic Acid (PFNA)	ND	ng/l	2.00	
Sulfonic Acid (9CI-PF3ONS) 1H,1H,2H,2H-Perfluorodecanesulfonic Acid ND ng/l 2.00 (8:2FTS) Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- ND ng/l 2.00 Sulfonic Acid (11CI-PF3OUdS)	Perfluorooctanesulfonic Acid (PFOS)	ND	ng/l	2.00	
(8:2FTS) Perfluorodecanoic Acid (PFDA) ND ng/l 2.00 Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)		ND	ng/l	2.00	
Perfluoroundecanoic Acid (PFUnA) ND ng/l 2.00 11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS) ND ng/l 2.00		l ND	ng/l	2.00	
11-Chloroeicosafluoro-3-Oxaundecane-1- ND ng/l 2.00 Sulfonic Acid (11Cl-PF3OUdS)	Perfluorodecanoic Acid (PFDA)	ND	ng/l	2.00	
Sulfonic Acid (11CI-PF3OUdS)	Perfluoroundecanoic Acid (PFUnA)	ND	ng/l	2.00	
Perfluorododecanoic Acid (PFDoA) ND ng/l 2.00		ND	ng/l	2.00	
	· ,	ND	ng/l	2.00	

L2124240

Project Name: HAVEN WELL PT

Project Number: Report Date: 2190120

05/26/21

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 136,533 Extraction Method: EPA 533

Analytical Date: 05/19/21 23:05 05/17/21 11:00 **Extraction Date:**

Analyst: JW

> MDL Result Qualifier Units RL**Parameter**

Perfluorinated Alkyl Acids by EPA 533 - Mansfield Lab for sample(s): 01-02 Batch: WG1499735-1 R

Surrogate (Extracted Internal Standard)	%Recovery	Acceptance Qualifier Criteria
Perfluoro[13C4]Butanoic Acid (MPFBA)	132	50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	131	50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	160	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	119	50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	130	50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	131	50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	147	50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	137	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	119	50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	125	50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	131	50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	134	50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	113	50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	131	50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	121	50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	132	50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2124240

Report Date: 05/26/21

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Perfluorinated Alkyl Acids by EPA 537.1 -	Mansfield Lab Ass	ociated sample(s): 01	Batch:	WG1499	513-2				
Perfluorobutanesulfonic Acid (PFBS)	91		-			70-130	-		30	
Perfluorohexanoic Acid (PFHxA)	88		-			70-130	-		30	
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	89		-			70-130	-		30	
Perfluoroheptanoic Acid (PFHpA)	98		-			70-130	-		30	
Perfluorohexanesulfonic Acid (PFHxS)	104		-			70-130	-		30	
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	88		-			70-130	-		30	
Perfluorooctanoic Acid (PFOA)	103		-			70-130	-		30	
Perfluorononanoic Acid (PFNA)	91		-			70-130	-		30	
Perfluorooctanesulfonic Acid (PFOS)	91		-			70-130	-		30	
Perfluorodecanoic Acid (PFDA)	86		-			70-130	-		30	
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	92		-			70-130	-		30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	90		-			70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	94		-			70-130	-		30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	93		-			70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	93		-			70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	86		-			70-130	-		30	
Perfluorotridecanoic Acid (PFTrDA)	93		-			70-130	-		30	
Perfluorotetradecanoic Acid (PFTA)	96		-			70-130	-		30	

Project Name: HAVEN WELL PT

Lab Number:

L2124240

Project Number: 2190120

Report Date:

05/26/21

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 Batch: WG1499513-2

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	85				70-130
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	83				70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	83				70-130
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	89				70-130

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2124240

Report Date: 05/26/21

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 533 - N	Mansfield Lab Assoc	ciated sample(s): 01-02 Ba	atch: WG1499735-2		
Perfluorobutanoic Acid (PFBA)	104	-	70-130	-	30
Perfluoro-3-Methoxypropanoic Acid	110	-	70-130	-	30
Perfluoropentanoic Acid (PFPeA)	124	•	70-130	-	30
Perfluorobutanesulfonic Acid (PFBS)	115	-	70-130	-	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	114	-	70-130	-	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	94	-	70-130	-	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	118	-	70-130	-	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	92	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	144	•	70-130	-	30
Perfluoropentanesulfonic Acid (PFPeS)	108	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	136	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	108	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	105	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	112	-	70-130	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	139	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	134	•	70-130	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	94	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	112	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	101	-	70-130	-	30
9-Chlorohexadecafluoro-3-Oxanone-1- Sulfonic Acid (9CI-PF3ONS)	101	-	70-130	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	123	-	70-130	-	30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2124240

Report Date: 05/26/21

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
erfluorinated Alkyl Acids by EPA 533 - N	Mansfield Lab Assoc	ciated sample(s	s): 01-02 Batc	h: WG14	99735-2				
Perfluorodecanoic Acid (PFDA)	108		-		70-130	-		30	
Perfluoroundecanoic Acid (PFUnA)	112		-		70-130	-		30	
11-Chloroeicosafluoro-3-Oxaundecane- 1-Sulfonic Acid (11Cl-PF3OUdS)	93		-		70-130	-		30	
Perfluorododecanoic Acid (PFDoA)	114		-		70-130	-		30	

Crown and (Free and Internal Standard)	LCS	Ougl	LCSD	Ougl	Acceptance Criteria
Surrogate (Extracted Internal Standard)	%Recovery	Qual	%Recovery	Qual	
Perfluoro[13C4]Butanoic Acid (MPFBA)	130				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	128				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	153				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	106				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	117				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	124				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	130				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	120				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	108				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	128				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	123				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	129				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	118				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	123				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	123				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	117				50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2124240

Report Date:

05/26/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by E	PA 537.1 -	Mansfield Lab	Associated	I sample(s): 01	QC Bate	ch ID: WG1	1499513-3 C	QC Sample: L21238	65-01	Client ID: MS Sample
Perfluorobutanesulfonic Acid (PFBS)	164	127	319	122		-	-	70-130	-	30
Perfluorohexanoic Acid (PFHxA)	29.4	143	206	124		-	-	70-130	-	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	143	156	109		-	-	70-130	-	30
Perfluoroheptanoic Acid (PFHpA)	19.1	143	208	132	Q	-	-	70-130	-	30
Perfluorohexanesulfonic Acid (PFHxS)	4.71	130	175	130		-	-	70-130	-	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	135	143	106		-	-	70-130	-	30
Perfluorooctanoic Acid (PFOA)	15.1	143	188	121		-	-	70-130	-	30
Perfluorononanoic Acid (PFNA)	ND	143	163	114		-	-	70-130	-	30
Perfluorooctanesulfonic Acid (PFOS)	4.53	132	149	109		-	-	70-130	-	30
Perfluorodecanoic Acid (PFDA)	ND	143	143	100		-	-	70-130	-	30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	133	140	105		-	-	70-130	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	143	142	100		-	-	70-130	-	30
Perfluoroundecanoic Acid (PFUnA)	ND	143	149	104		-	-	70-130	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	143	150	105		-	-	70-130	-	30
Perfluorododecanoic Acid (PFDoA)	ND	143	154	108		-	-	70-130	-	30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	135	124	92		-	-	70-130	-	30
Perfluorotridecanoic Acid (PFTrDA)	ND	143	147	103		-	-	70-130	-	30
Perfluorotetradecanoic Acid (PFTA)	ND	143	162	113		-	-	70-130	-	30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2124240

Report Date:

05/26/21

	Native	MS	MS	MS		MSD	MSD	Recovery		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	/ Qual Limits	RPD	Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1499513-3 QC Sample: L2123865-01 Client ID: MS Sample

	MS		MS	D	Acceptance	
Surrogate	% Recovery Qu	ualifier % Red	covery	Qualifier	Criteria	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	85				70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	72				70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	82				70-130	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	95				70-130	

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2124240

Report Date:

05/26/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by E	PA 533 - Ma	nsfield Lab	Associated s	sample(s): 01-02	QC Ba	tch ID: Wo	S1499735-3	QC Sample: L2124	1595-01	Client	ID: MS Sample
Perfluorobutanoic Acid (PFBA)	ND	1.83	3.08	168	Q	-	-	70-130	-		30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND	1.83	1.94	106		-	-	70-130	-		30
Perfluoropentanoic Acid (PFPeA)	2.99	1.83	5.21	121		-	-	70-130	-		30
Perfluorobutanesulfonic Acid (PFBS)	ND	1.63	2.72	167	Q	-	-	70-130	-		30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND	1.83	1.94	106		-	-	70-130	-		30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND	1.64	ND	94		-	-	70-130	-		30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND	1.83	ND	68		-	-	70-130	-		30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	1.72	ND	100		-	-	70-130	-		30
Perfluorohexanoic Acid (PFHxA)	4.72	1.83	5.87	63		-	-	70-130	-		30
Perfluoropentanesulfonic Acid (PFPeS)	ND	1.72	2.38	138		-	-	70-130	-		30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxy]-Propanoic Acid (HFPO-DA)	ND	1.83	2.13	116		-	-	70-130	-		30
Perfluoroheptanoic Acid (PFHpA)	ND	1.83	3.34	182	Q	-	-	70-130	-		30
Perfluorohexanesulfonic Acid (PFHxS)	2.32	1.67	4.15	109		-	-	70-130	-		30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	1.73	ND	91		-	-	70-130	-		30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	1.75	1.94	111		-	-	70-130	-		30
Perfluorooctanoic Acid (PFOA)	6.68	1.83	8.84	118		-	-	70-130	-		30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	1.75	1.87	107		-	-	70-130	-		30
Perfluorononanoic Acid (PFNA)	ND	1.83	2.13	116		-	-	70-130	-		30
Perfluorooctanesulfonic Acid (PFOS)	ND	1.7	2.35	138		-	-	70-130	-		30
9-Chlorohexadecafluoro-3- Oxanone-1-Sulfonic Acid (9Cl- PF3ONS)	ND	1.71	ND	84		-	-	70-130	-		30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	1.76	1.91	108		-	-	70-130	-		30
Perfluorodecanoic Acid (PFDA)	ND	1.83	2.02	110		-	-	70-130	-		30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number:

L2124240

Report Date:

05/26/21

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by I	EPA 533 - M	ansfield Lab	Associated sa	ample(s): 01-02	QC Bat	ch ID: WG	1499735-3	QC San	nple: L2124	1595-01	Client	ID: MS Sample
Perfluoroundecanoic Acid (PFUnA)	ND	1.83	2.13	116		-	-		70-130	-		30
11-Chloroeicosafluoro-3- Oxaundecane-1-Sulfonic Acid (11Cl- PF3OUdS)	ND	1.73	ND	78		-	-		70-130	-		30
Perfluorododecanoic Acid (PFDoA)	ND	1.83	1.94	106		-	-		70-130	-		30

	MS	6	MS	SD	Acceptance
Surrogate (Extracted Internal Standard)	% Recovery	Qualifier	% Recovery	Qualifier	Criteria
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	115				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	117				50-200
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	113				50-200
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	75				50-200
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	95				50-200
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	98				50-200
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	96				50-200
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	94				50-200
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	141				50-200
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	104				50-200
Perfluoro[13C4]Butanoic Acid (MPFBA)	88				50-200
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	99				50-200
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	118				50-200
Perfluoro[13C8]Octanoic Acid (M8PFOA)	97				50-200
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	98				50-200
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	158				50-200

Project Name: HAVEN WELL PT

Project Number: 2190120

L2124240 05/26/21 Report Date:

Lab Number:

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 537.1 - Mansi AVEN WELL	•		WG1499513-4		: L2124240-01 Client ID:
Perfluorobutanesulfonic Acid (PFBS)	11.0	11.4	ng/l	4	30
Perfluorohexanoic Acid (PFHxA)	51.4	51.7	ng/l	1	30
Hexafluoropropylene Oxide Dimer Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	23.5	23.7	ng/l	1	30
Perfluorohexanesulfonic Acid (PFHxS)	157	146	ng/l	7	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	45.2	44.8	ng/l	1	30
Perfluorononanoic Acid (PFNA)	3.30	3.30	ng/l	0	30
Perfluorooctanesulfonic Acid (PFOS)	456E	478E	ng/l	5	30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND	ND	ng/l	NC	30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND	ND	ng/l	NC	30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC	30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND	ND	ng/l	NC	30
Perfluorotridecanoic Acid (PFTrDA)	ND	ND	ng/l	NC	30
Perfluorotetradecanoic Acid (PFTA)	ND	ND	ng/l	NC	30

Lab Number:

L2124240

2190120

HAVEN WELL PT

Project Name:

Project Number:

Report Date:

05/26/21

RPD **Parameter Native Sample Duplicate Sample** Units RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab Associated sample(s): 01 QC Batch ID: WG1499513-4 QC Sample: L2124240-01 Client ID: HAVEN WELL

Surrogate	%Recovery	Qualifier %Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	92	91	70-130	
Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA)	91	86	70-130	
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	95	91	70-130	
N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)	89	88	70-130	

Lab Number:

L2124240

Report Date:

05/26/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Perfluorinated Alkyl Acids by EPA 537.1 - Mansfiel HAVEN WELL	d Lab Associated sample(s	s): 01 QC Batch ID:	WG1499513-4	QC Sample	e: L2124240-01 Client ID:
Perfluorooctanesulfonic Acid (PFOS)	345	386	ng/l	11	30

Surrogate	%Recovery Qualifie	er %Recovery Qualifie	Acceptance r Criteria
Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)	80	83	70-130
Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)	75	79	70-130

Project Name:

Project Number: 2190120

HAVEN WELL PT

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2124240

Report Date: 05/26/21

arameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 533 - Mansfield L UP Sample	_ab Associated sample(s):	01-02 QC Batch ID:	WG1499735-4	QC Samp	ble: L2124596-01 Client ID:
Perfluorobutanoic Acid (PFBA)	ND	ND	ng/l	NC	30
Perfluoro-3-Methoxypropanoic Acid (PFMPA)	ND	ND	ng/l	NC	30
Perfluoropentanoic Acid (PFPeA)	ND	ND	ng/l	NC	30
Perfluorobutanesulfonic Acid (PFBS)	ND	ND	ng/l	NC	30
Perfluoro-4-Methoxybutanoic Acid (PFMBA)	ND	ND	ng/l	NC	30
Perfluoro(2-Ethoxyethane)Sulfonic Acid (PFEESA)	ND	ND	ng/l	NC	30
Nonafluoro-3,6-Dioxaheptanoic Acid (NFDHA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS)	ND	ND	ng/l	NC	30
Perfluorohexanoic Acid (PFHxA)	ND	ND	ng/l	NC	30
Perfluoropentanesulfonic Acid (PFPeS)	ND	ND	ng/l	NC	30
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3- Heptafluoropropoxyl-Propanoic Acid (HFPO-DA)	ND	ND	ng/l	NC	30
Perfluoroheptanoic Acid (PFHpA)	ND	ND	ng/l	NC	30
Perfluorohexanesulfonic Acid (PFHxS)	ND	ND	ng/l	NC	30
4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)	ND	ND	ng/l	NC	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND	ND	ng/l	NC	30
Perfluorooctanoic Acid (PFOA)	3.12	2.95	ng/l	6	30
Perfluoroheptanesulfonic Acid (PFHpS)	ND	ND	ng/l	NC	30
Perfluorononanoic Acid (PFNA)	ND	ND	ng/l	NC	30
Perfluorooctanesulfonic Acid (PFOS)	ND	ND	ng/l	NC	30
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid (9CI-PF3ONS)	ND	ND	ng/l	NC	30

Project Name: HAVEN WELL PT

Project Number: 2190120

Lab Number: L2124240

Report Date: 05/26/21

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
Perfluorinated Alkyl Acids by EPA 533 - Mansfi DUP Sample	eld Lab Associated sample(s):	01-02 QC Batch ID	: WG1499735-4	QC Sam	ple: L21245	596-01 Client ID:
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND	ND	ng/l	NC		30
Perfluorodecanoic Acid (PFDA)	ND	ND	ng/l	NC		30
Perfluoroundecanoic Acid (PFUnA)	ND	ND	ng/l	NC		30
11-Chloroeicosafluoro-3-Oxaundecane-1- Sulfonic Acid (11Cl-PF3OUdS)	ND	ND	ng/l	NC		30
Perfluorododecanoic Acid (PFDoA)	ND	ND	ng/l	NC		30

Course grate (Fretrante d Internal Standard)	0/ 🗖	O	Acceptance	
Surrogate (Extracted Internal Standard)	%Recovery	Qualifier %Recovery	Qualifier Criteria	
Perfluoro[13C4]Butanoic Acid (MPFBA)	123	127	50-200	
Perfluoro[13C5]Pentanoic Acid (M5PFPEA)	137	145	50-200	
Perfluoro[2,3,4-13C3]Butanesulfonic Acid (M3PFBS)	157	156	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Hexanesulfonic Acid (M2-4:2FTS)	120	119	50-200	
Perfluoro[1,2,3,4,6-13C5]Hexanoic Acid (M5PFHxA)	137	131	50-200	
Perfluoro[1,2,3,4-13C4]Heptanoic Acid (M4PFHpA)	120	131	50-200	
Perfluoro[1,2,3-13C3]Hexanesulfonic Acid (M3PFHxS)	144	139	50-200	
Perfluoro[13C8]Octanoic Acid (M8PFOA)	128	134	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Octanesulfonic Acid (M2-6:2FTS)	102	119	50-200	
Perfluoro[13C9]Nonanoic Acid (M9PFNA)	124	116	50-200	
Perfluoro[13C8]Octanesulfonic Acid (M8PFOS)	120	119	50-200	
Perfluoro[1,2,3,4,5,6-13C6]Decanoic Acid (M6PFDA)	127	115	50-200	
1H,1H,2H,2H-Perfluoro[1,2-13C2]Decanesulfonic Acid (M2-8:2FTS)	106	101	50-200	
Perfluoro[1,2,3,4,5,6,7-13C7]Undecanoic Acid (M7-PFUDA)	109	115	50-200	
Perfluoro[1,2-13C2]Dodecanoic Acid (MPFDOA)	107	109	50-200	
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid (M3HFPO-DA)	133	127	50-200	

Serial_No:05262116:51

Project Name: HAVEN WELL PT

Project Number: 2190120 Report Date: 05/26/21

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent

Container Info	rmation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2124240-01A	Plastic 250ml Trizma preserved	Α	NA		2.8	Υ	Present/Intact		A2-NH-537.1(14)
L2124240-01B	Plastic 250ml Trizma preserved	Α	NA		2.8	Υ	Present/Intact		A2-NH-537.1(14)
L2124240-01C	Plastic 250ml Ammonium Acetate preserved	Α	NA		2.8	Υ	Present/Intact		A2-NH-533(28)
L2124240-01D	Plastic 250ml Ammonium Acetate preserved	Α	NA		2.8	Υ	Present/Intact		A2-NH-533(28)
L2124240-02A	Plastic 250ml Ammonium Acetate preserved	Α	NA		2.8	Υ	Present/Intact		A2-NH-533(28)

Serial_No:05262116:51 **Lab Number:** L2124 L2124240

Project Name: HAVEN WELL PT Project Number: 2190120

Report Date: 05/26/21

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)		
Perfluorooctadecanoic Acid	PFODA	16517-11-6
Perfluorohexadecanoic Acid	PFHxDA	67905-19-5
Perfluorotetradecanoic Acid	PFTA	376-06-7
Perfluorotridecanoic Acid	PFTrDA	72629-94-8
Perfluorododecanoic Acid	PFDoA	307-55-1
Perfluoroundecanoic Acid	PFUnA	2058-94-8
Perfluorodecanoic Acid	PFDA	335-76-2
Perfluorononanoic Acid	PFNA	375-95-1
Perfluorooctanoic Acid	PFOA	335-67-1
Perfluoroheptanoic Acid	PFHpA	375-85-9
Perfluorohexanoic Acid	PFHxA	307-24-4
Perfluoropentanoic Acid	PFPeA	2706-90-3
Perfluorobutanoic Acid	PFBA	375-22-4
PERFLUOROALKYL SULFONIC ACIDS (PFSAs)		
Perfluorododecanesulfonic Acid	PFDoDS	79780-39-5
Perfluorodecanesulfonic Acid	PFDS	335-77-3
Perfluorononanesulfonic Acid	PFNS	68259-12-1
Perfluorooctanesulfonic Acid	PFOS	1763-23-1
Perfluoroheptanesulfonic Acid	PFHpS	375-92-8
Perfluorohexanesulfonic Acid	PFHxS	355-46-4
Perfluoropentanesulfonic Acid	PFPeS	2706-91-4
Perfluorobutanesulfonic Acid	PFBS	375-73-5
FLUOROTELOMERS		
1H,1H,2H,2H-Perfluorododecanesulfonic Acid	10:2FTS	120226-60-0
1H,1H,2H,2H-Perfluorodecanesulfonic Acid	8:2FTS	39108-34-4
1H,1H,2H,2H-Perfluorooctanesulfonic Acid	6:2FTS	27619-97-2
1H,1H,2H,2H-Perfluorohexanesulfonic Acid	4:2FTS	757124-72-4
PERFLUOROALKANE SULFONAMIDES (FASAs)		
Perfluorooctanesulfonamide	FOSA	754-91-6
N-Ethyl Perfluorooctane Sulfonamide	NEtFOSA	4151-50-2
N-Methyl Perfluorooctane Sulfonamide	NMeFOSA	31506-32-8
PERFLUOROALKANE SULFONYL SUBSTANCES		
N-Ethyl Perfluorooctanesulfonamido Ethanol	NEtFOSE	1691-99-2
N-Methyl Perfluorooctanesulfonamido Ethanol	NMeFOSE	24448-09-7
N-Ethyl Perfluorooctanesulfonamidoacetic Acid	NEtFOSAA	2991-50-6
N-Methyl Perfluorooctanesulfonamidoacetic Acid	NMeFOSAA	2355-31-9
PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS		
2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid	HFPO-DA	13252-13-6
4,8-Dioxa-3h-Perfluorononanoic Acid	ADONA	919005-14-4
CHLORO-PERFLUOROALKYL SULFONIC ACIDS		
11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid	11CI-PF3OUdS	763051-92-9
9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid	9CI-PF3ONS	756426-58-1
PERFLUOROETHER SULFONIC ACIDS (PFESAs)		
Perfluoro(2-Ethoxyethane)Sulfonic Acid	PFEESA	113507-82-7
PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)		
	DEMDA	377-73-1
Perfluoro-3-Methoxypropanoic Acid	PFMPA	311-13-1
Perfluoro-3-Methoxypropanoic Acid Perfluoro-4-Methoxybutanoic Acid	PFMBA	863090-89-5

L2124240

Project Name: HAVEN WELL PT Lab Number:

Project Number: 2190120 Report Date: 05/26/21

GLOSSARY

Acronyms

LOD

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

 Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2124240Project Number:2190120Report Date:05/26/21

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a "Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

receipt, if applicable.

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:HAVEN WELL PTLab Number:L2124240Project Number:2190120Report Date:05/26/21

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q -The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.

Report Format: Data Usability Report

Serial_No:05262116:51

Project Name: HAVEN WELL PT Lab Number: L2124240
Project Number: 2190120 Report Date: 05/26/21

REFERENCES

Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 533, EPA Document 815-B-19-020, November 2019.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:05262116:51

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19

Page 1 of 1

Published Date: 4/2/2021 1:14:23 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

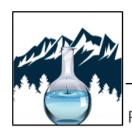
EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg


SM2340B

Page 35 of 36

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

W.		OLIGHADY			Serial_No:05262116:51
ALPHA	CHAIN OF	CUSTODY	PAGEOF	Date Rec'd in Lab: 5 10	ALPHA JOB#: L2124240
8 Walkup Drive	320 Forbes Blvd	roject Information		Report Information - Data D	Billing Information Same as Client info PO #:
Westboro, MA 0158 Tel: 508-898-9220	81 Mansfield, MA 02048 Pr Tel: 508-822-9300	roject Name: HOWEY		Regulatory Requirements	& Project Information Requirements
	sampson P	roject Location: POY-	Smouth NH	☐ Yes ☐ No MA MCP Analytical ☐ Yes ☐ No Matrix Spike Requir	
	WKEN S DYWLL	roject Manager: ALPHA Quote #:		☐ Yes ☐ No NPDES RGP ☐ Other State /Fed Program	Criteria
one: 978 -		Turn-Around Time	SECTION AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I		3 3
	pject Information:	Standard RUSI Date Due:	I puly confirmed if pre-approved)	VOC: D 8260 D 624 D 5242 SVOC: D 4BN D PAH METALS: D MCP 13 D MCP 14 D RCP 15 EPH: D Rangee & Targets D Ranges VPH: D Rangee & Targets D Ranges	SAMPLE INFO Filtration Field Lab to do Preservation Lab to do Sample Comments
ALPHA Lab ID Lab Use Only)	Sample ID	Collection Date Ti	Sample Sampler me Matrix Initials	VOC; SVOC META META EPH; VPH; L	Sample Comments
1240-61	Haven Well		50 DW JAG		XX
-02	Field Blank	5/8/21 W	58 JAG		X
Container Type Plastic Amber glass	Preservative A= None B= HCI C= HNO ₃		Container Type		
re Vial = Glass = Bacteria cup = Cube = Other = Encore = BOD Bottle ge 36 of 36	D= H ₂ SO ₄ E= NaOH F= MeOH G= NaHSO ₆ H = Na ₂ S ₂ O ₁ I= Ascorbic Acid J = NH ₄ CI K < Zn Acetale	Retinquished By:	5 10 20 0785 5 10 20 0785	Received by	Date/Time 5 / 10/21 077 All samples submitted are subjected by S/10/21 1707 Appra's Terms and Conditions. 5 / 10/21 1910 See reverse side. 5 / 10/21 1910 FORM NO: 01-01 (rev. 12-Mar-2012) 5 / 10/21 2000 FORM NO: 01-01 (rev. 12-Mar-2012)

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

Laboratory Report

Portsmouth Water Works 680 Peverly Hill Road Portsmouth, NH 03801 Date Printed: Work Order #: 05/28/2021

Vork Order #: Client Job #: 2105-01204

Date Received:

05/10/2021

Sample collected in:

New Hampshire

Attached please find results for the analysis of the samples received on the date referenced above.

Unless otherwise noted in the attached report, the analyses performed met the requirements of the analyzing laboratory's Quality Assurance Plan, Standard Operating Procedures and State Accreditation. This certificate shall not be reproduced, except in full, without the written approval of the analyzing laboratory. The results presented in this report relate to the samples listed on the following pages in the condition in which they were received. Accreditation for each analyte is identified by the * symbol following the analyte name. Location of our analyzing laboratory is identified by the code in the Analyst Column.

A & L Laboratory:

Identified by ME in Analyst Column
155 Center Street, Auburn, Maine 04210
www.allaboratory.com

Granite State Analytical Services LLC:

Identified by NH in Analyst Column
22 Manchester Road, Derry, NH 03038
www.granitestateanalytical.com

ANALYSIS RELATED NOTES:

- RL: "Reporting limit" means the lowest level of an analyte that can be accurately recovered from the matrix of interest.
- A & L Laboratory / Granite State Analytical Services LLC. accreditation lists can be found on our websites listed above.
- Subcontracted samples will be identified by the Accreditation number of the subcontract laboratory in the analyst field for each analyte and the appropriate laboratory will be listed here. This report contains data that were produced by a subcontracted laboratory accredited for the fields of testing performed, if available. Accreditation for each analyte is identified by the * symbol following the analyte name.
 Alpha Analytical-Westborough, 8 Walkup Dr., Westborough, MA 01581 Accreditation # 2064
 ChemServe, 317 Elm St., Milford, NH 03055 Accreditation # 1008
 KNL Laboratory Services, 3202 North Florida Avenue, Tampa, FL 33603 Accreditation # 2530
- Data Qualifiers (DQ) Flags provide additional information in regards to the receipt, analysis or quality control of a sample.
 These are indicated under the DQ Flags Column on your report and listed here if necessary: Data Qualifier (DQ) Flags: H = Hold time non-compliant., L = Laboratory control sample outside control limits.

SAMPLE STATE SPECIFIC NOTES:

The State of New Hampshire has set an Advisory Limit of 10,000 pCi/L for Radon in Water.

Additional Narrative or Comments: None

We appreciate the opportunity to provide you with laboratory services. If you have any questions regarding the enclosed report, please contact the laboratory and we will be happy to assist you.

Donald A. D'Anjou, Ph. D.
Laboratory Director

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #: 2105-01204-001

SAMPLED BY: Pratt, Al

SAMPLE ADDRESS: Haven Well

NH

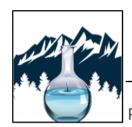
Passes Fails EPA Primary

Fails EPA Secondary Fails State Guideline

Legend

Attention

DATE AND TIME COLLECTED: 05/08/2021 10:30AM **DATE AND TIME RECEIVED:** 05/10/2021 08:27AM


ANALYSIS PACKAGE: SOC GSA 2019 **RECEIPT TEMPERATURE:** ON ICE 1.8° CELSIUS

#:

MORE LOC INFO:	CLIENT JOB #
----------------	--------------

Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed
1,2-Dibromo-3-chloropropane (DBCP)*	<0.02	ug/L	√		0.02	0.2 ug/L	EPA 504.1	KV-NH	05/20/2021 01:35PM
Date Extracted	-					No Limit	EPA 504.1	GQ-NH	05/19/2021 11:55AM
Ethylene Dibromide (EDB)*	< 0.02	ug/L	\checkmark		0.02	0.05 ug/L	EPA 504.1	KV-NH	05/20/2021 01:35PM
Aroclor 1016 Screen*	<0.2	ug/L			0.2	No Limit	EPA 505	KV-NH	05/20/2021 12:06AM
Aroclor 1221 Screen*	<0.2	ug/L			0.2	No Limit	EPA 505	KV-NH	05/20/2021 12:06AM
Aroclor 1232 Screen*	<0.2	ug/L			0.2	No Limit	EPA 505	KV-NH	05/20/2021 12:06AM
Aroclor 1242 Screen*	<0.2	ug/L			0.2	No Limit	EPA 505	KV-NH	05/20/2021 12:06AM
Aroclor 1248 Screen*	<0.2	ug/L			0.2	No Limit	EPA 505	KV-NH	05/20/2021 12:06AM
Aroclor 1254 Screen*	<0.2	ug/L			0.2	No Limit	EPA 505	KV-NH	05/20/2021 12:06AM
Aroclor 1260 Screen*	<0.2	ug/L			0.2	No Limit	EPA 505	KV-NH	05/20/2021 12:06AM
Chlordane*	<0.4	ug/L	\checkmark		0.4	2.0 ug/L	EPA 505	KV-NH	05/20/2021 12:06AM
Date Extracted	-					No Limit	EPA 505	GQ-NH	05/19/2021 11:55AM
Toxaphene*	<2	ug/L	\checkmark		2.0	3 ug/L	EPA 505	KV-NH	05/20/2021 12:06AM
2,4,5-TP (Silvex)*	<0.25	ug/L	\checkmark		0.25	50 ug/L	EPA 515.3	KV-NH	05/13/2021 04:51AM
2,4-D*	<1	ug/L	\checkmark		1	70 ug/L	EPA 515.3	KV-NH	05/13/2021 04:51AM
Dalapon*	<1	ug/L	\checkmark		1	200 ug/L	EPA 515.3	KV-NH	05/13/2021 04:51AM
Date Extracted	-					No Limit	EPA 515.3	GQ-NH	05/12/2021 09:17AM
Dicamba*	<0.5	ug/L			0.5	No Limit	EPA 515.3	KV-NH	05/13/2021 04:51AM
Dinoseb*	<1	ug/L	\checkmark		1	7 ug/L	EPA 515.3	KV-NH	05/13/2021 04:51AM
Pentachlorophenol*	<0.1	ug/L	\checkmark		0.1	1 ug/L	EPA 515.3	KV-NH	05/13/2021 04:51AM
Picloram*	<2	ug/L	\checkmark		2	500 ug/L	EPA 515.3	KV-NH	05/13/2021 04:51AM
2,4-Dichlorophenylacetic acid	104	%	\checkmark			70-130%	EPA 515.3 - SS	KV-NH	05/13/2021 04:51AM
Alachlor*	<0.1	ug/L	\checkmark		0.1	2 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #: 2105-01204-001

SAMPLED BY: Pratt, Al

SAMPLE ADDRESS: Haven Well

MORE LOC INFO:

NH

Passes

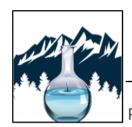
Fails EPA Primary Fails EPA Secondary Fails State Guideline

DATE AND TIME RECEIVED:

Attention DATE AND TIME COLLECTED: 05/08/2021

Legend

10:30AM 05/10/2021 08:27AM


ANALYSIS PACKAGE: SOC GSA 2019 RECEIPT TEMPERATURE: ON ICE 1.8° CELSIUS

CLIENT JOB #:

Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed
Aldrin*	<0.1	ug/L			0.1	No Limit	EPA 525.2	DD-NH	05/18/2021 04:49PM
Atrazine*	<0.1	ug/L	\checkmark		0.1	3 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Benzo(a)pyrene*	<0.1	ug/L	\checkmark		0.1	0.2 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Butachlor*	<0.1	ug/L			0.1	No Limit	EPA 525.2	DD-NH	05/18/2021 04:49PM
Date Extracted	-					No Limit	EPA 525.2	KV-NH	05/17/2021 11:00AM
Di(2-ethylhexyl)adipate*	<1	ug/L	\checkmark		1	400 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Di(2-ethylhexyl)phthalate*	<1	ug/L	\checkmark		1	6 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Dieldrin*	<0.1	ug/L			0.1	No Limit	EPA 525.2	DD-NH	05/18/2021 04:49PM
Endrin*	<0.1	ug/L	\checkmark		0.1	2 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Heptachlor Epoxide*	<0.1	ug/L	\checkmark		0.1	0.2 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Heptachlor*	<0.1	ug/L	\checkmark		0.1	0.4 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Hexachlorobenzene*	<0.1	ug/L	\checkmark		0.1	1 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Hexachlorocyclopentadiene*	<0.1	ug/L	\checkmark		0.1	50 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Lindane*	<0.1	ug/L	\checkmark		0.1	0.2 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Methoxychlor*	<0.1	ug/L	\checkmark		0.1	40 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Metolachlor*	<0.1	ug/L			0.1	No Limit	EPA 525.2	DD-NH	05/18/2021 04:49PM
Metribuzin*	<0.1	ug/L	\checkmark		0.1	70 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
Propachlor*	<0.1	ug/L			0.1	No Limit	EPA 525.2	DD-NH	05/18/2021 04:49PM
Simazine*	<0.1	ug/L	\checkmark		0.1	4 ug/L	EPA 525.2	DD-NH	05/18/2021 04:49PM
1,3-Dimethyl-2-nitrobenzene	107	%	√			70-130%	EPA 525.2 - SS	DD-NH	05/18/2021 04:49PM
Perylene-d12	102	%	\checkmark			70-130%	EPA 525.2 - SS	DD-NH	05/18/2021 04:49PM
Pyrene-d10	106	%	√			70-130%	EPA 525.2 - SS	DD-NH	05/18/2021 04:49PM
Triphenylphosphate	108	%	\checkmark			70-130%	EPA 525.2 - SS	DD-NH	05/18/2021 04:49PM
3-Hydroxycarbofuran*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM

Donald A. D'Anjou, Ph. D. **Laboratory Director**

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #: 2105-01204-001

SAMPLED BY: Pratt, Al

SAMPLE ADDRESS: Haven Well

NH

Legend **Passes**

Fails EPA Primary Fails EPA Secondary Fails State Guideline

Attention

DATE AND TIME COLLECTED: 05/08/2021 10:30AM

DATE AND TIME RECEIVED: 05/10/2021 08:27AM ANALYSIS PACKAGE: SOC GSA 2019 **RECEIPT TEMPERATURE:** ON ICE 1.8° CELSIUS

MORE LOC INFO:	CLIENT JOB #:										
Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed		
Aldicarb Sulfone*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Aldicarb Sulfoxide*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Aldicarb*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Carbaryl*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Carbofuran*	<1	ug/L	\checkmark		1	40 ug/L	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Date Extracted	-					No Limit	EPA 531.1	KV-NH	05/20/2021 05:17PM		
Methiocarb*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Methomyl*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Oxamyl (Vydate)*	<1	ug/L	\checkmark		1	200 ug/L	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Propoxur (Baygon)*	<1	ug/L			1	No Limit	EPA 531.1	KV-NH	05/21/2021 05:13AM		
Date Extracted	-					No Limit	EPA 547	KV-NH	05/10/2021 04:10PM		
Glyphosate*	<10	ug/L	\checkmark		10	700 ug/L	EPA 547	KV-NH	05/10/2021 11:37PM		
Date Extracted	-					No Limit	EPA 549.2	GQ-NH	05/13/2021 12:40PM		
Diguat*	<1	ug/L	√		1	20 ug/L	EPA 549.2	KV-NH	05/14/2021 04:42PM		

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #: 2105-01204-002

SAMPLED BY: Pratt, Al

MORE LOC INFO:

SAMPLE ADDRESS: Haven Well

NH

Attention DATE AND TIME COLLECTED:

Passes

Fails EPA Primary

Fails EPA Secondary

Fails State Guideline

DATE AND TIME RECEIVED:

ANALYSIS PACKAGE: RECEIPT TEMPERATURE: 05/08/2021 10:30AM

Legend

05/10/2021 08:27AM

VOC524.3-DW ON ICE 1.8° CELSIUS

Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed
1,1,1,2-Tetrachloroethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,1,1-Trichloroethane*	<0.5	ug/L	\checkmark		0.5	200 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,1,2,2-Tetrachloroethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,1,2-Trichloroethane*	<0.5	ug/L	\checkmark		0.5	5 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,1-Dichloroethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,1-Dichloroethylene*	<0.5	ug/L	\checkmark		0.5	7 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,1-Dichloropropylene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2,3-Trichlorobenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2,3-Trichloropropane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2,4-Trichlorobenzene*	<0.5	ug/L	\checkmark		0.5	70 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2,4-Trimethylbenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2-Dibromo-3-chloropropane	<0.5	ug/L		L	0.5	0.2 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2-Dibromoethane	<0.5	ug/L			0.5	0.05 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2-Dichlorobenzene*	<0.5	ug/L	\checkmark		0.5	600 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2-Dichloroethane*	<0.5	ug/L	\checkmark		0.5	5 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,2-Dichloropropane*	<0.5	ug/L	\checkmark		0.5	5 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,3,5-Trimethylbenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,3-Dichlorobenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,3-Dichloropropane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
1,4-Dichlorobenzene*	<0.5	ug/L	\checkmark		0.5	75 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
2-Chlorotoluene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
4-Chlorotoluene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
4-Isopropyltoluene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Benzene*	<0.5	ug/L	\checkmark		0.5	5 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #: 2105-01204-002

SAMPLED BY: Pratt, Al

MORE LOC INFO:

SAMPLE ADDRESS: Haven Well

NH

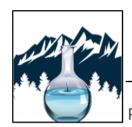
Passes

Legend

Fails EPA Primary Fails EPA Secondary Fails State Guideline Attention

DATE AND TIME RECEIVED:

DATE AND TIME COLLECTED: 05/08/2021


10:30AM 05/10/2021 08:27AM

ANALYSIS PACKAGE: VOC524.3-DW RECEIPT TEMPERATURE: ON ICE 1.8° CELSIUS

CLIENT JOB #:

Took December	Result	T 4 1121	_						
Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed
Bromobenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Bromochloromethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Bromodichloromethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Bromoform*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Bromomethane*	<0.5	ug/L		L	0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Carbon disulfide*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Carbon tetrachloride*	<0.5	ug/L	\checkmark		0.5	5 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
Chlorobenzene*	<0.5	ug/L	\checkmark		0.5	100 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
Chloroform*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Chloromethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
cis-1,2-Dichloroethylene*	<0.5	ug/L	\checkmark		0.5	70 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
cis-1,3-Dichloropropylene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Dibromochloromethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Dibromomethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Dichlorodifluoromethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Diethyl ether*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Diisopropyl ether (DIPE)*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Ethyl tert-butyl ether (ETBE)*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Ethylbenzene*	<0.5	ug/L	√		0.5	700 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM
Hexachlorobutadiene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Hexachloroethane*	<0.5	ug/L		L	0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Isopropylbenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
m&p-Xylenes	<1	ug/L			1	No Limit	EPA 524.3	DD-NH	05/14/2021 09:10PM
Methyl tert-butyl ether (MTBE)*	<0.5	ug/L	\checkmark		0.5	13 ug/L	EPA 524.3	DD-NH	05/14/2021 09:10PM

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #: 2105-01204-002

SAMPLED BY: Pratt, Al

SAMPLE ADDRESS: Haven Well

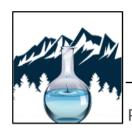
NH

Legend

Passes Fails EPA Primary Fails EPA Secondary Fails State Guideline Attention

08:27AM

DATE AND TIME COLLECTED: 05/08/2021 10:30AM DATE AND TIME RECEIVED:


ANALYSIS PACKAGE: VOC524.3-DW **RECEIPT TEMPERATURE:**

ON ICE 1.8° CELSIUS

05/10/2021

MORE LOC INFO:	CLIENT JOB #:										
Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed		
Methylene chloride*	<0.5	ug/L	√		0.5	5 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Naphthalene*	<0.5	ug/L	\checkmark		0.5	100 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
n-Butylbenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
n-Propylbenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
o-Xylene	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
sec-Butylbenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Styrene*	<0.5	ug/L	\checkmark		0.5	100 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
tert-Amyl methyl ether (TAME)*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
tert-Butyl alcohol (TBA)*	<10	ug/L			10	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
tert-Butylbenzene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Tetrachloroethylene*	<0.5	ug/L	\checkmark		0.5	5 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Tetrahydrofuran (THF)	<10	ug/L			10	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Toluene*	<0.5	ug/L	\checkmark		0.5	1000 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Total THMs*	<0.5	ug/L	\checkmark		0.5	80 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Total Xylenes*	<0.5	ug/L	\checkmark		0.5	10000 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
trans-1,2-Dichloroethylene*	<0.5	ug/L	\checkmark		0.5	100 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
trans-1,3-Dichloropropylene*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Trichloroethylene*	<0.5	ug/L	\checkmark		0.5	5 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Trichlorofluoromethane*	<0.5	ug/L			0.5	No Limit	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
Vinyl chloride*	<0.5	ug/L	\checkmark		0.5	2 ug/L	EPA 524.3	DD-NH 0	5/14/2021 09:10PM		
1,2-Dichlorobenzene-d4	109	%	√		0.5	70-130%	EPA 524.3 - SS	DD-NH 0	5/14/2021 09:10PM		
4-Bromofluorobenzene	98	%	\checkmark		0.5	70-130%	EPA 524.3 - SS	DD-NH 0	5/14/2021 09:10PM		
Methyl tert-Butyl Ether-d3	89	%	\checkmark		0.5	70-130%	EPA 524.3 - SS	DD-NH 0	5/14/2021 09:10PM		

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

2105-01204-003 **SAMPLE ID #:**

SAMPLED BY: Pratt, Al

SAMPLE ADDRESS: Haven Well

NH

Passes

Fails EPA Primary Fails EPA Secondary Fails State Guideline

Attention

DATE AND TIME COLLECTED:

DATE AND TIME RECEIVED: ANALYSIS PACKAGE: RECEIPT TEMPERATURE:

05/08/2021 10:30AM

Legend

05/10/2021 08:27AM IOC-MS-Compliance-2019

ON ICE 1.8° CELSIUS

MORE LOC INFO:	CLIENT JOB #:											
Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed			
Turbidity*	<0.5	NTU	√	Н	0.5	5 NTU	EPA 180.1	DG-NH (05/10/2021 11:58AM			
Calcium*	59.7	mg/L			1	No Limit	EPA 200.7	JLR-NH (05/13/2021 02:55PM			
Hardness (calc.)*	188	mg CaCO3/L			2	No Limit	EPA 200.7	JLR-NH (05/13/2021 02:55PM			
Iron*	<0.01	mg/L	\checkmark		0.01	0.3 mg/L	EPA 200.7	JLR-NH (05/13/2021 02:55PM			
Magnesium*	9.4	mg/L			1	No Limit	EPA 200.7	JLR-NH (05/13/2021 02:55PM			
Potassium*	3.2	mg/L			1	No Limit	EPA 200.7	JLR-NH (05/13/2021 02:55PM			
Sodium*	16.2	mg/L			1	No Limit	EPA 200.7	JLR-NH (05/13/2021 02:55PM			
Aluminum*	0.0012	mg/L	\checkmark		0.001	0.2 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Antimony*	< 0.001	mg/L	\checkmark		0.001	0.006 mg/L	EPA 200.8	DR-NH (05/19/2021 11:56AM			
Arsenic*	<0.001	mg/L	\checkmark		0.001	0.010 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Barium*	0.0129	mg/L	\checkmark		0.001	2.00 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Beryllium*	<0.001	mg/L	\checkmark		0.001	0.004 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Cadmium*	< 0.001	mg/L	\checkmark		0.001	0.005 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Copper*	0.0158	mg/L	\checkmark		0.001	1.3 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Manganese*	0.137	mg/L	\bigvee		0.001	0.05 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Mercury*	<0.0001	mg/L	\checkmark		0.0001	0.002 mg/L	EPA 200.8	JLR-NH (05/21/2021 12:10PM			
Nickel*	0.0028	mg/L			0.001	No limit	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Selenium*	<0.001	mg/L	\checkmark		0.001	0.05 mg/L	EPA 200.8	DR-NH (05/19/2021 11:56AM			
Silver*	<0.001	mg/L	\checkmark		0.001	0.1 mg/L	EPA 200.8	DR-NH (05/19/2021 11:56AM			
Thallium*	<0.001	mg/L	\checkmark		0.001	0.002 mg/L	EPA 200.8	DR-NH (05/19/2021 11:56AM			
Zinc*	0.0118	mg/L	✓		0.001	5 mg/L	EPA 200.8	JLR-NH (05/11/2021 04:07PM			
Chloride*	37	mg/L	\checkmark		2	250 mg/L	EPA 300.0	DG-NH (05/10/2021 02:28PM			
Fluoride*	<0.2	mg/L	✓		0.2	4.0 mg/L	EPA 300.0	DG-NH (05/10/2021 02:28PM			
Sulfate*	19	mg/L	\checkmark		2	250 mg/L	EPA 300.0	DG-NH (05/10/2021 02:28PM			

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED: 05/28/2021

CLIENT NAME: Portsmouth Water Works

CLIENT ADDRESS: 680 Peverly Hill Road

Portsmouth, NH 03801

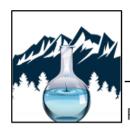
2105-01204-003 **SAMPLE ID #:**

SAMPLED BY: Pratt, Al

SAMPLE ADDRESS: Haven Well

NH

CLIENT JOB #:


Fails EPA Primary Fails EPA Secondary Fails State Guideline Attention

DATE AND TIME COLLECTED: 05/08/2021 10:30AM **DATE AND TIME RECEIVED:** 05/10/2021 08:27AM **ANALYSIS PACKAGE:** IOC-MS-Compliance-2019 ON ICE 1.8° CELSIUS **RECEIPT TEMPERATURE:**

Legend

MORE LOC INFO: **Test Description Test Units** DQ RL Limit Date - Time Result **Pass** Method **Analyst** /Fail Flag **Analyzed** Perchlorate* < 0.050 ug/L 0.050 2 ug/L **EPA 332** 2064 05/14/2021 02:53PM Color, Apparent <5 CPU Н 5 15 CPU SM 2120B DG-NH 05/10/2021 11:58AM Odor ND T.O.N. Н 1 3 T.O.N. SM 2150B DG-NH 05/10/2021 12:00PM Total Alkalinity* mg CaCO3/L DG-NH 05/10/2021 01:34PM 143 20 No Limit SM 2320B Total Dissolved Solids* 237 1008 05/14/2021 mg/L 50 500 mg/L SM 2540C Cyanide, Total* 0.02 < 0.02 mg/L 0.2 mg/L SM 4500 CN E 1008 05/14/2021 pH* 7.60 SU Н N/A 6.5 - 8.5 SU SM 4500 H B DG-NH 05/10/2021 12:00PM

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED:

05/28/2021

CLIENT NAME:

Portsmouth Water Works

CLIENT ADDRESS:

680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #:

2105-01204-004

SAMPLED BY: Pratt, Al

SAMPLE ADDRESS:

MORE LOC INFO:

Haven Well

NH

CLIENT JOB #:

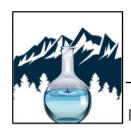
DATE AND TIME RECEIVED:

RECEIPT TEMPERATURE:

ANALYSIS PACKAGE:

Legend

Passes Fails EPA Primary Fails EPA Secondary Fails State Guideline


Attention **DATE AND TIME COLLECTED:**

05/08/2021 10:30AM 05/10/2021 08:27AM

1.4-Dioxane-522 ON ICE 1.8° CELSIUS

Test Description Test Units DQ RL Date - Time Result **Pass** Limit Method **Analyst** /Fail Flag Analyzed 1,4-Dioxane* < 0.1 ug/L 0.1 0.32 ug/L **EPA 522** DD-NH 05/17/2021 09:05PM 1,4-Dioxane-d8 90 % 70-130% **EPA 522** DD-NH 05/17/2021 09:05PM **Date Extracted** Completed **EPA 522** GQ-NH 05/14/2021 10:08AM

22 Manchester Road, Unit 2, Derry, NH 03038 Phone (800) 699-9920 | (603) 432-3044 website www.granitestateanalytical.com

CERTIFICATE OF ANALYSIS FOR DRINKING WATER

DATE PRINTED:

05/28/2021

CLIENT NAME:

Portsmouth Water Works

CLIENT ADDRESS:

680 Peverly Hill Road

Portsmouth, NH 03801

SAMPLE ID #:

2105-01204-005

SAMPLED BY:

Pratt, Al

SAMPLE ADDRESS:

Haven Well

NH

DATE AND TIME COLLECTED:

Passes

Attention

DATE AND TIME RECEIVED: ANALYSIS PACKAGE:

RECEIPT TEMPERATURE:

Fails EPA Primary

Legend

Fails EPA Secondary Fails State Guideline

05/08/2021 10:30AM

05/10/2021 08:27AM

Rads Full-MS

ON ICE 1.8° CELSIUS

MORE LOC INFO: CLIENT JOB #:

MURE LUC INFU.					CLIE	NI JUD#.			
Test Description	Result	Test Units	Pass /Fail	DQ Flag	RL	Limit	Method	Analyst	Date - Time Analyzed
Uranium*	<1	ug/L	\checkmark		1	30 ug/L	EPA 200.8	JLR-NH	05/11/2021 04:14PM
Uranium	< 0.67	pCi/L	\checkmark		0.67	20 pCi/L	EPA 200.8 Calc.	JLR-NH	05/11/2021 04:14PM
Analytical Gross Alpha*	<3	pCi/L			3	No Limit	EPA 900	2530	05/20/2021 08:02AM
Radium 226*	<1	pCi/L			1	No Limit	EPA 903.0	2530	05/24/2021 12:46PM
Radium 228*	<1	pCi/L			1	No Limit	EPA Ra-05	2530	05/26/2021 12:41PM
Combined Radium	<1	pCi/L	\checkmark		1	5 pCi/L	N/A Calculation	2530	05/26/2021 12:41PM
Compliance Gross Alpha*	<3	pCi/L	\checkmark		3	15 pCi/L	N/A Calculation	ES-NH	05/20/2021 08:02AM
Radon	615	pCi/L	√		100	10000 pCi/L	SM 7500 Rn B	TT-ME	05/11/2021 08:16PM

